
On the Complexity of Boolean Functions in Different

Characteristics

Parikshit Gopalan
Microsoft Research-Silicon Valley

parik@microsoft.com

Shachar Lovett ∗

The Weizmann Institute of Science
shachar.lovett@weizmann.ac.il

Amir Shpilka †

The Technion - Israel Institute of Technology
shpilka@cs.technion.ac.il

May 29, 2009

Abstract

Every Boolean function on n variables can be expressed as a unique multivariate
polynomial modulo p for every prime p. In this work, we study how the degree of
a function in one characteristic affects its complexity in other characteristics. We
establish the following general principle: functions with low degree modulo p must have

high complexity in every other characteristic q. More precisely, we show the following
results about Boolean functions f : {0, 1}n → {0, 1} which depend on all n variables,
and distinct primes p, q:

• If f has degree o(log n) modulo p, then it must have degree Ω(n1−o(1)) modulo
q. Thus a Boolean function has degree o(log n) in only one characteristic. This
result is essentially tight as there exist functions that have degree log n in every
characteristic.

• If f has degree d = o(log n) modulo p, it cannot be computed correctly on more

than 1− p−O(d) fraction of the hypercube by polynomials of degree n
1
2
−ε modulo

q.

As a corollary of the above results it follows that if f has degree o(log n) modulo p,
then it requires super-polynomial size AC0[q] circuits. This gives a lower bound for a
broad and natural class of functions.

∗Research supported by the Israel Science Foundation (grant 1300/05).
†Research supported by the Israel Science Foundation (grant 439/06).

1

Electronic Colloquium on Computational Complexity, Report No. 48 (2009)

ISSN 1433-8092

1 Introduction

Representations of Boolean functions as polynomials in various characteristics have been
studied intensively in Computer science [NS92, Pat92, Bei93, BBR94]. This algebraic view
of Boolean functions has found numerous applications to diverse areas including circuit
lower bounds [Raz87, Smo87, BRS91, ABFR94], computational learning [KM93, LMN93,
KS01, MOS03] and explicit combinatorial constructions [Gro00, Gro02, Gop06b, Efr09]. As
a purely algebraic model of computation, polynomial representations lead to some natural
complexity measures such as exact degree, approximation degree and sparsity needed to
represent a function. In this work, we are primarily concerned with the polynomial degree
of a function, defined as follows:

Definition 1.1. For a Boolean function f : {0, 1}n → {0, 1}, the degree of f in characteristic
k, denoted degk(f), is the degree of the unique multilinear polynomial P (X1, . . . , Xn) ∈
R[X1, . . . , Xn] such that P (x) = f(x) for every x ∈ {0, 1}n, where R = Z/kZ.

We say that the polynomial P represents f over R. The existence and uniqueness of such
a representing polynomial follows from the Möbius inversion formula (see Section 2). Of
particular importance in complexity theory are the cases k = 0 (R = Z) and k = p (R = Zp)
for some prime p; these will also be our primary focus, though we will also consider the
case of composite m. We denote deg0(f) simply by deg(f); it also equals the degree of the
Fourier polynomial for the function (−1)f(x). Let us note a basic relation between these
various degrees, namely that for every f and p, we have

degp(f) ≤ deg(f).

This is because the polynomial representing f over Zp can be obtained from the represen-
tation over Z by taking each coefficient modulo p. The gap between these quantities can
be arbitrarily large; consider the function Parity(x) =

∑

i xi mod 2. It is easy to show that
deg(Parity) = n whereas deg2(Parity) = 1. Indeed, it is not hard to show that degp(Parity) = n
for every p 6= 2.

In this paper, we show that this is an instance of a more general principle:

A function on all n variables which has low degree in characteristic p is bound to have high
degree in every other prime characteristic q 6= p.

Moreover, we prove that any function f where degp(f) = o(log n) is hard to approximate by
low-degree polynomials modulo q, and hence requires large AC0[q] circuits.

1.1 Our Results

When we refer to Boolean functions on n variables, we only consider functions where all n
variables are influential. This rules out trivial counterexamples like k-juntas that have low
degree in all characteristics. The following is our main theorem:

2

Theorem 1.2. (Main) Let f : {0, 1}n → {0, 1} be a Boolean function which depends on all
n variables. Let p 6= q be distinct primes. Then

degq(f) ≥ n

dlog2 pe degp(f)p2degp(f)
.

This gives a lower bound of Ω(n1−o(1)) on degq(f) as long as degp(f) = o(log n). This
bound is close to the best possible, as there exist functions on all n variables (such as
the addressing function [NS92]) where deg(f) ≤ log n, and hence degp(f) ≤ log n for all
characteristics p. Thus one cannot get nontrivial lower bounds on degq(f) once degp(f)
exceeds log n.

Nisan and Szegedy show that any function on n variables must have degree at least
deg(f) ≥ log n − O(log log n) [NS92]. An interesting consequence of Theorem 1.2 is the
following analogue of the Nisan-Szegedy bound for non-prime power moduli.

Corollary 1.3. Let f : {0, 1}n → {0, 1} be a Boolean function which depends on all n
variables. Suppose p < q are distinct primes that divide m. We have that

degm(f) ≥ 1

2
logp n − logp logp n.

This corollary is interesting as it illuminates a sharp difference between degrees over
composite numbers and over primes. A simple way to construct functions which have degree
O(1) over Fp is to take any constant degree polynomial P (x1, . . . , xn) ∈ Fp[x1, . . . , xn] and
raise it to the power p−1. This construction fails for composite m since there is no analogue
of Fermat’s little theorem. Corollary 1.3 shows that indeed any polynomial modulo m
computing a Boolean function requires degree Ω(log n), as it does over the reals.

While Theorem 1.2 also implies lower bounds for deg(f), one can show a stronger bound
by a simple modification of the Nisan-Szegedy proof:

deg(f) ≥ n

2degp(f)
.

The results above show a very basic relation between the degrees of Boolean functions over
different characteristic. A natural question to ask is what happens if we relax the requirement
and only consider polynomials over Fq that approximate a low degree polynomial over Fp.
However, similarly to the case of degree 1 polynomials that was studied in [Smo87], we prove
that low degree polynomials modulo p are hard to even approximate by polynomials in other
characteristics.

Theorem 1.4. Given f : {0, 1}n → {0, 1} such that degp(f) = d, for any q 6= p and
Q(x1, . . . , xn) ∈ Zq[x1, . . . , xn] with deg(Q) = o(

√
n),

Pr
x∈{0,1}n

[f(x) = Q(x)] ≤ 1 − εp−d,

where ε depends only on q.

3

We note that both the error bound of 1−p−O(d) and the degree bound of o(
√

n) are close
to optimal; there are polynomials of degree d over Zp that are 0 with probability 1 − 2−d,
hence they have trivial approximations over Zq. Secondly, the Modp function (and indeed
every symmetric function) can be 1− ε approximated by polynomials of degree c(ε)

√
n over

Zq [BGL06], despite being hard to approximate for polynomials of lower degree.
As a corollary of Theorem 1.4 we get that if a Boolean function has low degree modulo

p, then the function requires large AC0[q] circuits for any prime q 6= p. Several of the known
lower bounds for AC0[q] are functions like Parity and the Modpk function where p 6= q that
are easily seen to be low-degree polynomials in some characteristic. Our result generalizes
this to give a very general class of hard functions for AC0[q], namely all functions that have
degree o(log n) modulo p 6= q.

Theorem 1.5. Let p, q be distinct primes. Let f : {0, 1}n → {0, 1} be a Boolean function
on n variables with degp(f) = o(logp n). Then any AC0[q] circuit of depth t computing f

requires size at least exp(n(1−o(1))/2t).

It is not hard to see that most known lower bounds for AC0[q] circuits follow from
the theorem above. For example, the lower bound for Modpk of [Smo87] follows from the
observation that degp(Modpk) ≤ pk (see e.g. [BGL06]). Additionally, it gives several new
lower bounds, for instance it shows that every quadratic form on n variables over F2 requires
large AC0[q] circuits, for q 6= 2. Though we note that Theorem 1.5 does not imply Razborov’s
lower bound for Majority.

Summarizing, Theorems 1.2 and 1.4 show that for a Boolean function, having low degree
mod p, or even being close to a low degree polynomial mod p, is a “singular” event, in the
sense it can only occur for at most one characteristic p.

1.2 Polynomial representations in computer science.

The study of polynomial representations of Boolean functions dates at least as far back as
the 1960’s, when they arose in various contexts including switching theory [Mur71], voting
theory [Cho61] and machine learning [MP68]. Representations of Boolean functions over
finite fields, especially over F2 were studied by coding theorists in the context of Reed-
Muller codes, see [MS77, Chapters 13-14] and the references therein. The codewords of
the code RM(d, n) are all Boolean functions f : {0, 1}n → {0, 1} where deg2(f) ≤ d, while
received words are arbitrary functions f .

Polynomial representations have proved especially useful in circuit complexity [Bei93]
where a natural lower bound technique is to relate concrete complexity measures (such as
circuit-size) which we wish to bound, to purely algebraic complexity measures. Examples
of this paradigm include the Razborov-Smolensky lower bounds for AC0[p] [Raz87, Smo87],
which relates the circuit size to the polynomial degree needed to approximate f over Zp, and
the work of Beigel et al. [BRS91] and Aspnes et al. [ABFR94] which relate AC0 circuit size
with approximations by real polynomials.

Polynomial representations are among the most powerful tools in computational learning.
The best learning algorithms for many basic concept classes, including but not limited to

4

decision trees [KM93], DNF formulae [KS01], AC0 circuits [LMN93, JKS02], juntas [MOS03]
and halfspaces [KOS02, KKMS05] all proceed by showing that the concept class to be learned
has some nice polynomial representation. In particular, the algorithm for learning juntas of
[MOS03] exploits a connection between deg2(f) and the sparsity of its Fourier polynomial.

Finally, polynomial representations of Boolean functions have found applications to
constructing combinatorial objects such as set systems [Gro00, Gro02], Ramsey graphs
[Gro00, Gop06b] and locally decodable codes [Efr09]. These results require low-degree weak
representations of simple Boolean functions like the Or function but modulo composites.

Definition 1.6. The polynomial P (x1, . . . , Xn) ∈ Zm[X1, . . . , Xn] weakly represents f :
{0, 1}n → {0, 1} over Zm if f(x) 6= f(y) ⇒ P (x) 6= P (y). (P (x) may take values in
Zm)

Such representations have been well studied in complexity theory (see [BBR94, BGL06]
and the references therein), but embarrassingly simple questions like the degree required
to represent the Or function mod 6 remain open, there is a gap of O(

√
n) [BBR94] versus

Ω(log n) [TB98] between upper and lower bounds. Better upper bounds would lead to im-
proved constructions of all the above combinatorial objects. In [Gop06b], Gopalan proposes
viewing this as a question about the degree of two related functions in distinct characteristics:

Problem 1.7. [Gop06b] If two functions f, g : {0, 1}n → {0, 1} satisfy f(x)∨ g(x) = Or(x),
how small can max(deg2(f), deg3(g)) be?

Questions like this emphasize the importance of the natural and basic question of under-
standing the behavior of degp for various characteristics p.

1.3 Techniques.

Our proofs are conceptually very simple, we reduce the degree d case to the linear case and
then appeal to known lower bounds. This reduction is carried out via a degree reduction
lemma (Lemma 3.1) that shows that for any degree d polynomial P (x) over Zp on n variables,
there exists a constant t and a linear combination of the form

P ′(x) =
∑

i≤t

λiP (x + ai) λi ∈ Zp, ai ∈ Z
n
p

so that by fixing some variables in P ′ to constants, we get a linear polynomial in many
variables. This lemma is proved using discrete derivatives, a notion that has proved very
useful lately in complexity theory [BV07, Lov08, Vio08].

With this lemma in hand, one would like to proceed as follows: suppose P (x) and Q(x)
represent the same function f over Zp and Zq, and that P (x) has low degree (say a constant).
We would like to claim that the degree of P ′(x) over Zq is a small multiple of deg(Q), which
would then imply that deg(Q) must be large, since the Modp function has high degree in
characteristic q. Implementing this scheme runs into many obstacles: P ′ is a function that
maps Z

n
p → Zp, further the values ai are from Z

n
p , thus while P (x) = Q(x) for x ∈ {0, 1}n, it

5

is unclear how Q(x) can help us evaluate P (x+ai). Most of the technical work in this paper
goes towards circumventing this obstacle, and showing that one can mimic differentiation
modulo p in characteristic q without a large blowup in the degree. Note that in the case
when p = 2, these complications do not arise (since {0, 1}n ⊂ Z

n
q), making the proofs much

simpler. So we present the case of characteristic 2 separately in Section 4, and the general
case in Section 5.

2 Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function. We will only consider Boolean functions
that depend on all n variables, meaning that they cannot be written as f(x1, . . . , xn) =
g(xi1, . . . , xik) for some k < n. We start by establishing the correspondence between functions
and polynomials. We state the correspondence in the general setting of any commutative ring
R containing {0, 1}, but we will only be interested in the cases where R is either Z, Zm for
some integer m or a finite field Fq. We say that a polynomial P (x1, . . . , xn) ∈ R[x1, . . . , xn]
computes the function f if P (x) = f(x) for all x ∈ {0, 1}n. While there could be many
polynomials that satisfy this condition, if we insist that the polynomial be multilinear (every
variable occurs with degree at most 1), then the polynomial is unique. This can be seen via
the Möbius inversion formula, which gives a unique multilinear polynomial P (x1, . . . , xn) ∈
R[x1, . . . , xn] satisfying P (x) = f(x) for every function f : {0, 1}n → R:

P (x) =
∑

S⊆[n]

cS

∏

i∈S

xi

where cS =
∑

x≤x(S)

(−1)|S|−wt(x)f(x)

where x(S) denotes the indicator vector of the set S, x ≤ x(S) denotes that xi ≤ x(S)i

for every coordinate i and wt(x) denotes the Hamming weight of the vector x. If f is
Boolean, the Möbius inversion shows that the representing polynomial depends only on the
characteristic of R.

We state some basic facts about degk(f), proofs of which can be found in [Gop06a]. The
multilinear polynomial computing f over Zm can be obtained by reducing each coefficient of
the polynomial computing f over Z modulo m, which gives the following:

Fact 2.1. For any f : {0, 1}n → {0, 1}, we have degm(f) ≤ deg(f) for all m. Similarly if
m1|m, then degm1

(f) ≤ degm(f).

A consequence of this inequality is that degm(f) ≤ degmk(f). The following folklore
lemma shows that they are always within a factor 2k of each other.

Fact 2.2. For any f : {0, 1}n → {0, 1}, and integers m, k:

degm(f) ≤ degmk(f) ≤ (2k − 1) degm(f).

6

If m = m1m2 where (m1, m2) = 1, then the multilinear polynomial P (x) ∈ Zm[x] is
obtained by combining the coefficients of P1(x) ∈ Zm1 [x] and P2(x) = Zm2 [x] by the Chinese
Remainder Theorem. Hence

Fact 2.3. Let m = m1m2 where (m1, m2) = 1. Then

degm(f) = max(degm1
(f), degm2

(f)).

Thus if we know degp(f) for all primes p that divide m, we can use Facts 2.2 and 2.3 to
estimate degm(f) up to a constant factor which is independent of n but depends on m.

We define the function Modm(x) to be 1 whenever
∑

i xi is divisible by m. The degree
of such functions in any characteristic can be computed using the following observation:

Fact 2.4. For any integer k, and primes p 6= q, we have

degp(Modpk) = pk, degq(Modpk) = Ω(n).

Finally, we use two lemmas from the work of Razborov and Smolensky showing that
if a Boolean function f can be computed by a small AC0[p] circuit, then f can be well
approximated by low degree polynomials over Fp. The first is their low-degree approximation
lemma for AC0[p] circuits.

Lemma 2.1 (Razborov-Smolensky [Raz87, Smo87]). Let f be a Boolean function on n
variables that is computed by an AC0[p] circuit of size s and depth t. For every δ > 0,
there exists a polynomial P ∈ Fp[x1, . . . , xn] of degree deg(P) ≤ (cp log(s/δ))t such that
P ({0, 1}n) ⊂ {0, 1} and

Pr
x∈{0,1}n

[P (x) = f(x)] ≥ 1 − δ

for some universal constant c.

The second shows that the Modp function does not have such approximations over Zq.

Lemma 2.2 (Razborov-Smolensky [Raz87, Smo87]). For any prime p 6= q, there exist con-
stants c, ε > 0 such that for any polynomial Q(x) over Zq of degree at most c

√
n,

Pr
x∈{0,1}n

[Q(x) = Modp(x)] < 1 − ε.

3 Degree Reduction

A crucial tool in our proof is the following Degree reduction lemma which reduces degree
d polynomials in n variables to polynomials with many linear terms. For a polynomial P
define the set L(P) of all variables xi which occur as linear terms, but not in any higher
degree monomials.

7

Lemma 3.1 (Degree Reduction Lemma). Let P (x) be a polynomial of degree d over Zp

which depends on all n variables, where the individual degree of each variable is at most

p − 1. There exists t ≤ pd
d−1
p−1

e, a1, . . . , at ∈ Z
n
p , and λ1, . . . , λt ∈ Zp such that the polynomial

Q(x) =
∑

i≤t

λiP (x + ai)

satisfies

|L(Q)| ≥ n

dpd
d−1
p−1

e
.

The reminder of this section is dedicated to the proof of Lemma 3.1. We define the mono-
mial degree of a variable xi in a polynomial P (x) to be the maximal degree of a monomial of
P containing xi, and denote it by degi(P). Note that the monomial degree of xi is different
from its individual degree, which is the highest power of xi that occurs in P . The main tool
we use to prove this lemma is the notion of directional derivatives of a polynomial. Given a
polynomial P , we define the first derivative along y, denoted P(y,1), as

P(y,1)(x) = P (x + y) − P (x).

We define the `th derivative along y for ` ≥ 1 inductively as

P(y,`)(x) = P(y,`−1)(x + y) − P(y,`−1)(x)

when ` ≥ 1. It is easy to verify that

P(y,`)(x) =
∑

0≤j≤`

(−1)`−j

(

`

j

)

P (x + jy).

We define multiple derivatives in multiple directions, which we denote by P(y(1),`(1)),...,(y(k),`(k))(x).
To write closed forms for such derivatives, we define the following quantity for all `, c:

µ(`, c) =
∑

0≤j≤`

(−1)`−j

(

`

j

)

jc.

The following combinatorial identities are well-known; we prove them for completeness:

Fact 3.1. Let ` ≤ p − 1. Then

µ(`, c) = 0 for c ∈ {0, . . . , ` − 1},
µ(`, `) 6≡ 0 mod p

Proof. We prove the first identity by induction on c. The case c = 0 is elementary. To prove
it for c ≥ 1, we have

(X − 1)` =
∑

0≤j≤`

(−1)`−j

(

`

j

)

Xj

8

Differentiating c ≤ ` − 1 times and then setting X = 1 gives

0 =
∑

0≤j≤`

(−1)`−j

(

`

j

)

j(j − 1) · · · (j − c + 1)

= µ(`, c) +
∑

1≤i≤c−1

λ(i)µ(`, i)

= µ(`, c)

where we use the induction hypothesis for i ≤ c − 1 to set µ(`, i) = 0 for i ≤ c − 1.
To prove µ(`, `) 6≡ 0 mod p, we differentiate ` times to get

`! =
∑

0≤j≤`

(−1)`−j

(

`

j

)

j(j − 1) · · · (j − ` + 1)

= µ(`, `) +
∑

1≤c≤`−1

λ(c)µ(`, c)

= µ(`, `)

Since we assume ` ≤ p − 1, we have µ(`, `) = `! 6≡ 0 mod p.

We abbreviate the monomial
∏n

i=1 xdi
i by xd where d = (d1, · · · , dn) is the degree vector.

We use |d| =
∑

i di to denote its total degree. Given vectors d, e we use the notation
(

d
e

)

=
∏

i

(

di

ei

)

. We have

xd
(y,`) =

∑̀

j=0

(−1)`−j

(

`

j

)

(x + jy)d

=
∑̀

j=0

(−1)`−j

(

`

j

)

∑

e≤d

(

d

e

)

xd−e(jy)e

=
∑

e≤d

(

d

e

)

xd−eye
∑̀

j=0

(−1)`−j

(

`

j

)

j|e|

=
∑

e≤d

(

d

e

)

xd−eyeµ(`, |e|)

=
∑

e≤d

|e|≥`

(

d

e

)

xd−eyeµ(`, |e|)

where we use µ(`, |e|) = 0 for |e| ≤ ` − 1. Thus, differentiating ` times along y reduces the
degree in x by at least `, as one would expect.

By repeating this calculation, we can compute an expression for derivatives in multiple
directions. Given vectors d, e(1), . . . , e(k) we use the notation

(

d
e(1),...,e(k)

)

for the product of

9

multinomials
∏

l∈[n]

(dl

e
(1)
l ,...,e

(k)
l

)

. We have

xd
(y(1) ,`(1)),...,(y(k),`(k)) =

=
∑

e(1)+···+e(k)≤d

(

d

e(1), . . . , e(k)

)

xd−(e(1)+···+e(k))·

·
k
∏

j=1

µ(`(j), |e(j)|)(y(j))e(j)

=
∑

e(1)+···e(k)≤d

|e(1)|≥`(1),...,|e(k)|≥`(k)

(

d

e(1), . . . , e(k)

)

xd−(e(1)+···+e(k))·

·
k
∏

j=1

µ(`(j), |e(j)|)(y(j))e(j)

By linearity, we can compute the derivative of any polynomial P (x) =
∑

d cdx
d.

P(y(1),`(1)),...,(y(k),`(k))(x) =
∑

d

cdx
d
(y(1),`(1)),...,(y(k),`(k))

=
∑

d

cd

∑

e(1)+···e(k)≤d

|e(1)|≥`(1),...,|e(k)|≥`(k)

(

d

e(1), . . . , e(k)

)

xd−(
∑

j e(j))·

·
k
∏

j=1

µ(`(j), |e(j)|)(y(j))e(j)

=
∑

f

xf (
∑

|e(1)|≥`(1),...,|e(k)|≥`(k)

cf+
∑

j e(j)

(

f +
∑

j e(j)

e(1), . . . , e(k)

)

·

·
k
∏

j=1

µ(`(j), |e(j)|)(y(j))e(j)

) (1)

where in the last line we use the change of variable f = d −
∑

j e(j). Recall that we define
degi(P) to be the largest degree monomial containing the variable xi. It follows that the
monomial degree of xi drops by at least

∑

j `(j):

degi(P(y(1),`(1)),...,(y(k),`(k))) ≤ degi(P) −
∑

j

`(j).

Lemma 3.2. Let

degi(P) = (k − 1)(p − 1) + ` + 1 where ` + 1 ≤ p − 1,

`(1) = · · · = `(k−1) = p − 1 and `(k) = `.

Then the coefficient of xi in P(y(1),`(1)),...,(y(k),`(k))(x) is a non-zero polynomial in y(1), . . . , y(k).

10

Proof. Observe that
∑

j `(j) = degi(P) − 1, so

degi(P(y(1),`(1)),...,(y(k),`(k))) ≤ degi(P) −
∑

j

`(j) = 1.

Our goal is to show that it is in fact 1. Take the vector f where fi = 1 and fj = 0 for all
j 6= i. By Equation 1, the coefficient of xf is given by

c′f =
∑

e(1),...,e(k)

cf+
∑

j e(j)

(

f +
∑

j e(j)

e(1), . . . , e(k)

)

·

k
∏

j=1

µ(`(j), |e(j)|)(y(j))e(j)

Our goal is now to find e(1), . . . , e(k) so that the following conditions hold:

cf+
∑

j e(j) 6= 0,

(

f +
∑

j e(j)

e(1), . . . , e(k)

)

6= 0 (2)

|e(1)| = · · · = |e(k−1)| = p − 1, |e(k)| = ` (3)

Equation (3) ensures that µ(`j, |e(j)|) 6= 0. So each solution (e(1), · · · , e(k)) will contribute a

non-zero multiple of the monomial
∏k

j=1(y
(j))e(j)

to c′f , and distinct solutions will contribute
distinct monomials. Thus the claim follows if we show that there is at least one solution.

Fix a monomial xd, where |d| = degi(P) and cd 6= 0, which contains the variable xi. Now
|d − f | = (k − 1)(p − 1) + `. It is easy to define e(1), . . . , e(k) so that

|e(1)| = · · · = |e(k−1)| = p − 1, |e(k)| = `
∑

j

e
(j)
l + fl = dl ∀ l ∈ [n]

Note that
(

f +
∑

j e(j)

e(1), . . . , e(k)

)

=
∏

l∈[n]

(

fl +
∑

j e
(j)
l

e
(1)
l , . . . , e

(k)
l

)

.

Since
∑

j

e
(j)
l ≤ fl +

∑

j

e
(j)
l ≤ dl ≤ p − 1

each binomial coefficient in the product is non-zero mod p. This gives a solution satisfying
both Equations 2 and 3.

Let δp(d) denote the minimum probability that a degree d polynomial over Zp is non-zero.
It is well-known (see e.g. [MS77]) that if d = a(p − 1) + b where a ≥ 0 and b ≤ p − 1, then

δp(d) =
1

pa

(

1 − b

p

)

≥ p−d d
p−1

e

11

Lemma 3.3. Let P (x) ∈ Zp[x] be a degree d polynomial that depends on all n variables.
Then there exists k ≤ dd−1

p−1
e, directions y(1), . . . , y(k) ∈ Z

n
p and integers `(1), . . . , `(k) ≤ p − 1

such that
|L(P(y(1),`(1)),...,(y(k),`(k)))| ≥

n

dpd
d−1
p−1

e
.

Proof. The exists some d′ ≤ d so that degi(P) = d′ for at least n
d

variables, call this set
of variables G. If d′ = 1, then the claim holds trivially, so assume d′ > 1. Let d′ − 1 =
(k − 1)(p − 1) + ` for ` ≤ p − 2 and set `(1) = · · · = `(k−1) = p − 1, `(k) = `. Then applying
Lemma 3.2, for every xi ∈ G, the coefficient ci(y

(1), . . . , y(k)) of xi in P(y(1),`(1)),...,(y(k),`(k)) is
a non-zero polynomial of degree at most d′ − 1 ≤ d − 1. Thus, there exists a setting for
y1, . . . , yk where at least

δp(d − 1)|G| ≥ n

dpd
d−1
p−1

e

of the cis are non-zero. Since variables in G have degree 1 in P(y(1),`(1)),...,(y(k),`(k)), there are no
higher degree terms which contain them, so these variables all lie in L(P(y(1) ,`(1)),...,(y(k),`(k))).

To complete the proof of Lemma 3.1, we observe that P(y(1),`(1)),...,(y(k),`(k)) can be written
as

P(y(1),`(1)),...,(y(k),`(k))(x) =
∑

i≤t

λiP (x + ai)

where t ≤
k
∏

j=1

(`(j) + 1) ≤ pd
d−1
p−1

e.

4 The case of characteristic 2

Let P (x) be a low degree polynomial over Z2. We prove in this section that P must have high
degree over characteristics q 6= 2. Since we will be working with operations over different
fields, we will use +p to denote summation modulo p, and ⊕ for summation modulo 2. We
start with the some simple claims:

Claim 4.1. Let f(x) = ⊕n
i=1xi be the parity function on n bits. Then for q 6= 2, degq(f) = n.

Proof. The unique multilinear polynomial over Zq computing f is

H⊕(x) =
1

2
(1 −

n
∏

i=1

(1 − 2xi))

Lemma 4.2. Let a1, . . . , ak ∈ Z
n
2 . Define g : {0, 1}n → {0, 1} by g(x) = ⊕k

i=1f(x ⊕ ai).
Then

degq(g) ≤ k degq(f)

12

Proof. For any a ∈ Z
n
2 , consider fa(x) = f(x ⊕ a). We claim that degq(fa) = degq(f). Let

Q(x) be a polynomial over Zq which computes f over {0, 1}n. Define a new polynomial
Qa(x) = Q(x ⊕ a) by replacing xi with 1 − xi whenever ai = 1, and keeping xi whenever
ai = 0. Clearly Qa computes fa(x) over {0, 1}n, and degq(Qa) = degq(Q). Note that
g(x) = ⊕k

i=1fai
(x).

Composing the polynomial H⊕ over Zq that computes ⊕ on {0, 1}k with the Qas, we
get a polynomial of degree at most k degq(f) that represents g over Zq, thus degq(g) ≤
k degq(f).

We now restate and prove Theorem 1.2 in the p = 2 case, showing that any Boolean
function with small degree over Z2 must have high degree over Zq for a prime q 6= 2.

Theorem 4.3 (Theorem 1.2, p = 2 case). For any f : {0, 1}n → {0, 1}, and prime q 6= 2:

degq(f) ≥ n

deg2(f)4deg2(f)
.

Proof. Let f : {0, 1}n → {0, 1} be a Boolean function, let deg2(f) = d. Let P (x) be the
degree d polynomial over Z2 computing f . We will prove that the multilinear polynomial
Q(x) over Zq computing f has high degree.

By Lemma 3.1, there exist a1, . . . , ak ∈ Z
n
2 where k ≤ 2d, such that if P ′(x) = ⊕k

i=1P (x+
ai), then |L(P ′)| ≥ n

d2d . Let us denote the set L(P ′) by S. Let P ′
S be the restriction of P ′ to

the variables in S obtained by fixing the remaining variables to zero; P ′
S(x) is either Parity

on the set S or its negation, assume w.l.o.g it is the former.
Now consider the polynomial Q. Since Q(x) = f(x) for all x ∈ {0, 1}n, then the polyno-

mial Q′ defined as Q′(x) = H⊕(Q(x⊕ a1), . . . , Q(x⊕ ak)) satisfies that Q′(x) = P ′(x) for all
x ∈ {0, 1}n. So if we let Q′

S be the restriction of Q′ to the variables in S, then Q′
S(x) = P ′

S(x)
for all x ∈ {0, 1}n.

Now, since P ′
S is the parity function over |S| bits, Claim 4.1 implies that deg(Q′

S) =
|S| ≥ n

d2d . On the other hand, we have deg(Q′
S) ≤ deg(Q′) ≤ k degq(f) by Lemma 4.2. We

conclude that
degq(f) ≥ n

kd2d
≥ n

d4d

We now generalize this result and show that f cannot be approximated by low degree
polynomials over Zq. We need the following claim, which is proven using the union bound.

Claim 4.1. Let f ′ : {0, 1}n → {0, 1} be such that Prx∈{0,1}n [f ′(x) = f(x)] ≥ 1 − ε. Let
a1, . . . , ak ∈ Z

n
2 . Then

Pr
x∈{0,1}n

[⊕k
i=1f

′(x ⊕ ai) = ⊕k
i=1f(x ⊕ ai)] ≥ 1 − kε.

We now restate and prove Theorem 1.4 in the p = 2 case.

13

Theorem 4.4 (Theorem 1.4, p = 2 case). For prime q 6= 2 let c, ε > 0 be given by Lemma 2.2.
Let f : {0, 1}n → {0, 1} and deg2(f) = d. If f ′ : {0, 1}n → {0, 1} satisfies

Pr
x∈{0,1}n

[f ′(x) = f(x)] ≥ 1 − 2−dε,

then

degq(f
′) ≥ c

√

n

d8d
.

Proof. Using Lemma 3.1, choose k ≤ 2d and a1, . . . , ak ∈ Z
n
2 so that g(x) = ⊕k

i=1f(x ⊕ ai)
when restricted to a set S is either Parity or its negation on |S| ≥ n

d2d variables.
Define g′(x) = ⊕k

i=1f
′(x ⊕ ak). By Claim 4.1 we get that

Pr
x∈{0,1}n

[g(x) = g′(x)] ≥ 1 − k2−dε ≥ 1 − ε.

For every assignment b ∈ {0, 1}[n]\S to the variables outside S, define gS,b(x) be the
restriction of g to the variables in S, obtained by assigning the values of the variables outside
S according to b. Similarly define g′

S,b. We claim there exists some b such that

Pr
x∈{0,1}S

[gS,b(x) = g′
S,b(x)] ≥ 1 − ε.

Indeed, this is true as for a randomly chosen b,

Eb∈{0,1}[n]\S

[

Pr
x∈{0,1}S

[gS,b(x) = g′
S,b(x)]

]

= Pr
x∈{0,1}n

[g(x) = g′(x)] ≥ 1 − ε.

We also have degq(g
′
S,b) ≤ degq(g

′) ≤ 2d degq(f
′), where the last inequality uses Lemma 4.2.

Now, gS,b(x) is either Parity or its negation (assume w.l.o.g the former) over |S| variables. So
g′

S,b has degree at most 2d degq(f
′) and approximates Parity over |S| variables with probability

at least 1 − ε. By Lemma 2.2 this implies degq(g
′
S,b) ≥ c

√

|S|.Thus

2d degq(f
′) ≥ deg(g′

S,b) ≥ c

√

n

d2d

which proves the theorem.

Combining Theorem 4.4 with the Razborov-Smolensky bound, we conclude that any
AC0[q] circuit that computes a low Z2-degree Boolean function on n variables must be of
exponential size.

Theorem 4.5 (Theorem 1.5, p = 2 case). For any prime q 6= 2, there exist a constant c1 so
that any AC0[q] circuit of depth t computing a function f : {0, 1}n → {0, 1} on n variables

with deg2(f) = d requires size c12
−d exp((n

d8d)
1
2t).

14

Proof. Assume there is an AC0[q] circuit of size s and depth t computing f . Let ε be the
constant in Lemma 2.2. Applying Lemma 2.1 with δ = 2−dε, there is some universal constant
c′ and an Fq polynomial Q of degree deg(Q) ≤

(

c′ log s
2−dε

)t
such that

Pr
x∈{0,1}n

[Q(x) = f(x)] ≥ 1 − 2−dε.

By Theorem 4.4 we get that deg(Q) ≥ c
√

n
d8d for some constant c. Hence,

s ≥ c12
−d exp

(

(n

d8d

)
1
2t

)

,

for a universal constant c1.

5 The case of general characteristic

Since we will be working with operations over different fields, we will denote by +p, +q

summation modulo p, q respectively, and by + summation where the context is clear.

Mapping Z
n
p into Z

n′

q : Let f(x) be a Boolean function. We start by defining a poly-
nomial extending this into a function F : Z

n
p → {0, 1}. Given a vector x ∈ Z

n
p , we define

xp−1 = (xp−1
1 , . . . , xp−1

n) ∈ {0, 1}n, which is the indicator of whether x is non-zero on each
coordinate. Define the function F : Z

n
p → {0, 1} by F (x) = f(xp−1). F (x) can be ex-

pressed as a polynomial of degree (p − 1) degp(f) by taking the multilinear representation

of f over Zp and replacing each variable xi with xp−1
i ; henceforth we think of F as this

polynomial. Our goal will be to show that if f has low degree over Zq, then so does F
and any function of the form F (x +p a1) +p . . . +p F (x +p ak). Since these are functions
on Z

n
p , we need to define the notion of computing functions on Z

n
p by polynomials over Zq.

Set b = dlog2 pe. We identify the lexicographically first p bit strings in {0, 1}b with the set
{0, . . . , p−1}. We then identify Z

n
p with a subset of Z

nb
q by identifying x = (x1, . . . , xn) ∈ Z

n
p

with (x1,1, . . . , x1,b, . . . , xn,1, . . . , xn,b) ∈ Z
nb
q , where the value of xi determines the values of

(xi,1, . . . , xi,b). Notice that in fact we map Z
n
p into {0, 1}nb ⊂ Z

nb
q . Given x ∈ Z

n
p , we use

x̄ ∈ {0, 1}nb to denote the vector in {0, 1}nb ⊂ Z
nb
q that represents it. We use x̄i to denote

the vector (xi,1, . . . , xi,b) that represents xi. We say a polynomial G(x) ∈ Zq[x1,1, . . . , xn,b]
computes F : Z

n
p → {0, 1} if F (x) = G(x̄) for every x ∈ Z

n
p .

We start by showing that if f has low degree in Zq, then F (x+p a) can also be computed
by a low degree polynomial over Zq.

Lemma 5.1. Let f : {0, 1}n → {0, 1} and let F (x) be a polynomial over Zp defined by
F (x) = f(xp−1). For every a ∈ Z

n
p there is a polynomial Ga(x) ∈ Zq[x1,1, . . . , xn,b] over Zq

of degree at most b degq(f) that computes F (x +p a).

15

Proof. Given a = (a1, . . . , an) ∈ Z
n
p , we can define Ai(x̄i) ∈ Zq[x̄i] for every i ∈ [n] so that

deg(Ai) ≤ b and

Ai(x̄i) =

{

0 if xi + ai = 0 mod p

1 otherwise

It follows that (A1(x̄1), . . . , An(x̄n)) = (x +p a)p−1. We now define the polynomial Ga(x̄) as

Ga(x̄) = F{0,1}(A1(x̄1), . . . , An(x̄n))

where F{0,1} is the multilinear polynomial over Zq computing f over {0, 1}n. We have:

Ga(x̄) = F{0,1}((x +p a)p−1) = f((x +p a)p−1) = F (x +p a)

as required, and deg(Ga) ≤ b deg(F{0,1}) = b degq(f).

Our goal will be to compute Boolean predicates on sums F (x +p a1) +p . . . +p F (x +p ak)
by low degree polynomials over Zq.

Corollary 5.2. Let f : {0, 1}n → {0, 1} and let F (x) be a polynomial over Zp defined by
F (x) = f(xp−1). Let a1, . . . , ak ∈ Z

n
p be points, and let t : Zp → {0, 1} be any Boolean valued

predicate on Zp. Define the function T : Z
n
p → {0, 1} to be

T (x) = t(
∑

i≤k

λiF (x +p ai))

Then, T can be computed by a polynomial over Zq of degree at most kb degq(f).

Proof. By Lemma 5.1, each function F (x+p ai) can be computed by a polynomial Gi(x̄) over
Zq of degree at most b degq(f). The function T (x) is a function of G1(x̄), . . . , Gk(x̄) ∈ {0, 1},
and thus can be computed by H(G1(x̄), . . . , Gk(x̄)), where H(z1, . . . , zk) is a multilinear
polynomial over Zq computing the function t(λ1z1 +p . . . +p λkzk) : {0, 1}k → {0, 1}. Thus,
T can be computed by a polynomial over Zq of degree at most kb degq(f).

We now prove Theorem 1.2 in the case of general p.

Proof of Theorem 1.2 for general p. Let d = degp(f), and consider F (x) = f(xp−1) which
has degree (p − 1)d. Invoking Lemma 3.1 for F (x) which has degree (p − 1)d, we conclude
that there exist k ≤ pd points a1, . . . , ak ∈ Z

n
p such that G(x) =

∑k
i=1 λiF (x +p ai) satisfies

|L(G)| ≥ n/(dpd). Let S = L(G), and rename the variables in S as x1, . . . , xs, where s = |S|.
If we let GS be the restriction of G to variables in S (by setting the other variables to zero),
we have

GS(x) =
∑

i≤s

λixi + c, λi ∈ Zp \ {0}, c ∈ Zp.

16

Let ω be a pth root of unity in the appropriate extension field F = Fqh of Fq. We consider

the function h : {0, 1}s → F given by h(x) = ω
∑

i≤s λixi+c. The unique multilinear polynomial
H(x) over F computing h over {0, 1}s has degree deg

F
(H) = s ≥ n

dpd and is given by

H(x) = ωc
s
∏

i=1

(1 + (ωλi − 1)xi)

But we can upper-bound deg(H) in terms of degq(f). First, for i ∈ {0, · · · , p − 1} let
ti : Zp → {0, 1} be the predicate indicating whether x ≡ i mod p. We can obtain the
polynomial H(x) by multlinearization of the polynomial

H ′(x) =

p−1
∑

i=0

ωiti(GS(x))

Since GS(x) is of the form
∑

i λiF (x+p ai), Corollary 5.2 gives degq(ti(GS(x))) ≤ kb degq(f).
Hence,

deg
F
(H) ≤ max

i
degq(ti(GS(x))) ≤ kb degq(f).

Thus we get

degq(f) ≥ s

bk
≥ n

dlog2 pedp2d
.

Next we prove Theorem 1.4, that functions with low degree over Zp are hard to approx-
imate over Zq. First we state the theorem precisely.

Theorem 5.3 (Theorem 1.4 for general p). For prime q 6= p let c, ε > 0 be given by
Lemma 2.2. Let f be a Boolean function such that degp(f) = d. Let f ′ be any Boolean
function satisfying

Pr
x∈{0,1}n

[f ′(x) = f(x)] ≥ 1 − p−dε.

Then

degq(f
′) ≥ c

dlog2 pe

√

n

dp3d

We start with some technical claims.

Claim 5.4. Let f : {0, 1}n → {0, 1} be a Boolean function, such that degp(f) = d. For
v ∈ {0, 1}n define Fv : Z

n
p → {0, 1} as

Fv(x) = f(xp−1 ⊕ v)

where for y, v ∈ {0, 1}n, y ⊕ v ∈ {0, 1}n denotes their coordinatewise-Xor. Then Fv is a
polynomial over Zp of degree at most (p − 1)d.

17

To prove this claim, we construct the polynomial for Fv from the multilinear polynomial
for f by replacing xi with xp−1 or 1 − xp−1 depending on whether or not vi = 0. We omit
the details.

Claim 5.5. Let f(x) and f ′(x) be two Boolean functions such that

Pr
x∈{0,1}n

[f(x) = f ′(x)] ≥ 1 − ε.

There exists v ∈ {0, 1}n such that if we define Fv(x) = f(xp−1 ⊕ v) and F ′
v = f ′(xp−1 ⊕ v)

then
Pr

x∈Zn
p

[Fv(x) = F ′
v(x)] ≥ 1 − ε.

Proof. If we choose v ∈ {0, 1}n at random, then

Ev[Pr
x∈Zn

p

[Fv(x) = F ′
v(x)]] = Pr

x∈{0,1}n
[f(x) = f ′(x)] ≥ 1 − ε.

Thus the inequality holds for some v ∈ {0, 1}n,

We also need the following analogue of Claim 4.1:

Claim 5.6. Let F (x) and F ′(x) be functions such that Prx∈Zn
p
[F (x) = F ′(x)] ≥ 1 − ε. Let

a1, . . . , ak ∈ Z
n
p and λ1, . . . , λk ∈ Zp. Then:

Pr
x∈Zn

p

[
∑

i

λiF (x +p ai) =
∑

i

λiF
′(x +p ai)] ≥ 1 − kε.

We now prove Theorem 5.3.

Proof of Theorem 1.4 in the case of general p. Let f(x) be a Boolean function of small de-
gree d over Zp. Let f ′(x) be another Boolean function such that Prx∈{0,1}n [f(x) = f ′(x)] ≥
1− p−dε. We will prove that degq(f

′) is large. The proof will proceed by a series of transfor-
mations on the pair of functions, such that the pairs generated will remain close, f will be
transformed into the Modp function, whereas f ′ will be transformed into a function whose
degree over Zq can be bounded by a function of degq(f

′).
The first step is to extend f, f ′ to functions mapping Z

n
p to {0, 1}. By Claim 5.5, there

exists v ∈ {0, 1}n such that

Pr
x∈Zn

p

[Fv(x) = F ′
v(x)] ≥ Pr

x∈{0,1}n
[f(x) = f ′(x)] ≥ 1 − p−dε.

Also, the degree of Fv over Zp is at most (p − 1)d.
The next step is to apply the degree reduction lemma to Fv. By Lemma 3.1, there exists

k ≤ pd and points a1, . . . , ak ∈ Z
n
p , such that if G(x) =

∑

i≤k λiFv(x +p ai) (the sum is

18

addition modulo p), then the set S = L(G) will have size s ≥ n
dpd . If we define G′ : Z

n
p → Zp

as

G′(x) =
∑

i≤k

λiF
′
v(x +p ai) (4)

then Claim 5.6 implies

Pr
x∈Zn

p

[G(x) = G′(x)] ≥ 1 − kp−dε ≥ 1 − ε.

As in the proof of Theorem 4.4, there exists an assignment u ∈ Z
[n]\S
p to the variables

outside S so that the agreement between G and G′ is at least as large. To ease notation,
we denote these restrictions as G(x) and G′(x) (as opposed to GS,u(x) and G′

S,u(x)). Note
that G(x) =

∑

i≤k λixi + c where λi ∈ Zp \ {0}, c ∈ Zp and the summation is modulo p. By

replacing each xi in G by λ−1
i xi, we get a new function G′′ : Z

s
p → Zp where

Pr
x∈Zs

p

[G′′(x) =
∑

i

xi + c] ≥ 1 − ε.

The final step is to get a function h on {0, 1}n which computes the Modp function on s
variables. Towards this, for each w ∈ Z

s
p, we define gw : {0, 1}s → Zp by gw(y) = G′′(y + w).

Note that we have:

Pr
w∈Zs

p

[Pr
y∈{0,1}s

[gw(y) =
∑

i

yi +
∑

i

wi + c]]

= Pr
x∈Zs

p

[G′′(x) =
∑

i

xi + c] ≥ 1 − ε

since y + w is distributed uniformly at random over Z
s
p. Thus there exists a good w so that:

Pr
y∈{0,1}s

[gw(y) =
∑

i≤s

yi + c′] ≥ 1 − ε

where c′ = c +
∑

i

wi ∈ Zp.

Define t : Zp → {0, 1} by t(z) = 1 iff z ≡ c′ mod p and t(z) = 0 otherwise. Finally, let
h(y) = t(gw(y)). We have

Pr
y∈{0,1}s

[h(y) = Modp(y)] ≥ 1 − ε.

Hence Lemma 2.1 implies that degq(h) ≥ c
√

s.
Our goal now is to relate degq(h) to degq(f

′). We make the following observations:

1. We have gw(y) = G′′(y + w).

19

2. G′′(x) is obtained from G′(x) by setting variables outside S to constants and replacing
each xi ∈ S by λ−1xi.

3. By Equation 4, G′(x) is a linear combination of values of the form F ′
v(x +p ai).

4. Each F ′
v(x +p ai) can be computed by a polynomial Qi(x̄) over Zq of degree at most

b degq(f
′) by an argument similar to Lemma 5.1.

Thus, we can write h(y) as some predicate t′ : {0, 1}k → {0, 1} applied to a tuple of
polynomial Q1, . . . , Qk with degq(Qi) ≤ b degq(f

′), and hence degq(h) ≤ kb degq(f
′).

We conclude that

degq(f
′) ≥ c

√
s

kb
=

c

dlog2 pe

√

n

dp3d
.

As a corollary, we get a lower bound for the size of AC0[q] circuits computing functions
with low degree over Zp:

Theorem 5.7 (Theorem 1.5, restated). Let p, q be distinct primes. Let f : {0, 1}n → {0, 1}
be a Boolean function on n variables with degp(f) = d. Then any AC0[q] circuit of depth t
computing f requires size at least

c1p
−d exp

(

(

n

dlog2 pe2dp3d

)
1
2t

)

,

where c1 is a universal constant. In particular, for d = o(logp n), the lower bound is

exp(n1/2t−o(1)).

Proof. Assume there is an AC0[q] circuit of size s and depth t computing f . Let ε be the
constant in Lemma 2.2. Applying Lemma 2.1 with δ = p−dε implies that there is some

universal constant c′ and an Fq polynomial Q of degree deg(Q) ≤
(

c′p log s
p−dε

)t

such that

Prx∈{0,1}n [Q(x) = f(x)] ≥ 1 − p−dε. By Theorem 5.3 deg(Q) ≥ c
√

n
dlog2 pe2dp3d for some c.

Hence, there is a constant c1 so that

s ≥ c1p
−d exp

(

(

n

dlog2 pe2dp3d

)
1
2t

)

,

References

[ABFR94] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power of voting
polynomials. Combinatorica, 14(2):1–14, 1994.

20

[BBR94] David A. Barrington, Richard Beigel, and Steven Rudich. Representing Boolean
functions as polynomials modulo composite numbers. Computational Complexity,
4:367–382, 1994.

[Bei93] Richard Beigel. The polynomial method in circuit complexity. Structures in
Complexity Theory: 8th Annual Conference, pages 82–95, 1993.

[BGL06] Nayantara Bhatnagar, Parikshit Gopalan, and Richard J. Lipton. Symmetric
polynomials over Zm and simultaneous communication protocols. Journal of
Computer and System Sciences, 72:252–285, 2006.

[BRS91] R. Beigel, N. Reingold, and D. Spielman. The perceptron strikes back. In
Proceedings of the Sixth Conference on Structure in Complexity Theory, pages
286–291, 1991.

[BV07] Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. In
48th Annual Symposium on Foundations of Computer Science (FOCS’07), pages
41–51. IEEE, 2007.

[Cho61] C.K. Chow. On the characterization of threshold functions. In Proceedings of
the Symposium on Switching Circuit Theory and Logical Design (FOCS), pages
34–38, 1961.

[Efr09] Klim Efremenko. 3-query locally decodable codes of exponential codes. In Ac-
cpeted to the 41st Annual Symposium on the Theory of Computing (STOC’09).
ACM, 2009.

[Gop06a] Parikshit Gopalan. Computing with Polynomials over Composites. PhD thesis,
Georgia Institute of Technology, 2006.

[Gop06b] Parikshit Gopalan. Constructing Ramsey graphs from Boolean function repre-
sentations. In Proceedings of the 21st IEEE Conference on Computational Com-
plexity (CCC’06), 2006.

[Gro00] Vince Grolmusz. Superpolynomial size set-systems with restricted intersections
mod 6 and explicit Ramsey graphs. Combinatorica, 20(1):71–86, 2000.

[Gro02] Vince Grolmusz. Constructing set systems with prescribed intersection sizes.
Journal of Algorithms, 44(2):321–337, 2002.

[JKS02] J. Jackson, A. Klivans, and R. Servedio. Learnability beyond AC0. In Proceedings
of the 34th ACM Symposium on Theory of Computing, 2002.

[KKMS05] A. T. Kalai, A. R. Klivans, Y. Mansour, and R. Servedio. Agnostically learning
halfspaces. In Proc. 46th IEEE Symp. on Foundations of Computer Science
(FOCS’05), 2005.

21

[KM93] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spec-
trum. SIAM J. on Computing, 22(6):1331–1348, 1993.

[KOS02] A. Klivans, R. O’Donnell, and R. Servedio. Learning intersections and thresholds
of halfspaces. In Proceedings of the 43rd Annual Symposium on Foundations of
Computer Science (FOCS’02), pages 177–186, 2002.

[KS01] A. Klivans and R. Servedio. Learning DNF in time 2Õ(n1/3). In Proceedings of the
33rd Annual Symposium on Theory of Computing (STOC’01), pages 258–265,
2001.

[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform
and learnability. Journal of the ACM, 40(3):607–620, 1993.

[Lov08] Shachar Lovett. Unconditional pseudorandom generators for low degree poly-
nomials. In 40th Annual Symposium on the Theory of Computing (STOC’08),
pages 557–562. ACM, 2008.

[MOS03] Elchannan Mossel, Ryan O’Donnell, and Rocco Servedio. Learning juntas. In
Proceedings of the 35th Annual ACM Symposium on the Theory of Computing
(STOC’03)., 2003.

[MP68] Marvin Minsky and Seymour Papert. Perceptrons: an Introduction to Compu-
tational Geometry. MIT Press, 1968.

[MS77] F. MacWilliams and N. Sloane. The Theory of Error-Correcting Codes. North-
Holland, 1977.

[Mur71] S. Muroga. Threshold logic and its applications. Wiley-Interscience, New York,
1971.

[NS92] Noam Nisan and Mario Szegedy. On the degree of Boolean functions as real
polynomials. In Proceedings of the 24th Annual ACM Symposium on the Theory
of Computing (STOC’92), pages 462–467, 1992.

[Pat92] R. Paturi. On the degree of polynomials that approximate symmetric Boolean
functions. In Proceedings of the 24th Symposium on Theory of Computing, pages
468–474, 1992.

[Raz87] Alexander Razborov. Lower bounds for the size of circuits of bounded depth
with basis {∧,⊕}. Methematical Notes of the Academy of Science of the USSR,
41:333–338, 1987.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In Proceedings of the 19th Annual ACM Symposium on The-
oretical Computer Science (STOC’87), pages 77–82, 1987.

22

[TB98] Gabor Tardos and David Barrington. A lower bound on the mod 6 degree of the
OR function. Computational Complexity, 7:99–108, 1998.

[Vio08] Emanuele Viola. The sum of d small-bias generators fools polynomials of degree
d. In Proceedings of the 23rd IEEE Conference on Computational Complexity
(CCC’08), 2008.

23

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

