
A New Look at Some Classical Results in

Computational Complexity

Igor Carboni Oliveira∗ Arnaldo Vieira Moura†

Abstract

We propose a generalization of the traditional algorithmic space
and time complexities. Using the concept introduced, we derive an
unified proof for the deterministic time and space hierarchy theorems,
now stated in a much more general setting. This opens the possibility
for the unification and generalization of other results that apply to
both the time and space complexities. As an example, we present a
similar approach for the gap theorems.

1 Introduction

Many results in computational complexity theory are based on consid-
erations about the minimum amount of time and space required to solve
certain computational problems. This is expected since these two natural
complexity measures are intrinsic to the underlying computational model,
the Turing machine.

Other abstract theories that have been proposed define the notion of
complexity measure in a broader way. One of the most celebrated of these
theories was put forward by Manuel Blum in the sixties [1], but the truly
most interesting measures are still time and space.

In this paper we present the notion of f -complexity, a simple and nat-
ural generalization of the space and time complexity measures. The use of
f -complexity allows for the unification of results that have similar proofs
for both the time and space complexity measures.

∗Institute of Computing - University of Campinas, 13084-971, Campinas, Brazil —
igorcarb@gmail.com. Research supported by FAPESP grant 08/07040-0.

†Institute of Computing - University of Campinas, 13084-971 - Campinas, Brazil —
arnaldo@ic.unicamp.br. Research supported by CNPq, grant 304363/2008-1, and by
FAPESP grant 07/56052-8.

1

Electronic Colloquium on Computational Complexity, Report No. 25 (2009)

ISSN 1433-8092

We illustrate by proving a generalized and unified version of the time
and space hierarchy theorems, two remarkable results originally proved
by Hartmanis et al [4, 5]. We show that these hierarchy theorems are in
fact inserted in a much wider context, being direct consequences of the
generalized version of the hierarchy theorems. As far as we know, this is
the first unified proof of the time and space hierarchy theorems.

Finally, applying the same ideas, we present an unified proof for the
space and time gap theorems, classical results independently discovered
by Trakhtenbrot and Borodin [8, 2].

2 The Space-Time Complexity

To avoid technical details, the Turing machines discussed here are one-
tape deterministic machines that halt on all inputs and with a {0, 1} binary
tape alphabet. The only exception occurs when a machine is presented as
input, since it is impossible to guarantee that it will always halt. We will
not consider sublinear space, therefore it will not be necessary to consider
separated input, output and work tapes [7]. We will use the standard big-O
and small-o notation, as in [3, 7].

We start with the usual definitions of time and space complexities.

Definition 1. Let A be a Turing machine. The exact time complexity of A is the
function tA : {0, 1}? → N such that when started with x on its input tape A halts
after exactly tA(x) steps. The time complexity of A is the function TA : N → N
such that TA(n) = maxx∈{0,1}n{tA(x)}.

Definition 2. Let A be a Turing machine. The exact space complexity of A

is the function sA : {0, 1}? → N such that started with x on its input tape A

scans exactly sA(x) distinct tape cells. The space complexity of A is the function
SA : N → N such that SA(n) = maxx∈{0,1}n{sA(x)}.

Next, we define a general complexity measure based on the usual time
and space complexities, which we call f -complexity.

Definition 3. Let A be a Turing machine and let f : N ×N → N be an arbitrary
function. Now, consider the associated function f-tsA : {0, 1}? → N given by
letting f-tsA(x) = f(tA(x), sA(x)). Then the f -complexity of A is the function
f-TSA : N → N where f-TSA(n) = maxx∈{0,1}n{f-tsA(x)}.

Function f should be interpreted as a new complexity measure, the f -
complexity, which is based on the time and space complexities of the Turing

2

machine. Obviously, if f is one of the binary projection functions, f corre-
sponds to the usual time and space complexity measures.

Definition 4. A language L is decidable with f -complexity O(g(n)) if there exists
a Turing machine A such that f-TSA is O(g(n)).

The next result shows that, for any f -complexity measure, there are ar-
bitrarily difficult problems. The notation 〈M〉 represents a binary string
that codifies Turing machine M , as suggested by [7].

Definition 5. Let f : N × N → N and g : N → N be arbitrary functions.
Define the language:

Lf,g = { 〈M〉 | Machine M accepts 〈M〉 and f-tsM (〈M〉) ≤ g(|〈M〉|)}. (1)

Theorem 1. Lf,g is not decidable within f -complexity less than g(n), i.e., there
is no Turing machine A with f -complexity o(g(n)) that decides Lf,g.

Proof. For the sake of contradiction, suppose that Turing machine A de-
cides Lf,g and f-TSA(n) is o(g(n)). Consider the Turing machine B build
from A by swapping accepting and rejecting states of A. Then B accepts w

if and only if A rejects w, for all w ∈ {0, 1}?.
Now add irrelevant tuples to B, obtaining a new Turing machine B′.

Clearly,

L(B′) = L(B) = {0, 1}? \ L(A). (2)

Also, there is some n0 ∈ N such that f-TSA(n) ≤ g(n), for all n ≥ n0,
since f-TSA(n) is o(g(n)). Thus, f-tsA(x) ≤ g(n), for all x ∈ {0, 1}? with
n = |x| ≥ n0. But, clearly, f-tsA = f-tsB′ , and so

f-tsB′(〈B′〉) ≤ g(|〈B′〉|), (3)

if we add enough tuples to B in order to make |〈B′〉| ≥ n0.
Now consider the computation of machine A on input 〈B′〉:

— A accetps 〈B′〉 iff (using 1)

— B′ accepts 〈B′〉 and f-tsB′(〈B′〉) ≤ g(|〈B′〉|) iff (using 3)

— B′ accepts 〈B′〉 iff (using 2)

— A rejects 〈B′〉.

3

We reached a contradiction. It follows that there is no Turing machine that
decides Lf,g with f -complexity o(g(n)).

As an example, consider the projection f(x, y) = y. In this case, the
f -complexity measure is just the usual space complexity, and the language
Lf,g can be described as the language of all codes 〈M〉 such that M accepts
the word 〈M〉 given as its input, while scanning at most g(|〈M〉|) distinct
tape cells. Theorem 1 guarantees that there is no Turing machine that de-
cides Lf,g within space o(g(n)).

3 The Space-Time Hierarchy

If f is in some sense a natural complexity measure, it is possible to prove
the existence of f -complexity hierarchies. We exhibit these hierarchies by
obtainig the f -complexity of a specific Turing machine that decides Lf,g.
This can be done by simulating machine M on input 〈M〉.

Informally, for Lf,g to be decidable, the following conditions are suffi-
cient:

1. f and g are computable functions. For a definition of computable
functions, see [7];

2. f is increasing function, otherwise M could have very long computa-
tions without violating the g(|〈M〉|) bound.

The last item is captured by the following definition.

Definition 6. Let f : N × N → N be a function. We say that f is a natu-
ral complexity measure if f is a non-decreasing function and, for every pair of
integers t and s, we have f(t + 1, s) > f(t, s) or f(t, s + 1) > f(t, s).

Now we can state the hierarchy result. Recall that TM and SM are the
time and space complexities of a machine M .

Theorem 2 (Space-Time Hierarchy). Let f be a computable natural complexity
measure and let g : N → N be a computable function with g(n) ≥ n. Assume
that machines Mf and Mg compute f and g, respectively. Consider the language
Lf,g as in Definition 5. Then Lf,g is decided by a Turing machine A whose f -
complexity is O(f(TA(n), SA(n))), where

TA(n) ≤ c4

[

TMg(n)+g(n)
[

TMf
(c3g(n)) + SMg(n) + g(n) + SMf

(c2g(n))
]]

4

SA(n) ≤ c1

[

SMg(n) + g(n) + SMf
(c2g(n))

]

and ci ∈ N is a constant, 1 ≤ i ≤ 4. Moreover, Lf,g cannot be decided by any
Turing machine with f -complexity o(g(n)).

Proof. Theorem 1 implies that Lf,g is not decidable by any Turing machine
with f -complexity o(g(n)).

The following Turing machine A decides Lf,g. On input 〈M〉, A com-
putes as follows, where we let n = |〈M〉|:

1. Compute g(n).

2. Simulate another step of M on input 〈M〉, while saving the number
of steps t and the amount of space s reached so far.

3. Compute f(t, s). If f(t, s) > g(n), reject and halt.

4. Verify whether t > g(n) 2g(n). Reject and halt if this is the case.

5. If this is the last step of M , then A accepts and halts if M accepts,
otherwise A rejects and halts.

6. Return to step 3.

Step 4 is necessary because for some functions f , machine M may get
into an infinite loop while using only a finite amount of space, keeping the
value f(t, s) constant. First we prove that L(A) = Lf,g and then we limit
the f -complexity of A.

Lemma 1. If Turing machine M halts on input 〈M〉, then 〈M〉 is not rejected by
A at step 4.

Proof. Suppose that 〈M〉 is rejected by A at step 4. Since 〈M〉 was not just
rejected at step 3, we know that f(t, s) ≤ g(n).

If s > g(n), then clearly t > g(n). and so f(t, s) > g(n), because f is a
natural complexity measure. Hence, s ≤ g(n).

Therefore there exist no more than g(n)2g(n) possible configurations for
machine M on input 〈M〉. But rejection at step 4 requires t > g(n) 2g(n).
This establishes that if A rejects M at step 4 then M never finishes its
computation on input 〈M〉, contradicting the fact that M halts on input
〈M〉.

5

Continuing with the theorem, suppose that 〈M〉 ∈ Lf,g. The previous
lemma says that 〈M〉 is not rejected by A at step 4. Since f-tsM (〈M〉) ≤
g(n) and f is non-decreasing, then 〈M〉 will not be rejected by A at step 3.
Therefore, the simulation will halt at step 5 and, since M accepts 〈M〉, so
must A. This shows that 〈M〉 ∈ L(A).

Now let 〈M〉 ∈ L(A). Then 〈M〉 is accepted at step 5, and so machine
also M accepts 〈M〉. Because 〈M〉 is not rejected by A at step 3, we conclude
that f-tsM (〈M〉) ≤ g(|〈M〉|). Therefore 〈M〉 ∈ Lf,g. Thus, L(A) = Lf,g.

We now turn to the simulation done in step 2. Machine A divides mod-
ulo 7 its tape cells, organizing the resulting tracks as follows:

Track 1 will hold g(n).

Track 2 will hold g(n)2g(n).

Track 3 will save the t counter.

Track 4 will store the s counter.

Track 5 will be used to compute f(t, s).

Track 6 will hold the code for M and its current state.

Track 7 will be the same as the tape of M .

Machine A simulates machine M and always keeps the information on
the tracks close together.

First, let us determine the space complexity SA(n) of A. The value g(n)
is computed in space SMg(n), since Mg computes g. The value g(n)2g(n) can
easily be computed and stored in space O(g(n)). The counter s is limited
by counter t which, in turn, is bounded by the value in track 2. There-
fore tracks 3 and 4 are asymptotically irrelevant. The value f(t, s) can be
computed in space SMf

(c2g(n)) because the sizes of t and s are asymptot-
ically bounded by g(n). The description of M in track 6 has size n, and
because g(n) ≥ n this space is also asymptotically irrelevant. Track 7 is also
bounded by g(n) (as in the proof of the lemma). Therefore SA(n) satisfies

SA(n) ≤ c1

[

SMg(n) + g(n) + SMf
(c2g(n))

]

. (4)

It remains to find an upper bound on TA(n). We know that A computes
g(n) in time TMg (n). The multiplication at step 1 can be easily carried out
in time O(g(n)2). During the simulation, A needs to compute f(t, s). We
always have s ≤ t ≤ g(n)2g(n) + 1 which in binary has length O(g(n)).

6

Hence f(t, s) is computed in time TMf
(c3g(n)), for some integer constant

c3. In each step of the simulation, the tracks need to be shifted and some
values must be compared. This can be done in time proportional to the size
of the tapes, i.e., c1[SMg(n) + g(n) + SMf

(c2g(n))]. Finally, no more than
O(g(n)) steps are simulated. Therefore, TA(n) satisfies

TA(n) ≤ c4

[

TMg(n)

+ g(n)
[

TMf
(c3g(n)) + SMg(n) + g(n) + SMf

(c2g(n))
]]

.
(5)

The question about the existence of a more efficient simulation is inessen-
tial to our purposes. The previous theorem readily implies versions of the
time and space hierarchy theorems. Different formulations and proofs of
these theorems can be found in [6, 7].

Definition 7. A function g : N → N is called space constructible if the function
that maps 1n to the binary representation of g(n) is computable in space O(g(n)).

Corollary 1 (Space Hierarchy). Let g : N → N , with g(n) ≥ n, be a space
constructible function. Then there exists a language A that is decidable in space
O(g(n)) but not in space o(g(n)).

Proof. Let f(x, y) = y. Then Theorem 2 can be applied and we have that
Lf,g is decidable within f -complexity O(SA(n)). But, again by Theorem 2,
SA(n) ≤ c1[SMg(n)+ g(n)+SMf

(c2g(n))]. Because g is space constructible,
we have that SMg(n) is O(g(n)), since g(n) ≥ n. By the definition of f , we
can assume that SMf

(n) is O(n). Hence, Lf,g is decidable in space O(g(n)).
By Theorem 1, Lf,g cannot be decided in space o(g(n)).

Definition 8. A function g : N → N is called time constructible if the function
that maps 1n to the binary representation of g(n) is computable in time O(g(n)).

Corollary 2 (Time Hierarchy). For any time constructible function g : N → N ,
with g(n) ≥ n, there exists a language A that is decidable in time O(g(n)2) but
not in time o(g(n)).

Proof. Let f(x, y) = x. Then, using Theorem 2 and the definition of f , Lf,g

is decidable in time O(TA(n)), where TA(n) satisfies 5. We also have that
SMg(n) ≤ TMg(n) and TMg(n) is O(g(n)) because g is a time constructible
function. By the definition of f , we can assume that TMf

(n) and SMf
(n) are

7

O(n). Therefore, Lf,g is decidable in time O(g(n)2). By Theorem 1, Lf,g is
not decidable in time o(g(n)).

4 The Gap Theorem

In this section we modify the proof presented in [6], unifying and gener-
alizing the so called gap theorems to any computable natural f -complexity
measure.

Definition 9. A language L is in the class f -COMPLEXITY(g(n)) if there is a
Turing machine A that decides L and for all integers n, it holds that f-TSA(n) ≤
g(n).

Theorem 3 (The Gap Theorem). Let f be a computable natural complexity mea-
sure. There is a recursive function g : N → N such that if L ∈ f -COMPLEXITY(2g(n)),
then L is decidable with f -complexity O(g(n)).

Proof. We consider all Turing machines ordered lexicographically: M0, M1,
M2, For i, k ≥ 0, we define property P (i, k):

For all j, 0 ≤ j ≤ i, machine Mj , when started on any input
x of length i, will satisfy either f-tsMj

(x) < k or f-tsMj
(x) > 2k

or it will have f-tsMj
(x) undefined (because Mj may not halt on

some inputs).

Note that P (i, k) can be decided by simulation applying the same ideas
presented in the proof of theorem 2.

Now we define the desired function g. Consider the following sequence
of values for k: k1 = 0, and, for j ≥ 2, kj = 2kj−1 + 1. Now, fix some i ≥ 0.
Given a pair of machine Mj and input x, with j ≤ i and |x| = i, there is at
most one p ≥ 0 for which P (i, kp) is false. Hence, there must be an integer
l such that P (i, kl) is true. Select the least such integer and define g(i) = kl.
Clearly, g is a computable function and we have P (i, g(i)) true for all i.

Now suppose that L ∈ f -COMPLEXITY(2g(n)). Then L is decided by
some Turing machine Mj within f -complexity 2g(n). Now consider any
input x with |x| ≥ j. By construction, P (|x|, g(|x|)) is true. We have j ≤ |x|,
therefore for Mj : f-tsMj

(x) < g(|x|) or f-tsMj
(x) > 2g(|x|) or f-tsMj

(x) is

undefined. Since Mj decides L within f -complexity 2g(n), it follows that
f-tsMj

(x) < g(|x|). Hence L is decidable with f -complexity O(g(n)).

8

When we let f be any of the two binary projection functions we get,
again, classical time and space gap theorems.

5 Conclusion

The level of abstraction introduced by f -complexity measures suggests
a conceptual framework in which to present unified proofs in computa-
tional complexity theory. It also allows for the generalization of important
results in the theory of complexity. Here, the traditional hierarchy theo-
rems have been generalized and unified in a much wider context. A similar
approach for the gap theorems is also presented. We believe that other im-
portant results that involve both the space and time complexity measures
can be unified and generalized in a similar way.

References

[1] M. Blum. A machine-independent theory of the complexity of recursive
functions. Journal of the ACM, 14 (2):322–336, 1967.

[2] A. Borodin. Computational complexity and the existence of complexity
gaps. Journal of the ACM, 19 (1):158–174, 1972.

[3] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cam-
bridge University Press, 2008.

[4] J. Hartmanis, P.L. Lewins II, and R.E. Stearns. Hierarchies of memory-
limited computations. In Proc. 6th Annual IEEE Symp. on Switching Cir-
cuit Theory and Logic Design, pages 179–190, 1965.

[5] J. Hartmanis and R.E. Stearns. On the computational complexity of
algorithms. Trans. Amer. Math. Soc., 117 (5):285–306, 1965.

[6] C. H. Papadimitriou. Computational Complexity. Addison-Wesley Pub-
lishing Co., 1994.

[7] M. Sipser. Introduction to the Theory of Computation. PWS Publishing
Company, 1996.

[8] B. A. Trakhtenbrot. Turing computations with logarithmic delay. Alge-
bra i Logika, 3 (4):33–48, 1964.

9

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

