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Abstract

We study pointer programs as a model of structured computation
within logspace. Pointer programs capture the common description of
logspace algorithms as programs that take as input some structured data
(e.g. a graph) and that store in memory only a constant number of point-
ers to the input (e.g. to the graph nodes). Starting from pure pointer
programs, in which only abstract pointers without any internal structure
are allowed, we consider pointer programs with constructs for iterating
over the input structure and for counting. We classify with which of these
constructs it is possible to write a program for solving s-t-reachability in
undirected graphs.

The main result of this paper is a new lower bound on undirected
s-t-reachability. We show that while pointer programs with counting can
decide this problem using Reingold’s algorithm, the problem cannot be
decided by pointer programs with iteration. As a corollary we obtain that
Deterministic Transitive Closure logic on locally ordered graphs cannot
express undirected s-t-reachability.

1 Introduction

Pointer programs are a useful abstraction for logspace. Most logspace-
algorithms are intended to take as input some structured data and the logarith-
mic space that they have available is just enough to store a constant number
of pointers into the input structure. A typical example of an input structure
would be a graph; in logarithmic space one can store a constant number of
references to graph nodes. This observation leads to the useful idealisation of
logspace-algorithms as pointer programs that access a structured read-only
input by means of abstract pointers and that compute their result by pointer
manipulation alone. Many typical logspace-algorithms are presented infor-
mally in this way, see e.g. [1].

Pointer programs are useful not only for presenting logspace-algorithms,
but also to gain insight into the nature of logspace-computation. In this
paper we consider a natural class of pointer-programs that formalises the ideali-
sation of typical logspace-algorithms as programs that ‘use a constant number
of pure pointers.’ Although this class can express typical logspace-complete
algorithms, such as a test for graph acyclicity, it is strictly contained within
logspace, as we show in [5]. It is therefore an interesting question, which
typical logspace-algorithms do fall into this class, that is, which logspace-
algorithms can be expressed by programs that ‘use a constant number of pure
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pointers’ only. In this paper we consider the problem of s-t-reachability in
undirected graphs and show that it cannot be expressed by a program of this
form.

Before we come to undirected reachability, let us discuss how the informal
notion of pointer programs with a constant number of pure pointers may be
captured precisely. Many informal pointer programs are pure, in that they treat
pointers as abstract values without internal structure and that they manipulate
them using only the operations of the input structure. In the case of graphs the
pointers to nodes are typically manipulated by operations like ‘move pointer x
along the i-th edge from its current position’. In these operations the edges
are often referred to by natural numbers. This is important for implementing
algorithms like depth-first search, in which the neighbours of a node need to
be visited in a particular order. We are therefore led to using locally ordered
graphs, in which the outgoing edges of each node are numbered successively
starting from 1. Moreover, virtually all pointer programs rely on being able to
compare pointers for equality, i.e. to check if they point to the same graph node.

These considerations lead us to a simple model of minimal pure pointer pro-
grams for locally ordered graphs that forms a minimal core of what one should
expect pure pointer programs in logarithmic space to be able to do. A mini-
mal pure pointer program has finite control and a constant number of pointer
variables that may be compared for equality and that may be manipulated with
operations of the form: move pointer x along the i-th edge. This may be for-
malised in terms of a while-language with programs generated by the grammar

M ::= skip | M ; M | x := t | if t then M else M | while t do M ,

where in addition to pointer variables there are variables of boolean type to store
the finite control state. The terms of boolean type consist of the usual boolean
operations like ∧ and ¬, in addition to the equality test t = t′ for pointer terms.
Pointer terms are built from the pointer variables using the operation t.succ(i),
which denotes the node obtained by moving along edge number i from the node
denoted by t.

This notion of minimal pure pointer program is essentially equivalent to
(a uniform version of) the Jumping Automata on Graphs (jags) of Cook &
Rackoff [2]. Previous work on jags shows that while the class of minimal pure
pointer programs is far from trivial, it is fairly weak [2, 4]. For example, it
is impossible to write a program to check the input graph for acyclicity. The
reason for this weakness is that jags cannot in general visit all nodes of the
graph. Since they can only reach new graph nodes by traversing graph edges,
they cannot reach disconnected components of the graph.

To obtain more expressive classes of pointer algorithms, one may make a
number of reasonable extensions to minimal pure pointer programs. One well-
known approach is to add a total ordering on the nodes of the input graph. In
this approach, however, one leaves the realm of pure pointer algorithms, as an
ordering on the pointers allows one to encode data in the pointers themselves. In
programming-language terms, adding a total order amounts to allowing pointer-
arithmetic, that is moving from the Java-like pointers to C-like ones. With
a total ordering on the graph nodes it is possible to encode the tapes of a
logspace-Turing Machine, so that any logspace-algorithm can be encoded.
Since our aim is to study the expressibility of logspace-algorithms by pure
pointer algorithms, we thus find a total ordering to be too strong an addition.
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A way to allay the weakness of minimal pure pointer programs, while still
remaining within the realm of pure pointer programs, is to allow pointer pro-
grams to iterate over the whole input graph. The idea is to add to the minimal
pointer programming language a forall-loop for iteration over all nodes of the
graph. The loop (forall x do M) represents the algorithm that iterates over
all graph nodes by setting x successively to each graph node and executing the
loop body M after each such setting. Importantly, there are no guarantees on
the order in which x iterates over the graph and this order may be different
in each run of the forall-loop. The program must return the correct result
independently of the order chosen in the forall-loops, i.e. for any choice of it-
eration order the program must give the correct result. This independence from
the evaluation order ensures that pointers remain pure and that their internal
representation cannot be inspected by the program. We have shown in [5] that
pure pointer programs with iteration, while being able to express interesting
problems, do in general only have a very limited ability to count and therefore
are not able to encode the tapes of a Turing Machine in the pointers.

A simple example of a pointer program with iteration is the program

b := false; forall x do b :=¬b ,

which computes the parity of the input graph. More substantial examples for
pointer programs with iteration can be found in [5], for example that the well-
known algorithm of Cook & McKenzie [1] that decides acyclicity of graphs can be
programmed easily. Moreover, it is not hard to see that Deterministic Transitive
Closure logic (dtc-logic) on locally ordered graphs (of constant degree), see
e.g. [3, 4], is subsumed by the pure pointer language with iteration in the sense
that dtc-logic queries can be evaluated in this language.

Having introduced pure pointer programs, we can now state the main ob-
jective of this paper. We consider the problem of s-t-reachability in undirected
graphs and study its expressibility by pure pointer programs. From results of
Cook & Rackoff [2] it follows that this problem cannot be expressed by minimal
pure pointer programs. The main result of this paper is that undirected s-t-
reachability cannot be solved by pure pointer programs with iteration either.
As a corollary we obtain that this problem cannot be expressed in dtc-logic on
locally ordered graphs. This answers an open question by Etessami & Immer-
man [4].

Our result identifies undirected s-t-reachability as a problem that appears to
require impure pointer operations in order to be expressed by a pointer program.
With Reingold’s algorithm [9], it is possible to solve this problem by a minimal
pure pointer program that has access to a constant number of counting registers
of logarithmic size [8], e.g. encoded by a logarithmic number of boolean variables.
Counting registers are an impure addition to the language, since they can be
used to encode Turing-Machine tapes, as with the addition of a total ordering.

2 Locally Ordered Graphs

A locally ordered graph of degree d consists of a set of nodes V and a function
succ : V × {1, . . . , d} → V . The intention is that the i-th edge leaving node v
goes to node succ(v, i). The graph Γ is undirected if, for any two nodes v and w,
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there is an edge from v to w and one from w to v. An s-t-graph is a locally
ordered graph Γ with two distinguished nodes s and t.

We use letter Γ to range over locally ordered graphs and write (Γ, s, t) for
the s-t-graph with s := s and t := t. We often write v ∈ Γ to indicate that v is
a node in Γ. We write deg(Γ) for the degree of Γ.

The distance of two nodes v and w is the length of the shortest path con-
necting them. We write d(v, w) for it. A ball of radius r around a node v is the
set

BΓ(v, r) = {w | d(v, w) ≤ r}.

We extend this notation to sets of nodes W and write BΓ(W, r) for the neigh-
bourhood of radius r around the nodes in W .

BΓ(W, r) =
⋃

v∈W

BΓ(v, r)

We write diam(Γ) for the diameter of Γ, that is the largest distance of two nodes
in Γ.

3 Pure Pointer Programs with Iteration

In this section we define a pure pointer language (purple) to formalise the
notion of pure pointer program with iteration that we discussed in the Intro-
duction. We concentrate on giving the definitions that are needed for this paper
and refer to [5] for an in-depth discussion of purple with examples and a proof
that purple is indeed a pure pointer language.

Terms. There are two types of terms, one for booleans and one for pointers
to the graph nodes. Fix countably infinite sets Varsbool and VarsΓ of boolean
variables and graph pointer variables. We make the convention that b, c denote
boolean variables and x, y denote graph pointer variables. The terms are then
generated by the following grammars.

tbool ::= true | false | b | ¬tbool | tbool ∧ tbool | tbool ∨ tbool | tΓ = tΓ

tΓ ::= x | s | t | tΓ.succ(i) (where i ∈ N)

The intention is that pointer terms denote graph nodes and that the term
t.succ(i) denotes the node reached by following edge number i from the node
denoted by t. The only direct observation about pointers is the equality test
t = t′.

Programs. The set of purple programs is defined inductively by the gram-
mar below.

M ::= skip | M ; M | x := tΓ | b := tbool

| if tbool then M else M | while tbool do M | forall x do M

The intended behaviour of (forall x do M) is that the pointer variable x
iterates over the nodes of the input graph in some unspecified order, visiting
each element exactly once, and M is executed after each setting of x.
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We write Varsbool(M) for the boolean variables appearing in program M
and VarsΓ(M) for the graph variables in M . We define the forall-depth of
a program M to be the nesting depth of the forall-loops in M . A program
without forall-loops has forall-depth 0.

3.1 Operational Semantics

The operational semantics of purple is parameterised over a finite locally or-
dered s-t-graph Γ. It is formulated in terms of a small-step transition rela-
tion −→Γ. To define this transition relation, we define a set of extended programs
that have annotations for keeping track of which variables have already been
visited in the computation of the forall-loops. The set of extended programs
consists of purple programs in which the forall-loops are not restricted to
an iteration over all graph nodes, but where (for x ∈ W do M) is allowed for
any set of nodes W . We identify (forall x do M) with (for x ∈ V do M),
where V is the node set of Γ.

The transition relation −→Γ is a binary relation on configurations. A configu-
ration is a triple (M, q, ρ) consisting of an extended program M , an assignment q
that maps the boolean variables in M to boolean values, and an assignment ρ
that maps the graph variables in M to nodes in Γ. For assignments q and ρ that
are defined on more than the variables in M , we will usually write just (M, q, ρ)
for (M, q|Varsbool(M), ρ|VarsΓ(M)), making the restriction implicit. The relation
−→Γ is defined in Figure 1. There we write JtKq,ρ for the evident interpretations
of terms with respect to the variable assignments q and ρ:

Boolean Terms Graph Pointer Terms

JtrueKq,ρ = true JxKq,ρ = ρ(x)

JfalseKq,ρ = false JsKq,ρ = s

JbKq,ρ = q(b) JtKq,ρ = t

J¬tKq,ρ = ¬JtKq,ρ Jt.succ(i)Kq,ρ = succ (JtKq,ρ, i)

Jt1 ∧ t2Kq,ρ = Jt1Kq,ρ ∧ Jt2Kq,ρ

Jt1 ∨ t2Kq,ρ = Jt1Kq,ρ ∨ Jt2Kq,ρ

Jt1 = t2Kq,ρ = (Jt1Kq,ρ = Jt2Kq,ρ)

We make the convention that succ(v, i) denotes v if i exceeds the degree of Γ.
As usual, we write −→∗

Γ for the reflexive transitive closure of −→Γ.
We say that a configuration (M, q, ρ) is strongly terminating if there is no

infinite reduction sequence of −→Γ starting from it. We say that a program M
is strongly terminating if any configuration (M, q, ρ) on any graph is strongly
terminating.

To define what it means for a graph to be recognised by a program, we
choose a distinguished boolean variable result that indicates the outcome of a
computation.

Definition 1 (Recognition). A set X of finite graphs is recognised by a pro-
gram M , if M is strongly terminating and, for all graphs Γ and all ρ, ρ′, q and q′

satisfying
(M, q, ρ) −→∗

Γ (skip, q′, ρ′) ,

one has q′(result) = true if and only if Γ ∈ X .
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Assignment

(x := tΓ, q, ρ) −→Γ (skip, q, ρ[x := JtΓKq,ρ])

(b := tbool, q, ρ) −→Γ (skip, q[b := JtboolKq,ρ], ρ)

Composition

(skip; M, q, ρ) −→Γ (M, q, ρ)
(M, q, ρ) −→Γ (M ′, q′, ρ′)

(M ; N, q, ρ) −→Γ (M ′; N, q′, ρ′)

Conditional

(if t then M else N, q, ρ) −→Γ (M, q, ρ) if JtKe,ρ = true

(if t then M else N, q, ρ) −→Γ (N, q, ρ) if JtKe,ρ = false

while-loop

(while t do M, q, ρ) −→Γ (skip, q, ρ) if JtKq,ρ = false

(while t do M, q, ρ) −→Γ (M ; while t do M, q, ρ) if JtKq,ρ = true

for-loop
(for x ∈ ∅ do M, q, ρ) −→Γ (skip, q, ρ)

v ∈ W
(for x ∈ W do M, q, ρ) −→Γ (M ; for x ∈ W \ {v} do M, q, ρ[x := v])

Figure 1: Operational Semantics

Our notion of recognition should not be confused with the usual definition of
acceptance for existentially (nondeterministic) or universally branching Turing
machines; in contrast to those concepts it is completely symmetrical in X vs. X.
If the input is in X then all runs must accept; if the input is not in X then
all runs must reject. In particular, not even for strongly terminating M can we
in general define ‘the language of M ’. A program whose result depends on the
traversal order does not recognise any set at all.

Definition 2 (Reachability). A purple program M decides s-t-reachability for
a set X of finite graphs if M recognises the following set of s-t-graphs

{(Γ, s, t) | Γ ∈ X and s and t are connected by a path in Γ}.

For a more detailed discussion of purple and example programs, we refer to [5].

3.2 Elimination of While-Loops

A property of purple that is useful for studying its expressivity is that all
while-loops can be eliminated. Since while-loops are the only source of non-
termination, we therefore need not study the termination behaviour of programs.

Proposition 1. For any program M , there exists a while-free program M ′ that
recognises the same sets of graphs.
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Proof sketch. If M is not strongly terminating then it does not recognise any set
of graphs, and we can take M ′ to be, e.g., ((forall x do skip); result :=(x = y)).

For the case where M is strongly terminating, note that a program with m
boolean variables and n graph variables can assume no more than 2m · |V |n

distinct states, where V is the set of nodes of the input graph. Therefore,
any while-loop that is executed more often than this number must go into an
infinite loop. Hence, we can transform each program into a while-free program
by unrolling each while-loop into t nested forall-loops where |V |t ≥ 2m · |V |n

that execute the loop body up to 2m · |V |n times.

3.3 Relation to Other Models

3.3.1 Jumping Automata on Graphs

We have already mentioned in the Introduction that purple-programs without
forall-loops are essentially the same as the Jumping Automata on Graphs
(jags) of Cook & Rackoff [2]. Since we build on existing results about jags, we
include a precise definition of jags in this section.

Definition 3. A Jumping Automaton on Graphs (jag) consists of a finite set of
states Q, a subset F ⊆ Q of final states, a finite set of pebbles P and a transition
function δ : Q ×Σ(P ) → Q× ((P × P ) + (P × N)), where Σ(P ) is the set of all
equivalence relations on P .

A jag J = (Q, F, P, δ) works on a locally ordered graph Γ = (V, succ) in the
following way. The configurations of the computation are pairs (q, ρ) ∈ Q×V P

of a state and a placement of the pebbles on the graph. In each step, the
automaton J can see of the configuration only the state q and the incidence
relation of ρ, i.e. the equivalence relation [ρ] ∈ Σ(P ) defined by x[ρ]y ⇐⇒
ρ(x) = ρ(y). Then, the behaviour of J on Γ is defined by the following binary
transition relation −→J on configurations.

(q, ρ) −→J (q′, ρ[x := y]) if δ(q, [ρ]) = (q′, inl(x, y)) and q /∈ F

(q, ρ) −→J (q′, ρ[x := succ(x, i)]) if δ(q, [ρ]) = (q′, inr(x, i)) and q /∈ F

Here, we make the convention that succ(x, i) = x holds whenever i exceeds the
degree of Γ.

With these definitions, it should be evident that each forall-free purple-
program can be compiled into a jag and vice versa.

3.3.2 Deterministic Transitive Closure Logic

A second well-known class of pure pointer programs is captured by Deterministic
Transitive Closure (dtc) logic on locally ordered graphs, see e.g. [4]. This
logic captures strictly more algorithms than jags, since it allows for first-order
quantification. For example, acyclicity in undirected graphs can be expressed
in locally ordered dtc-logic, but not by jags.

More evidence for the claim that purple captures the intuitive notion of
being computable with a constant number of pure pointers, is given by the fact
that purple subsumes dtc-logic on locally ordered graphs. In dtc-logic on
locally ordered graphs, one has, in addition to the binary edge relation E(−,−),
a ternary relation F (−,−,−), such that F (v,−,−) is a total ordering on {w |
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E(v, w)}, for any v, see [4]. This representation of graphs in the logic is also
called a one-way local ordering (1lo) [4], since it consists of an ordering of all the
outgoing edges of each node. It is also possible to study a two-way local ordering
(2lo), where in addition the incoming edges of each node are ordered as well.
Since in an undirected graph a one-way local ordering automatically induces a
two-way local ordering, we shall not need to study two-way local orderings in
this paper: showing that dtc-formulae with a one-way local ordering cannot
express s-t-reachability in undirected graphs is enough for showing the same
result for formulae with a two-way local ordering.

Each dtc-formula on locally ordered graphs can easily be evaluated by a
purple-program, see [5]. For the sake of completeness we include a proof sketch
for the case of bounded degree graphs. The general case uses the encoding of
unbounded degree graphs given in [5].

Proposition 2. For each closed dtc formula ϕ for locally ordered graphs there
exists a program Mϕ such that, for any finite locally ordered graph Γ of degree d,
one has Γ |= ϕ if and only if Mϕ recognises Γ.

Proof sketch. One constructs for each dtc-formula ϕ with free variables among
x1, . . . , xn a strongly terminating program Mϕ such that for all q, q′, ρ, ρ′ sat-
isfying (Mϕ, q, ρ) →∗

Γ (skip, q′, ρ′) one has q′(result) = true if and only if
Γ, ρ |= ϕ. Specialising to n = 0 yields the proposition. The construction of Mϕ

proceeds by induction on ϕ. We give a representative selection of cases using
self-explanatory syntactic sugar as appropriate.

For atomic formulae we put

ME(x,y) ≡ result :=
∨

1≤i≤d y=x.succ(i) ,

MF (x,y,z) ≡ result :=
∨

1≤i<j≤d y=x.succ(i) ∧ z=x.succ(j) .

Quantifiers are dealt with using a forall-loop, e.g. M∀x.ϕ is

~z := ~x; b := true; forall x do (Mϕ; ~x :=~z; b := b ∧ result); result := b ,

where ~z is a list of fresh graph variables used to restore the initial values of ~x
after each execution of Mϕ.

For deterministic transitive closure we use a number of nested forall-loops
to cycle through all tuples of elements in order to find the next tuple. Writing
forall ~x do M as a shorthand for forall x1 do · · ·forall xn do M and using
similar notation for assignments to vectors of variables and equality test we get
the following definition of Mdtc~x,~y(ϕ)(~u,~v). We assume that ϕ is the graph of a
partial function. If it is not we can replace it by ϕ ∧ (∀~z. ϕ[~z/~y] ⇒ ~y=~z).

~x := ~u;
found := false;

forall ~t do /* Execute body |Γ|n times */
~z :=~x;
forall ~y do /* Try to find next step */

~x :=~z; Mϕ; if result then ~a := ~y else skip;
found := found ∨ ~v=~a;
~x :=~a;

result := found
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The converse of this proposition is not true, since dtc-logic cannot express
that the number of nodes in the input graph is even. We have observed in the
Introduction that it is possible to write such a program in purple.

4 Undirected Reachability

We now turn to proving the main result of this paper, that undirected s-t-
reachability cannot be expressed in purple. Since the proof takes up the rest
of the paper, we start by sketching the main idea and giving a general overview.

4.1 Overview

The general idea is to show a locality property of purple programs on a certain
class of graphs. A purple program without any loops is local in the sense that it
can move its graph variables only within a certain radius of their initial positions.
This radius is trivially bounded by the size of the program. Hence, a loop-free
program is confined to a certain neighbourhood around the initial positions
of the graph variables in the start configuration. General purple programs
with forall-loops are not local; the forall-loop allows one to place graph
variables at an arbitrary distance from the positions in the start configuration.
For example, it is easy to write a program that places a graph variable on some
node having a self-loop. Since a self-loop can be arbitrarily far away from the
start configuration, this shows that forall-loops cannot in general be local.

In this section we show that nevertheless there exist graphs, on which each
purple program satisfies a locality property. We will show that for each purple

program M there exists a program L without forall- or while-loops that
implements M on a particularly constructed graph in the sense that from each
start configuration both M and L can reach the same end-configuration. Notice
that the end configuration of the forall-free program L is uniquely determined
by the start configuration. The program M , on the other hand, may have more
than one run, so the assertion is that L simulates one particular run of M .
This is appropriate for the goal of proving that M cannot decide undirected
reachability, since, by the definition of ‘recognises’, M must obtain the correct
answer on all runs.

While L will be much larger than M , we will see that we can choose the input
graph such that the radius r up to which L can explore it remains much smaller
than the graph itself. This will allow us to show that L cannot distinguish
between the situation where s and t lie on different connected components from
the situation where they have distance greater than 2r on the same connected
component. This then implies that L cannot decide undirected reachability and
as a result we obtain that M cannot decide undirected reachability either, since
it does not compute the correct result on the runs implemented by L.

The main difficulty in carrying out this proof idea is implementing forall-
loops by local programs. After the execution of a forall-loop, the graph vari-
ables may point to nodes that are arbitrarily far away from the nodes in the
start configuration. Note, however, that we can influence the positions in the
final configuration by an appropriate choice of the iteration order. Our strategy
for showing locality of forall-loops is then to construct graphs on which we can
choose the iteration order for the forall-loops so as to force the graph variables
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to be in a small enough neighbourhood around the nodes in the start configura-
tion. With such a choice we can implement the forall-loop by a local program
that has enough states to exhaustively explore this neighbourhood. The graphs
that we construct fall into the class of action graphs, where the nodes form a
G-set for a finite group G and where edges are given by multiplication with
elements from a fixed generating set of G. By using action graphs, we can reuse
existing results on the expressivity of jags [2, 10] (equivalently: forall-free
purple programs) and the development in this paper relies crucially on these
results.

We define action graphs in Section 4.2. In Section 4.3 we then define lamp-
lighter graphs, a particular class of action graphs whose underlying group is
obtained by iterated application of the lamplighter construction (wreath prod-
uct with Z/2Z) to a group Z/mZ. It is on these graphs that purple programs
cannot decide undirected reachability. In Section 4.4 we define precisely what
we mean by a local program. We identify conditions for action graphs that
are sufficient for showing that local programs are closed under composition and
forall-loops. In Section 4.5 we then show that the lamplighter construction
from Section 4.3 does indeed allow one to construct action graphs satisfying
these conditions. In Section 4.6, finally, we combine these results to show that
purple cannot decide undirected reachability.

4.2 Action Graphs

We study the behaviour of programs on action graphs, which are locally ordered
graphs defined by a group action on a set. Action graphs are closely related
to Cayley graphs and the particular action graphs that are important for this
paper consist of two disjoint copies of the Cayley graph of some group. In this
section we define action graphs and fix group-theoretic notation.

All groups in this paper are finite. We write them multiplicatively and
denote the unit element of group G by eG or just e. The exponent of a group G
is the least common multiple of the orders of all its elements. We write Z/mZ

for the cyclic group of integers modulo m.
A group action of a group G on a set V is a function (−) · (−) : V ×G → V

that satisfies v · e = v and (v · g) · h = v · (g · h) for all v ∈ V and g, h ∈ G. A
group action if free1 if v · g = v implies g = eG for all v ∈ V and g ∈ G.

Definition 4 (Action graph). Let V be a non-empty finite set, G be a group
generated by a set S that is closed under inverses, i.e. S−1 = S holds, and
let (−) · (−) : V × G → V be a group action of G on V . The action graph
A(V, G, S, ·) is the undirected graph with node set V and an edge from v to v · s
for each v ∈ V and each s ∈ S.

As usual, we shall often not distinguish notationally between an action graph
and its set of nodes. We call G the edge group of A(V, G, S, ·) and S its gen-
erators. Note that we have deg(A) = |S|. We say that an action graph has
exponent m if its edge group does.

Any total ordering on S induces a local ordering on this action graph: if s
is the i-th element of S then (v, v · s) is the i-th outgoing edge from v. In this

1Free group actions are also often called semiregular group actions. We use the term ‘free’

to avoid confusion with the graph-theoretic meaning of ‘regular’.
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paper we assume that all action graphs are locally ordered in this way. Since
the particular choice of the ordering on the generating sets is not important for
our results, we will not show it explicitly.

A free action graph is an action graph with a free group action. For any two
nodes v and w in the same connected component of a free action graph there
exists a unique element (w/v) ∈ G such that v · (w/v) = w holds.

Cayley graphs are prominent examples of free action graphs. If G is a group
and S is a generating set for G that is closed under inverses (S−1 = S), then
the Cayley graph C(G, S) is the undirected graph whose nodes are the elements
of G and whose edges are {(g, gs) | g ∈ G, s ∈ S}. It is the free action graph
A(G, G, S, ·), where (−) · (−) is the free action given by group multiplication.

In fact, any free action graph with edge group G and generators S is iso-
morphic to a number of disjoint copies of C(G, S).

We note that the elements of a ball BA(v, r) in A = A(V, G, S, ·) can be
addressed by elements of the ball BC(eG, r) in C = C(G, S). That is, for each
π ∈ BC(eG, r) the node v · π ∈ V is an element of BA(v, r) and each element of
BA(v, r) appears in this way. Relying on this fact, we will work with elements
of BC(eG, r) instead of paths of length at most r. In free action graphs, each
ball BA(v, r) is in fact isomorphic to BC(eG, r).

Action graphs are interesting for the purpose of this paper because of the
following result that gives a bound on how many nodes a jag can visit in them.

Theorem 3. There exists a constant c, such that in any free action graph A

with exponent m, any jag with Q states and P pebbles can visit at most (Qm)
cP

nodes from any start configuration.

This theorem is proved by a direct generalisation of an argument of Cook &
Rackoff [2]. They prove the special case of the theorem where A is the Cayley
graph for the commutative group (Z/mZ)d with pointwise addition (x1, . . . , xd)+
(y1, . . . , yd) = (x1 + y1, . . . , xd + yd) and the generating set δ1, . . . , δd, where δi

is the vector with a 1 in the i-th component and a 0 in all other components.
The proof of Cook & Rackoff can be generalised directly to yield the Theo-
rem above [10]. It has been formalised and verified in the theorem prover Coq;
see [10] for details.

4.3 Lamplighter Graphs

In order to prove that pure pointer programs with iteration cannot decide undi-
rected reachability, we construct graphs of small degree in which jags can only
visit very small neighbourhoods of their start configuration compared to the
overall size of the graph. We obtain such graphs by iterating a construction of
lamplighter graphs, which we define in this section.

Lamplighter graph get their name from the following intuition. Before the
invention of automatic street lights, towns used to employ lamplighters who
would go around town to light all street lamps at night and put them out again
at dawn. Lamplighting was not a very varied job: at any time the lamplighter
could only choose to put on/off a lamp or to move to a neighbouring lamp.
Nevertheless, the lamplighter could choose different routes and so he might have
entertained himself (and the town’s citizens, no doubt) by lighting the lamps
in ever different orders. Lamplighter graphs describe the different options the

11



lamplighter had. The nodes are the possible situations the lamplighter might
be in at any time. A node is given by the lighting state of all lamps, i.e. whether
they are on or off, and the position of the lamplighter, i.e. at which lamp he
currently stands. There is an edge between two nodes in this graph, if the
lamplighter can get from the situation described in one node to that in the
other node by lighting or extinguishing the lamp in his current position or by
moving to a neighbouring lamp.

Pictured below is a node of the lamplighter graph with nine lamps in a
circular arrangement. The balls represent street lamps, the white ones being
lit, and the arrow indicates the position of the lamplighter.

In the rest of this section we define precisely lamplighter graphs for any
arrangement of lamps that is given by a Cayley graph. In the above picture
the lamp arrangement is the Cayley graph of the cyclic group Z/9Z. Because
we want to use Theorem 3, we define lamplighter graphs as Cayley graphs of a
lamplighter group.

Let G be a group that should represent the lamp arrangement. The set
|G| → |Z/2Z| of all functions from the underlying set of G to that of Z/2Z

becomes a commutative group when addition is defined pointwise by (f+g)(x) =
f(x) + g(x) and 0(x) = 0. We write δx for the function in |G| → |Z/2Z| defined
by

δx(y) =

{

1 if x = y,

0 otherwise.

Furthermore, there is a left-action of G on the set |G| → |Z/2Z| with definition
(x · f)(y) = f(x−1 · y). For example, we have δx = x · δe.

Using this notation, we define L(G) – the lamplighter group on G – to be the
group with underlying set (|G| → |Z/2Z|) × |G| and with group multiplication

(f, x) · (g, y) = (f + x · g, x · y) .

An element (f, x) of this group corresponds to a node of a lamplighter graph,
where f represents the lighting state of the lamps and x represents the posi-
tion of the lamplighter. Neutral element and inverses in L(G) are e = (0, eG)
and (f, x)−1 = (−x−1 · f, x−1). This definition of the lamplighter group is an
example of a wreath product of groups, i.e. L(G) = (Z/2Z) o G.

Lemma 4. If S is a generating set for G then {(0, x) | x ∈ S} ∪ {(δe, e)} is a
generating set for the lamplighter group L(G).

Proof. For any f and x, we can write (f +δy, x) as the product (f, x) ·(0, x−1y) ·
(δe, e) · (0, y−1x). Since each f can be written as a finite sum of δys, we can use
this observation repeatedly to write (f, x) as a product of elements of the form
(0, z) and (δe, e). These elements can evidently be formed from the claimed
generating set.

Lemma 5. If G has exponent m then L(G) has exponent 2m.
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Proof. For any k, the power (f, x)k clearly has the form (fk, xk) for some fk.
It follows easily by induction on k that fk can in fact be written as fk =
f +x ·f + · · ·+xk−1 ·f . Since m is the exponent of G, we have xm ·f = f , which
implies f2m = 2(f + x1 · f + · · · + xm−1 · f). Since the group |G| → |Z/2Z| has
exponent 2, this implies f2m = 0 and thus the required (f, x)2m = (0, e).

Definition 5. (Lamplighter Graph) For any group G with generating set S,
the lamplighter graph on G is the Cayley graph of L(G) with respect to the
generating set from Lemma 4. We denote this graph by Λ(G, S), or Λ(G) if S
is clear from the context.

The degree and the cardinality of lamplighter graphs obey the following laws.

deg(Λ(G, S)) = deg(C(G, S)) + 1 (1)

|Λ(G, S)| = |C(G, S)| · 2|C(G,S)| (2)

We shall use the lamplighter construction to construct graphs in which jags
are confined to areas of small radius. These graphs take the form

Λi(m) := Λ(. . .Λ(
︸ ︷︷ ︸

i times

Z/mZ, Sm) . . . )

of an iteration of the lamplighter construction on the cyclic group of order m > 2.
For the generating set Sm of Z/mZ we choose the canonical set of generators
that is closed under inverses and has two elements, e.g. {1, m− 1}.

Depending on i, the graph Λi(m) can get very large, having at least

expi
2(m) = 22

. .
.2

m

nodes, where the tower has height i (precisely: exp0
2(m) = m and expi+1

2 (m) =

2expi
2(m)). In contrast, the exponent of Λi(m) is m · 2i only. Theorem 3 then

tells us that any jag with Q states and P pebbles can visit no more than
(
Q · m · 2i

)cP

nodes in this graph. The point is that this term grows much
slower than the size of the graph when we increase i. This allows us to find for
any given jag a graph in which the jag is confined to as small a portion of the
graph as we like. Moreover, the degree of the graph Λi(m) is i + 2 only. This
follows from equation (2) and the choice of Sm.

4.4 Abstract Local Programs on Free Action Graphs

Our approach to showing that purple programs cannot decide undirected
reachability is to show that on certain free action graphs one run of each pur-

ple program can be implemented by a program that is local in the sense that
it depends upon and affects only a certain neighbourhood of the initial graph
variable positions. In this section we define local programs on free action graphs
and analyse their behaviour. We formulate a variant of Theorem 3 for such local
programs in Theorem 10 below. The proof, that each purple program can be
implemented by a local one, relies crucially on this theorem.

We define local programs in an abstract, syntax-free way, similar to the
definition of jags. In this syntax-free presentation we will use the term ‘pebble’
instead of the term ‘graph variable’ that we use in the context of purple.
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Abstract local programs are local in the sense that they can inspect the
graph only up to a certain radius r around the initial positions of their pebbles,
and that they can move pebbles only within this radius. Due to the uniform
structure of free action graphs, the information that can be obtained by looking
at the neighbourhood of radius r around the pebbles amounts to the relative
pebble displacements of all pairs of pebbles with distance at most 2r. For
any configuration ρ ∈ AP on any free action graph A with edge group G and
generators S, we capture this information about relative pebble displacements
by a partial function [ρ]r of type P ×P ⇀ BC(G,S)(eG, 2r). The function [ρ]r is
defined such that, for all x and y with d(ρ(x), ρ(y)) ≤ 2r, [ρ]r(x, y) is the unique
value satisfying ρ(y) = ρ(x) · [ρ]r(x, y), and [ρ]r(x, y) is undefined for all other x
and y. The relative displacement map [ρ]r is the only information an abstract
local program with local radius r can obtain about its start configuration ρ.

We next define the set ΣG,S(P, r) of all relative pebble displacement maps
that arise as [ρ]r for some ρ ∈ AP and some free action graph A with edge
group G and generators S. This set ΣG,S(P, r) consists of all partial functions
c : P × P ⇀ BC(G,S)(eG, 2r) that satisfy

c(x, x) = eG,

c(x, y) = c(y, x)−1,

c(x, y) · c(y, z) ∈ BC(G,S)(eG, 2r) =⇒ c(x, z) = c(x, y) · c(y, z)

for all x, y, z ∈ P . Note, in particular, that ΣG,S(P, 0) is isomorphic to the set
Σ(P ) of all equivalence relations on P .

We note the following bound on the size of ΣG,S(P, r).

|ΣG,S(P, r)| ≤ (|BC(G,S)(eG, 2r)| + 1)|P |2 number of partial functions

≤
(
(|S| + 1)2r + 1

)|P |2

by |BC(G,S)(eG, 2r)| ≤ (|S| + 1)2r

The following lemma makes precise the intuition that ΣG,S(P, r) classifies what
the r-neighbourhood around configurations can look like. We omit the routine
proof.

Lemma 6. Let A be a free action graph with edge group G and generators S.
For any two ρ, τ ∈ AP , we have [ρ]r = [τ ]r if and only if there exists a bijection
ϕ : BA(ρ, r) → BA(τ, r) that preserves pebble positions, i.e. τ = ϕ ◦ ρ holds, and
that preserves the local graph structure, i.e. ϕ(v ·π) = ϕ(v) ·π holds for all v ∈ A
and π ∈ G such that v · π and v are both in the domain of ϕ.

Having defined ΣG,S(P, r), we can now define abstract local programs.

Definition 6 (Abstract local program). Let G be a finite group and S be a set
of generators that is closed under inverses. An abstract local program over G
and S with state set Q, pebble set P and local radius r is a function

f : Q × ΣG,S(P, r) −→ Q × PP × BC(G,S)(eG, r)
P
.

We write LG,S(Q, P, r) for the set of all such abstract local programs. If A is
an action graph with edge group G and generators S, then we will also write
LA(Q, P, r) for LG,S(Q, P, r).
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The intention of this definition is that an abstract local program with local
radius r looks at the state in Q and the r-ball around its start configuration.
With this input, the function that defines the abstract local program then yields
a final state in Q and two functions j ∈ PP and m ∈ BC(G,S)(eG, r)

P
that

describe pebble moves in the following sense: each pebble x is first jumped to
the position of pebble j(x) in the start configuration and then moved along the
path m(x). The intention is that the abstract local program makes these pebble
moves and halts.

Formally, this behaviour of f on an action graph A with edge group G and
generators S is captured by a function JfKA : Q×AP → Q×AP that is defined
in such a way that JfKA(q, ρ) is the pair (p, τ) defined by

(p, j, m) := f(q, [ρ]r),

τ(x) := ρ(j(x)) · m(x).

We will usually just write JfK for JfKA when the subscript is clear from the
context.

It is clear that any abstract local program f ∈ LG,S(Q, P, r) can only make
moves within an r-ball of its start configuration, i.e. for all (q, ρ) ∈ Q × AP , if
we let (p, τ) := JfK(q, ρ) then we have τ(P ) ⊆ BA(ρ, r).

The local character of abstract local programs leads to the following lemma,
which states that if we apply an abstract local program with local radius r
to two configurations whose r + k-neighbourhoods look the same, then the k-
neighbourhoods around the two end-configurations will also look the same.

Lemma 7. Let A be a free action graph with edge group G and generators S.
Then, for all f ∈ LG,S(Q, P, r), k ∈ N, q ∈ Q and ρ, τ ∈ AP , if we have
[ρ]r+k = [τ ]r+k and define (q′, ρ′) := JfK(q, ρ) and (q′′, τ ′) := JfK(q, τ), then we
also have q′ = q′′ and [ρ′]k = [τ ′]k. Moreover, if ρ′(x)/ρ(y) ∈ BC(G,S)(e, k) then
ρ′(x)/ρ(y) = τ ′(x)/τ(y).

Proof. First we note that [ρ]r+k = [τ ]r+k implies [ρ]r = [τ ]r . If we then set
(p, j, m) := f(q, [ρ]r), then by definition of JfK we have p = q′ = q′′ and ρ′(x) =
ρ(j(x)) · m(x) and τ ′(x) = τ(j(x)) · m(x).

It therefore remains just to show [ρ′]k = [τ ′]k. To this end it suffices to show
that whenever one of [ρ′]k(x, y) and [τ ′]k(x, y) is defined then so is the other
and the values are equal.

Assume without loss of generality that [ρ′]k(x, y) is defined. Then we have
d(ρ′(x), ρ′(y)) ≤ 2k by definition of [ρ′]k(x, y). Since m maps to BC(G,S)(eG, r),
this implies d(ρ(j(x)), ρ(j(y))) ≤ 2(k + r). Then we have

ρ(j(y)) = ρ(j(x)) · [ρ]k+r(j(x), j(y))

by definition of [ρ]k+r. Using the properties of group actions, we get

ρ(j(y)) · m(y) = ρ(j(x)) · m(x) · m(x)−1 · [ρ]k+r(j(x), j(y)) · m(y),

and thus
ρ′(y) = ρ′(x) · m(x)−1 · [ρ]k+r(j(x), j(y)) · m(y).

But this implies [ρ′]k(x, y) = m(x)−1 · [ρ]k+r(j(x), j(y)) · m(y), since the group
action is free.
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Since from [ρ]k+r = [τ ]k+r and d(ρ(j(x)), ρ(j(y))) ≤ 2(k + r) we obtain
d(τ(j(x)), τ(j(y))) ≤ 2(k+r), we can use the same argument to infer [τ ′]k(x, y) =
m(x)−1·[τ ]k+r(j(x), j(y))·m(y). But now we have proved [ρ′]k(x, y) = [τ ′]k(x, y),
as required.

For the second part we note that under the given assumptions the element
π := ρ′(x)/ρ(y) · m(x)−1 satisfies π ∈ BC(G,S)(e, r + k) and ρ(y) · π = ρ(j(x)),
so π = [ρ]k+r(y, j(x)). Since [ρ]k+r = [τ ]k+r we conclude τ(y) · π = τ(j(x)) and
τ(y) · π · m(x) = τ ′(x) and hence the claim.

Lemma 8. For all f ∈ LG,S(Q, P, r) and g ∈ LG,S(Q, P, s) there exists an
abstract local program comp(f, g) ∈ LG,S(Q, P, r + s) such that JgKA ◦ JfKA =
Jcomp(f, g)KA holds for any free action graph A with edge group G and genera-
tors S.

Proof. Lemma 7 shows that for all c ∈ ΣG,S(P, r + s) there exists a unique
cf ∈ ΣG,S(P, s), such that JfK(q, ρ) = (p, τ) and [ρ]r+s = c implies [τ ]s =
cf . Hence, we can set comp(f, g)(q, c) to be the triple (qg, j, m) defined by
j(x) = jf (jg(x)) and m(x) = mf (jg(x)) · mg(x), where f(q, c) = (qf , jf , mf )
and g(qf , cf ) = (qg, jg, mg).

Any purple program without while or forall-loop can be compiled di-
rectly into an abstract local program. We show this in the following lemma, in
which we write |M | for the length of purple program M , i.e. the number of
nodes in the abstract syntax tree.

Lemma 9. Let A be a free action graph with edge group G and generators S.
For each purple program M without while-loops or forall-loops there exists
an abstract local program

f ∈ LG,S (Q(M), P (M), |M |) ,

with Q(M) = (Varsbool(M) → 2) and P (M) = VarsΓ(M) ] {s, t}, such that,
for all q, p ∈ Q(M) and all ρ, τ ∈ AP (M), JfK(q, ρ) = (p, τ) holds if and only if
(M, q, ρ) −→∗

(A,ρ(s),ρ(t)) (skip, p, τ) does.

Proof. The proof goes by structural induction on program M . To simplify
the proof, we first observe that if the variables of a program M ′ are con-
tained in those of M then any f ′ ∈ LG,S(Q(M ′), P (M ′), r) induces a canon-
ical f ∈ LG,S(Q(M), P (M), r) whose behaviour on the variables of M ′ is as
prescribed by f ′ and which leaves all other variables unchanged. Because
of this fact, we can in the following work only with abstract programs in
L(r) := LG,S(Q(M), P (M), r).

The cases of the structural induction are as follows.

• Case M is skip. Take f(q, c) := (q, id , λx. eG).

• Case M is M ′; M ′′. Use the induction hypothesis and the above obser-
vation to obtain abstract local programs f ′ ∈ L(|M ′|) and f ′′ ∈ L(|M ′′|).
The program comp(f ′, f ′′) ∈ L(|M ′|+ |M ′′|) has the required property by
Lemma 8. Because of |M | = |M ′|+ |M ′′|+1 we can consider comp(f ′, f ′′)
an element of L(M) and thus complete this case.
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• Case M is x := tΓ. We have |M | = 1 + |tΓ|. The term tΓ has the
form y.succ(i1). . . . .succ(in) for suitable y ∈ P (M) and i1, . . . , in ∈ N

with n ≥ 0. Let G be the edge group of A and let s1, . . . , sk be the list of
generators with respect to which the action graph is formed. For l > k, set
sl := eG. Then π := si1 · si2 · · · sin

defines an element of BC(G,S)(eG, |tΓ|).

Define now f ∈ L(|M |) by f(q, c) = (q, id [x/y], m), where m(x) = π and
m(z) = eG for all z 6= x.

• Case M is x := tbool. We note that JtboolKq,ρ depends only on [ρ]|M|.
Hence we can define an abstract local program f with the required prop-
erty by letting f(q, c) := (q[x := JtKq,c], id , λx. eG).

• Case M is if tbool then M ′ else M ′′. We define f by

f(q, c) =

{

f ′(q, c) if JtboolKq,c = true

f ′′(q, c) if JtboolKq,c = false,

where f ′ ∈ L(|M ′|) and f ′′ ∈ L(|M ′′|) are the abstract local programs
given by the induction hypothesis.

4.4.1 Range of Abstract Local Programs

We have seen that purple-programs without any loop can be implemented
easily by abstract local programs. The difficulty in showing that all purple-
programs can be implemented by abstract local programs lies in the treatment
of forall-loops (recall that while-loops can be eliminated). In this section,
we develop the main technical tools for the implementation of forall-loops by
abstract local programs on certain action graphs.

We study how far the pebbles can be moved on a free action graph if we exe-
cute a given abstract local program an arbitrary number of times. We establish
an upper bound on this distance – which we call the range of the program – in
Theorem 10.

Definition 7 (Range). Let G be a finite group and S be a set of generators
that is closed under inverses. The range over G and S of abstract local pro-
grams with state set Q, pebble set P and local radius r is the smallest number
rangeG,S(Q, P, r) such that, for all f ∈ LG,S(Q, P, r) and all k ∈ N there exists

fk ∈ LG,S(Q, P, rangeG,S(Q, P, r)) satisfying JfKk
A = JfkKA for any free action

graph A with edge group G and generators S.

If A is an action graph with edge group G and generators S, then we will also
write rangeA for rangeG,S .

There always exists a number rangeG,S(Q, P, r), since the diameter of a free
action graph A depends only on its edge group G and generators S and any
function h : Q × AP → Q × AP can trivially be realised as JgK for some local
program g whose local radius is the diameter of the graph A.

The following theorem gives a non-trivial upper bound on the range of ab-
stract local programs.
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Theorem 10. There exists a constant c, such that for any group G with expo-
nent m we have

rangeG,S(Q, P, r) ≤ ((|S| + 1)r · |Q| · m)
c|P |

.

We prove this theorem by reducing it to Theorem 3 with the help of the following
lemma.

Lemma 11. There is a constant a, such that each abstract local program f ∈
LG,S(Q, P, r) can be implemented by a jag J with pebble set P + P and state
set Q ×

(
{1, . . . , a} × BC(G,S)(eG, r) × {1, . . . , r} × ΣG,S(P, r)

)
in the following

sense: There exists q0 such that for any free action graph A with edge group G
and generators S and all ρ, τ ∈ AP+P we have JfK(q, ρ ◦ inl) = (p, τ ◦ inl)
if and only if the run of J that starts with configuration ((q, q0), ρ) ends in a
configuration of the form ((p, p′), τ).

Proof. For each f ∈ LG,S(Q, P, r), we construct a machine J according to the
pseudo-code below. The pebbles of J come from the set P + P . The elements
of the left summand correspond to the pebbles of f , while the elements of the
right summand are fresh pebbles that we are free to use. We therefore write
simply x for inl(x) and we write x for inr(x), so that the pebble set of J is
{x, x | x ∈ P}. In the pseudo-code below, we furthermore use variables q ∈ Q,
π ∈ BC(G,S)(eG, r), n ∈ {1, . . . , r} and c ∈ ΣG,S(P, r) to denote the finite state
of J .

Save the pebble positions:
1. for all x ∈ P , jump pebble x to x.

Compute c ∈ ΣG,S(P, r):
2. set c(x, y) to be undefined for all x, y ∈ P
3. for all x ∈ P and π ∈ BC(G,S)(eG, r) do:

3.1 move pebble x to x · π
3.2 set c(x, y) := π for each y ∈ P that lies on the same node as x
3.3 jump pebble x to x

Look up f(q, c) in transition table, denote the components by (p, j, m).
Move the pebbles to their destination:

4. for all x ∈ P , move pebble x to j(x) · m(x)
5. set q := p and halt

The statement ‘move x to y · π’ is implemented by first jumping pebble x to
the location of pebble y and then moving it step-by-step along the path π.
Since π represents a path of length at most r, we can implement this step-by-
step traversal by using the variable n as a counter.

It is clear that the pseudo-code can be encoded as the transition table of a
jag with state set Q ×

(
{1, . . . , a} × BC(G,S)(eG, r) × {1, . . . , r} × ΣG,S(P, r)

)
,

where a is chosen suitably, so that a program counter can be encoded as an
element of {1, . . . , a}. The other components of the state set are used to store
the variables q, π, n and c described above. Then, q0 can be chosen to be
the internal state where the program counter points to the beginning of the
program.

Proof of Theorem 10. We can assume |S| ≥ 1 and m ≥ 2, since otherwise all
free action graphs with edge group G and generators S have at most self-loops
and the result is trivial. Similarly, we can assume that neither Q nor P is empty.
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Let f ∈ LG,S(Q, P, r) and k ∈ N. Consider the jag J from Lemma 11 that
simulates JfK. It is easy to construct from J another jag J ′ that repeats J eter-
nally, i.e. J ′ works just like J until J stops, say with a configuration ((p, p′), τ).
Then J ′ moves to configuration ((p, q0), τ) and behaves like J again, etc. (q0 is
given by Lemma 11). Clearly, J ′ can be implemented with pebble set P + P
and state set Q′ := Q×

(
{1, . . . , b} × BC(G,S)(eG, r) × {1, . . . , r} × ΣG,S(P, r)

)
,

for some constant b.
By Theorem 3, there exists a constant c0 such that J ′ can visit at most s :=

(|Q′| ·m)c
2|P |
0 nodes from any starting configuration on any free action graph A

with exponent m. In particular, from a starting configuration ((q, q0), ρ), the
machine J ′ can only reach configurations ((p, p′), τ) with τ(P + P ) ⊆ BA(ρ, s).
Hence, the moves that J ′ makes can depend only on q and [ρ]s.

We now define fk ∈ LG,S(Q, P, s) such that JfkK = JfKk holds. The defini-
tion of fk(q, c) is non-trivial only if there exist a free action graph A with edge
group G and generators S and a configuration (q, ρ) ∈ Q×AP with [ρ]s = c; oth-
erwise we can define fk(q, c) arbitrarily. Given A and (q, ρ) thus, let ρ′ ∈ AP+P

be the unique configuration satisfying ρ′ ◦ inl = ρ′ ◦ inr = ρ. Consider the run
on J ′ with start configuration ((q, q0), ρ

′). Since J always halts, this run contains
infinitely many configurations whose state is a final state of J . Let ((p, p′), τ ′) be
the k-th configuration of this form. It appears after k complete executions of J
and by construction of J and J ′ we have JfKk(q, ρ) = JfKk(q, ρ′◦inl) = (p, τ ′◦inl).
Since s bounds the range of J ′, the moves of J ′ in this computation can be de-
scribed by two functions j : (P + P ) → P and m : (P + P ) → BC(G,S)(eG, s),
such that τ ′(x) = ρ(j(x))·m(x) holds for all x. We can define j with codomain P
instead of P + P , since we have defined ρ′ to satisfy ρ′ ◦ inl = ρ′ ◦ inr. Since the
moves of J ′ depend only on q and [ρ]s, the values p, j and m also depend only
on q and [ρ]s, in particular they neither depend on the choice of ρ nor that of A.
We can therefore define fk(q, [ρ]s) = (p, j ◦ inl, m ◦ inl) and obtain JfKk = JfkK,
as required.

This shows rangeG,S(Q, P, r) ≤ s. To show the assertion of the theorem, it

therefore just remains to show s ≤ ((|S| + 1)r · |Q| · m)
c|P |

for some constant c.

s = (|Q′| · m)c
2|P |
0 =

(
|Q| · b · |BC(G,S)(eG, r)| · r · |ΣG,S(P, r)| · m

)c
2|P |
0

≤
(

|Q| · b · (|S| + 1)r · r · ((|S| + 1)2r + 1)|P |2 · m
)c

2|P |
0

≤
(

|Q| · (|S| + 1)6r·|P |2 · mb
)c

2|P |
0

≤ (|Q| · (|S| + 1)r · m)
(6·b·c0)

2|P |

In this calculation we have used the assumptions |S| ≥ 1 and m ≥ 2 to obtain

r ≤ (|S| + 1)r·|P |2 and m · b ≤ mb. By letting c := (6 · b · c0)
2, we now obtain

the result required to complete the proof.

Definition 8 (Modulus). Let G be a finite group and S be a set of generators
that is closed under inverses. The modulus over G and S of abstract local
programs with state set Q, pebble set P and local radius r is the least number
modulusG,S(Q, P, r) such that, for all f ∈ LG,S(Q, P, r), all free action graphs A
with edge group G and generators S and all pairs (q, ρ) ∈ Q × AP , the set
{JfKk(q, ρ) | k ∈ N} has cardinality at most modulusG,S(Q, P, r).
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Again, if A is an action graph with edge group G and generators S, we also
write modulusA for modulusG,S .

An upper bound on modulusG,S(Q, P, r) can be given using rangeG,S(Q, P, r),
since we can bound the number of possible configurations that place all pebbles
in a neighbourhood of radius rangeG,S(Q, P, r) around the start configuration.

modulusG,S(Q, P, r) ≤ |Q| · max
A=A(V,G,S,·), ρ∈AP

∣
∣
∣BA(ρ, rangeG,S(Q, P, r))

P
∣
∣
∣

≤ |Q| ·
(
|P | · |BC(G,S)(eG, rangeG,S(Q, P, r))|

)|P |

≤ |Q| · |P ||P | · (|S| + 1)rangeG,S(Q,P,r)·|P |

(3)

4.4.2 Locality of Iteration

Our aim is to show that for each purple-program there exists an abstract local
program that implements (one run of) the purple program. In this section we
do this for the case of forall-loops.

Suppose we have a purple program forall x do M and we have already
compiled the loop body M into an abstract local program f ∈ LG,S(Q, P, r).
We would then like to find a local program g that implements some run of the
whole program forall x do M . To do this, it suffices to implement a forall-
like iteration forall x do f of the abstract local program f . This is made
precise in the following definition.

Definition 9. Let A be a free action graph. Let f ∈ LA(Q, P, r) be an abstract
local program and z ∈ P be a pebble. We say that g ∈ LA(Q, P, l) implements
forall z do f on A, if for all (q, ρ) ∈ Q × AP there exists an enumeration
v1, . . . , vn of all nodes in A, so that if we define a sequence of configurations
(q0, ρ0), . . . , (qn, ρn) by (q0, ρ0) = (q, ρ) and (qi+1, ρi+1) = JfK(qi, ρi[z := vi+1]),
then we have JgK(q, ρ) = (qn, ρn).

In this section we identify conditions on action graphs under which it is
always possible to find a local program g with small local radius that implements
forall z do f . In the next section we will then show that iterated lamplighter
graphs satisfy these conditions.

Throughout this section we let Q range over sets of states, P over sets of
pebbles and r over local radii.

We first introduce some terminology.

Definition 10. A set of nodes U in a graph Γ is r-sparse if BΓ(u, r)∩BΓ(v, r) =
∅ holds for all u 6= v ∈ U .

Definition 11. For any graph Γ and any set of nodes U , the r-size of U is the
size of the largest r-sparse subset of U .

Definition 12. A sightseer enumeration with radius r and memory n is an
enumeration v1, v2, . . . , vk of the nodes in a graph such that for all i the set
{vj | i − n ≤ j ≤ i and 1 ≤ j ≤ k} is r-sparse.

The terminology in the last definition is motivated by analogy with a sightseer
who wants to choose his route so that he does not see any place (node) twice.
If his range of vision is r and he can see all nodes in an r-ball around his
position then he would like to choose his route such that it forms an r-sparse
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set. However, with memory n the sightseer cannot remember all the nodes
he has already visited, but only the last n nodes he visited. Thus, he will be
satisfied with an enumeration in which his position and the n previously visited
nodes always form an r-spare set.

The main result of this section is Theorem 14, which gives conditions under
which a forall-like iteration of an abstract local program can be implemented
by a single abstract program. Moreover, this theorem provides a good enough
bound on the local radius of the program that simulates the forall-loop.

To simulate a forall-like iteration by a local program, we construct an
ordering of the graph nodes such that if we present the graph nodes to the
forall-loop in this order, then at the end of the computation all pebbles will
lie in a small enough neighbourhood around the initial pebble positions. Even
though the forall-loop will have temporarily placed pebbles outside of this
neighbourhood, this is not visible anymore in the final configuration and the
move of the forall-loop from the start to the end configuration looks like the
move of a local program that can only make moves within this neighbourhood.
Thus we show that the forall-loop can be implemented by an abstract local
program whose radius is large enough to contain this neighbourhood.

To realise this simple plan, we need an understanding of where the pebbles
will lie at the end of a forall-like iteration. Clearly, the pebble moves that the
program can make during a forall-like iteration are such that the final position
of a pebble can be arrived at either (a) by moving along some path from the
position of some pebble in the start configuration; or (b) by moving along some
path from some of the nodes that are being jumped to in the forall-loop. This
tautological statement becomes interesting when we can bound the length of
the path that the pebbles are being moved along and if we know that the final
pebble position depends only on certain select nodes of those that are being
jumped to by the forall-loop. In fact, we shall see that it is not possible to
for a pebble to cling to a node played in the middle of the iteration: the final
positions of the pebbles will be contained in a small neighbourhood of the initial
pebble positions and the first few and the final few jump destinations.

We begin with a combinatorial helper lemma that is the reason for this latter
phenomenon.

Lemma 12. Let n, l ∈ N, z ∈ P and f : P → {0, . . . , l}. Let m0, . . . , mn−1 be
a list of endofunctions on P . Define a sequence f0, f1, . . . of functions from P
to N by f0 = f and fi+1 = fi[z := l + i + 1] ◦ mi mod n. Then for all k ∈ N and
y ∈ P we have fk(y) ≤ l or fk(y) > l + k − |P | · n.

Proof. Let k ∈ N and y ∈ P . We may assume k > |P | · n, since the assertion is
trivial otherwise.

Define a sequence (yi ∈ P )i≥0 by y0 = y and yi+1 = mk−(i+1) mod n(yi).
With this definition we have fk(y) = fk−i(yi) whenever we have i ≤ k and
z /∈ {y1, . . . , yi}. To show the assertion, it therefore suffices to show that either z

does not appear at all in (yi)i≥1, in which case we have fk(y) = f0(yk) = f(yk) ∈
{0, . . . , l}, or that the least i ≥ 1 for which yi = z holds satisfies i ≤ |P |n, since
in that case we have fk(y) = fk−(i−1)(yi−1) = l+k−(i−1) > l+k−i ≥ l+k−|P |n
by definition of fk−(i−1).

Since each yi is in the finite set P , there exist i and j with 0 ≤ i < j ≤ |P |
and yi·n+1 = yj·n+1. It follows that yi·n+1+l = yj·n+1+l holds for all l, by
definition of the sequence (yi)i and because i · n + 1 + l and j · n + 1 + l leave
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the same remainder modulo n. This gives us yi·n+1+r = yi·n+1+r−(j−i)·n for all
r ≥ (j− i) ·n, which can be seen by substituting r− (j− i) ·n for l in yi·n+1+l =
yj·n+1+l. Repeated use of this fact then gives us yi·n+1+l = yi·n+1+(l mod (j−i)·n)

for all l. As a result we obtain

{y1, y2, . . . } ⊆ {y1, . . . , yi·n+1+(j−i)·n−1} ⊆ {y1, . . . , y|P |·n}.

Hence, if z appears at all in the sequence (yi)i≥1, then the least i ≥ 1 such that
yi = z holds must satisfy i ≤ |P |n. But we have observed above that this is
sufficient to prove the lemma.

The following lemma gives a characterisation of the final configuration for
those forall-like iterations in which the nodes are presented such that they have
a large enough distance from all pebbles at the time they are being jumped to.

Lemma 13. Let f ∈ LG,S(Q, P, r) be an abstract local program, z ∈ P be a
pebble and A be a free action graph with edge group G and generators S. Assume

R ≥ rangeG,S

(
Q × (|P | + 2)P , 2 × P + 1, r

)
,

M ≥ modulusG,S

(
Q × (|P | + 2)P , 2 × P + 1, r

)
.

Then, for each q ∈ Q, each c ∈ ΣG,S(P, R) and each k ∈ N, there exist a state
p ∈ Q and two functions j : P → (P + N) and m : P → BC(G,S)(e, R) with the
following properties:

1. For any list of nodes v1, . . . , vk in A and all ρ ∈ AP with [ρ]R = c, if the
sequence (q0, ρ0), . . . , (qk, ρk) defined by

(q0, ρ0) = (q, ρ), (qi+1, ρi+1) = JfKA(qi, ρi[z := vi+1])

satisfies BA(vi+1, 3R) ∩ (BA(ρi, 3R) ∪ BA(ρ, 3R)) = ∅ for all i < k, then
we have qk = p and the environment ρk can be written as

ρk(x) =

{

ρ(y) · m(x) if j(x) = inl y,

vi · m(x) if j(x) = inr i.

2. If inr i is in the image of j then we have 1 ≤ i ≤ M or k−|P | ·M < i ≤ k.

Proof. We show that the essence of a forall-like iteration of f can be captured
without knowing precisely where z is placed by the forall loop, so long as z

is always placed far enough away from the other pebbles. This means that the
iteration is adequately simulated if we add |P |+1 copies of C(G, S) to the graph
and always place z on a pebble-free such copy instead of to the location chosen
in the forall-loop. Such a simulation can then be implemented by an abstract
local program operating and therefore be analysed using Theorem 10.

Thus, let B be the free action graph consisting of A and |P | + 1 disjoint
copies of the Cayley graph C(G, S). We denote these copies of C(G, S) in B
by C1, . . . , C|P |+1 and write ei for node eG in Ci. For each ρ ∈ BP , we define
I(ρ) ∈ (|P | + 2)P by I(ρ)(y) = 0 if ρ(y) ∈ A and I(ρ)(y) = i if ρ(y) ∈ Ci. For
each function I ∈ (|P | + 2)P , we choose a number fresh(I) ∈ {1, . . . , |P | + 1}
that is not in the image of I.
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With these definitions in place we now define a function b, that captures the
essence of forall-like iteration of f .

b : Q × BP → Q × BP

b(q, ρ) = JfKB(q, ρ[z := efresh(I(ρ))])

Now, given q ∈ Q and c ∈ ΣG,S(P, 2R) and k ∈ N pick ρc ∈ AP with
[ρc]2R = c (if none exists the assertion of the Lemma is trivial and it is easy to
choose p, j and m appropriately).

Define a sequence of configurations (qc
0, ρ

c
0), . . . , (q

c
k, ρc

k) ∈ Q × BP by

(qc
0, ρ

c
0) = (q, ρc), (qc

i+1, ρ
c
i+1) = b(qc

i , ρ
c
i).

The pebble jumps in each step of this sequence are captured by the functions
j0, . . . , jk−1 ∈ PP defined by (−, ji,−) = f(qc

i , [ρ
c
i [z := efresh(I(ρc

i ))]]r). Using

these functions, we further define a sequence l0, . . . , lk ∈ N
P by

l0(y) = 0, li+1 = (li[z := i + 1]) ◦ ji.

Intuitively, for pebble x the value li(x) tells whether at time i pebble x is close
to one of the original pebbles (case li(x) = 0) or close to one of the jump
destinations, to wit the li(x)-th one when li(x) 6= 0.

We now define the required state p ∈ Q by p := qc
k and choose functions

j : P → P + N and m : P → BC(G,S)(eG, R) so as to satisfy

• if lk(x) > 0 and ρc
k(x) ∈ B \ A then j(x) = inr lk(x) and m(x) = ρc

k(x)
(note that nodes in B \ A are just group elements); and

• if lk(x) = 0 and ρc
k(x) ∈ BA(ρc, R) then j(x) = inl y and m(x) =

ρc
k(x)/ρc

0(y) for some y with ρc
k(x) ∈ BA(ρc(y), R).

To show that such a choice is always possible, we next show that, for any x ∈ P ,
the precondition of one of these two points must be satisfied.

To analyse the above sequences defined using b, we implement b by an ab-
stract local program

g ∈ LG,S

(
Q × (|P | + 2)P , P + {x1, . . . , x|P |+1}, r

)

in the following sense: For all (q, ρ) ∈ Q × BP we have that b(q, ρ) = (p, τ)
implies JgK((q, I(ρ)), ρ[~x := ~e]) = ((p, I(τ)), τ [~x := ~e]), where we write ρ[~x := ~e]
for the environment obtained from ρ by placing the |P | + 1 additional peb-
bles ~x on the nodes ~e = e1, . . . , e|P |+1. We omit the technical details of the
straightforward definition of g.

Using this implementation of b, we can show well-definedness of j and m.
First, it is straightforward to show by induction on i that li(x) = 0 implies
ρc

i (x) ∈ A, and li(x) > 0 implies ρc
i (x) ∈ B \ A. Second, since g implements b

and, by definition, R is an upper bound on the range of g, we have

ρc
i (P ) ⊆ BB(ρc

0(P ) ∪ {e1, . . . , e|P |+1}, R)

for all i ≤ k. From these two facts we get that for any x ∈ P we either have
lk(x) > 0 and ρc

k(x) ∈ B \ A or lk(x) = 0 and ρc
k(x) ∈ BA(ρc, R), i.e. one of the

two cases in the above definition of j and m always applies. In the first case
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we moreover have ρc
k(x) ∈ BC(G,S)(en, R) for some n, which shows that m does

indeed map to BC(G,S)(eG, R).
It now remains to show that p, j and m have the required properties. To

this end let ρ ∈ AP and v1, . . . , vk be given as in the lemma and consider the
ensuing sequence (q0, ρ0), . . . , (qk, ρk) by

(q0, ρ0) = (q, ρ), (qi+1, ρi+1) = JfKA(qi, ρi[z := vi+1]),

as in the statement of the lemma.
We use the implementation of b by g to relate (qi, ρi) to (qc

i , ρ
c
i ). For all

i ≤ k we prove the following four facts by induction on i.

(a) qc
i = qi;

(b) if 0 < li(x) < li(x
′) then d(vli(x), vli(x′)) > 5R and d(ρc

i (x), ρc
i (x

′)) = ∞;

(c) if li(x) = 0 then ρi(x) = ρ(y) · ρc
i(x)/ρc(y) whenever d(ρc

i (x), ρc(y)) ≤ R;

(d) if li(x) > 0 then ρi(x) = vli(x) · ρ
c
i(x).

The base case i = 0 is clear from the assumptions.
Assume now that facts (a), (b), (c) and (d) hold for a fixed i < k.
We claim that [ρi]R = [ρc

i ]R. To see this, suppose first d(ρi(x), ρi(x
′)) ≤ 2R.

In this case we must have li(x) = li(x
′). Suppose this were not the case and

without loss of generality li(x) < li(x
′). If li(x) = 0 then by the above analysis

of g there exists a y with d(ρc
i (x), ρc(y)) ≤ R. The induction hypothesis then

yields d(ρi(x), ρ(y)) ≤ R by item (c) and d(ρi(x
′), vli(x′)) ≤ R by item (d). This

implies d(ρ(y), vli(x′)) ≤ 4R, contradicting the assumption d(ρ(y), vli(x′)) > 6R.
If li(x) > 0 then items (b) and (d) yield a contradiction. We conclude that
li(x) = li(x

′).
Now, if li(x) = li(x

′) = 0 then we can pick y and y′ with d(ρc
i (x), ρc(y)) ≤ R

and d(ρc
i (x

′), ρc(y′)) ≤ R. With item (c) we get d(ρ(y), ρ(y′)) ≤ 4R. With
the assumption [ρ]2R = [ρc]2R, this implies ρc(y)/ρc(y′) = ρ(y)/ρ(y′). We
obtain ρc

i (x)/ρc
i (x

′) = ρi(x)/ρi(x
′). If li(x) = li(x

′) > 0 then the equality
ρc

i (x)/ρc
i (x

′) = ρi(x)/ρi(x
′) follows directly from item (d).

A similar (and in fact easier) argument shows that d(ρc(x), ρc(x′)) ≤ 2R
implies ρc

i (x)/ρc
i (x

′) = ρi(x)/ρi(x
′).

We have thus shown [ρi]R = [ρc
i ]R and in particular [ρi]r = [ρc

i ]r.
From this we obtain

[ρi[z := vi+1]]r = [ρc
i [z := efresh(I(ρc

i ))
]]r ,

so that we have

qi+1 = q′

qc
i+1 = q′

ρi+1(x) = ρi[z := vi+1](j
′(x)) · m′(x)

ρc
i+1(x) = ρc

i [z := efresh(I(ρc
i ))

](j′(x)) · m′(x) ,

where
(q′, j′, m′) = f(qi, [ρi[z := vi+1]]r).

Moreover, j′ equals the function ji featuring in the definition of li.
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We immediately get item (a) for index i + 1.
For item (b), assume 0 < li+1(x) < li+1(x

′). We consider two cases.
First, if li+1(x

′) = li(j
′(x′)) then we must have li+1(x) = li(j

′(x)), too, by
li+1(x) < li+1(x

′), and the claim follows directly from the induction hypoth-
esis. Second, if li+1(x

′) = i + 1, then, again, we have li+1(x) = li(j
′(x))

and by item (d) of the induction hypothesis also d(ρi(j
′(x)), vli+1(x)) ≤ R.

We have d(ρi(j
′(x)), vli+1(x′)) > 6R by assumption, so that the first claim

d(vli+1(x), vli+1(x′)) > 5R follows by triangle inequality. The other claim is
immediate by the choice of fresh.

For item (c) suppose li+1(x) = 0. From the definition of li+1 it then follows
that ji(x) 6= z and li(ji(x)) = 0. We then have

ρi+1(x) = ρi(ji(x)) · m′(x)

ρc
i+1(x) = ρc

i (ji(x)) · m′(x) .

As before, let y be a pebble such that ρc
i+1(x)/ρc(y) is defined and contained in

BC(G,S)(e, R). Likewise, pick a pebble y′ such that ρc
i(ji(x))/ρc(y′) is defined

and contained in BC(G,S)(e, R).
With ρc

i+1(x) = ρc
i (ji(x)) · m′(x) it follows that the distance of ρc(y) and

ρc(y′) is at most 2R + r, so that this distance must be recorded in [ρc]2R. The
induction hypothesis combined with the assumption [ρ]2R = [ρc]2R then yields
the result.

For item (d) assume li+1(x) > 0. Then either ji(x) = z and the claim is
obvious or else ji(x) 6= z and li(ji(x)) = li+1(x) > 0. We then have ρc

i+1(x) ∈
BC(G,S)(e, R) and we are done.

The assertion 1. of the Lemma is now a direct consequence of the case i = k.
For assertion 2. we argue as follows.

The set {(q0, ρ
c
0), . . . , (qk, ρc

k)} has cardinality at most M , since M bounds
the modulus of g by definition and g implements b.

Hence, there exists n ≤ M such that we have jM+i = jM+(i mod n) for all
i ≤ k − M . Moreover, the image of lM is contained in {0, . . . , M}. Lemma 12
therefore tells us that we have lk(y) ≤ M or lk(y) > M + (k − M) − |P | · n
(note that we take f = lM in Lemma 12, so that we have lk = fk−M ). We then
calculate lk(y) > M + (k − M) − |P | · n = k − |P | · n ≥ k − |P | · M and thus
obtain the bounds required in the statement of the lemma.

Theorem 14. Let f ∈ LG,S(Q, P, r) be an abstract local program, z ∈ P be a
pebble and A be a free action graph with edge group G and generators S. Assume

R ≥ 3 · rangeG,S

(
Q × (|P | + 2)P , 2 × P + 1, r

)
,

M ≥ modulusG,S

(
Q × (|P | + 2)P , 2 × P + 1, r

)

and further that u ≥ 3R is a natural number such that the following two condi-
tions hold:

1. A has a sightseer enumeration with radius u and memory |P | · (M + 1).

2. For any v ∈ A the 3R-size of BA(v, u − 3R) is at least |P | · (M + 1).

Then there exists an abstract local program

g ∈ LG,S

(
Q, P, u + r · |P | · |BC(G,S)(eG, u)|

)

that implements forall z do f on A.
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Proof. Let C be the Cayley graph C(G, S). Let l := u + r · |P | · |BC(eG, u)|. We
need to construct an abstract local program

g : Q × ΣG,S(P, l) −→ Q × PP × BC(eG, l)
P
.

Given q ∈ Q and c ∈ ΣG,S(P, l) we choose ρc ∈ AP with [ρc]l = c (if none exists
then define g(q, c) arbitrarily) and define k = |A \ BA(ρc, u)| + (|P | + 1)M .

We define an enumeration vc
1, . . . , v

c
n of the nodes in A as follows:

• vc
1, . . . , v

c
M , vc

k−|P |·M+1, . . . , v
c
k form a 3R-sparse subset of BA(ρc, u−3R)\

BA(ρc, 3R) of size |P | · M . Such a set can be obtained from a 3R-sparse
subset of BA(ρc, u − 3R) of size |P |(M + 1) by deleting all members con-
tained in BA(ρc, 3R), of which there are at most |P |.

• vc
M+1, . . . , v

c
k−|P |·M form a sightseer enumeration of A \ BA(ρc, u) with

radius u and memory |P | · M . To construct one such we start with
a sightseer enumeration u1, u2, . . . , un of A with radius u and memory
|P | · (M + 1) and delete all nodes in BA(ρc, u) from that sequence. If ui

and uj become |P | · M steps close to each other after the deletion then
j − i ≤ |P |(M + 1) because the sequence ui, . . . , ui+|P |(M+1) contains at
most |P | elements from BA(ρc, u) and therefore must contain uj. It fol-
lows that the sequence after the deletion is a sightseer enumeration with
radius u and memory |P | · M .

• vc
k+1, . . . , v

c
n, finally, are an arbitrary enumeration of the remaining nodes,

i.e. those in BA(ρc, u) \ {vc
1, . . . , v

c
M , vc

k−|P |·M+1, . . . , v
c
k}.

The figure below illustrates the choice of the sequence vc
1, . . . , v

c
k for the case

where P = {x, z} and M = 2.

Consider now the sequence (q, ρc) = (qc
0, ρ

c
0), (q

c
1, ρ

c
1), . . . , (q

c
n, ρc

n) defined by
(qc

i+1, ρ
c
i+1) = JfK(qc

i , ρ
c
i [z := vc

i+1]).
Now, we pick j ∈ PP and m ∈ BC(G,S)(l, eG)P in such a way that ρc

n(x) =
ρc(j(x)) · m(x) holds for all x ∈ P and put g(q, c) = (qc

n, j, m). If such j and
m do not exist we take an arbitrary default value instead. This concludes the
definition of the announced abstract local program g.
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We will now show that g has the claimed properties and that in particular j
and m as above always exist. So let q ∈ Q and c ∈ ΣG,S(P, l) be given and
let ρ ∈ AP satisfy [ρ]l = c. Let ρc ∈ AP be the configuration with [ρc]l = c
that is chosen in the definition of g(q, c), let vc

1, . . . , v
c
n be the corresponding

enumeration of A and let (qc
i , ρ

c
i)i=0,...,n be the computation used there.

Let ϕ : BA(ρc, l) → BA(ρ, l) be a bijection that satisfies ϕ(ρc(x)) = ρ(x) for
all x ∈ P and that preserves the local graph structure. Such a bijection exists
by Lemma 6.

We have

k = |A \ BA(ρc, u)| + (|P | + 1)M = |A \ BA(ρ, u)| + (|P | + 1)M.

We define an enumeration (vi)i of A as follows:

• For i = 1, . . . , M, k − |P | · M + 1, . . . , n we put vi = ϕ(vc
i ).

• We choose the sequence vM+1, . . . , vk−|P |·M to form a sightseer enumera-
tion of A \ BA(ρ, u) with radius u and memory |P | · M .

Consider the corresponding computation sequence (q0, ρ0), (q1, ρ1), . . . , (qn, ρn)
defined by (q0, ρ0) = (q, ρ) and (qi+1, ρi+1) = JfK(qi, ρi[z := vi+1]).

Clearly, we have BA(ρc, R) ∩ BA(vc
i , R) = ∅ and BA(ρ, R) ∩ BA(vi, R) = ∅

for all i ∈ {1, . . . , k}.
We show now using Lemma 13 that both BA(ρc

i , R) ∩ BA(vc
i+1, R) = ∅ and

BA(ρi, R)∩BA(vi+1, R) = ∅ hold for all i < k. The argument goes by induction
on i, the base case being trivial. For the induction step, Lemma 13 implies that
in the configuration ρc

i , the pebbles must lie in an R-neighbourhood around the
nodes V = ρ ∪ {vc

1, . . . , v
c
M} ∪ {vc

i−|P |·M+1, . . . , v
c
i }. Now, the construction of

the sequence vc
1, . . . , v

c
k is such that the u-balls around vc

i+1 and any v ∈ V are
disjoint. Hence, the distance of vc

i+1 and v is more than 3R. But this implies
that vc

i+1 has distance larger than 2R from any node in BA(V, R). Hence we
have shown BA(ρc

i , R) ∩ BA(vc
i+1, R) = ∅. The argument for ρi is analogous.

Lemma 13 now implies qc
i = qi for all i ≤ k and furnishes two functions

j0 : P → P + N and m0 : P → BC(eG, R) that satisfy

ρc
k(x) =

{

ρc(y) · m0(x) if j0(x) = inl y

vc
i · m0(x) if j0(x) = inr i

(4)

ρk(x) =

{

ρ(y) · m0(x) if j0(x) = inl y

vi · m0(x) if j0(x) = inr i .
(5)

By item 2 of Lemma 13, we know that j0(x) = inr i implies i ≤ M or
i > k − |P | · M . By the choice of the enumerations of A, this further implies
vc

i ∈ BA(ρc, u − 3R) and vi ∈ BA(ρ, u − 3R) and therefore vi = ϕ(vc
i ).

From this we get ρk(x) = ϕ(ρc
k(x)) by means of equations (4) and (5) and

the fact that ϕ preserves the local graph structure. Note, though, that ρi(x) =
ϕ(ρc

i (x)) will in general not hold for M < i ≤ k − |P | · M .
We also note ρc

k ⊆ BA(ρc, u − 2R) and likewise for ρk.
Now, in each step from (qc

k, ρc
k) to (qc

n, ρc
n) we have first placed pebble z

on some node in BA(ρc, u) and then applied the function JfK. Since f has
local radius r and all assignments of z went to BA(ρc, u), we have ρc

k+i ⊆
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BA(ρc, u + i · r) for all i ≤ n − k. We have n − k ≤ |BA(ρc, u)|, since all nodes
in vc

k+1, . . . , v
c
n are taken from BA(ρc, u), so that

ρc
n ⊆ BA(ρc, u + |BA(ρc, u)| · r)

⊆ BA(ρc, l). since |BA(ρc, u)| ≤ |P | · |BC(eG, u)|

This implies that if g(q, c) = (qc
n, j, m) then indeed ρc

n(x) = ρc(j(x)) · m(x), i.e.
the case of arbitrary default values for j and m does not occur as promised.
Furthermore, since qk = qc

k and ρk = ϕ ◦ ρc
k and since the entire computation

from time k to n remains within an l-ball around ρc we obtain qn = qc
n and

ρn = ϕ ◦ ρc
n and thus ρn(x) = ρ(j(x)) · m(x), as required.

4.5 Iterated Lamplighter Graphs

In Theorem 14 we have given conditions for action graphs under which forall-
like iterations of abstract local programs can be implemented by abstract local
programs. In this section we show that, for large enough i, the iterated lamp-
lighter graph Λi(m) enjoys the required properties.

The conditions on the free action graph in Theorem 14 pertain the existence
of a certain sightseer enumeration and the minimum size of certain neighbour-
hoods around the pebble positions in configurations.

To construct a sightseer enumeration with radius r and memory n in an
iterated lamplighter graph, we make use of the simple observation that the nodes
of iterated lamplighter graphs are binary tuples and the Hamming distance of
such tuples is a lower bound on their distance as graph nodes. We therefore
construct an enumeration of binary words of a certain length in which any n
consecutive elements have pairwise Hamming distance r.

For k ∈ N denote by Bk the binary vectors (bitvectors) of length k. They
form a k-dimensional GF(2) vector space with addition (and subtraction!) being
pointwise exclusive-or.

For x, y ∈ Bk the Hamming distance dH(x, y) is defined as the number of
positions at which they are different. Hamming distance satisfies the triangle
inequality

dH(x, y) ≤ dH(x, z) + dH(z, y) (6)

or, equivalently, dH(x, z) ≥ dH(x, y) − dH(z, y). Furthermore, we have

dH(x, y) = dH(x + z, y + z) (7)

because addition of z toggles the same bits. Since x + y = x − y in Bk we also
have that

dH(x + u, y + v) = dH(x, y + u + v).

Proposition 15. If k ≥ nr and n ≥ 12 then there exists an enumeration (vi)i

of Bk such that (i − j) mod 2k ≤ n implies dH(vi, vj) ≥ r.

Proof. We may assume without loss of generality that k−nr < r, for otherwise
we can enlarge n and get an even stronger statement. For i = 1, . . . , n let

ei = 0(i−1)r1r0k−ir

and put S = span(e1, . . . , en). We have |S| = 2n and for any u, v in S we have
dH(u, v) ≥ r. Note that S consists of bitvectors which when read from left to
right toggle only at positions ri + 1 for i = 0, . . . , n − 1.
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Now choose vectors v1, . . . , v2k−n such that each vector x ∈ Bk can be
uniquely written as x = u + vi for some u ∈ S and 1 ≤ i ≤ 2k−n. This
can be done by choosing representatives for the 2k−n classes of the equivalence
relation u ∼ v ⇐⇒ u − v ∈ S.

Notice that the Hamming distance of two distinct vectors in S+vi for some i
is at least r. This then suggests to enumerate first the vectors in S + v1 then
the vectors in S + v2 and so forth in such a way that the last n vectors of the
previous block are sufficiently distant from the first n vectors of the next block
(previous/next understood modulo 2k).

Let us call a vector v ∈ S lean if it can be written as the sum of at most 2
basis vectors e1, . . . , en. The number of lean vectors exceeds 2n. Conversely,
call a vector v ∈ S fat if it is a sum of n− 1 distinct basis vectors. There are n
fat vectors. The Hamming distance between a lean and a fat vector is at least
r(n − 3).

We will now define for each i an enumeration of S + vi which is such that
(a) its first n vectors have distance at least r from any vector of the form
u + vi−1 mod 2k with u lean and (b) its last n vectors are of the form u + vi

with u lean. It is clear that we then obtain an enumeration of Bk with the
desired properties by concatenating the enumerations of the blocks S + vi.

To get such an enumeration of S + vi put v = vi + vi−1 mod 2k and choose
s ∈ S so that dH(s, v) ≤ nr/2 + 2r. If v has more 0s than 1s then s = 0 works,
otherwise we put s = 1nr0k−nr. Recall that k − nr < r. Now choose t1, . . . , tn
in S, so that tj +s is fat for j = 1, . . . , n. We take the n vectors t1+vi, . . . , tn+vi

as the first n vectors of the enumeration of the block S + vi. If u is lean then

dH(u + vi−1 mod 2k , tj + vi)

= dH(u, tj + v) def. of v and (7)

≥ dH(u, tj + s) − dH(tj + s, tj + v) triangle inequality

= dH(u, tj + s) − dH(s, v) eqn. (7)

≥ r(n − 3) − nr/2 − 2r lean vs. fat; constr. of s

≥ r since n ≥ 12 .

Thus, requirement (a) is satisfied. Since at most n of the vectors t1, . . . , tn
are lean we can find another n lean vectors u1, . . . , un ∈ S allowing us to put
u1+vi, . . . , un+vi at the end of the enumeration so as to satisfy requirement (b).
The enumeration of the remaining vectors in the middle can be performed in
an arbitrary order.

Lemma 16. The lamplighter graph Λ(G, S) has a sightseer enumeration of
radius r and memory n whenever |G| ≥ (2r + 1) · max(n, 12) holds.

Proof. Nodes of Λ(G, S) are pairs (f, x) with f ∈ 2|G| and x ∈ G. We view
such f as an element of B|G|. The distance in Λ(G, S) of two nodes (f, x) and
(f ′, x′) is then at least the Hamming distance dH(f, f ′) of f and f ′. Under
the given assumptions Proposition 15 furnishes an enumeration f1, . . . , f2|G| of
2|G| such that any two vectors who are at most n steps apart modulo 2|G| have
Hamming distance at least 2r+1. We can then choose an arbitrary enumeration
(xj)j of G and enumerate Λ(G, S) as

(
f(k mod 2|G|)+1, xdk/2|G|e

)

k=1,...,2|G|·|G|
.

The next corollary follows by equation (2).
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Corollary 17. If expi−1
2 (m) ≥ (2r +1) ·max(n, 12) then Λi(m) has a sightseer

enumeration with radius r and memory n.

Next we analyse the size of neighbourhoods in lamplighter graphs, as re-
quired to satisfy the second precondition of Theorem 14.

Lemma 18. Let n and r be positive natural numbers. A ball BΛ(G,S)(v, l) in a
lamplighter graph Λ(G, S) has r-size at least n if from any node in the Cayley
graph C(G, S) there is a cycle-free path of length r ·n and if l ≥ (n+1)r holds.

Proof. By definition, v is a pair (f, x) with f ∈ 2|G| and x ∈ G. Let x1, . . . , xrn

be a cycle-free path in C(G, S) with x1 = x. Define fi, di,j ∈ 2|G| for i =
0, . . . , n − 1 and j = 1, . . . , r by

fi = f + di,1 , di,j =

ir+r∑

l=ir+j

δxl
.

We claim that the set {(fi, xir+r) | 0 ≤ i < n} consists of n nodes in BΛ(G,S)(v, l)
having pairwise distance greater than 2r. That their pairwise distance is greater
than 2r follows because for i 6= j we have constructed fi and fj to have Hamming
distance 2r and xir+r and xjr+r have distance at least one. It remains to show
that these nodes are indeed in BΛ(G,S)(v, l).

Define bi,j = (x−1
ir+j · di,j , x−1

ir+j · xir+r) and observe

(fi, xir+r) = (f, x1) · (0, x−1
1 · xir+1) · bi,1 . (8)

Now we note that (0, x−1
j · xj+k) has distance at most k from eL(G,S). Next

we show that bi,j has distance at most 2(r − j) + 1 from eL(G,S). This follows
because we have d(eL(G,S), bi,r) = 1 and d(eL(G,S), bi,j) ≤ 2 + d(eL(G,S), bi,j+1)
for all j ∈ {1, . . . , r− 1}. The first fact can be seen by observing bi,r = (δe, eG),
while the second one follows from bi,j = (δe, eG) · (0, x−1

ir+j · xir+j+1) · bi,j+1.
But with (8) we have thus shown that the distance of (fi, xir+r) from v =

(f, x1) is no more than ir+2(r−1)+1 < (i+2)r ≤ (n+1)r = l, as required.

With the lemma, we now have a lower bound on the r-size of balls in lamplighter
graphs. The lemma is preconditioned on the existence of long cycle-free paths
in C(G, S). Since we will work with iterated lamplighter graphs, we will be
interested in the case where C(G, S) is a lamplighter graph itself. In order to
apply the above lemma in this situation, we need a lower bound on the length
of cycle-free paths in lamplighter graphs.

Lemma 19. In the lamplighter graph Λ(G, S), there exists from any node a
cycle-free path of length 2|G|.

Proof. Any vertex of Λ(G, S) is a pair of a binary word f of length |G| and an
element x of G. We construct a path of length 2|G| starting from an arbitrary
vertex (f, x). There exists a Gray-code enumeration f = f1, . . . , f2|G| of the
binary words of length |G|, i.e. an enumeration in which subsequent words differ
in exactly one position, see e.g. [6]. Write xk ∈ G for the position in which
fk and fk+1 differ. Clearly, there exists cycle-free path πk from (fk+1, xk) to
(fk+1, xk+1) for all k ∈ {1, . . . , 2|G|−2}, because there are cycle-free paths from
xk to xk+1 in the connected graph C(G, S). Likewise, there is a (possibly empty)
path π0 from (f, x) to (f1, x1). But then π0π1π2 . . . π2|G|−2(f2|G| , x2|G|−1) is a

cycle-free path in Λ(G, S) of length at least 2|G|, as required.
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We can combine the preceding lemmas to yield:

Corollary 20. Let A be the iterated lamplighter graph Λi(m) and v ∈ A be a
node. The r-size of BA(v, l) is at least n if expi

2(m) ≥ rn and l ≥ r(n + 1).

4.6 Locality of Programs on Iterated Lamplighter Graphs

In this section we put together the results from the previous sections to show
that purple cannot decide undirected s-t-reachability. Define ∆i(m) to be
the action graph consisting of two disjoint copies of the iterated lamplighter
graph Λi(m). In this section we show that each purple program can be imple-
mented by an abstract local program on ∆i(m), for some large enough i and m,
such that the radius of the abstract local program is smaller than half of the
diameter of ∆i(m). Since the abstract local program then cannot distinguish
whether s and t lie on different connected components or just have large dis-
tance on the same component, we can conclude from this that purple cannot
decide undirected reachability.

We start by instantiating Theorem 14 to the graphs ∆i(m) with the help of
Corollaries 17 and 20.

Lemma 21. There exist numbers a and b, such that whenever f ∈ L∆i(m)(Q, P, r)
where m ≥ max(|Q|, |P |) and expi

2(m) ≥ expa
2(i + m + r) then for any z ∈ P

there exists an abstract local program g ∈ L∆i(m)

(
Q, P, expb

2(i + m + r)
)

that
implements forall z do f on ∆i(m).

Proof. We introduce the class of polynomial functions with exponentiation, which
is the smallest class of functions that contains constants and variables and that
is closed under addition e1 + e2, multiplication e1 · e2 and exponentiation ee2

1 . It
is a standard result that for each polynomial with exponentiation e with vari-
ables x1, . . . , xk, there exists a number l such that e ≤ expl

2(x1 + · · ·+xk) holds
for any valuation of ~x. See e.g. [7] for a proof.

Define the following polynomials with exponentiation with variables q, p, m,
r and i, in which c is the constant from Theorem 10.

rng(q, p, r) :=
(
(i + 3)r · q · m · 2i

)cp

mod(q, p, r) := q · pp · (i + 3)p·rng(q,p,r)

R := 3 · rng(q · (p + 2)p, 2p + 1, r)

M := mod(q · (p + 2)p, 2p + 1, r)

u := 3 · R · p · (M + 1) + 6 · R

We now show that there exist natural numbers a and b such that whenever
m ≥ max(q, p) and expi

2(m) ≥ expa
2(i + m + r) then

expi−1
2 (m) ≥ (2u + 1) · (p · (M + 1) + 12) (9)

expi
2(m) ≥ 3R · p · (M + 1) (10)

expb
2(i + m + r) ≥ u + r · p · |BΛi(m)(e, u)| . (11)

To see this, note that by the assumption m ≥ max(q, p), we can replace both q
and p by m on the right-hand sides of the inequations. The right-hand sides
of the first two inequations then become polynomials with exponentiation with
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variables i, m and r. As noted above, we can bound them from above by terms
of the form expl

2(i+m+ r) for appropriate l. Hence, we can choose a such that
the first two inequations are implied by expi

2(m) ≥ expa
2(i+m+r). Furthermore,

since the degree of ∆i(m) is i + 2, we have (i + 3)u ≥ |BΛi(m)(e, u)|. Hence,
we can find a polynomial with exponentiation that is an upper bound for the
right-hand side of the last inequation. Then, by the same argument used to
find a, we obtain a number b making the last inequality true.

We now show the assertions of the lemma with this choice of a and b. Let
f ∈ L∆i(m)(Q, P, r) and z ∈ P and assume m ≥ max(|Q|, |P |) and expi

2(m) ≥
expa

2(i + m + r). We obtain the result using Theorem 14, whose premises we
satisfy as follows.

Notice that for any set of states Q′ and any set of pebbles P ′, we have

rng(|Q′|, |P ′|, r) ≥ range∆i(m)(Q
′, P ′, r)

mod(|Q′|, |P ′|, r) ≥ modulus∆i(m)(Q
′, P ′, r)

by Theorem 10, the estimation in (3) and because the graph ∆i(m) has exponent
m · 2i and degree i + 2. It follows that if in the above polynomials with expo-
nentiation we assign the variables q and p the values |Q| and |P | respectively,
then the numbers R and M satisfy the requirements of Theorem 14.

The remaining premises of Theorem 14 follow from the choices of u and a
by Corollaries 17 and 20.

Theorem 14 therefore shows that there exists an abstract local program
g ∈ L∆i(m)

(
Q, P, u + r · |P | · |BΛi(m)(e, u)|

)
that implements forall z do f

on ∆i(m). By (11), expb
2(i + m + r) is an upper bound for the local radius of g.

Hence, we may consider g as a program in L∆i(m)(Q, P, expb
2(i+m+ r)), which

completes the proof.

With this lemma, we can show that each while-free purple program can be
simulated by an abstract local program on any graph ∆i(m) with large enough i
and m. To formulate this simulation precisely, we use the following notation.
For a purple program M , we write Q(M) for 2Varsbool(M) and write P (M) for
VarsΓ(M) ∪ {s, t}. We write |M | for the length of program M , that is the
number of nodes in the abstract syntax tree.

Theorem 22. For all k there exist i0 and r with the following property. For
each i ≥ i0, each while-free purple program M of forall-depth k and each
m ≥ max(|Q(M)|, |P (M)|), there exists an abstract local program

f ∈ L∆i(m) (Q(M), P (M), expr
2(i + m + |M |)) ,

such that JfK(q, ρ) = (p, τ) implies (M, q, ρ) −→∗
(∆i(m),ρ(s),ρ(t)) (skip, p, τ) for all

q, p ∈ Q(M) and all ρ, τ ∈ (∆i(m))P (M).

Proof. The proof goes by induction on k.

Base case k = 0. Define i0 = r = 0. Let i ≥ i0. The result then follows, since
for any purple program M can be compiled into an abstract local program
with local radius |M |, as shown in Lemma 9.
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Induction step. Assume that we have numbers i0 and r that work for k in
the sense that for all i ≥ i0, all while-free purple programs M with forall-
depth k and all m ≥ max(|Q(M)|, |P (M)|), there exists an abstract local pro-
gram f ∈ L∆i(m)(Q(M), P (M), expr

2(i + m + |M |)) with the property that
(M, q, ρ) −→∗

(∆i(m),ρ(s),ρ(t)) (skip, p, τ) holds whenever JfK(q, ρ) = (p, τ) does.

We have to find numbers i′0 and r′ that work for k + 1.
To define i′0 and r′, let a and b be the numbers from Lemma 21. We choose

i′0 ≥ i0 and r′ > 0, in such a way that the inequations

expi
2(x) ≥ expa

2(i + x + expr
2(i + x)), (12)

expr′

2 (i + x) ≥ expb
2(i + x + expr

2(i + x)) (13)

hold for all i ≥ i′0 and all x. This can be done by bounding the right-hand sides
from above by expd

2(i + x) for some d, as in the proof of Lemma 21, and then

choosing r′ := d and i′0 := 2(d+2), which works since i+x ≤ exp
i/2+2
2 (x) holds

for all i, x ≥ 0.
Let i ≥ i′0. We now show the required property by induction on the while-

free purple programs M of forall-depth k + 1.

• Case M is forall x do M ′. Let m ≥ max(|Q(M)|, |P (M)|).

Since M has forall-depth k + 1, the program M ′ has forall-depth k,
so that we can apply the outer induction hypothesis to obtain an abstract
local program

f ′ ∈ L∆i(m) (Q(M ′), P (M ′), expr
2(i + m + |M ′|))

with the property that (M ′, q, ρ) −→∗
(∆i(m),ρ(s),ρ(t)) (skip, p, τ) holds when-

ever Jf ′K(q, ρ) = (p, τ).

By the choice of i′0 and r′ and with (12), Lemma 21 shows that there exists
an abstract local program

f ∈ L∆i(m)(Q(M ′), P (M ′), expb
2(i + m + expr

2(i + m + |M ′|)))

that implements forall x do f ′ on ∆i(m).

Now we have

expb
2(i + m + expr

2(i + m + |M ′|))

≤ expb
2(i + m + |M | + expr

2(i + m + |M |)) by monotonicity

≤ expr′

2 (i + m + |M |) by (13) with m + |M | for x

Hence, we may consider f an element of

L∆i(m)(Q(M), P (M), expr′

2 (i + m + |M |)).

Combining the properties of f and f ′, we get that JfK(q, ρ) = (p, τ) implies

(forall x do M, q, ρ) −→∗
(∆i(m),ρ(s),ρ(t)) (skip, p, τ).

Thus, f is as required to complete this case.
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• Case M is M ′; M ′′. Let m ≥ max(|Q(M)|, |P (M)|). This number m is
large enough to apply the inner induction hypothesis to M ′ and M ′′. We
obtain abstract local programs

f ′ ∈ L∆i(m)(Q(M ′), P (M ′), expr′

2 (i + m + |M ′|))

f ′′ ∈ L∆i(m)(Q(M ′′), P (M ′′), expr′

2 (i + m + |M ′′|))

so that (M ′, q, ρ) −→∗
(∆i(m),ρ(s),ρ(t)) (skip, p, τ) holds whenever Jf ′K(q, ρ) =

(p, τ) does, and that (M ′′, q, ρ) −→∗
(∆i(m),ρ(s),ρ(t)) (skip, p, τ) holds when-

ever Jf ′′K(q, ρ) = (p, τ) does. We can view both f ′ and f ′′ as abstract
local programs with state set Q(M) and pebble set P (M) in the canonical
way.

By setting f := comp(f ′, f ′′), we obtain an element of

L∆i(m)

(

Q(M), P (M), expr′

2 (i + m + |M ′|) + expr′

2 (i + m + |M ′′|)
)

such that (M, q, ρ) −→∗
(∆i(m),ρ(s),ρ(t)) (skip, p, τ) holds whenever JfK(q, ρ) =

(p, τ) does, cf. Lemma 8. To show that f specifies an element of

L∆i(m)

(

Q(M), P (M), expr′

2 (i + m + |M |)
)

it then suffices to show

expr′

2 (i + m + |M |) ≥ expr′

2 (i + m + |M ′|) + expr′

2 (i + m + |M ′′|).

But this follows because the inequality expr
2(x + y + z) ≥ expr

2(x + y) +
expr

2(x + z) holds for all natural numbers x, y, z and r with r, y, z ≥ 1.

• Case M is if tbool then M ′ else M ′′. Let m ≥ max(|Q(M)|, |P (M)|).
This number m is large enough to apply the inner induction hypothesis
to M ′ and M ′′. We obtain abstract local programs

f ′ ∈ L∆i(m)

(

Q(M ′), P (M ′), expr′

2 (i + m + |M ′|)
)

,

f ′′ ∈ L∆i(m)

(

Q(M ′′), P (M ′′), expr′

2 (i + m + |M ′′|)
)

.

We can consider f ′ and f ′′ as abstract local programs with state set Q(M)
and pebble set P (M). We then define

f(q, c) =

{

f ′(q, c) if JtboolKq,c = true,

f ′′(q, c) if JtboolKq,c = false,

as in the proof of Lemma 9. The local radius of f is at most the maximum
of the local radii of f ′ and f ′′. We can therefore bound it from above by
expr′

2 (i + m + |M |), which is sufficient to complete this case.

• All other cases are excluded by the assumption that M has forall-
depth k + 1, since in these cases the program would have to have forall-
depth 0.
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Theorem 23. For all k there is a number d such that no while-free pur-

ple program with forall-depth k decides reachability on undirected graphs of
degree d.

Proof. Given k, let i0 and r be the numbers provided by Theorem 22. Choose
i ≥ i0 to be large enough such that expr

2(i+2x) < expi
2(x) holds for all x. Such

an i can be found as in the proof of Theorem 22. With this choice of i, we
define d = i + 4, the degree of ∆i+2(m) for any m > 2.

We have to show that with this choice of d no abstract program M with
forall-depth k can decide reachability on undirected graphs of degree d. By
Theorem 22 any such program M program can be implemented on ∆i+2(m)
by an abstract local program f with local radius expr

2(i + m + |M |) for m :=
max(|Q(M)|, |P (M)|) + |M | and any choice of nodes for s and t. Now, by the
choice of i, we can bound the local radius of f as follows.

expr
2(i + m + |M |) < expr

2(i + 2m) ≤ expi
2(m)

The diameter of a lamplighter graph Λ(G, S) is at least |G|, since the nodes
(λx.0, e) and (λx.1, e) have distance at least |G|. Therefore, we have

diam
(
∆i+2(m)

)
= diam

(
Λi+2(m)

)

≥ |Λi+1(m)| ≥ 2|Λ
i(m)| ≥ 2 · |Λi(m)| ≥ 2 · expi

2(m).

Hence, the local radius of f is less than diam
(
∆i+2(m)

)
/2.

We now consider two ways of making ∆i+2(m) into an s-t-graph. First, we
choose for s and t two nodes on the same connected component with distance
diam(∆i+2(m)). Second, we choose s and t to be on different connected com-
ponents. Consider now starting configurations in which all pebbles are placed
on either s or t. Since the abstract local program f has local radius smaller
than diam

(
∆i+2(m)

)
/2, it cannot distinguish whether the nodes s and t are

on different connected components or whether they are far apart on the same
connected component. Since f implements M , the same holds for M , which
implies that M cannot decide either whether or not s is reachable from t.

Corollary 24. There is no purple program that decides undirected reachability
on graphs of degree 3.

Proof. The proof is by the straightforward transformation of degree d graphs to
degree 3 graphs that replaces nodes by length d cycles.

In detail, suppose for a contradiction that M decides undirected reachability
on graphs of degree 3. In view of Proposition 1 we may assume that M is
while-free. Let k be the forall-depth of M and let d be such that no while-
free purple-program can decide undirected reachability for graphs of degree d.
Such d exists by Theorem 23.

From M we will now construct a program M ′ of the same forall-depth k
that does decides undirected reachability on graphs of degree d, which is a
contradiction.

Intuitively, M ′ will replace each node of the input graph by a cycle of length d
and present the resulting graph as input to M . To do that in the purple-
formalism we introduce for each pointer variable (pebble) x a variable dx with
range {1, . . . , d} (concretely implemented using dlog de boolean variables). The
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idea is that x = v, dx = i means that the variable x contains the i-th node in
the cycle representing node v of the input graph. Thus, we obtain M ′ from M
by replacing the instructions of M as follows:

y :=x 7→ y :=x; dy := dx

y := s 7→ y := s; dy := 0
y := t 7→ y := t; dy := 0
y :=x.succ(0) 7→ y :=x; dy := dx + 1 mod d
y :=x.succ(1) 7→ y :=x; dx := dx − 1 mod d
y :=x.succ(2) 7→ y :=x.succ(dx)
forall x do M 7→ forall x do (y :=x;

for i = 1, . . . , d do (x := y; dx := i; M))

Here we have used some pseudocode instructions like ‘for i = 1, . . . , d do’ or
‘y := x.succ(dx)’ that must be expanded into official purple-code in the obvious
way.

It is then clear that M ′ decides undirected reachability on a given degree d
graph. Notice that the simulation of a forall-loop presents the nodes of the
degree 3 graph in some particular order. But M must give correct results for
any order including the ones chosen in the simulation. To prove this formally,
one shows that for any run r of M ′ on some degree d graph G there is a run r′

of M on the degree 3 graph G′ obtained by replacing the nodes of G by length d
cycles. Moreover, if (q, ρ) is a configuration in r immediately before or after
the completion of the translation of an instruction of M then the corresponding
configuration (q′, ρ′) in r′ satisfies q′(b) = q(b) for all boolean variables of M
and ρ′(x) = (ρ(x), dx). Here we assume that the nodes of G′ are pairs of the
form (v, i) with v a node of G and i ∈ {1, . . . , d}.

As already mentioned, no such M ′ exists by Theorem 23.

Corollary 25. There is no dtc-formula for locally ordered graphs (one- or two-
way-ordered) that expresses s-t-reachability for undirected graphs of degree 3.

This corollary follows immediately from Corollary 24 and Proposition 2. It
strengthens the results of Etessami & Immerman, who prove that undirected
reachability cannot be expressed by a dtc-formula of the form dtc(ϕ), where ϕ
is a first-order formula. Without a total ordering, not every dtc-formula is
equivalent to one of this form.
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