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Abstract. A classic result due to H̊astad established that for every constant ε > 0, given an
overdetermined system of linear equations over a finite field Fq where each equation depends
on exactly 3 variables and at least a fraction (1 − ε) of the equations can be satisfied, it is
NP-hard to satisfy even a fraction

`

1
q

+ ε
´

of the equations.

In this work, we prove the analog of H̊astad’s result for equations over the integers (as well
as the reals). Formally, we prove that for every ε, δ > 0, given a system of linear equations
with integer coefficients where each equation is on 3 variables, it is NP-hard to distinguish
between the following two cases: (i) There is an assignment of integer values to the variables
that satisfies at least a fraction (1 − ε) of the equations, and (ii) No assignment even of real
values to the variables satisfies more than a fraction δ of the equations.

1. Introduction

Solving a system of linear equations over the rationals or reals is a fundamental algorithmic
task arising in numerous applications. It is possible to tell in polynomial time, by Gaussian
elimination, if a given system admits a solution, and if so to find one. However, Gaussian
elimination is not robust against noise, and given an overdetermined system of equations, of
which say only 99% of the equations are simultaneously satisfiable, no efficient algorithm for
finding a good solution satisfying a good fraction (say 50%) of equations is known. Indeed, it
was recently shown that, for any constant ε > 0, given a (1− ε)-satisfiable linear system over
the rationals, it is NP-hard to find an assignment to the variables that satisfies even a fraction
ε of the equations [9, 8]. A similar hardness result over large finite fields was established in a
classic paper by H̊astad [11].

This work is motivated by the complexity of solving sparse overdetermined linear systems,
where each equation is on a small constant number of variables. (The result in [9] applies to
linear systems where each equation has a constant c(ε) number of variables where c(ε) → ∞ as
ε → 0, and we are interested in the case when each equation has at most an absolute constant,
say 3, variables.)

The theory of probabilistically checkable proofs (PCP) has led to immense progress in under-
standing the approximability of constraint systems where each constraint is local and depends
only on a fixed constant number of variables. A celebrated hardness result due to H̊astad [11]
shows that for every constant ε > 0, given a (1− ε)-satisfiable system of linear equations over
a finite field Fq where each equation depends on at most 3 variables, it is NP-hard to satisfy
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more than a fraction
(

1
q + ε

)

of the equations. Underlying this result is a 3-query PCP verifier

that queries 3 symbols from purported codewords of the “long code” (a code first defined and
considered in [4]) and checks a linear constraint on them, and a tight estimate of the sound-
ness of such a verifier using Fourier analysis. The method of designing long-code based PCP
verifiers with tests that closely parallel the underlying constraint in the optimization problem
of interest (3-variable linear equations in the above case), and analyzing their performance
using Fourier analysis has been highly influential since (for instance, see Khot’s survey [12]).

In this work, we prove the analog of H̊astad’s 3-variable linear equations result for equations
over the integers (as well as the reals). Formally, we prove that for every ε, δ > 0, given a
system of linear equations with integer coefficients where each equation is on 3 variables, it is
NP-hard to distinguish between the following two cases: (i) There is an assignment of integer
values to the variables that satisfies at least a fraction (1 − ε) of the equations, and (ii) No
assignment even of real values to the variables satisfies more than a fraction δ of the equations.

We stress that there seems to be no easy reduction from the problem of solving linear equa-
tions over finite fields to solving equations over the real numbers. It is straightforward to
obtain a hardness result over integers from the hardness result of H̊astad [11] over finite fields.
Specifically, for every mod p equation of the form x+y−z = c mod p, introduce an auxiliary
variable w and an equation x + y − z − pw = c over integers. However this reduction yields
hardness of linear systems with 4 variables per equation instead of 3. More importantly, this
reduction does not yield any hardness for linear systems over real numbers.

Obtaining a hardness of approximation result for linear systems with very few variables per
constraint was mentioned as an open question in [8]. The result for general linear equations
was obtained via a simple reduction from Label Cover in [9], and via a natural tensoring based
approach to amplify the gap in [8]. Obtaining a result for 3-variable equations seems harder,
and our proof is based on Fourier analysis of a long code based PCP over integers (hence our
title for the paper). In Section 2, we present an overview of our proof technique highlighting
some of the key challenges in the integers case, our technical contributions to address them,
and connections to derandomized linearity testing.

1.1. Previous related results. For sparse linear equations over integers, in fact with at most
2 variables per equation, it is shown in [2] (via a reduction from vertex cover on bounded degree
graphs) that for some absolute constants ρ2 < ρ1 < 1, it is NP-hard to tell if such a system is
at least ρ1-satisfiable or at most ρ2-satisfiable. By boosting this gap using a natural “product”
construction, strong hardness results have been shown for the problem (called MAX-SATISFY

in the literature) of approximating the number of satisfied equations in an overdetermined
system of (not necessarily sparse) linear equations over the rationals [2, 7]. In [7], it is shown
that unless NP ⊂ BPP, for every ε > 0, MAX-SATISFY cannot be approximated within a ratio
of n1−ε where n is the number of equations in the system. (On the algorithmic side, the best
approximation algorithm for the problem, due to Halldorsson [10], achieves ratio O(n/ log n).)

However, the product construction destroys the sparsity of the original system, and also re-
duces the completeness to about ρk

1 for a k-fold product. Consequently, even without the
sparsity requirement, these results do not yield any hardness for near-satisfiable instances
where an assignment satisfying a (1 − ε) fraction of the equations is promised to exist (for
an arbitrarily small parameter ε > 0). For such near-satisfiable instances, a result showing
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NP-hardness of satisfying even an ε fraction of the equations was obtained only recently in
[9, 8].

For the complementary objective of minimizing the number of unsatisfied equations, a problem

called MIN-UNSATISFY, hardness of approximation within ratio 2log0.99 n is shown in [2] (see
also [1]).

2. Proof Overview

Our proof follows along the lines of H̊astad’s result for 3-variable linear equations over prime
fields Fp. We give a 3-query PCP verifier that reads 3 appropriately chosen locations of the
proof (each of whose entry holds an integer in some finite range) and checks a linear equation
on them. The starting point is an instance of Label Cover over a fixed alphabet Σ consisting
of a bipartite graph and projection constraints πe : Σ → Σ on the edges e; the projection
constraint on edge (u, v) imposes the condition π(u,v)(`(v)) = `(u) where `(w) is the label
assigned to vertex w. The verifier checks satisfiability of the Label cover instance by picking
a random edge (u, v) of the Label Cover graph and then checking that the labels assigned to
the endpoints of that edge satisfy the projection constraint. To aid the verifier to perform the
latter check in a query-efficient way, the prover is expected to write down the integer long code
encodings (in some large finite range) of all the vertex labels. The verifier picks one location
x, with probability P (x) for some distribution P , from the supposed long code A of u’s label,
and two locations y, y′ with probability P ′(y) according to distribution P ′, from the suppose
long code B of v’s label. (Here y′ = y + x is determined once x, y are picked — in the actual
test, as in H̊astad’s test [11], a small noise according to some distribution is added to y + x
to get y′, and this is crucial. However, for the following description let us pretend that y′

is determined once x, y are picked.) The verifier then checks that the values A(x), B(y) and
B(y′) obey a linear constraint.

Let M be a large enough integer such that the total mass of distributions P and P ′ outside a
cube of dimension M is tiny. Now any test of the above form that works for integers must also
work modulo all large enough primes (that are much bigger than the range in which we allow
the long code values to lie). In particular, picking p large enough compared to M , we will
have a 3-query long code test modulo p that only queries a negligible fraction of the domain
F

Σ
p of the long code. Therefore, our results imply a highly derandomized version of H̊astad’s

test (though our target soundness ε is necessarily much larger than 1/p). In particular, we
obtain a test whose total randomness used depends only on the soundness and the dimension,
and is independent of the domain size.

Technically, the difficulty imposed by this manifests itself in trying to extend the “decoding”
procedure where the tables A and B are used to produce a small list of candidate labels for u
and v. H̊astad’s decoding procedure uses the large Fourier coefficients of A to decode a small
list of labels for u. The Fourier transform ÂP of A with respect to the distribution P can
have many large coefficients since P is very far from uniform. In fact, the sum of squares of
the Fourier coefficients grows exponentially in the dimension (size of the alphabet). A key

technical lemma we show (Lemma 4.3) implies that the Fourier spectrum ÂP cannot have
many large coefficients that are “far-off” from each other. Here the notion of two Fourier
coefficients being “far-off” refers to the natural l∞ metric between the corresponding linear
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functions being large. We then show how this can be exploited to decode a small set of labels
for u from A (Claim 6.1). A “folding” property of the long code ensures that the set of decoded
labels is in fact nonempty (Lemma 5.3). The property of the distribution P needed to show
that A has few large pairwise far-off coefficients is an (ε, δ)-concentration property, namely
∑

x P (x)e−iω·x 6 ε for all ‖ω‖∞ > 2πδ. Essentially for an (ε, δ)-concentrated distribution P ,
most of its weight is concentrated around the origin in the Fourier domain.

We are certainly not the first to attempt a derandomization of PCP tests. In particular, we
want to point out the work of Ben-Sasson, Sudan, Vadhan, and Wigderson [5] who studied
derandomized versions of the BLR linearity test [6] and the low-degree tests underlying PCP
constructions. Their derandomized BLR test (for the field F2) picks a triple (x, y, y′ = y + x)

of locations to query where y is uniformly distributed on the whole domain F
|Σ|
2 , but x is

distributed uniformly on a much smaller subset S of the domain — the only requirement is
that S is ε-biased, which means that for all nonzero ω ∈ {0, π}|Σ|, the Fourier coefficient
1
|S| ·

∑

x∈S e−iω·x 6 ε. In our terminology, this means that the distribution on x is (ε, 1/2)-

concentrated. However this derandomization is inadequate for our case, since y ranges over
the entire domain.

It is our hope that ideas from this work might perhaps be useful to reduce the size of long
code based PCPs. This could enable giving such PCP constructions for much larger values of
parameters, and in turn lead to some improved hardness of approximation results.

3. Our Results

We begin with formal definitions of the problems for which we obtain hardness results. The
problem MAX3LINZ consists of finding an assignment that satisfies maximum number of a set
of linear equations over integers, each of which has 3 variables. Formally

Definition 3.1. For constants c, s satisfying 0 6 s < c 6 1, define MAX3LINZ(c, s) to be
the following Promise problem : The input consists of a multiset of linear equations over
variables {x1, x2 . . . , xn} with each equation consisting of at most 3 variables. The problem is
to distinguish between the following two cases:

• There is an integer assignment that satisfies at least a fraction c of the equations.
• Every integer assignment satisfies less than a fraction s of the equations.

MAX3LINR(c, s) is the corresponding problem over real numbers instead of integers.

The hardness results in this paper are obtained by reductions from the Label Cover problem
defined below.

Definition 3.2. An instance of LABELCOVER(c, s) represented as Γ = (U, V,E,Σ,Π), con-
sists of a bipartite graph over node sets U ,V with the edges E between them, such that all
nodes in U are of the same degree. Also part of the instance is a set of labels Σ, and a set
of mappings πe : Σ → Σ for each edge e ∈ E. An assignment Γ of labels to vertices is said
to satisfy an edge e = (u, v) where u ∈ U and v ∈ V , if πe(A(v)) = A(u). The problem is to
distinguish between the following two cases:
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• There exists an assignment Γ that satisfies at least a fraction c of the edge constraints
Π

• Every assignment satisfies less than a fraction s of the constraints in Π.

The following strong hardness result for the label cover problem is the starting point for our
reductions.

Proposition 3.3. [13, 3] There exists an absolute constant γ > 0 such that for all large
enough R, the gap problem LABELCOVER(1, 1

Rγ ) is NP-hard, where R = |Σ| is the size of the
alphabet.

In this paper, we prove the following hardness result for MAX3LINZ,

Theorem 3.4 (Main). For all constants ε, δ > 0 the problem MAX3LINZ(1−ε, δ) is NP -hard.
Further it is NP -hard even when all the equations are of the form xi + xj = xk + c for some
integer constants c.

It is easy to see that the above result implies a similar hardness result for MAX3LINR. The
details of the reduction from MAX3LINZ are as follows:

Theorem 3.5. For all constants ε, δ > 0, the problem MAX3LINR(1 − ε, δ) is NP -hard.

Proof. Let I be an instance of MAX3LINZ(1 − ε, δ
8 ) with the additional restriction that all

equations are of the form xi + xj = xk + c for some integer constants c. View this system of
equations, as equations over R to obtain a MAX3LINR(1 − ε, δ) instance.

In the completeness case, there is an integer assignment that satisfies at least (1− ε) fraction
of the equations. Clearly the same assignment is also a real assignment that satisfies at least
(1 − ε) fraction of the equations.

Suppose there is a real assignment AR that satisfies more than δ fraction of the equations.
Obtain an integer assignment AZ as follows: For each variable xi, AZ(xi) is randomly assigned
either dAR(xi)e or bAR(xi)c. For every equation xi + xj = xk + c that is satisfied by AR we
have

AR(xi) + AR(xj) − AR(xk) = c

Since c is an integer, there exists at least one rounding (either ceiling or floor) of AR(xi), AR(xj), AR(xk)
such that the above equation continues to hold after rounding. With two choices for each
AR(xi), there are 8 possible ways to round the 3 variables. Hence with probability at least 1

8
the equation still holds after rounding. So the expected number of equations satisfied by the
rounded solution AZ is at least δ

8 . �

4. Analytic Machinery

4.1. Fourier Preliminaries. Let Fp denote the prime field with p elements. Here we recall
the definition of Fourier transform and a few useful identities. For a function A : F

R
p → C,

define the function Â(ω) as follows:

Â(ω) =
1

pR

∑

x∈FR
p

A(x)e−iω·x
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Hence Â(ω) is a function defined over [0, 2π]R. Let Sp = {0, 2π
p , . . . , 2πj

p , . . . , 2π(p−1)
p }. The

values of Â(ω) on the finite set SR
p is the Fourier transform of the function A on F

R
p . Through-

out the analysis, we will only be using these Fourier coefficients, i.e., the values of Â(ω) on
SR

p . The Fourier coefficients satisfy the following identities:

Inverse Transform:

A(x) =
∑

ω∈SR
p

Â(ω)eiω·x

Parseval’s identity:

1

pR

∑

x∈FR
p

|A(x)|2 =
∑

ω∈SR
p

|Â(ω)|2

Although we will be applying Fourier Transform over a large prime field Fp, it is instructive

to think of the Fourier transform Â(ω) as a function over the continuous domain [0, 2π]R.
Operations like addition, subtraction, multiplication by scalars, of elements in [0, 2π]R are all
done modulo 2π. For instance, if ω′ = 3ω then the ith coordinate of ω′ is given by ω′

i = 3ωi

mod 2π. For θ ∈ [0, 2π] we will use ‖θ‖2π to denote min(θ, 2π−θ). For any ω ∈ [0, 2π]R define
‖ω‖∞ = maxi∈{1,...,R} ‖ωi‖2π This defines a metric on [0, 2π]R given by d(ω, ω′) = ‖ω − ω′‖∞
for any two ω, ω′.

We shall denote by Z+ the set of non negative integers. For a general probability distribution
P on Z

R
+, and a function A : Z

R
+ → C, we define

(1) ÂP (ω) = E
x∈P

[A(x)e−iω·x]

The numbers ÂP (ω) can be thought of as the Fourier coefficients of A with respect to the
distribution P . Notice that, if A were a function on FR

p , and P was the uniform distribution

over F
R
p , AP (ω) would reduce to the traditional definition of Fourier coefficient of A.

4.2. (ε, δ)-concentrated distributions. Let 1̂ denote the constant function on Z
R
+ which is

always equal to 1. The notion of an (ε, δ)-concentrated distribution is defined as follows:

Definition 4.1. For ε, δ > 0, a probability distribution P on Z
R
+ is said to be (ε, δ)-concentrated

if |1̂P (ω)| 6 ε for all ‖ω‖∞ > 2πδ.

Intuitively a probability distribution is (ε, δ)-concentrated if its Fourier transform is con-
centrated around the origin. In what follows, we will derive some results on the distribu-
tion of large Fourier coefficients ÂP (ω) in [0, 2π]R if an arbitrary function A, and an (ε, δ)-
concentrated distributions P . Let `2(Z

R
+) denote the vector space of all functions from Z

R
+ to

C such that
∑

x∈ZR
+
|A(x)|2 < ∞ . Let v1 · v2 =

∑

x∈ZR
+

v1(x)v2(x) denote the natural inner

product for two functions v1, v2 in `2(Z
R
+).

Lemma 4.2. Let P be a (ε, δ)-concentrated probability distribution. For any ω1, ω2 ∈ [0, 2π]R

such that ‖ω1 − ω2‖∞ > 2πδ the functions v1(x) =
√

P (x)eiω1·x and v2(x) =
√

P (x)eiω2·x are
nearly orthogonal, i.e., v1 · v2 6 ε.
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Proof. We have

v1 · v2 =
∑

x∈Z
R
+

√

P (x)eiω1·x
√

P (x)eiω2·x

= 1̂P (ω2 − ω1) 6 ε

where the last inequality follows from ‖ω1 − ω2‖∞ > 2πδ and the fact that P is (ε, δ)-
concentrated. �

Let A : F
R
p → C be a function that is bounded, say |A(x)| = 1 for all x. By Parseval’s identity,

the sum of squares of Fourier coefficients Â(ω) is 1. In particular, this implies that not more
than 1

ε2 of the Fourier coefficients can be more than ε. Now, consider a function A : Z
R
+ → C

satisfying |A(x)| = 1 for all x. The Fourier coefficients ÂP (ω) do not satisfy the Parseval’s
identity. In fact, the sum of the squares of Fourier coefficients could be exponentially large in
R, thus giving us no bound on the number of large Fourier coefficients.

However, the following lemma asserts that there cannot be many large Fourier coefficients
that are all far from each other. Specifically, although there could be exponentially many ω
for which ÂP (ω) is large, they are all clustered together in to very few clusters.

Lemma 4.3 (Few far-off Fourier coefficients). For 0 6 ε < 1
9 , δ > 0, let P be a (ε5, δ)-

concentrated probability distribution. Let A : Z
R
+ → C be a function such that |A(x)| = 1 for

all x ∈ Z
R
+. Let Ω = {ω(1), ω(2), . . . , ω(k)} ⊂ [0, 2π]R be a set such that ‖ω(j) − ω(j′)‖∞ > 2πδ

and |ÂP (ω(j))| > ε for all j, j′. Then |Ω| < 3
ε2 .

Proof. On the contrary, let us say there exists a set Ω such that |Ω| > 3
ε2 . By deleting some

elements from the set, we can assume k = |Ω| = 3
ε2 . Consider functions v(x) =

√

P (x)A(x),

vj(x) =
√

P (x)eiω(j)·x for all 1 6 j 6 |Ω|. Observe that all of them are unit vectors in `2(Z
R
+).

Since v · vj = ÂP (ω(j)) we have |v · vj| > ε . Further using Lemma 4.2, we know |vj · vj′ | 6 ε5.
Now consider

|v −

k
∑

i=j

(v · vj)vj |
2 = |v|2 +

k
∑

j=1

(v · vj)
2|vj |

2 − 2

k
∑

j=1

(v · vj)
2

+2
∑

16j′<j6k

(v · vj′)(v · vj)(vj′ · vj)

6 1 − kε2 + 2

(

k

2

)

ε5

Substituting k = 3
ε2 , |v −

∑k
j=1(v · vj)vj |

2 < 1 − 3 + 18ε < 0, a contradiction. Hence we must

have |Ω| < 3
ε2 . �

4.3. An explicit (ε, δ)-concentrated distribution. It can be shown that the uniform dis-
tribution over the cube [M ]R is (ε, δ)-concentrated for a sufficiently large integer M . However
we will use the exponential probability distribution to simplify some of the calculations. For-
mally, define a probability distribution P on Z

R
+ as :

(2) P (x) = γe−c
PR

i=1 xi for some c > 0 and γ = (1 − e−c)R
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The constant γ in the above definition is the correct normalization constant to ensure that P
is a distribution. In showing that P has the desired properties, we will use the following fact:

Fact 4.4. For c > 0 and ω ∈ [0, 2π] the following inequality holds |1 − e−c−iω| > 2e−c

π ‖ω‖2π.

Proof. We have |1 − e−c−iω| > |e−c − e−c−iω| > e−c|1 − e−iω| > e−c|2 sin ω
2 |. Using the fact

that | sin θ| > 2θ
π for θ ∈ [0, π

2 ], we conclude

|1 − e−c−iω| >
2e−c

π
|min(ω, 2π − ω)| =

2e−c

π
‖ω‖2π

�

Lemma 4.5. For all constants ε, δ > 0 and 0 < c < ln (1 + 4δε), the distribution P defined
in Equation (2) is (ε, δ)-concentrated.

Proof. Let ω ∈ [0, 2π]R be such that ‖ω‖∞ > 2πδ. In particular, let j0 be an index such that
min(ωj0, 2π − ωj0) > 2πδ.

1̂P (ω) =
∑

x∈Z
R
+

P (x)e−iω·x

= (1 − e−c)R
R
∏

j=1

∞
∑

xj=0

e−cxje−iωjxj

=
R
∏

j=1

(1 − e−c)

(1 − e−c−iωj)

However from Fact 4.4 we know

|1 − e−c−iωj0 | >
2e−c

π
‖ωj0‖2π

> 4e−cδ

Substituting in the expression for 1̂P (ω) we get

|1̂P (ω)| =

(

R
∏

j=1,j 6=j0

|(1 − e−c)|

|(1 − e−c−iωj)|

)

|(1 − e−c)|

|(1 − e−c−iωj0 )|
6

|(1 − e−c)|

4e−cδ
=

ec − 1

4δ

which is less than ε for c < ln (1 + 4δε). �

5. Label Cover Test

The reduction from label cover proceeds along the lines of [11]. We will present the reduction
as a PCP system for label cover which makes linear tests on three proof locations. The
connection to MAX3LINZ will be immediate. Towards this, we define a long code over integers
as follows:

Definition 5.1. The long code for label i ∈ {1, . . . , R} consists of the function Fi : Z
R
+ → Z

defined by Fi(x) = xi for all x ∈ Z
R
+.
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5.1. Folding. Denote by Z
R
0 ⊂ Z

R
+ the set of all points in Z

R
+ with the one of its coordinates

equal to zero.

Definition 5.2. A ~1-folded long code is a function F′
i : Z

R
0 → Z defined by F′

i(x) = xi. More

generally, a function a : Z
R
+ → Z is a ~1-folded function if a(x +~1) = a(x) + 1.

Given a ~1-folded long code F′
i, it is possible to retrieve the value of the full long code at any

location x. This is achieved by expressing x ∈ Z
R
+ as x = x0 + t~1 where x0 ∈ Z

R
0 , and then

using F(x) = F′(x0)+ t. By using ~1-folded long codes, the reduction ensures that all functions

under consideration are ~1-folded functions.

If a ~1-folded function a is linear, then clearly it must be of the form a(x) =
∑R

i=1 aixi where
∑R

i=1 ai = 1. The following lemma asserts that the significant Fourier coefficients ω corre-

sponding to an arbitrary ~1-folded function a also approximately satisfy
∑R

i=1 ωi = 1.

Lemma 5.3 (Folding lemma). Let a : Z
R
+ → Z be a function such that a(x + ~1) = a(x) + 1

for all x ∈ Z
R
+. Let A(x) = ei

2πka(x)
p . For all δ > 0 and c < 1

R ln
(

1 + 4δ2
)

the following holds

: for all ω ∈ [0, 2π]R with ‖ω ·~1 − 2πk
p ‖2π > 2πδ :

|ÂP (ω)| 6 δ

Proof. Recall that Z
R
0 ⊂ Z

R
+ denotes the set of all points in Z

R
+ with the one of its coordinates

equal to zero. For every x ∈ Z
R
+, there exists unique x0 ∈ Z

R
0 , t ∈ Z such that x = x0 + t~1.

By definition of P we have P (x) = P (x0)e
−cRt. Hence picking x with probability P (x) is the

same as:

• Pick x0 ∈ Z
R
0 with probability P̃ (x0) =

∑∞
t=0 P (x0 + t~1)

• Pick t with probability p(t) = (1 − e−cR)e−cRt

Decompose the expression for ÂP (ω) as follows:

ÂP (ω) = E
x∈P

[A(x)e−iω·x]

= E
x0∈P̃

E
t∈p

[A(x0 + t~1)e−iω·(x0+t~1)]

However since a(x0 +~1) = a(x) + 1, we know A(x0 + t~1) = A(x0)e
2πkt

p . Substituting we get

ÂP (ω) = E
x0∈P̃

[A(x0)e
−iω·x0 ] E

t∈p
[e

2πkt
p e−iω·t~1]

Now to compute

∣

∣

∣ E
t∈p

[e
2πkt

p e−iω·t~1]
∣

∣

∣
=

∣

∣(1 − e−cR)

∞
∑

t=0

e−cRte
it( 2πk

p
−ω·~1)∣

∣

=
|(1 − e−cR)|

|1 − e−cR+i∆|



10 V. GURUSWAMI AND P. RAGHAVENDRA

where ∆ = 2πk
p − ω ·~1. By our assumption ‖∆‖2π > 2πδ, hence using fact 4.4, we get

| E
t∈p

[e
2πkt

p e−iω·t~1]| 6
|(1 − e−cR)|

4e−cR|δ|
6 δ

for all c < 1
R ln

(

1 + 4δ2
)

. Since |A(x)| = 1 for all x, we know |Ex0∈P̃ [A(x0)e
−iω·x0 ]| 6 1.

Together with the bound on |Et∈p[e
2πkt

p e−iω·t~1]|, this implies the required result. �

5.2. Verifier. As defined above, long codes are infinite objects that cannot be written down.
Throughout this article, we will be dealing with long codes that are truncated by restricting
the domain from Z

R
+ to [M ]R for some large M . However for the purposes of analysis, it is

convenient to ignore the truncation and assume that the entire long code is available. As we
shall see later, this truncation can be carried out since the verifier queries the values outside
a sufficiently large box [M ]R with very low probability.

Let Γ = (U, V,E,Σ,Π) be an instance of Label Cover with |Σ| = R. Let us assume that labels
are indexed by {1, . . . , R}. Given an assignment A to the instance Γ, the corresponding PCP

proof consists of the ~1-folded long codes of the labels assigned to each of the vertices in U ∪V .
For instance if A is an assignment then for every vertex u ∈ U ∪ V the proof contains the
~1-folded long code F′

A(u).

Recall that given a ~1-folded long code F′
i, it is possible to retrieve the value of the full long

code at any location x. Henceforth, we shall describe the verifier as having access to the full
long code of the labels. Clearly the linear tests of the verifier on the full long code can be
converted to linear tests on the ~1-folded long code.

Given a function π : [R] → [R] and a vector x ∈ Z
R
+ define x ◦ π ∈ Z

R
+ as (x ◦ π)i = xπ(i). Let

P and P ′ be exponential decay probability distributions over Z
R
+ whose parameters will be

chosen later. Intuitively, the distribution P will be chosen to be a sufficiently slowly decaying
exponential distribution, while the distribution P ′ decays at a much slower rate than P . The
verifier is described below:

3-Query PCP Verifier

(1) Pick a random edge e = (u, v) ∈ E. Let a : Z
R
+ → Z,b : Z

R
+ → Z be the long codes

corresponding to vertices u, v respectively.
(2) Pick a random x ∈ Z

R
+ with the distribution P , a random y ∈ Z

R
+ with the distri-

bution P ′

(3) Generate a noise vector µ ∈ Z
R
+ from the following distribution : Each coordinate

µi is chosen
• 0 with probability (1 − ε).
• Chosen uniformly at random from {1, . . . ,m} with probability ε.

(4) Accept if the following equation holds

a(x) = b(x ◦ π + y + µ) − b(y)

For technical reasons, we will need the following simple lemmas in the soundness analysis.
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Lemma 5.4. The total weight of the distribution P outside the set [N ]R (on the set Z
R
+−[N ]R)

is less than δ for N > 1
c ln R

δ(1−e−c)R

Proof. We have

∑

x∈Z
R
+−[N ]R

P (x) 6

R
∑

i=1

∑

xi>N

P (x)

6
Re−cN

(1 − e−c)R

which is less than δ for N > 1
c ln R

δ(1−e−c)R . �

Lemma 5.5. For all M > 0, c 6 ln 4
RM , for all x ∈ [M ]R, y ∈ Z

R
+ the following is true :

P (x + y) > P (y)/4

Proof. Clearly we have

P (x + y)

P (y)
= e−c

P

i xi > e−cRM >
1

4

�

5.3. Noise Stability. Notice that in Step (3), the 3-query PCP verifier generates a noise
vector µ. Finally, instead of querying the location b(x ◦ π + y), the verifier queries the value
of a nearby location b(x ◦ π + y + µ).

Introducing noise into the locations queried by the verifier is a powerful recurring theme in
dictatorship (long code) tests and PCP constructions ever since its use in H̊astad [11]. Roughly
speaking, using this technique, the verifier can ensure that the function being queried does
not depend on too many coordinates. Specifically, if the function b was a long code then
b(x ◦ π + y + µ) = b(x ◦ π + y) with high probability over the choice of the noise vector µ. On
the other hand, if b is a linear function depending on too many coordinates, then the noise µ
would affect the value, thus reducing the probability of success.

Denote by Q the distribution on Z
R
+ of the noise vector µ. That is each coordinate of µ

is chosen independently to be 0 with probability (1 − ε) and a uniformly random element
in {1, . . . ,m} with probability ε. Along the lines of H̊astad [11], we need to bound the
contribution of the Fourier coefficients of b corresponding to linear forms depending on many
coordinates. However, in our setting, the coefficients of the linear forms are not discrete. Thus,
we say a linear function depends on many coordinates if it has more than C (defined below
in Lemma 5.6) large enough coefficients. The following lemma will be used in the soundness
analysis to bound the contribution of the Fourier coefficients corresponding to these linear
functions:

Lemma 5.6. For all ε1 > 0, 0 < δ1 6 1
4 and constants m = d 1

δ1
e, C = dlog1− ε

2
ε1e the

following is true: For all ω ∈ [0, 2π]R with more than C coordinates ωi satisfying ‖ωi‖2π >

2πδ1,

|1̂Q(ω)| 6 ε1
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Proof. Let S denote the set of indices j ∈ {1, . . . , R} such that ‖ωj‖2π > 2πδ1. Then by
definition |S| > C

|1̂Q(ω)| =

∣

∣

∣

∣

∑

x∈Z
R
+

Q(x)e−iω·x

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

R
∏

j=1

[

(1 − ε)eiωj ·0 +
ε

m

m
∑

t=1

eiωjt

]

∣

∣

∣

∣

∣

∣

6

R
∏

j=1

[

1 − ε +
ε

m

∣

∣

∣

∣

∣

eiωj(m+1) − eiωj

eiωj − 1

∣

∣

∣

∣

∣

]

6
∏

j∈S

[

1 − ε +
ε

m

2

|eiωj − 1|

]

By definition of S, ‖ωj‖2π > 2πδ1 for j ∈ S. Hence using Fact 4.4 with c = 0 we get

|1̂Q(ω)| 6
∏

j∈S

(

1 − ε +
ε

2mδ1

)

which for m > 1/δ1 and C > log1−ε/2 ε1 is at most
∏

j∈S

(

1 − ε + ε
2

)

=
(

1 − ε
2

)C
6 ε1. �

6. Proof of main Theorem 3.4

In this section, we will present the proof of Theorem 3.4. Towards this, we first describe the
parameters for the verifier in section 5.

Choose an integer m > R2

δ . Choose a c less than both 1
R ln(1 + 4δ2) and ln(1 + 4( δ

4 )5 δ
2R).

Denote by P the exponential decay probability distribution with parameter c. In particular,
P is (( δ

4 )5, δ
2R )-concentrated. Let N be the integer obtained from Lemma 5.4, such that weight

of P outside [N ]R is less than δ. Let c′ be a real number less than ln 4
R(N+m) . Let P ′ denote the

exponential probability distribution with parameter c′.

Completeness : Suppose A is an assignment that satisfies all the edge constraints Π. The
corresponding long code assignment is accepted by the verifier with probability at least 1− ε.
For an edge e = (u, v) ∈ E, the verifier rejects the long code assignment only if µA(v) 6= 0. It
is clear from the choice of µ that this happens with probability exactly 1 − ε.

Soundness : Suppose the verifier accepts with probability greater than 19δ. Let χuv(x, y, µ)
be the indicator variable that is 1 if the test on edge e = (u, v) succeeds with random choices
x, y, µ. Then we can write the probability of acceptance of the test as follows:

Pr[test accepts] = E
u,v

[

∑

x,y,
µ∈Z

R
+

P (x)P ′(y)Q(µ)χuv(x, y, µ)

]

> 19δ

Notice that the support of the distribution µ is {0, 1, . . . m}R. Further from Lemma 5.4 the
total weight of the distribution P outside [N ]R is less than δ. Hence we can truncate the
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summation over x and conclude

E
u,v

[

∑

x∈[N ]R, µ∈[m]R

y∈Z
R
+

P (x)P ′(y)Q(µ)χuv(x, y, µ)

]

> 18δ

where [N ]R ⊂ Z
R
+ defined as [N ]R = {0, 1, . . . , N}R. Clearly for x ∈ [N ]R, µ ∈ [m]R the

vector x ◦ π + µ ∈ [N + m]R. Recall that the distribution P ′ is chosen to be sufficiently
slowly decaying in comparison to P (x) and Q(µ). That is by Lemma 5.5 for all y ∈ Z

R
+, z ∈

[N + m]R we have P ′(y + z) >
P ′(y)

4 . In particular, P ′(y + x ◦πuv + µ) >
P ′(y)

4 , or equivalently

2
√

P ′(y + x ◦ πuv + µ)P ′(y) > P ′(y). Henceforth we will use y′ to denote y + x ◦ πuv + µ.

Using this inequality in the expression for probability of acceptance we get:

E
u,v

[

∑

x∈[N ]R,µ∈[m]R

y∈Z
R
+

P (x)
√

P ′(y)P ′(y′)Q(µ)χuv(x, y, µ)

]

> 9δ

For a prime p define χuv
p (x, y, µ) to be 1 if a(x) + b(y)− b(x ◦ π + y + µ) = 0 mod p and zero

otherwise. Clearly χuv
p (x, y, µ) > χuv(x, y, µ) for all integers x, y, µ. Replacing χuv by χuv

p we
get:

E
u,v

[

∑

x∈[N ]R,µ∈[m]R

y∈Z
R
+

P (x)
√

P ′(y)P ′(y′)Q(µ)χuv
p (x, y, µ)

]

> 9δ

The prime p can be chosen to be sufficiently large so that truncating the summation over y to
[p]R does not alter the probability value significantly. Further, by picking p sufficiently large,
it is possible to ensure that the total weight of the distributions P,P ′, Q outside [p3 ]R is less
than δ. Hence computing y′ = y + x ◦ πuv + µ modulo p is same as computing y′ over integers
for all but a δ fraction of (x, y, µ). In particular, we can conclude

(3) E
u,v

[

∑

x,µ,
y∈[p]R

P (x)
√

P ′(y)P ′(y′)Q(µ)χuv
p (x, y, µ)

]

> 8δ

where y′ = y + x ◦ πuv + µ is computed modulo p. Notice that the parameter p is an artifact
in the analysis, and is chosen to be sufficiently large compared to all other parameters. It is
instructive to think of p as tending to infinity while all other parameters are fixed.

Now we fix an edge e = (u, v) and analyze the probability that the test succeeds. Let π denote
the projection constraint on the edge e. The following is an arithmetization for χuv

p :

χuv
p (x, y, µ) =

1

p

p−1
∑

k=0

βk[a(x)+b(y)−b(x◦π+y+µ)]

where β = e
2πi
p . Now we define the following notation:

A(x) = βa(x) B(x) = βb(x)

Ak(x) = P (x)βka(x) B(x) =
√

P ′(x)βkb(x)
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Substituting the above expressions in (3) we get:

(4) E
u,v

[

1

p

p−1
∑

k=0

∑

x,µ,
y∈[p]R

Q(µ)Ak(x)Bk(y)Bk(y′)

]

> 8δ .

Given an ω ∈ [0, 2π]R and a function π : [R] → [R], the vector π(ω) ∈ [0, 2π]R is defined
by (π(ω))i =

∑

j∈π−1(i) ωj. The expression inside the expectation in (4) is similar to the one

obtained in [11], and using a standard computation over Fp it can be written in terms of the
Fourier coefficients. For the sake of completeness, we include the details below. The expression
within the expectation in (4) is equal to

1

p

p−1
∑

k=0

∑

x,µ,
y∈[p]R

Q(µ)
∑

ω1∈SR
p

Âk(ω1)e
iω1·x

∑

ω2∈SR
p

B̂k(ω2)e
iω2·y

∑

ω3∈SR
p

B̂k(ω3)eiω3·(x◦π+y+µ)

=
1

p

p−1
∑

k=0

∑

ω1,ω2,ω3∈SR
p

Âk(ω1)B̂k(ω2)B̂k(ω3)
∑

µ∈[p]R

Q(µ)e−iω3·µ
∑

x∈[p]R

ei(ω1−π(ω3))·x
∑

y∈[p]R

ei(ω2−ω3)·y

Since ω1, ω2, ω3 ∈ SR
p , we have

∑

x∈[p]R

ei(ω1−π(ω3))·x = 0 unless ω1 = π(ω3)

∑

y∈[p]R

ei(ω2−ω3)·y = 0 unless ω2 = ω3

Using these relations in the expression, and renaming ω3 to be ω we get

1

p

p−1
∑

k=0

∑

ω∈SR
p

(

pRÂk(π(ω))
)

(

pR
∣

∣

∣
B̂k(ω)

∣

∣

∣

2
)





∑

µ∈[p]R

Q(µ)e−iω·µ





Recall that for Q(µ) = 0 for all µ /∈ [m]R, hence for p > m we have
∑

µ∈[p]R Q(µ)e−iω·µ =

1̂Q(ω). Therefore we have

1

p

p−1
∑

k=0

E
u,v





∑

ω∈SR
p

(

pR|B̂k(ω)|2
) ∣

∣

∣
pRÂk(π(ω))1̂Q(ω)

∣

∣

∣



 > 8δ(5)

From Parseval’s identity we have,

(6) pR
∑

ω∈SR
p

|B̂k(ω)|2 =
∑

x∈[p]R

|
√

P ′(x)βkb(y)|2 6 1
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Further we have |pRÂk(ω)|, |1̂Q(ω)| 6 1 for all ω. Hence for all k
∑

ω∈SR
p

(

pR|B̂k(ω)|2
) ∣

∣

∣pRÂk(π(ω))1̂Q(ω)
∣

∣

∣ 6 1

The inequality (5) asserts that the average of p such terms is larger than 8δ. By an averaging
argument, there exists 2δp 6 k 6 p(1 − 2δ) such that

E
u,v





∑

ω∈SR
p

(

pR|B̂k(ω)|2
) ∣

∣

∣pRÂk(π(ω))1̂Q(ω)
∣

∣

∣



 > 4δ

Fix some such k for the rest of the argument. Observe that

pRÂk(π(ω)) =
∑

x∈[p]R

P (x)Ak(x)e−iπ(ω)·x

By Definition 1, the Fourier coefficient Âk
P (π(ω)) with respect to distribution P is given by

Âk
P (π(ω)) =

∑

x∈Z
R
+

P (x)Ak(x)e−iπ(ω)·x .

For sufficiently large choice of the prime p, we have

|pRÂk(π(ω)) − Âk
P (π(ω))| 6 δ .

Substituting pRÂk(π(ω)) by Âk
P (π(ω)) and using equation 6 we get

(7) E
u,v





∑

ω∈SR
p

(

pR|B̂k(ω)|2
) ∣

∣

∣Âk
P (π(ω))1̂Q(ω)

∣

∣

∣



 > 3δ

6.1. Restricting to “sparse” Fourier coefficients. The expectation (7) above looks simi-
lar to the expression that is used to derive labels in H̊astad’s work on 3-variable linear equations
modulo 2. This latter expression is of the form

∑

β |B̂(β)|2|Âπ2(β)| summed over all β of small

size — see [11] for details. Along the lines of [11], we will use the Fourier coefficients in
the above expression to obtain a decoding of labels to the vertices u, v. Roughly speaking,
H̊astad’s decoding proceeds as follows:

For each vertex v ∈ U ∪ V , sample a sparse Fourier coefficient ω from an
appropriate distribution, and sample uniformly random non-zero coordinate of
ω. Assign to vertex v the label corresponding to the coordinate.

The Fourier coefficients ω in our case do not take discrete values. Although for the purposes
of analysis we have used ω in a discrete set SR

p , recall that p is chosen to be sufficiently large
compared to every other parameter including R. In fact, it is instructive to think of p → ∞
while all other parameters stay fixed.

In the continous setting, the notion of a sparse Fourier coefficient ω needs to be redefined.
Specifically, a sparse Fourier coefficient ω would have a few large coordinates ωi, while the
remaining coordinates are small in absolute value. To this end, we define two subsets Ω1,Ω2 ⊂
SR

p as follows:
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• Ω1 : set of ω such that ‖ω · ~1‖2π > 2πδ. In other words, for every ω ∈ Ω1 there is at
least one large coordinate, i.e, a coordinate ωi with ‖ωi‖2π > 2πδ

R .
• Ω2 : subset of ω which have very few large coordinates. In particular, for all ω ∈ Ω2

at most C of its coordinates satisfy ‖ωi‖2π > 2πδ
R2 . (Here C is the constant from

Lemma 5.6.)

Here Ω1 ∩ Ω2 would be the set of sparse Fourier coefficients for our purpose.

Firstly, we will bound the contribution of Fourier coefficients with no large coordinate using
Lemma 5.3. This corresponds to bounding the contribution of trivial Fourier coefficient in [11].

Notice that ω ·~1 = π(ω) ·~1. Hence for ω /∈ Ω1, ‖π(ω) ·~1 − 2πk
p ‖2π > ‖2πδ − 2π(2δp)

p ‖2π > 2πδ.

From Lemma 5.3 and choice of distribution P , |Âk
P (π(ω))| < δ when ‖π(ω) ·~1− 2πk

p ‖2π > 2πδ.

This implies that |Âk
P (π(ω))| < δ for all ω /∈ Ω1.

E
u,v





∑

ω∈Ω1

(

pR|B̂k(ω)|2
) ∣

∣

∣Âk
P (π(ω))1̂Q(ω)

∣

∣

∣



 > 2δ

To bound the contribution of Fourier coefficients with too many large coordinates, we will use
the noise µ introduced by the verifier. More precisely, we have |1̂Q(ω)| 6 δ for all ω /∈ Ω2 from
Lemma 5.6. Therefore,

(8) E
u,v





∑

ω∈Ω1∩Ω2

(

pR|B̂k(ω)|2
) ∣

∣

∣Âk
P (π(ω))

∣

∣

∣



 > δ

We will next see how one can decode labels satisfying many Label Cover constraints based on
(8).

6.2. Decoding Label Sets. For ω ∈ [0, 2π]R and δ > 0, let Lδ(ω) ⊆ [R] denote the subset
of indices ωi such that ‖ωi‖2π > 2πδ.

For every vertex v ∈ V with the corresponding Fourier transform B̂k, define Pv to be the distri-

bution obtained by normalizing pR|B̂k(ω)|2. Since
∑

ω∈SR
p

pR|B̂k(ω)|2 6 1, Pv = γpR|B̂k(ω)|2

for some γ > 1. For a vertex u ∈ U with the corresponding Fourier transform Âk
P , define the

set ΩA of significant frequencies as follows:

(9) ΩA =
{

ω ∈ Ω1 ∩ Ω2 : |Âk
P (ω)| >

δ

4

}

.

Define the set L(u) as follows:

(10) L(u) =
⋃

ω∈ΩA

L δ
R
(ω) .

Intuitively L(u) is the set of all large coordinates of those ω for which the Fourier coefficient

|Âk
P (ω)| is large. The decoding algorithm proceeds as follows:

• For v ∈ V , pick a ω ∈ SR
p with probability Pv . Assign a label uniformly at random

from L δ

R2
(ω) if it is nonempty, else assign a random label.
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• For every vertex u ∈ U , assign a label uniformly at random from L(u) if it is nonempty,
else assign a random label.

Every Fourier coefficient ω ∈ ΩA is sparse in that it at most C large coordinates. A trivial
bound on the size of L(u) is given by C · |ΩA|. In H̊astad’s work [11], this bound suffices since
the size of ΩA is bounded using Parseval’s identity. The main technical challenge in our setting

is that
∑

α |Âk
P (α)|2, the sum of squared Fourier coefficients with respect to the distribution

P , could be very large. In particular, bounding this sum by Parseval’s we get

∑

α

(

pR|Âk(α))|
)2

6 pR
∑

x

P (x)2 .

When P (x) is uniform, i.e., P (x) = 1/pR for every x, this bound equals 1, but the bound
could be exponentially larger in R for distributions P that are very non-uniform (as in our
case). Thus the obvious extension of H̊astad’s argument will lead to a list size bound that is
too large to be useful as a decoding strategy.

Although the size of ΩA could be exponentially large, Lemma 4.3 shows that the large Fourier
coefficients are all clustered in to a few clusters. Using this property, we obtain the following
bound on the size of L(u).

Claim 6.1. For every vertex u ∈ U , the cardinality of the set L(u) is at most 48C
δ2 .

Proof. Recall that by definition, every ω ∈ Ω2 has at most C coordinates ωi satisfying ‖ωi‖2π >
2πδ
R2 . Hence for all ω ∈ Ω1 ∩ Ω2 each of the sets L δ

R
(ω) and L δ

2R
(ω) have a cardinality of at

most C.

Suppose the assertion of the claim is false. We will inductively produce a large set of distant
ω, for all of which Âk

P (ω) is large. This will contradict the Lemma 4.3 since the distribution
P is concentrated.

Construct the set Ω′ ⊂ ΩA iteratively as follows: To start with pick an ω(1) ∈ ΩA. After
t > 1 steps, let Lt = ∪t

i=1L δ
2R

(ω(i)). Since each L δ
2R

has at most C elements, the cardinality

of Lt is at most C · t. Since L(u) > 48C
δ2 , when t 6 48

δ2 we have |L(u)| > |Lt|. In particular,

there exists some ω(t+1) ∈ ΩA such that the set L δ
R
(ω(t+1)) − Lt is nonempty. Let us assume

j ∈ L δ
R
(ω(t+1)) − Lt. For any 1 6 i 6 t, the distance ‖ω(i) − ω(t+1)‖∞ > ‖ω

(t+1)
j − ω

(i)
j ‖2π.

Since j ∈ L δ
R
(ω(t+1)) − Lt, we have ‖ω

(t+1)
j ‖2π > 2πδ

R and ‖ω
(i)
j ‖2π 6 2πδ

2R . Hence the distance

‖ω(i) − ω(t+1)‖∞ is at least 2πδ
2R .

By iterating the above process, it is possible to construct a set Ω′ ⊆ ΩA with cardinality at
least 48

δ2 such that for all ω(i), ω(j) ∈ Ω′, ‖ω(i) −ω(j)‖∞ > 2πδ
2R . This will contradict Lemma 4.3,

since P is a (
(

δ
4

)5
, δ

2R)-concentrated. �
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6.3. Soundness analysis wrap-up using the label sets. By an averaging argument ap-
plied to (8), at least for a fraction δ

2 of the edges the following inequality holds:

∑

ω∈Ω1∩Ω2

(

pR|B̂k(ω)|2
) ∣

∣

∣
Âk

P (π(ω))
∣

∣

∣
>

δ

2

We refer to these edges (u, v) as good edges. Consider a good edge e = (u, v). On choosing ω

over the probability distribution Pv(ω) with probability at least δ
4 we have |Âk

P (πuv(ω))| > δ
4

and ω ∈ Ω1 ∩ Ω2. Since ω ∈ Ω1 we have ‖π(ω) · 1‖2π > 2πδ. Consequently, there have to be
large coordinates of π(ω), i.e., there must exist i ∈ [R] such that ‖[π(ω)]i‖2π > 2πδ

R . Suppose
i ∈ L δ

R
(π(ω)) is a large coordinate of π(ω) then there must be a large coordinate of ω in

π−1(i), i.e., a j ∈ π−1(i) such that ‖ωj‖2π > 2πδ
R2 . Recall that ω ∈ Ω2 has at most C large

coordinates. Therefore with probability at least 1
C , the vertex v is assigned label j. Further

using Claim 6.1, we conclude that vertex u is assigned label i with probability at least δ2

48C .
The edge (u, v) is satisfied when u is assigned i and v is assigned j. Hence the edge e is

satisfied with probability at least δ
4 ·

1
C · δ2

48C = δ3

192C2 . As there are at least a fraction δ
2 of good

edges, the expected fraction of edges satisfied is at least δ4

384C2 which is greater than 1
Rγ for

large enough R.

We have thus shown that the 3-query PCP has completeness (1 − ε) and soundness at most
19δ. The tests it makes are linear equations. Therefore, we immediately get that the promise
problem MAX3LIN1−ε,19δ is NP-hard. Since ε, δ > 0 are arbitrary, the proof of Theorem 3.4 is
complete.
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