
Arthur and Merlin as Oracles
∗

Venkatesan T. Chakaravarthy Sambuddha Roy

IBM India Research Lab, New Delhi, India
{vechakra, sambuddha}@in.ibm.com

Abstract

We study some problems solvable in deterministic polynomial time given oracle access to the
(promise version of) the Arthur-Merlin class. Our main results are the following:

• BPPNP
|| ⊆ PprAM

||

• Sp

2 ⊆ PprAM

In addition to providing new upperbounds for the classes Sp

2 and BPPNP
|| , these results are

interesting from a derandomization perspective. In conjunction with the hitting set generator
construction of Miltersan and Vinodchandran [22], we get that Sp

2 = PNP and BPPNP
|| = PNP

|| ,
under the hardness hypothesis associated with derandomizing the class AM. This gives an
alternative proof of the same result obtained by Shaltiel and Umans [29].

We also show that if NP has polynomial size circuits then the polynomial time hierarchy (PH)
collapses as PH = PprMA. Under the same hypothesis, we also derive an FPprMA algorithm for
learning circuits for SAT; this improves the ZPPNP algorithm for the same problem by Bshouty
et al. [5].

Finally, we design a FPprAM algorithm for the problem of finding near-optimal strategies
for succinctly presented zero-sum games. For the same problem, Fortnow et al. [13] described
a ZPPNP algorithm. One advantage of our FPprAM algorithm is that it can be derandomized
using the construction of Miltersen and Vinodchandran [22] yielding a FPNP algorithm, under
a hardness hypothesis used for derandomizing AM.

1 Introduction

We study some problems solvable in deterministic polynomial time given oracle access to the
(promise version of) the Arthur-Merlin class, namely the class PprAM and its variants, such as
PprAM
|| . Our main results are the following:

• BPPNP
|| ⊆ PprAM

||

• Sp
2 ⊆ PprAM

In addition to providing new upperbounds for the classes Sp
2 and BPPNP

|| , these results are interesting
from a derandomization perspective.

∗Parts of this paper appear in the proceedings of STACS’08 [10] and MFCS’08 [9].

1



Derandomization Perspective: Starting with the classical hardness-randomness tradeoff
due to Nisan and Wigderson [25], several complexity classes have been derandomized, under various
hardness hypotheses. In this framework, we derandomize a probabilistic class C (such as AM) under
a suitable hardness hypothesis. A typical hardness hypothesis assumes the existence of a language
L contained in a suitable uniform complexity class (such as NE∩ coNE) that cannot be computed
by circuits of a specific type of “small” size (such as SV-nondeterministic circuits of size 2ǫn, for
some ǫ > 0). From such a language L, one then constructs an “efficient” pseudorandom generator,
which is used to derandomize the class C under consideration. The circuit type in the hypothesis
is determined based on the complexity class C that we wish to derandomize.

Working under the above framework, Klivans and van Melkebeek [19] derandomized the class
BPPNP

|| and showed that BPPNP
|| = PNP

|| , under a hardness hypothesis naturally associated with

the class BPPNP
|| , which we shall refer to as the BPPNP

|| -hypothesis 1. They also derandomized the

class BPPNP and showed that BPPNP = PNP, under a hardness hypothesis naturally associated
with the class BPPNP, which we shall refer to as the BPPNP-hypothesis 2. They obtained these
results by building on the work of Impagliazzo and Wigderson [17]

Cai [6] showed that Sp
2 ⊆ ZPPNP and it is known that PNP ⊆ Sp

2 [28]. An important open
problem regarding Sp

2 is whether Sp
2 ⊆ PNP. Notice that by combining Cai’s result [6] with that of

Klivans and Melkebeek [19], we get that Sp
2 ⊆ PNP, under the BPPNP-hypothesis.

To summarize the discussion so far, we have that BPPNP
|| = PNP

|| , under BPPNP
|| -hypothesis

and Sp
2 ⊆ PNP, under BPPNP-hypothesis. In this context, Shaltiel and Umans [29] obtained an

interesting improvement by deriving both the conclusions above, a under weaker hypothesis. They
showed that BPPNP

|| = PNP
|| and Sp

2 ⊆ PNP, under a hypothesis which we shall refer to as the

AM-hypothesis 3. The AM-hypothesis is naturally associated with derandomizing the class AM.
This hypothesis was introduced by Miltersen and Vinodchandran [22], who showed that AM = NP,
under this hypothesis. Shaltiel and Umans [29], in fact, show that the BPPNP

|| -hypothesis and the
AM-hypothesis are equivalent. We primarily focus on the following corollaries of the above result:
BPPNP

|| = PNP
|| and Sp

2 ⊆ PNP, under the AM-hypothesis. This is surprising, since they derandomize

BPPNP
|| and Sp

2, under a weaker hypothesis associated with the smaller class AM ⊆ BPPNP
|| .

Our main result yields an alternative (and, perhaps more direct) proof of these derandomization
results. The alternative proof is obtained by combining our main results with the hitting set
generator construction of Miltersen and Vinodchandran [22]. As a direct consequence of the above
construction, we get that PprAM ⊆ PNP and PprAM

|| ⊆ PNP
|| , under the AM-hypothesis. Combined

with our main results, we get that BPPNP
|| ⊆ PNP

|| and Sp
2 ⊆ PNP, under AM-hypothesis. In this

alternative proof, it is interesting to note that the construction of Miltersen and Vinodchandran is
used almost as a black-box.

Corollaries of the Main Results: Our result that BPPNP
|| ⊆ PprAM

|| yields the following

corollaries. First, we show that BPPprAM
|| = PprAM

|| ; this is an unconditional derandomization of the

class BPPprAM
|| . Second, we derive that BPPNP

|| ⊆ P
Σp

2

|| , or equivalently BPPNP[log] ⊆ PΣp
2
[log]. This

1BPPNP

|| -hypothesis: there exists a language L computable in NE ∩ coNE and an ǫ > 0 such that for sufficiently
large n, non-adaptive SAT-oracle circuits of size 2ǫn cannot compute L ∩ {0, 1}n.

2BPPNP-hypothesis: there exists a language L computable in NE ∩ coNE and an ǫ > 0 such that for sufficiently
large n, SAT-oracle circuits of size 2ǫn cannot compute L ∩ {0, 1}n.

3AM-hypothesis: there exists a language L computable in NE∩ coNE and an ǫ > 0 such that for sufficiently large
n, SV-nondeterministic circuits of size 2ǫn cannot compute L ∩ {0, 1}n.

2



may be seen as a baby-step towards resolving the much larger open problem of whether BPPNP is
contained in PΣp

2 .
Our result that Sp

2 ⊆ PprAM (or an application of its proof) yields the following corollaries. The
first corollary is regarding the classical Karp-Lipton theorem that deals with the consequences of
the assumption that NP has polynomial size circuits. Under this assumption, Karp and Lipton [18]
showed that the polynomial time hierarchy (PH) collapses to Σp

2. Subsequently, their result has been
strengthened: Köbler and Watanabe [20] derived the collapse PH = ZPPNP; Sengupta observed that
PH = Sp

2 ⊆ ZPPNP (see [6]); recently, the collapse has been further improved as PH = Op
2 ⊆ Sp

2 [8].
It has been a challenging open problem to get the collapse down to PNP. We derive a weaker result:
if NP has polynomial size circuits, then PH = PprMA.

In the above context, our next result deals with the problem of learning polynomial size circuits
for SAT. Under the assumption that NP has polynomial size circuits, Bshouty et al. [5] designed a
ZPPNP algorithm that finds a correct circuit for SAT at a given length. For the same problem, we
present a FPprMA algorithm for the same task. We can show that FPprMA ⊆ ZPPNP and hence,
our result is an improvement over the result of Bshouty et al.

Succinct Zero-sum Games: By extending the ideas from the proof of the result Sp
2 ⊆ PprAM,

we derive an FPprAM algorithm for finding near optimal strategies for succinct two-player zero-sum
games.

Zero-sum games have been well explored, due to their diverse applications. The problem of
finding the value, as well as optimal and near-optimal strategies of a given game have been well-
studied. In particular, it is known that the value and optimal strategies can be computed in
polynomial time (see [26]). We refer to [13] for a brief account of these results and the applications
of zero-sum games in computational complexity and learning theory.

In this paper, we deal with computing near-optimal strategies when the payoff matrix M is
presented succinctly in the form of a circuit C. It is known that computing the exact value of a
succinctly presented zero-sum game is EXP-complete (see [12]) and that approximating the value
within multiplicative factors is Πp

2-hard [13]. Lipton and Young [21] showed that near-optimal
strategies, within additive errors, of a succinctly presented zero-sum game can be computed in
Σp

2. Fortnow et. al [13] presented a ZPPNP algorithm for the same problem; their algorithm also
finds an estimate of the value of the game within additive errors. The above problem generalizes
the problem of learning circuits for SAT (assuming such circuits exist) and the problems in the
symmetric alternation class Sp

2. We refer the reader to the paper by Fortnow et. al [13] for a detailed
account on these aspects.

Here, our main result is an FPprAM algorithm for the above problem, namely the problem of
finding near-optimal strategies, within additive errors, of a succinctly presented zero-sum game.
The algorithm utilizes ideas from a ZPPNP algorithm due to Cai [6] for finding “strong irrefutable
certificates”.

As discussed earlier, the Miltersen-Vinodchandran construction [22] can be directly used to
derandomize the FPprAM algorithm. Thus, under the AM-hypothesis discussed earlier, we get an
FPNP algorithm for finding near optimal strategies. It is not clear whether such a derandomization
can be achieved for the ZPPNP algorithm by Fortnow et. al [13].

Alternative Proofs: Using our main results, we derive alternative proofs for the following
results: (i) Cai’s result [6] that Sp

2 ⊆ ZPPNP; (ii) The result by Bshouty et al. [5] that if NP has
polynomial size circuits, then circuits for SAT can be found in ZPPNP; (iii) The result by Fortnow
et al. that near-optimal strategies of succinctly represented zero-sum games can be computed in

3



ZPPNP; (iv) A lemma by Fortnow et. al [14] that provides a mechanism for proving that SAT does
not have small size circuits, if it is the case (see Appendix).

2 Preliminaries

In this section, we develop definitions and notations used throughout the paper.
Complexity classes. We use standard definitions for complexity classes such as P, NP,

P/poly, MA, AM, ZPPNP and BPPNP [11, 27]. Below, we present definitions for promise and
function classes central to our paper.

Promise languages. A promise language Π is a pair (Π1,Π2), where Π1,Π2 ⊆ Σ∗, such that
Π1 ∩ Π2 = ∅. The elements of Π1 are called the positive instances and those of Π2 are called the
negative instances. When Π1 ∪ Π2 = Σ∗, we get the usual notion of languages.

Promise MA (prMA). A promise language Π = (Π1,Π2) is said to be in the promise class
prMA, if there exists a polynomial time computable Boolean predicate A(·, ·, ·) and polynomials
p(·) and q(·) such that, for all x, we have

x ∈ Π1 =⇒ (∃y ∈ {0, 1}n)(∀z ∈ {0, 1}m)[A(x, y, z) = 1], and

x ∈ Π2 =⇒ (∀y ∈ {0, 1}n) Pr
z∈{0,1}m

[A(x, y, z) = 1] ≤
1

2
,

where n = p(|x|) and m = q(|x|). The predicate A is called Arthur’s predicate.
Promise AM (prAM). A promise language Π = (Π1,Π2) is said to be in the promise class

prAM, if there exists a polynomial time computable Boolean predicate A(·, ·, ·) and polynomials
p(·) and q(·) such that, for all x, we have

x ∈ Π1 =⇒ (∀y ∈ {0, 1}n)(∃z ∈ {0, 1}m)[A(x, y, z) = 1], and

x ∈ Π2 =⇒ Pr
y∈{0,1}n

[(∃z ∈ {0, 1}m)A(x, y, z) = 1] ≤
1

2
,

where n = p(|x|) and m = q(|x|). The predicate A is called Arthur’s predicate.
Oracle access to promise languages. Let A be an algorithm and Π = (Π1,Π2) be a

promise language. When the algorithm A asks a query q, the oracle behaves as follows: if q ∈ Π1,
the oracle replies “yes”; if q ∈ Π2, the oracle replies “no”; if q is neither in Π1 nor in Π2, the oracle
may reply “yes” or “no”. We allow the algorithm to ask queries of the third type. The requirement
is that the algorithm should be able to produce the correct answer, regardless of the answers given
by the oracle to the queries of the third type.

Function classes. For a promise language Π, the notation FPΠ refers to the class of functions
that are computable by a polynomial time machine, given oracle access to Π. For a promise class
C, we denote by FPC , the union of FPΠ, for all Π ∈ C. Regarding ZPPNP, we slightly abuse the
notation and use this to mean both the standard complexity class and the function class. The
function class ZPPNP contains functions computable by a zero-error probabilistic polynomial time
algorithm given oracle access to NP; the algorithm either outputs a correct value of the function
or “?”, the latter with a small probability.

3 BPPNP
|| ⊆ P

prAM
||

In this section, we prove that BPPNP
|| ⊆ PprAM

|| . We start with the definition of BPPNP
|| .

4



Definition 3.1 A language L is said to be in the class BPPNP
|| , if there exists a PNP

|| machine M

and a polynomial p(·) such that for any input x,

x ∈ L =⇒ Pr
y∈{0,1}m

[M(x, y) = 1] ≥
3

4
, and

x 6∈ L =⇒ Pr
y∈{0,1}m

[M(x, y) = 1] ≤
1

4
,

where m = p(|x|).

The proof of the claim that BPPNP
|| ⊆ PprAM

|| goes via approximate counting for non-deterministic

circuits, a problem solvable in PprAM
|| .

A non-deterministic circuit C is a Boolean circuit that takes an m-bit string as input and an
s-bit string z as auxiliary input and outputs 1 or 0, i.e., C : {0, 1}m ×{0, 1}s → {0, 1}. For a string
y ∈ {0, 1}m, C is said to accept y, if there exists a z ∈ {0, 1}s such that C(y, z) = 1; C is said to
reject y, otherwise. Let Count(C) denote the number of strings from {0, 1}m accepted by C.

The result below follows from the work of Sipser [30] and Stockmeyer [31] and it deals with the
problem of approximately counting the number of strings accepted by a given non-deterministic
circuit.

Theorem 3.2 [30][31] There exists an FPprAM
|| algorithm that takes as input a non-deterministic

circuit C, and a parameter δ > 0 and outputs a number U such that

(1 − δ)U ≤ Count(C) ≤ (1 + δ)U.

The running time is polynomial in |C| and 1/δ.

The first step of the proof involves reducing the error probability of a given BPPNP
|| machine.

This is achieved via the standard method of repeated trials and taking majority.

Proposition 3.3 Let L be a language in BPPNP
|| . Then there exists a PNP

|| machine M and a

polynomial p(·) such that for any input x,

x ∈ L =⇒ Pr
y∈{0,1}m

[M(x, y) = 1] ≥ 1 −
1

8K
, and

x 6∈ L =⇒ Pr
y∈{0,1}m

[M(x, y) = 1] ≤
1

8K
,

where m = p(|x|) and K ≤ p(|x|) is the maximum number of queries asked by M on input x for
any string y ∈ {0, 1}m.

Theorem 3.4 BPPNP
|| ⊆ PprAM

||

Proof: Let L be a language in BPPNP
|| and let M be a BPPNP

|| machine for deciding L given by
Proposition 3.3. Fix an input string x and let m be the number of random bits used by M . Without
loss of generality, assume that M uses SAT as its oracle and that the number of queries is exactly
K on all random strings y ∈ {0, 1}m, with K ≥ 1.

5



Partition the set {0, 1}m into the set of good strings G and the set of bad strings B, where
G = {y : M(x, y) = χL(x)} and B = {0, 1}m − G, where χL(·) is the characteristic function 4.
For a set X ⊆ {0, 1}m, let µ(X) = |X|/2m denote its measure. Thus, µ(G) ≥ 1 − 1/(8K) and
µ(B) ≤ 1/(8K).

Consider a string y ∈ {0, 1}m. Let Φ(y) = 〈ϕy
1, ϕ

y
2, . . . , ϕ

y
K〉, be the K SAT queries asked by

M on the string y. Let ay = 〈ay
1, a

y
2, . . . , a

y
K〉 be the correct answers to these queries, namely the

bit ay
j = 1, if ϕy

j ∈ SAT and ay
j = 0, otherwise. We shall consider simulating the machine M with

arbitrary answer strings. For a bit string b = 〈b1b2 . . . bK〉, let M(x, y,b) denote the outcome of
the machine, if b is provided as the answer to its K queries. Thus, M(x, y) = M(x, y,ay). When
an arbitrary bit-string b is provided as the answer, the outcome M(x, y,b) can be different from
M(x, y).

Let N(y) denote the number of satisfiable formulas in Φ(y), i.e., N(y) = |{1 ≤ i ≤ K : ϕy
i ∈

SAT}|. Partition the set G into K + 1 parts based on the value N(·): for 0 ≤ r ≤ K, let
Sr = {y : y ∈ G and N(y) = r}.

For each 0 ≤ r ≤ K, define two sets C1
r and C0

r as below. The set C1
r consists of all strings

y ∈ {0, 1}m satisfying the following property: there exists an answer string b = 〈b1b2 . . . bK〉 such
that (i) if bj = 1 then ϕy

j ∈ SAT; (ii) b has at least r ones in it; and (iii) M(x, y,b) = 1. The

set C0
r is defined similarly. The set C0

r consists of all strings y ∈ {0, 1}m satisfying the following
property: there exists an answer string b = 〈b1b2 . . . bK〉 such that (i) if bj = 1 then ϕy

j ∈ SAT; (ii)

b has at least r ones in it; and (iii) M(x, y,b) = 0. Notice that the sets C1
r and C0

r need not be
disjoint and that there may be strings y ∈ {0, 1}m that belong to neither C1

r nor C0
r .

Claim 1:
(i) If x ∈ L, then there exists an 0 ≤ ℓ ≤ K such that µ(C1

ℓ ) − µ(C0
ℓ ) ≥ 1

4K
.

(ii) If x 6∈ L, then for all 0 ≤ r ≤ K, µ(C1
r ) − µ(C0

r ) ≤ 1
8K

.
Proof of claim: We first make an observation regarding the concerned sets C1

r and C0
r . Fix any

0 ≤ r ≤ K. Notice that for any j < r, Sj ∩ C1
r = ∅ and Sj ∩ C0

r = ∅. This is because, for any
y ∈ Sj, with j < r, Φ(y) has only j satisfying formulas and so, it does not meet the requirement
for either C1

r or C0
r .

Suppose x ∈ L. Consider any 0 ≤ r ≤ K. We first derive a lowerbound on |C1
r |. Consider any

string y ∈ Sj, with r ≤ j ≤ K. Notice that ay has j ≥ r satisfying formulas and M(x, y,ay) = 1.

So, y ∈ C1
r . Thus, for r ≤ j ≤ K, Sj ⊆ C1

r . It follows that |C1
r | ≥

∑K
j=r |Sj|. We next derive an

upperbound on C0
r . We observed that Sj ∩ C0

r = ∅, for all j < r. Let us now consider the set Sr.
Pick any string y ∈ Sr. Notice that Φ(y) has exactly r satisfiable formulas. So, the only answer
string satisfying the first two requirements of C0

r is ay. Since M(x, y,ay) = 1, we have that y 6∈ C0
r .

Thus, Sr ∩ C0
r = ∅. Hence, for j ≤ r, Sj ∩ C0

r = ∅. It follows that |C0
r | ≤ |B| +

∑K
j=r+1 |Sj|. As

a consequence, we get that |C1
r | − |C0

r | ≥ |Sr| − |B|. Since µ(G) ≥ 1 − 1/(8K), by an averaging
argument, there exists an 0 ≤ ℓ ≤ K such that

µ(Sℓ) ≥

(
1 − 1

8K

)

K + 1
≥

3

8K
.

Such an ℓ satisfies µ(C1
ℓ ) − µ(C0

ℓ ) ≥ 1/(4K). We have proved the first part of the claim.
Suppose x 6∈ L. The argument is similar to the first part. Fix any 0 ≤ r ≤ K. Observe that for

j ≤ r, Sj ∩ C1
r = ∅. Hence, |C1

r | ≤ |B| +
∑K

j=r+1 |Sj|. On the other hand, for any j ≥ r, Sj ⊆ C0
r .

4χL(x) = 1, if x ∈ L and χL(x) = 0, if x 6∈ L

6



So, |C0
r | ≥

∑K
j=r |Sj |. It follows that |C1

r | − |C0
r | ≤ |B|. Since µ(B) ≤ 1/(8K), we get the second

part of the claim. This completes the proof of Claim 1.
Notice that the membership testing for the sets C1

j and C0
j can be performed in non-deterministic

polynomial time. Thus, for 0 ≤ j ≤ K, we can construct a non-deterministic circuit accepting C1
j

(similarly, C0
j ) such that the size of the circuit is polynomial in |x|. Setting δ = 1/(80K), we

invoke the algorithm given by Theorem 3.2 to get estimates e1
j and e0

j such that (1 − δ)µ(C1
j ) ≤

e1
j ≤ (1 + δ)µ(C1

j ) and (1 − δ)µ(C0
j ) ≤ e0

j ≤ (1 + δ)µ(C0
j ), for all 0 ≤ j ≤ K. From Claim 1,

we get: (i) if x ∈ L, then there exists an 0 ≤ ℓ ≤ K such that e1
ℓ − e0

ℓ ≥ 9/(40K); (ii) if x 6∈ L
then for all 0 ≤ j ≤ K, e1

j − e0
j ≤ 6/(40K). So, we output “x ∈ L”, if there exists an ℓ such that

e1
ℓ − e0

ℓ ≥ 9/(40K). If no such ℓ exists, then we output “x 6∈ L”. �

As a corollary, we get that BPPprAM
||

= PprAM
||

. This is an unconditional derandomization of

the class BPPprAM
|| .

Corollary 3.5 BPPprAM
|| = BPPNP

|| = PprAM
|| .

Proof: It is easy to show that BPPprAM
|| ⊆ BPPNP

|| . From Theorem 3.4, we have that BPPNP
|| ⊆

PprAM
|| . It is trivially true that PprAM

|| ⊆ BPPprAM
|| . �

As a second corollary, we get the following result. It may be seen as a baby-step towards
resolving the larger open problem of whether BPPNP is contained in PΣp

2 .

Corollary 3.6 BPPNP
|| ⊆ P

Σp
2

|| or equivalently, BPPNP[log] ⊆ PΣp
2
[log]

Proof: By extending the proof of AM ⊆ Πp
2 [4], it is easy to show that PprAM

|| ⊆ P
Σp

2

|| . It follows

that BPPNP
|| ⊆ P

Σp
2

||
. It is known that PNP

|| = PNP[log] [27]. Using the same idea, it can be shown

that that BPPNP
|| = BPPNP[log] and that P

Σp
2

|| = PΣp
2
[log]. �

4 S
p
2 ⊆ PprAM and Other Results

In this section, we prove that Sp
2 ⊆ PprAM and derive some corollaries. We start with an informal

description of the class Sp
2 and introduce some necessary definitions.

The class Sp
2 was introduced by Russell and Sundaram [28] and independently, by Canetti [7].

A language L in the class Sp
2 is characterized by an interactive proof system of the following type.

The proof system consists of two computationally all-powerful provers called the Yes-prover and
the No-prover, and a polynomial time verifier. The verifier interacts with the two provers to
ascertain whether or not an input string x belongs to the language L. The Yes-prover and the
No-prover make contradictory claims: x ∈ L and x 6∈ L, respectively. Of course, only one of
them is honest. To substantiate their claims, the provers provide strings y and z as certificates.
The verifier analyzes the input x and the two certificates and votes in favor of one of the provers.
If the Yes-prover wins the vote, we say that y beats z and otherwise, we say that z beats y.
The requirement is that, if x ∈ L, then the Yes-prover must have a certificate y that beats any
certificate z given by the No-prover. Similarly, if x 6∈ L, the No-prover must have a certificate
z that beats any certificate y given by the Yes-prover. We call certificates satisfying the above

7



requirements as irrefutable certificates (written IC). Clearly, for any input string, only the honest
prover has an IC. A formal definition of Sp

2 follows next.

Definition 4.1 A language L is said to be in the class Sp
2, if there exists a polynomial time com-

putable Boolean predicate V (·, ·, ·) and polynomials p(·) and q(·) such that for any x, we have

x ∈ L =⇒ (∃y ∈ {0, 1}n)(∀z ∈ {0, 1}m)[V (x, y, z) = 1], and

x 6∈ L =⇒ (∃z ∈ {0, 1}m)(∀y ∈ {0, 1}n)[V (x, y, z) = 0],

where n = p(|x|) and m = q(|x|). We refer to the y’s and z’s above as certificates. The predicate
V is called the verifier.

L ∈ Sp
2. The behavior of the verifier V on an input string x can be conveniently modeled

as a matrix. Let n and m denote the length of the certificates of the Yes-prover and No-

prover, respectively. We model the behaviour of the verifier as a 2n × 2m Boolean matrix M .
In the matrix M , the rows correspond to the certificates of the Yes-prover and the columns
correspond to the certificates of the No-prover. For certificates y ∈ {0, 1}n and z ∈ {0, 1}m, we
set M [y, z] = V (x, y, z). Notice that the matrix M has either a row full of 1’s (this happens when
x ∈ L) or a column full of 0’s (this happens when x 6∈ L). We call such matrices as S2-type matrices.
M is said to be the matrix corresponding to the input x. The above discussion is summarized in
the following definition.

Definition 4.2 Let M be a 2n × 2m Boolean matrix. For a row y ∈ {0, 1}n and a column z ∈
{0, 1}m, if M [y, z] = 1, then y is said to beat z; similarly, z is said to beat y, if M [y, z] = 0. A row
y is called a row-side IC, if y beats every column z ∈ {0, 1}m; a column z is called a column-side
IC if z beats every row y ∈ {0, 1}n. Notice that a matrix cannot have both a row-side IC and a
column-side IC. The matrix M is said to be an S2-type matrix, if it has either a row-side IC or a
column-side IC. If M has a row-side IC, it is called a row-side S2-type matrix; similarly, if M has
a column-side IC, it is called a column-side S2-type matrix;

For an input x, the matrix M corresponding to x is an S2-type matrix. Though the matrix M
is exponentially large in the size of the input |x|, it can be succinctly represented in the form of a
Boolean circuit C having size polynomial in |x|.

Definition 4.3 A Boolean circuit C : {0, 1}n × {0, 1}m → {0, 1} is said to succinctly represent a
Boolean 2n × 2m matrix M , if for all y ∈ {0, 1}n and z ∈ {0, 1}m, we have C(y, z) = M [y, z].

We shall also use the notion of circuits succinctly representing subsets.

Definition 4.4 A Boolean circuit C : {0, 1}m → {0, 1} is said to succinctly represent a set X ⊆
{0, 1}m, if for all x ∈ {0, 1}m, x ∈ X ⇐⇒ C(x) = 1.

Let x be an input string and M be the matrix corresponding to it. Using standard techniques,
we can obtain a Boolean circuit C that succinctly represents the matrix M . The above task can
be performed in time polynomial in |x|. The size of the circuit will be polynomial in |x|.

Suppose we wish to prove Cai’s result that Sp
2 ⊆ ZPPNP [6] or our main result that Sp

2 ⊆ PprAM.
Consider an input string x. As discussed above, we can find in polynomial time a circuit succinctly

8



representing the matrix M corresponding to x. A natural idea to determine whether x ∈ L or
x 6∈ L is to actually find a row-side IC or a column-side IC of M ; this would tell us whether or not
x belongs to L. Unfortunately, we show that if an irrefutable certificate can be found in ZPPNP or
FPprAM, then the polynomial time hierarchy (PH) collapses. We formalize the problem and prove
the above claim.

Problem FindIC: Given a circuit succinctly representing a S2-type matrix of size 2n × 2m,
output either a row-side IC or a column-side IC.

Theorem 4.5 If there exists a ZPPNP algorithm or a FPprAM algorithm for the FindIC problem
then PH = BPPNP.

Proof: It is trivially true that ZPPNP algorithms can be simulated in BPPNP. Furthermore, it is
easy to show that FPprAM algorithms can be simulated in BPPNP. Thus, the hypothesis of the
theorem implies a BPPNP algorithm A for the FindIC problem. We show that the existence of
the algorithm A implies that Σp

2 ⊆ RPNP.
Let L be a language in Σp

2. There exists a polynomial time computable predicate D(·, ·, ·) and
polynomials p(·) and q(·) such that for any string x,

x ∈ L =⇒ (∃y ∈ {0, 1}n)(∀z ∈ {0, 1}m)[D(x, y, z) = 1], and

x 6∈ L =⇒ (∀y ∈ {0, 1}n)(∃z ∈ {0, 1}m)[D(x, y, z) = 0],

where n = p(|x|) and m = q(|x|).
Consider an input string x. Represent the computation of the predicate D in the form of a

Boolean matrix M of size 2n×2m, by setting M [y, z] = D(x, y, z), for all y ∈ {0, 1}n and z ∈ {0, 1}m.
Using standard techniques, we can construct a circuit C succinctly representing the matrix M in
time polynomial in |x|.

We simulate the algorithm A on the matrix M . Consider the two cases of x ∈ L and x 6∈ L.
If x ∈ L, then M is an S2-type matrix having a row-side IC and so, the algorithm must output a
row-side IC with high probability. If x 6∈ L, M need not be an S2-type matrix and so, the output
of the algorithm can be arbitrary. In either case, let s denote the output of A on input M . Using
the NP oracle, check if s is a row-side IC. If so, accept x; otherwise, reject x.

Let us call the above algorithm B. Notice that if x ∈ L, then B accepts x with high probability.
On the other hand, if x 6∈ L, then B rejects x with probability 1; because, M does not have a
row-side IC. Thus, we have shown that Σp

2 ⊆ RPNP.
It follows that Σp

2 ⊆ BPPNP. This is known to imply PH = BPPNP. �

The above theorem leads to an interesting remark. By Cai’s algorithm [6], we can determine
in ZPPNP whether an IC is found on the row-side or the column-side, but we cannot find an IC

in ZPPNP. The above theorem also rules out the possibility of designing a FPprAM for finding
irrefutable certificates. However, we show that collectively irrefutable certificates (written CIC) can
be found in FPprAM.

Definition 4.6 Let M be a 2n×2m Boolean matrix. A set of rows Y ⊆ {0, 1}n is called a row-side
CIC, if for every column z, there exists a row y ∈ Y such that y beats z. Similarly, a set of columns
Z ⊆ {0, 1}m is called a column-side CIC, if for every row y, there exists a column z ∈ Z such that
z beats y.

9



In the next section, we shall present a FPprAM algorithm for finding a CIC and prove the
following theorem. The algorithm takes an input a row-side S2-type matrix and outputs a row-side
CIC. A similar algorithm for the column-side is also presented.

Theorem 4.7 There exists a FPprAM algorithm that takes as input a circuit succinctly representing
a row-side S2-type matrix (respectively, a column-side S2-type matrix) M of size 2n×2m, and outputs
a row-side CIC of size m (respectively, a column-side CIC of size n).

Using the above theorem, it is easy to construct an algorithm that takes as input any S2-type
matrix and outputs a CIC, either on the row-side or the column-side.

Theorem 4.8 There exists a FPprAM algorithm that takes as input a circuit succinctly representing
a S2-type matrix M of size 2n × 2m and outputs either a row-side CIC of size m or a column-side
CIC of size n.

Proof: The proof is a simple application of Theorem 4.7, which gives us two algorithms: (i) an
algorithm that takes as input a row-side S2-type matrix and outputs a row-side CIC; (ii) an algorithm
that takes as input a column-side S2-type matrix and outputs a column-side CIC. We run both these
algorithms on the input matrix M . The given matrix M is guaranteed to be either a row-side S2-
type matrix or a column-side S2-type matrix. Thus, one of the two runs would output a CIC.
The other run would output some arbitrary result, since the input matrix does not satisfy the
requirements of the concerned algorithm. We check which of the two outputs is indeed a CIC and
output the same. The above check can be performed by making a single NP query. �

To summarize, we cannot design a FPprAM algorithm for finding an IC of a given S2-type matrix,
but we can indeed find a CIC of an input S2-type matrix in FPprAM. Theorems 4.7 and Theorem 4.8
yield a few corollaries, discussed in the subsections below.

4.1 Upperbounds for S
p
2

In this section, we show that Sp
2 ⊆ PprAM and also derive an alternative of Cai’s result [6] that

Sp
2 ⊆ ZPPNP.

Theorem 4.9 Sp
2 ⊆ PprAM.

Proof: The claim follows directly from Theorem 4.8. Let L be a language in Sp
2. Let x be the input

string. Consider the S2-type matrix M corresponding to x. We can obtain a circuit C succinctly
representing the matrix M in time polynomial in |x|. Invoking the algorithm given in Theorem 4.8
on C, we get either a row-side CIC or a column-side CIC. Notice that in the former case x ∈ L and
in the latter case x 6∈ L. �

Having proven the above theorem, it is natural to ask how large the class PprAM is. We observe
that PprAM ⊆ BPPNP. The containment relationships between ZPPNP and PprAM are unknown.
So, our result that Sp

2 ⊆ PprAM is incomparable to Cai’s result [6] that Sp
2 ⊆ ZPPNP. Here, we

observe that an alternative proof of Cai’s result can be derived using Theorem 4.8.

Theorem 4.10 ([6]) Sp
2 ⊆ ZPPNP.

10



Proof: Consider a language L ∈ Sp
2 and we shall describe a ZPPNP algorithm for deciding L.

Given an input x, we first construct a circuit C succinctly representing the S2-type matrix M
corresponding to x. We next invoke the algorithm given in Theorem 4.8 with C as the input.
Whenever a prAM oracle query q is issued by the algorithm, we simulate the prAM protocol on q
by making use of the NP oracle and by tossing coins. With high probability, the simulation yields
the correct answer for q. Continuing this way, we obtain an output s. We would expect s to be
a row-side CIC or a column-side CIC. But, it is possible that s is not a CIC, because of the error
in our simulation of the prAM protocol. However, this event occurs with a low probability. The
output of our procedure is as follows: if s is a row-side CIC, output “x ∈ L”; if s is a column-side
CIC, output “x 6∈ L”; if both the tests fail, output “?”. The above tests are performed by making
queries to the NP oracle.

Since M is an S2-type matrix, the presence of a row-side CIC implies that x ∈ L. Similarly, the
presence of a column-side CIC implies that x 6∈ L. This means that our procedure has zero-error.
We already observed that the procedure has high probability of success. Thus, we have exhibited
a ZPPNP algorithm for L. �

4.2 Consequences of NP having small circuits

A body of prior work has dealt with the implications of the assumption that NP has polynomial
size circuits. Our main theorem yields some new results in this context, which are described in this
section.

Suppose NP is contained in P/poly. Karp and Lipton [18] showed that, under this assump-
tion, the polynomial time hierarchy (PH) collapses to Σp

2 ∩ Πp
2, i.e., PH = Σp

2 ∩ Πp
2. Köbler and

Watanabe [20] improved the collapse to ZPPNP. Sengupta (see [6]) observed that the collapse can
be brought down to Sp

2. This has been further improved via a collapse to Op
2, the oblivious version

of Sp
2 [8]. It has been an interesting open problem to obtain a collapse to the class PNP. Here, we

show a collapse to PprMA.

Theorem 4.11 If NP ⊆ P/poly, then PH = PprMA.

Proof: By Sengupta’s observation (see [6]), the assumption implies that PH = Sp
2. Combining

this with Theorem 4.9, we get PH = PprAM. Arvind et al. [3] showed that if NP ⊆ P/poly then
AM = MA. We observe that this result carries over to the promise versions, namely the same
assumption implies prAM = prMA. The claim follows. �

Though the above theorem yields a new consequence, we note that it is not clear whether this is
an improvement over the previously best known collapse. While we can show that PprMA ⊆ ZPPNP

(see Appendix), it is open whether PprMA is contained in Sp
2.

Under the assumption NP has polynomial size circuits, Bshouty et. al [5] studied the problem
of learning a correct circuit for SAT and designed a ZPPNP algorithm. As an application of
Theorem 4.7, we obtain an FPprMA algorithm for the same problem. We can show that FPprMA ⊆
ZPPNP (see Appendix) and thus, the new result provides an improvement for this problem. The
proof uses a construction similar to the one used by Fortnow et. al [13].

Theorem 4.12 If NP ⊆ P/poly, then there exists an FPprMA algorithm that takes as input a
number n (in unary) and outputs a correct circuit for SAT at length n.

11



Proof: Our assumption implies that SAT is computed by circuits of size nk, for some constant k.
Let C be a (possibly incorrect) circuit claimed to compute SAT at a certain length n. We say

that C is nice, if C does not accept unsatisfiable formulas. It is well-known that the circuit C can
be converted into a nice circuit C ′ while preserving correctness; namely, if C is a correct then C ′ is
also a correct circuit. The above transformation goes via self-reducibility and it can be performed
in polynomial time.

We shall first describe an FPprAM algorithm for finding a correct circuit for SAT at the given
length n. Define a matrix M as follows. Each circuit of size nk is a row in this matrix. Each column
in M corresponds to a pair 〈ϕ, t〉, where ϕ is a formula of length n and t is a truth assignment for

ϕ. The length of the pair is 2n. Altogether the matrix M is of size 2nk

×22n. The entry M [C, 〈ϕ, t〉]
is given by the following procedure. Convert C into a nice circuit C ′ and consider the two cases:

• Case 1: Suppose ϕ(t) = true. If C ′(ϕ) = 1, set the entry to 1, else set it to 0.

• Case 2: Suppose ϕ(t) = false. Set the entry to 1.

By our assumption, there exists a circuit C∗ of size nk that correctly computes SAT at length n.
Notice that the row in M corresponding to C∗ is full of 1’s and hence, M is an S2-type matrix
having a row-side IC. Moreover, we can construct a circuit succinctly representing the matrix M
in time polynomial in n.

Invoke the algorithm given in Theorem 4.7 and obtain row-side CIC C of cardinality 2n. The
set C consists of 2n circuits, each of size nk. Convert each circuit C ∈ C in to a nice circuit C ′. Let
C′ denote the collection of these nice circuits. We make an observation regarding C′.

Let ϕ be any formula of length n and consider the following two cases:

• ϕ is unsatisfiable: In this case, every circuit C ′ ∈ C′ rejects ϕ, because C ′ is a nice circuit.

• ϕ is satisfiable: Let t be a satisfying truth assignment of ϕ. Since C is a CIC, some circuit
C ∈ C beats 〈ϕ, t〉. This means that the nice circuit C ′ corresponding to C accepts ϕ.

To summarize, any unsatisfiable formula is rejected by all the circuits in C′ and any satisfiable
formula is accepted by at least one of the circuits in C′.

Based on the above observation, we can construct a correct circuit C̃ for SAT at length n. We
simply take C̃ to be the disjunction of all the circuits in C′, i.e., C̃ accepts a given formula ϕ, if
and only if some circuit C ′ ∈ C′ accepts ϕ. An easy calculation shows that C̃ is of size O(nk+2).

The above description gives an FPprAM algorithm for finding circuits for SAT. The theorem now
follows from a result due to Arvind et al. [3]: if NP ⊆ P/poly then AM = MA. We observe that this
result carries over to the promise versions, namely the same assumption implies prAM = prMA. �

As a corollary of the above theorem, we can design a ZPPNP algorithm for learning circuits for
SAT, assuming NP has polynomial size circuits. This provides an alternative proof of the same
result by Bshouty et al. [5].

Theorem 4.13 If NP ⊆ P/poly, then there exists an ZPPNP algorithm that takes as input a
number n (in unary) and outputs a correct circuit for SAT at length n.

Proof: We simulate the PprAM algorithm given in Theorem 4.12. Whenever a query q is asked, we
simulate the prAM protocol by tossing coins and making use of the NP oracle. At the end, we
have a circuit C. We convert C into a nice circuit C ′. It is guaranteed that C ′ does not accept
unsatisfiable formulas. We can make a query to the NP oracle to check if C ′ rejects any satisfiable
formulas. Thus, we can verify if C ′ is a correct circuit. If so, we output C ′; else output “?”. �

12



4.3 Collectively Irrefutable Certificates for Arbitrary Boolean Matrices

Theorem 4.8 deals only with S2-type matrices. In this section, we describe a generalization that
handles arbitrary Boolean matrices.

Any S2-type matrix has either a row-side CIC or a column-side CIC, but not both. But, in the
case of arbitrary Boolean matrices, both a row-side CIC and a column-side CIC may exist. Goldreich
and Wigderson [15] proved the following combinatorial result that asserts the existence of a small
CIC in any Boolean matrix. We rephrase their result (Lemma 6 in [15]) using our terminology:

Theorem 4.14 ([15]) Let M be any 2n × 2m Boolean matrix. At least one of the following state-
ments is true: (i) there exists a row-side CIC of size m (i.e., the log of the number of columns); (ii)
there exists a column-side CIC of size n (i.e., the log of the number of rows).

We obtain the following constructive version of the above result (with a slight blow-up in the
size of the CIC). For this, we will apply Theorem 4.7 and Theorem 4.14.

Theorem 4.15 There exists an FPprAM algorithm that takes as input a circuit C succinctly repre-
senting a 2n×2m Boolean matrix M , and outputs either a row-side CIC of size m2 or a column-side
CIC of size n2.

Proof: We define two Boolean matrices M1 and M2 as follows.
The matrix M1 is of size 2nm × 2m. Each row of M1 corresponds to a sequence 〈y1, y2, . . . , ym〉

of m rows of M . Each column z of M1 corresponds to a single column of M . The entries of M 1

are defined as below. For a row 〈y1, y2, . . . , ym〉 ∈ {0, 1}nm and a column z ∈ {0, 1}m, the entry is
defined as:

M1[〈y1, y2, . . . , ym〉, z] =

{
1 if some yi beats z in M
0 otherwise

The matrix M 2 is defined analogously. Each row y of M1 corresponds to a single row of M .
Each column of M2 corresponds to a sequence 〈z1, z2, . . . , zn〉 of n columns of M . Thus, M2 is
matrix of size 2n × 2mn. The entries of M 2 are defined as below. For a row y and a column
〈z1, z2, . . . , zn〉 ∈ {0, 1}mn, the entry is defined as:

M 2[y, 〈z1, z2, . . . , zn〉] =

{
0 if some zi beats y in M
1 otherwise

Using Theorem 4.14, we observe that at least one of the following two claims is true: (i) M 1

is an S2-type matrix having a row-side IC; (ii) M2 is an S2-type matrix having a column-side IC.
The first scenario occurs, if M has a row-side CIC of size m and the second scenario occurs, if M
has a column-side CIC of size n.

We can construct in polynomial time circuits C1 and C2 that succinctly encode the matrices
M1 and M2, respectively. We run the algorithm given in Theorem 4.7 on both the matrices. Let
S1 and S2 denote the output of the two runs. The above algorithm requires that the input be an
S2-type matrix. We satisfy this requirement in at least one of the two runs. Thus, at least one of
the following claims is true: (i) S1 is a row-side CIC of size m for M1; (ii) S2 is a column-side CIC

of size n for M 2. We can check whether a given set is a row-side (respectively, column-side) CIC by
making a single query to an NP oracle. So, these tests can certainly be performed using a prAM

13



oracle. Among the two sets S1 and S2, we choose a set that passes the above test. Suppose S1 is
chosen. Then, S1 is a CIC for M1 of size m. Each row y ∈ S1 is a collection of m rows of M . By
taking the union of these collections over all y ∈ S1, we get a row-side CIC of size m2 for M . On
the other hand, if S2 is chosen, a similar process produces a column-side CIC of size n2 for M . �

The above theorem provides an FPprAM algorithm for finding a small CIC for arbitrary Boolean
matrices. We note that the same task can also be accomplished in ZPPNP; this can be shown via
an argument similar to that of Theorem 4.10.

5 Finding a CIC: Proof of Theorem 4.7

In this section, we prove Theorem 4.7. We shall only describe the algorithm for the case of row-side
S2-type matrices. The case of column-side S2-type matrices is handled in a similar manner.

The algorithm computes the required row-side CIC using a simple iterative approach: in each
iteration, we find a row y that beats at least half of the columns that are as yet unbeaten by the rows
found in the previous iterations. Formally, we start with an empty set Y and proceed iteratively,
adding a row to Y in each iteration. Consider the kth iteration. Let Uk be the set of columns as yet
unbeaten by any row in Y (i.e., Uk = {z ∈ {0, 1}m| no y ∈ Y beats z}). We find a row y∗ such that
y∗ beats at least half the columns in Uk and add y∗ to Y . Notice that such a y∗ exists, since we are
guaranteed that M has a row-side IC. Clearly, the algorithm terminates in m steps and produces
a row-side CIC of size m. Of course, the main step lies in finding the required y∗ in each iteration.
This task is accomplished by the algorithm described in Lemma 5.1, given below. The algorithm,
in fact, solves a more general problem: given any set of columns X ⊆ {0, 1}m, it produces a row
beating at least half of the columns in Q. In each iteration, we invoke the algorithm by setting
Q = Uk. There is one minor issue that needs to be addressed: the set Uk could be exponentially
large. So, we represent the set Uk in the form of a circuit C ′ succinctly representing it. For this,
given any column z ∈ {0, 1}m, C ′ has to test whether z is beaten by any of the rows in Y . This test
involves a simulation of C(y, z), for all y ∈ Y . Since Y contains at most m rows, we can succinctly
encode Uk by a circuit of size polynomial in the size of C. We have proved Theorem 4.7, modulo
Lemma 5.1.

5.1 Finding a Good Row

This section is devoted to proving the following lemma used in the previous section.

Lemma 5.1 There exists an FPprAM algorithm that solves the following problem. The input con-
sists of: (i) a circuit succinctly representing a row-side S2-type matrix M of dimension 2n × 2m;
(ii) a set of columns Q ⊆ {0, 1}m presented succinctly in the form of a circuit; The output is a row
ŷ ∈ {0, 1}n that beats at least half the columns in Q.

We build the required string ŷ in n iterations using an approach similar to self-reduction. We
maintain a prefix of y∗ and add one suitable bit in each iteration. However, we cannot directly
employ self-reduction, since a query of the form “does there exist a row that beats at least half
the columns in X” is a PP query and we cannot hope to find the answer using a prAM oracle.
Nevertheless, we show how to converge on a row ŷ by performing self-reduction that incurs a small
amount of “loss” in the “goodness” in each iteration. We formalize the notion of goodness and
then describe the algorithm.

14



Definition 5.2 Let A be a 2a × 2b Boolean matrix. For a row y ∈ {0, 1}a and a set of columns
X ⊆ {0, 1}b, we define goodness

µ(y,X) =
|{z ∈ X : y beats z}|

|X|

We extend the notion of goodness to prefixes. Let s be a string of length |s| ≤ a. We say that a
row y ∈ {0, 1}a is an extension of s, if s is a prefix of y. The goodness of the prefix s with respect
to X is defined to be the maximum goodness we can achieve by extending s into a full row:

µ(s,X) = max
y∈{0,1}a : y extends s

[µ(y,X)]

We now describe the algorithm claimed in Lemma 5.1. Our goal is to find a row ŷ such that
µ(ŷ, Q) ≥ 1/2. The algorithm starts with a prefix s0 = λ, where λ is the empty string. It constructs
the required row ŷ in n iterations, adding one bit in each iteration. In the kth iteration, it has a
prefix sk−1 from the previous iteration; it finds a suitable bit bk ∈ {0, 1} and appends it to sk−1

to get a new prefix sk = sk−1bk. Continuing this way for n iterations, the algorithm finds a string
sn of length n and outputs ŷ = sn. Throughout the process, the algorithm would ensure that the
prefixes constructed have certain amount of goodness.

We have assumed that the given matrix M is a row-side S2-type matrix and so, it has a row-
side IC y∗. Notice that µ(s0, Q) = 1, because y∗ is an extension of (the empty string) s0 and
y∗ beats every column in M . Thus, the algorithm has been started off with a prefix s0 having
goodness µ(s0, Q) = 1. We shall ensure that the algorithm loses at most ǫ amount of goodness
in each iteration (ǫ is a parameter fixed below). We shall ensure inductively that for 0 ≤ k ≤ n,
µ(sk, Q) ≥ 1 − kǫ.

We now need to describe how to find a suitable bit in each iteration. Consider kth iteration, for
some k ≥ 1. We have a prefix sk−1 from the previous iteration. Write s = sk−1 and ρ = 1−(k−1)ǫ.
By induction, we can assume that µ(s,Q) ≥ ρ. Our aim is to find a bit b such that µ(sb,Q) ≥ ρ− ǫ.
The main observation is that µ(s,Q) = max{µ(s0, Q), µ(s1, Q)}. Thus, at least one of the following
is true: µ(s0, Q) ≥ ρ or µ(s1, Q) ≥ ρ.

The bit b is found by invoking the algorithm described in Lemma 5.3: given a prefix β the
algorithm can distinguish between the cases of µ(β,Q) ≥ ρ and µ(β,Q) ≤ ρ − ǫ. We invoke
algorithm two times with β = s0 and β = s1 as inputs. By the above observation, the algorithm
should answer “yes” on at least one of these invocations. Let b be a bit such that the algorithm
answers “yes” on input β = sb. Observe that µ(sb,Q) ≥ ρ − ǫ (for otherwise, the algorithm would
have answered “no” on input β = sb).

By the above procedure, we can find a row ŷ such that µ(ŷ, Q) ≥ 1 − nǫ. Setting ǫ = 1/n2, we
see that ŷ beats at least a fraction of (1 − 1/n) ≥ 1/2 columns in Q. We have proved Lemma 5.1,
modulo Lemma 5.3.

5.2 Testing for the Goodness of a Prefix

In this section, we prove the following lemma used in the previous section. The lemma tests whether
a prefix is good.

Lemma 5.3 There exists an FPprAM algorithm that solves the following problem. The input con-
sists of: (i) a circuit succinctly representing a row-sided S2-type matrix M of dimension 2n × 2m;

15



(ii) a circuit succinctly representing a set of columns Q ⊆ {0, 1}m (iii) a string β having length
|β| ≤ n; (iv) two parameters ρ ≤ 1 and ǫ > 0. It outputs an answer as follows:

µ(β,Q) ≥ ρ =⇒ Answer=“yes”

µ(β,Q) ≤ ρ − ǫ =⇒ Answer=“no”.

If µ(β,Q) falls in the interval [ρ − ǫ, ρ], the output can be arbitrary. The running time of the
algorithm has a polynomial dependence on 1/ǫ and 1/ρ.

The gap between the positive and negative instances in the above problem is only ǫ. We shall
first amplify the gap via the standard trick of running repeated trials and applying Chernoff bounds.

The amplification involves a parameter r, to be fixed shortly. Define a new matrix M as
follows. Each row in M corresponds to a row in M and each column of M corresponds to a
sequence 〈z1, z2, . . . , zr〉 of r columns from M . Thus, M is of dimension 2n × 2m, where m = mr.
For a row y ∈ {0, 1}n and a column z = 〈z1, z2, . . . zr〉, define the entry

M [y, z] =

{
1 if

|{zi : y beats zi in M}|
r

≥ (ρ − ǫ
2)

0 otherwise

For a set of columns X ⊆ {0, 1}m, define Xr to be the r-way Cartesian product of X:

Xr = {〈z1, z2, . . . , zr〉 : for 1 ≤ j ≤ r, zi ∈ X}.

Notice that Xr is a subset of columns of M .
Set r = ⌈16m/ǫ2⌉. Applying Chernoff bounds, we get the following claim, which expands the

gap from [ρ − ǫ, ρ] to [1/m4, 1/2].

Lemma 5.4 Consider a row y ∈ {0, 1}n. Let Q = Qr be the corresponding set of columns in the
matrix M . Then,

µ(y,Q) ≥ ρ =⇒ µ(y,Q) ≥ 1/2

µ(y,Q) ≤ ρ − ǫ =⇒ µ(y,Q) ≤ 1/m4

The above lemma enables us to focus on M and Q, instead of M and Q. Our aim is to test
whether the given prefix β has an extension y that beats a sufficiently large fraction of columns
from Q. This is accomplished in two successive steps. First, we estimate the size of the set Q.
In the second step, we test whether β has an extension y that beats a sufficiently large number
of columns from the set Q. The first step involves approximate counting and this is accomplished
using Theorem 3.2. The second step involves testing whether a given set is large, which we will
perform by making oracle queries to a promise language. A lemma due to Sipser [30] is used for
proving that this promise language indeed lies in the class prAM. The following notation is needed
for stating the lemma.

Let H be a family of functions mapping {0, 1}m to {0, 1}k . Recall that H is said to be 2-universal,
if for any z, z′ ∈ {0, 1}m, with z 6= z′, and x, x′ ∈ {0, 1}k , Prh∈H[h(z) = x and h(z′) = x′] = 1/22k .
It is well known that such a family can easily be constructed. For instance, the set of all m × k
Boolean matrices yield such a family; a matrix B represents the function h given by h(z) = zB
(modulo 2).

16



Consider a set S ⊆ {0, 1}m. For a function h ∈ H and a string z ∈ S, we say that z has a
collision under h, if there exists a z′ ∈ S such that z 6= z′ and h(z) = h(z′). For a set of hash
functions H ⊆ H, we say that S has a collision under H, if there exists a z ∈ S such that for all
h ∈ H, z has a collision under h.

Lemma 5.5 ([30]) Let S ⊆ {0, 1}m and k ≤ m. Let H be a 2-universal family of hash functions
from {0, 1}m to {0, 1}k. Uniformly and independently pick a set of hash functions h1, h2, . . . , hk

from H and let H = {h1, h2, . . . , hk}. Then,

• If |S| > k2k, then PrH [S has a collision under H] = 1.

• If |S| ≤ 2k−1, then PrH [S has a collision under H] ≤ 1/2.

Our algorithm would make oracle queries to the following promise language.
Promise Language GoodPrefix: The instances of this language consist of (i) a circuit succinctly
representing a 2n × 2m matrix M ; (ii) a string β having length |β| ≤ n; (iii) a circuit succinctly
representing a set of columns X ⊆ {0, 1}m, where each set Xi ⊆ {0, 1}m is presented succinctly in
the form of a circuit; (iv) a positive integer k.
Positive instances: There exists a row y extending β such that y beats at least k2k columns in X.
Negative instances: For all rows y extending β, y beats at most 2k columns in X.

The following lemma shows that GoodPrefix lies in the promise class prAM.

Lemma 5.6 The promise language GoodPrefix belongs to the promise class prAM.

Proof: We present an MAM protocol; it is well known such a protocol can be converted into an
AM protocol [4].

Merlin claims that a given instance is of the positive type. To prove this, he provides a row
y extending β. Let Z ⊆ X be the set of columns from X that are beaten by y. Arthur needs to
distinguish between the cases of |Z| > k2k and |Z| ≤ 2k−1. Arthur picks a set of hash functions
H = {h1, h2, . . . , hk} uniformly and independently at random from H. Merlin must then prove
that Z has a collision under H. Arthur accepts, if Merlin can prove this; otherwise, Arthur rejects.
The correctness of the protocol follows from Lemma 5.5. �

We now describe the algorithm claimed in Lemma 5.3. We invoke the algorithm given in
Theorem 3.2 on the set Q and find a estimate U such that (1 − δ̂)U ≤ |Q| ≤ U , where δ̂ is a

parameter suitably set as δ̂ = 0.1. Fix k = ⌊log (1−bδ)U
2m

⌋. The choice of k ensures that for any row y

µ(y,Q) ≥ 1/2 =⇒ y beats at least k2k columns in Q

µ(y,Q) ≤ 1/m4 =⇒ y beats at most 2k−1 columns in Q

We ask the GoodPrefix oracle a single query consisting of M , β, Q and k. If the oracle answers
“yes”, we output “yes”; otherwise, we output “no”. The correctness of the algorithm follows from
Lemma 5.4.

6 Finding Strong Collectively Irrefutable Certificates

In this section, we extend the notion of CIC to Strong CIC and present an FPprAM algorithm
for finding these objects. This algorithm is used in the next section for computing near-optimal
strategies of succinct zero-sum games. We believe that the notion of strong CIC and the algorithm
developed here may be of independent interest.

17



Definition 6.1 Let M be a 2n × 2m Boolean matrix. For 0 ≤ α ≤ 1, a set of rows Y ⊆ {0, 1}n

is called a row-side α-strong CIC, if for any column z, at least α fraction of rows from Y beat
z, i.e., |{y ∈ Y : y beats z}| ≥ α|Y |. Similarly, a set of columns Z ⊆ {0, 1}m is called a
column-side α-strong CIC, if for any column y, at least α fraction of rows from Z beat y, i.e.,
|{z ∈ Z : z beats y}| ≥ α|Z|.

A ZPPNP algorithm for finding α-strong CIC of a given row-side S2-type matrix is implicit in
the work of Cai ([6], Section 5) 5:

Theorem 6.2 ([6]) There exists a ZPPNP algorithm that takes an input a circuit succinctly rep-
resenting a row-side S2-type matrix (respectively, a column-side S2-type matrix) M of size 2n × 2m

and a parameter α < 1, and outputs a row-side α-strong CIC (respectively, a column-side CIC) of
size polynomial in 1/(1−α), n and m. The running time of the algorithm is polynomial in the size
of the circuit and 1/(1 − α).

Our main result here is a FPprAM algorithm for the same problem considered in the above
theorem.

Theorem 6.3 There exists a FPprAM algorithm that takes an input a circuit succinctly representing
a row-side S2-type matrix (respectively, a column-side S2-type matrix) M of size 2n × 2m and a
parameter α < 1, and outputs a row-side α-strong CIC (respectively, a column-side CIC) of size
polynomial in 1/(1 − α), n and m. The running time of the algorithm is polynomial in the size of
the circuit and 1/(1 − α).

The rest of the section is devoted to proving the above theorem. We shall only discuss the case
of row-side S2-type matrices. The other case of column-side S2-type matrices is handled in a similar
manner.

We obtain the FPprAM algorithm by combining and extending the ideas from Cai’s algorithm
(Theorem 6.2) and our algorithm for finding CIC (Theorem 4.7). Our FPprAM algorithm follows
Cai’s algorithm closely; it differs from his algorithm in a sub-procedure used for performing a crucial
task. Cai presents a ZPPNP procedure for performing the task, while we present a FPprAM proce-
dure. Accordingly, we split the proof of the theorem into two parts. We first describe the overall
algorithm. The second part presents our FPprAM procedure that performs the above mentioned
task.

6.1 Overall Algorithm

The algorithm uses two parameters p < 1 and t suitably fixed as p = (1 + α)/2 and t = 2(m +
1)(1+α)/(1−α). The algorithm constructs a row-side α-strong CIC Y = {y1, y2, . . . , yt} iteratively
by choosing a suitable row yk in the kth iteration.

Let Z0
0 = {0, 1}m denote the set of all columns. The row y1 is chosen to be a row that beats at

least p fraction of the columns in Z0
0 . Suppose we have chosen the rows y1, y2, . . . , yk and consider

the (k + 1)st iteration, where the row yk+1 is to be chosen. Partition the set {0, 1}m into disjoint

5The algorithm is actually given for the special case of α = 1/2; however, it can easily be adapted to handle the
case of larger α

18



sets Zk
0 , Zk

1 , . . . , Zk
k as follows. For 0 ≤ d ≤ k, let Zk

d be the set of all columns that are beaten by
exactly d rows from y1, y2, . . . , yk, i.e., Zk

d is the set of all columns z ∈ {0, 1}m such that

|{yi : 1 ≤ i ≤ k, yi beats z}| = d

We choose a row yk+1 such that it beats at least p fraction of the columns in each Zk
d :

for all 0 ≤ d ≤ k, |{z ∈ Zk
d : yk+1 beats z}| ≥ p · |Zk

d | (1)

Notice that a row-side IC meets the above constraint, since it beats every column in {0, 1}m. Hence,
our assumption that M is a row-side S2-type matrix implies the existence of a row meeting the
required constraint. However, our algorithm does not have a handle on the row-side IC.

We obtain a row yk+1 satisfying the above constraint (1) by invoking the FPprAM procedure
presented in Lemma 6.6. The procedure is invoked by setting Q = {Zk

0 , Zk
1 , . . . , Zk

k}.
At the end of t iterations, the algorithm has found rows y1, y2, . . . yt meeting the constraints

and outputs the set Y = {y1, y2, . . . , yt}. The main claim is that the set Y is a row-side α-strong
CIC. The proof of the claim is outlined below.

For 0 ≤ k ≤ t and 0 ≤ d ≤ k, partition the set Zk
d into two disjoint sets Zk

d (0) and Zk
d (1), where

Zk
d (0) = {z ∈ Zk

d : yk+1 does not beat z}

Zk
d (1) = {z ∈ Zk

d : yk+1 beats z}

Notice that Zk+1
d = Zk

d (0) ∪ Zk
d−1(1). Informally, we visualize that the row yk+1 splits each set Zk

d

into Zk
d (0) and Zk

d (1) and sends them to Zk+1
d and Zk+1

d+1 , respectively. The main constraint satisfied

by yk+1 is that |Zk
d (1)| ≥ p|Zk

d |. Similarly, we visualize that the set Zk+1
d receives its contents from

Zk
d and Zk

d−1. The concept is illustrated in Figure 1.
With these notations, the main claim that Y is a row-side α-strong CIC can be stated equiva-

lently as: for 0 ≤ d ≤ ⌈αt⌉, the set Zt
d is empty. The claim is implied by the following combinatorial

lemma due to Cai [6]. (There the lemma is proved for the specific case of α = 1/2; we obtain the
generalization to higher values of α by suitably setting the parameters p and t based on the input
α).

Lemma 6.4 [6] Let Z0, Z1, . . . , Zt be a sequence of partitions of {0, 1}m, where each Zk partitions
the set {0, 1}m into disjoint sets Zk

0 , Zk
1 , . . . , Zk

k . Divide each set Zk
d into two disjoint sets Zk

d (0) and
Zk

d (1) such that the following constraints are satisfied: (i) Zk+1
d = Zk

d (0) ∪ Zk
d−1(1); (ii) Zk

d (1) ≥

p|Zk
d |. Then,

Zt
0 = Zt

1 = · · · = Zt
⌈αt⌉ = ∅,

provided p = 1+α
2 and t ≥ 2(m+1)(1+α)

1−α
.

6.2 Finding a Good Row

In this section, we prove Lemma 6.6 used in the previous section. We first extend the notion of
goodness (Definition 5.2) to handle a collection of sets of columns.

19



...
...

...

Z3
0 Z3

1 Z3
2 Z3

3

Z2
0

1−p

__@@@@@@@ p

??~~~~~~~

Z2
1

1−p

__@@@@@@@ p

??~~~~~~~

Z2
2

1−p

__@@@@@@@ p

??~~~~~~~

Z1
0

1−p

__@@@@@@@ p

??~~~~~~~

Z1
1

1−p

__@@@@@@@ p

??~~~~~~~

Z0
0

1−p

__@@@@@@@ p

??~~~~~~~

Figure 1: Illustration for Lemma 6.4

Definition 6.5 Let A be a 2a × 2b Boolean matrix. For a row y ∈ {0, 1}a and a set of columns
X ⊆ {0, 1}b, we define

µ(y,X) =
|{z ∈ X : y beats z}|

|X|

Consider a set X = {X1,X2, . . . ,Xℓ}, where each Xi ⊆ {0, 1}a is a subset of columns of A. The
goodness of a row y with respect to X is defined as:

µ(y,X ) =
ℓ

min
i=1

µ(y,Xi).

We extend the notion of goodness to prefixes. Let s be a string of length |s| ≤ a. We say that a
row y ∈ {0, 1}a is an extension of s, if s is a prefix of y. The goodness of the prefix s with respect
to X is defined to be the maximum goodness we can achieve by extending s into a full row:

µ(s,X ) = max
y∈{0,1}a : y extends s

[µ(y,X )]

Lemma 6.6 There exists an FPprAM algorithm that solves the following problem. The input con-
sists of: (i) a circuit succinctly representing a row-side S2-type matrix M of dimension 2n × 2m;
(ii) a set Q = {Q1, Q2, . . . , Qℓ}, where each Qi ⊆ {0, 1}m is a subset of the columns of M that
is presented succinctly in the form of a circuit; (iii) a parameter p < 1. The output is a row ŷ
having goodness µ(ŷ,Q) ≥ p. The running time of the algorithm has a polynomial dependence on
1/(1 − p).

Notice that the above lemma is a generalization of Lemma 5.1 that can handle a collection of
sets of columns. Lemma 5.1 is a special case where ℓ = 1 and p = 1/2. The above lemma is proved
in a manner similar to that of Lemma 5.1. We provide a proof sketch in the remainder of the
section.

We construct the row ŷ in n iterations, finding a bit in each iteration. We start by setting
s0 = λ, where λ is the empty string. Notice that the matrix M has a row-side IC y∗ and that y∗

20



extends the empty string s0. Thus, µ(s0,Q) = 1. For 1 ≤ k ≤ n, in iteration k, we find a prefix
sk such that µ(sk,Q) ≥ 1 − kǫ, where ǫ is a parameter fixed below. By induction, assume that
at the end of iteration k − 1, we have found a prefix sk−1 having goodness µ(sk−1,Q) ≥ ρ, where
ρ = 1− (k−1)ǫ. Observe that µ(sk−10,Q) ≥ ρ or µ(sk−11,Q) ≥ ρ (or both). In iteration k, we find
a suitable bit b ∈ {0, 1} and append it to sk−1 to get sk = sk−1b. The bit b is found by invoking
the algorithm given in Lemma 6.7: given a prefix β, the algorithm can distinguish between the
cases of µ(β,Q) ≥ ρ and µ(β,Q) ≤ ρ − ǫ. We invoke the algorithm two times with β = sk−10 and
β = sk−11 as inputs. By the above observation, the algorithm should answer “yes” on at least one
of these invocations. Let b be a bit such that the algorithm answers “yes” on input β = sk−1b.
We choose b to be the required bit and set sk = sk−1b. It is easy to see that µ(sk,Q) ≥ ρ − ǫ (for
otherwise, the algorithm should have output “no” on input β = sk−1b).

At the end of the process we have a string sn such that µ(sn,Q) ≥ 1−nǫ. Setting ǫ = (1−p)/n,
we see that µ(sn,Q) ≥ p. We output ŷ = sn.

6.3 Testing for the Goodness of a Prefix

In this section, we prove the following lemma used in the previous section. The lemma tests whether
a prefix is good.

Lemma 6.7 There exists an FPprAM algorithm that solves the following problem. The input con-
sists of: (i) a circuit succinctly representing a row-sided S2-type matrix M of dimension 2n × 2m;
(ii) a set Q = {Q1, Q2, . . . , Qℓ}, where each Qi ⊆ {0, 1}m is a subset of the columns of M that
is presented succinctly in the form of a circuit; (iii) a string β having length |β| ≤ n; (iv) two
parameters ρ ≤ 1 and ǫ > 0. It outputs an answer as follows:

µ(β,Q) ≥ ρ =⇒ Answer=“yes”

µ(β,Q) ≤ ρ − ǫ =⇒ Answer=“no”.

If µ(β,Q) falls in the interval [ρ − ǫ, ρ], the output can be arbitrary. The running time of the
algorithm has a polynomial dependence on 1/ρ and 1/ǫ.

The gap between the positive and negative instances in the above problem is only ǫ. As in
the case of Lemma 5.3, we amplify the gap via the running repeated trials and applying Chernoff
bounds.

The amplification involves a parameter r, to be fixed shortly. Define a new matrix M as
follows. Each row in M corresponds to a row in M and each column of M corresponds to a
sequence 〈z1, z2, . . . , zr〉 of r columns from M . Thus, M is of dimension 2n × 2m, where m = mr.
For a row y ∈ {0, 1}n and a column z = 〈z1, z2, . . . zr〉, define the entry

M [y, z] =

{
1 if

|{zi : y beats zi in M}|
r

≥ (ρ − ǫ
2)

0 otherwise

For a set of columns X ⊆ {0, 1}m, define Xr to be the r-way Cartesian product of X:

Xr = {〈z1, z2, . . . , zr〉 : for 1 ≤ j ≤ r, zi ∈ X}.

Notice that Xr is a subset of columns of M . For 1 ≤ j ≤ ℓ, define Qj = (Qj)
r. Let Q =

{Q1, Q2, . . . , Qℓ}.

21



Set r = ⌈16m/ǫ2⌉. Applying Chernoff bounds, we get the following claim, which expands the
gap from [ρ − ǫ, ρ] to [1/m4, 1/2].

Lemma 6.8 For any prefix β,

µ(β,Q) ≥ ρ =⇒ µ(β,Q) ≥ 1/2

µ(β,Q) ≤ ρ − ǫ =⇒ µ(β,Q) ≤ 1/m4

The above lemma enables us to focus on M and Q, instead of M and Q. Our aim is to test
whether the given prefix β has an extension y that beats a sufficiently large fraction of columns
from each set Qj . This is accomplished in two successive steps. First, we estimate the size of each

set Qj . In the second step, we test whether β has an extension y that beats a sufficiently large

number of columns from each set Qj.
Our algorithm would make oracle queries to the following promise language. The promise

language GoodPrefixGen is a generalization of the promise language GoodPrefix.
Promise Language GoodPrefixGen: The instances of this language consist of (i) a Boolean
2n × 2m matrix M ; (ii) a string β having length |β| ≤ n; (iii) a sequence of sets X1,X2, . . . ,Xℓ,
where each set Xi ⊆ {0, 1}m is presented succinctly in the form of a circuit; (iv) a sequence of
positive integers k1, k2, . . . , kℓ.
Positive instances: There exists a row y extending β such that for all 1 ≤ j ≤ ℓ, y beats at least
kj2

kj columns in Xj .
Negative instances: For all rows y extending β, there exists a set Xj such that y beats at most
2kj−1 columns in Xj .

The following lemma shows that GoodPrefixGen lies in the promise class prAM. The proof
is similar to that of Lemma 5.6. We extend the proof of Lemma 5.6 to handle multiple subsets of
columns in a parallel fashion.

Lemma 6.9 The promise language GoodPrefix belongs to the promise class prAM.

Proof: We present an MAM protocol; it is well known such a protocol can be converted into an
AM protocol [4].

For 1 ≤ j ≤ ℓ, let Hj be a family of universal hash functions from {0, 1}m to {0, 1}kj . Merlin
sends a row y ∈ {0, 1}n extending β. For 1 ≤ j ≤ ℓ, Arthur picks a set Hj of hash functions
uniformly and independently from Hj . Then, Merlin must prove that Xj has a collision under Hj,
for each 1 ≤ j ≤ ℓ. If Merlin can accomplish this, then Arthur accepts the input; else Arthur rejects
the input. Lemma 5.5 shows that: (i) if the input is a positive instance, then Arthur accepts with
probability 1; (ii) if the input is a negative instance, then Arthur accepts with probability at most
1/2. �

We now describe the algorithm claimed in Lemma 6.7. For 1 ≤ j ≤ ℓ, we invoke the algorithm
given in Theorem 3.2 on the set Qj and find a estimate Uj such that (1− δ̂)Uj ≤ |Qj | ≤ Uj , where

δ̂ is a parameter suitably set as δ̂ = 0.1. For 1 ≤ j ≤ ℓ, fix kj = ⌊log
(1−bδ)Uj

2m
⌋. The choice of kj

ensures that for any row y

µ(y,Q) ≥ 1/2 =⇒ for all 1 ≤ j ≤ ℓ, y beats at least kj2
kj columns in Qj

µ(y,Q) ≤ 1/m4 =⇒ there exists 1 ≤ j ≤ ℓ, y beats at most 2kj−1 columns in Qj

22



We ask the GoodPrefix oracle a single query consisting of M , β, Q1, Q2, . . . , Qℓ and k1, k2, . . . , kℓ.
If the oracle answers “yes”, we output “yes”; otherwise, we output “no”. The correctness of the
algorithm follows from Lemma 6.8.

7 Succinct Zero-sum Games

In this section, we present an FPprAM algorithm for finding near-optimal strategies for succinctly
presented zero-sum games.

A two-player zero-sum 0-1 game is specified by a 2n × 2m Boolean payoff matrix M . The
rows and the columns correspond to the pure strategies of the row-player and the column-player,
respectively. The row-player chooses a row y ∈ {0, 1}n and the column-player chooses a column
z ∈ {0, 1}m, simultaneously. The row-player then pays M [y, z] to the column-player. The goal of
the row-player is to minimize its loss, while the goal of the column-player is to maximize its gain.

A mixed strategy (or simply, a strategy) for the row-player is a probability distribution P over
the rows; similarly, a strategy for the column-player is a probability distribution Q over the columns.
The expected payoff is defined as:

M(P,Q) =
∑

y,z

P (y)M [y, z]Q(z).

The classical Minmax theorem of von Neumann [23] says that even if the strategies are chosen
sequentially, who plays first does not matter:

min
P

max
Q

M(P,Q) = max
Q

min
P

M(P,Q) = v∗,

where v∗ is called the value of the game. This means that there exist strategies P ∗ and Q∗ such
that

maxQ M(P ∗, Q) ≤ v∗ and minP M(P,Q∗) ≥ v∗.

Such strategies P ∗ and Q∗ are called optimal strategies.
In some scenarios, it is sufficient to compute approximately optimal strategies. We shall be

mainly concerned with additive errors.

Definition 7.1 A row-player strategy P̃ is said to be ǫ-optimal, if

max
Q

M(P̃ ,Q) ≤ v∗ + ǫ,

and similarly, a column-player strategy Q̃ is said to be ǫ-optimal, if

min
P

M(P, Q̃) ≥ v∗ − ǫ,

We shall be interested in computing ǫ-optimal strategies when the payoff matrix M is presented
succinctly in the form of a circuit C. Fortnow et. al [13] presented a ZPPNP algorithm for the above
problem; their algorithm also finds an estimate of the value of the game within additive errors. Our
main result is an FPprAM algorithm for the same problems. As mentioned in the introduction, our
algorithm yields an alternative proof of the result by Fortnow et al. The details are also presented
in this section.

The first task is to approximately find the value of the given game. This is treated next.

23



7.1 Approximately Finding the Value

We shall first discuss an FPprSp
2 algorithm for approximating the value. Here, prSp

2 refers to the
promise version of the class Sp

2.

Definition 7.2 A promise language Π = (Π1,Π2) is said to be in the promise class prSp
2, if there

exists a polynomial time computable Boolean predicate V (·, ·, ·) and polynomials p(·) and q(·) such
that for any x, we have

x ∈ Π1 =⇒ (∃y ∈ {0, 1}n)(∀z ∈ {0, 1}m)[V (x, y, z) = 1], and

x ∈ Π2 =⇒ (∃z ∈ {0, 1}m)(∀y ∈ {0, 1}n)[V (x, y, z) = 0],

where n = p(|x|) and m = q(|x|). We refer to the y’s and z’s above as certificates. The predicate
V is called the verifier. (The complexity class Sp

2 consists of languages in prSp
2.)

Our FPprSp
2 algorithm for finding the value of a given game uses a promise language called SGV

as the oracle. Fortnow et. al showed that this promise language lies in prSp
2, the promise version of

the class Sp
2.

Succinct Game Value (SGV) 6: The input consists of a circuit succinctly representing a 0-1
zero-sum game and parameters v and ǫ.
Positive instances: v∗ ≥ v + ǫ.
Negative instances: v∗ ≤ v − ǫ.
Here, v∗ refers to the value of the given game.

Theorem 7.3 [13] The promise language SGV belongs to prSp
2.

Using SGV as an oracle, we can perform a linear search in the interval [0, 1] and approximately
find the value of a given game.

Theorem 7.4 There exists an FPprSp
2 algorithm that takes as input a circuit C succinctly repre-

senting a 0-1 zero-sum game and a parameter ǫ and outputs a number v such that v−ǫ ≤ v∗ ≤ v+ǫ,
where v∗ is the value of the given game. The running time of the algorithm is polynomial in |C|
and 1/ǫ.

Proof: We shall use SGV as the prSp
2 oracle. Set ǫ′ = ǫ/2. For j = 0, 1, 2, . . . , ⌈n/ǫ′⌉, ask the query

〈C, jǫ′, ǫ′〉. Let ĵ be the first index such that the oracle answers “no”. Set v′ = ĵǫ′. Return(v′).
Notice that v′ has the required property. �

Fortnow et. al [13] presented a ZPPNP algorithm for the problem of approximating the value of
a succinct zero-sum game. We can show that FPprSp

2 ⊆ ZPPNP (see Appendix). Thus, Theorem 7.4
provides a mild improvement over the previously best known result for the problem of approximating
the value.

An easy extension of Theorem 4.9 shows that FPprSp
2 ⊆ FPprAM. Combined with Theorem 7.4,

we get an FPprAM algorithm for approximating the value of succinct zero-sum games.

Theorem 7.5 There exists an FPprAM algorithm that takes as input a circuit C succinctly repre-
senting a 0-1 zero-sum game and a parameter ǫ and outputs a number v such that v−ǫ ≤ v∗ ≤ v+ǫ,
where v∗ is the value of the given game. The running time of the algorithm is polynomial in |C|
and 1/ǫ.

6ǫ is given as a rational number a/b, where a and b are specified in unary.

24



7.2 Finding Near-Optimal Strategies

In this section, we present an FPprAM algorithm for finding near-optimal strategies of a succinctly
presented zero-sum game. The following small support lemma is useful in designing our algorithms.

A mixed strategy of a player is said to be k-uniform, if it chooses uniformly from a multi-set of
k pure strategies. Such a strategy can simply be specified by the multi-set of size k. The following
lemma asserts the existence of k-uniform ǫ-optimal, for a small value of k.

Lemma 7.6 ([1][24][21]) Let M be a 0 − 1 2n × 2m payoff matrix. Then there are k-uniform
ǫ-optimal strategies for both the row and the column-players, where k = O(n+m

ǫ2
).

The algorithm for finding near-optimal strategies goes via a reduction to the problem of finding
a strong CIC of a given S2-type matrix. We then use the algorithm given in Theorem 6.3.

Theorem 7.7 There exists an FPprAM algorithm that takes as input a circuit C succinctly repre-
senting a 2n × 2m payoff matrix M of a 0-1 zero-sum game and a parameter ǫ and outputs a pair
of ǫ-optimal mixed strategies (P̃ , Q̃). The running time of the algorithm is polynomial in |C| and
1/ǫ.

Proof: Let v∗ be the value of the game given by M . Our algorithm finds the required strategies P̃
and Q̃ in two phases. Here, we discuss the first phase of the algorithm that finds P̃ . The second
phase for finding Q̃ works in a similar manner.

The algorithm uses a parameter ǫ′ = ǫ/2. Invoke the algorithm given in Theorem 7.5 with error
parameter ǫ′/2 and obtain an estimate v. Set v+ = v + ǫ′/2. Notice that v+ is an upperbound
on v∗ satisfying v∗ ≤ v+ ≤ v∗ + ǫ′. Invoking Lemma 7.6 with error parameter ǫ′ we get a number
k = k(ǫ′) such that M has k-uniform ǫ′-optimal strategies (Pǫ′ , Qǫ′).

Construct a matrix M as follows. Each row y of M corresponds to a sequence 〈y1, y2, . . . , yk〉,
where yi is a row in M ; each column of M corresponds to a single column of M . Thus, M is a
2n×2m matrix, where n = nk. Its entries are defined as follows. Consider a row y = 〈y1, y2, . . . , yk〉
and a column z. The entry M [y, z] is defined as:

M [y, z] =

{
1 if 1

k

(∑k
i=1 M [yi, z]

)
≤ v+

0 otherwise

Let y be a row corresponding to Pǫ′ . For any strategy Q of the column-player the expected
payoff M(Pǫ′ , Q) ≤ v+. In particular, this is true for all pure strategies z of the column-player.
Therefore, we see that y is a row full of 1’s. In other words, M is a row-side S2-type matrix.

Our next task is to find an α-strong row-side CIC of the matrix M , where α is a parameter
suitably fixed as α = (1 − ǫ/2). For this, we invoke the algorithm given in Theorem 6.3 on M and
obtain a row-side α-strong CIC Y . Let the size of Y be t. Notice that each element y of Y is a
sequence of k pure row-player strategies. Consider the collection S obtained by including all the
pure strategies found in each y ∈ Y ; thus, S is a multiset of size kt. Let P̃ be the (kt)-uniform
strategy over the multiset S. We next prove that P̃ is an ǫ-optimal row-player strategy. The
following easy claim is useful for this purpose.
Claim 1: Let P be a k-uniform row-player strategy. Let v ≤ 1 be such that for any pure column-
player strategy z, Σy∈P M [y, z] ≤ v. Then, maxQ M(P,Q) ≤ v, where Q ranges over all mixed
strategies of the column-player.

25



Claim 2: P̃ is an ǫ-optimal row-player strategy. Proof: Consider any pure strategy of the column-
player z ∈ {0, 1}m. Since Y is an α-strong CIC, at least an α fraction of the rows in Y beat z. A
row y ∈ Y beating z means that y = {y1, y2, . . . , yk} satisfies

∑
yi∈y M [yi, z] ≤ kv+. Recall that

v+ ≤ v∗ + ǫ′. We now want to estimate the sum
∑

y∈S M [y, z], which can be written as:

∑

y∈S

M [y, z] =
∑

y∈Y

∑

yi∈y

M [yi, z].

To estimate the sum on the RHS, we partition Y into two disjoint sets Y good and Y bad: place all
the y ∈ Y that beat z in Y good and the rest in Y bad. Notice that |Y good| ≥ αt.

∑

y∈S

M [y, z] =
∑

y∈Y

∑

yi∈y

M [yi, z]

=
∑

y∈Y good

∑

yi∈y

M [yi, z] +
∑

y∈Y bad

∑

yi∈y

M [yi, z]

≤
∑

y∈Y good

kv+ +
∑

y∈Y bad

k

≤ |Y good|kv+ + |Y bad|k

≤ tk(v∗ + ǫ′) + (1 − α)tk ≤ tk(v∗ + ǫ)

The last inequality follows from the choice of α and ǫ′. Now, Claim 2 follows from Claim 1.
The second phase of the algorithm that finds Q̃ works in a similar manner. Fix ǫ′ = ǫ/2. Using

the algorithm given in Theorem 7.5, we get a good lowerbound v− on v∗ satisfying v∗−ǫ′ ≤ v− ≤ v∗.
Invoking Lemma 7.6, we get a number k = k(ǫ′) such that M has k-uniform ǫ′-optimal strategies.
Define a 2n × 2m matrix M , where m = mk. For a row y and a column z = 〈z1, z2, . . . , zk〉, the
entry M [y, z] is defined as:

M [y, z] =

{
0 if 1

k

(∑
zi

M [y, zi]
)
≥ v−

1 otherwise

Observe that the matrix M is a column-side S2-type matrix. Our next task is to compute a column-
side α-strong CIC Z of the matrix M , where α is suitably fixed as α = 1 − ǫ/2. For this, we again
appeal to Theorem 6.3. Let the size of Z be t. Consider the collection S obtained by including all
the pure strategies found in each z ∈ Z. Let Q̃ be the (kt)-uniform strategy over the multiset S.
We next show that Q̃ is an ǫ-optimal column-player strategy. The following claim is useful for this
purpose.
Claim 3: Let Q be a k-uniform row-player strategy. Let v ≤ 1 be such that for any pure row-player
strategy y, Σz∈QM [y, z] ≤ v. Then, maxP M(P,Q) ≤ v, where P ranges over all mixed strategies
of the row-player.
Claim 4: Q̃ is an ǫ-optimal column-player strategy. Proof: Consider any pure strategy of the
row-player y ∈ {0, 1}n. We partition Z into two disjoint sets Zgood and Zbad: denote by Zgood the
set of all z ∈ Z that beat y and Zbad = Z − Zgood. Notice that |Zgood| ≥ αt. A column z ∈ Z
beating y means that z = {z1, z2, . . . , zk} satisfies

∑
zi∈z M [y, zi] ≥ kv−. We have

26



∑

z∈S

M [y, z] =
∑

z∈Z

∑

zi∈z

M [y, zi]

=
∑

z∈Zgood

∑

zi∈z

M [y, zi] +
∑

z∈Zbad

∑

zi∈z

M [y, zi]

≥
∑

z∈Zgood

kv− +
∑

z∈Zbad

0

≥ |Zgood|kv−

≥ αtk(v∗ − ǫ′)

≥ tk(v∗ − ǫ)

The last inequality follows from the choice of α and ǫ′, and the fact that v∗ ≤ 1. Now Claim 4
follows from Claim 3. �

7.3 An Alternative ZPPNP Algorithm for Finding Near-Optimal Strategies

Fortnow et. al [13] designed a ZPPNP algorithm for the problem of finding near-optimal strategies
considered in Theorem 7.7. By suitably adapting the proof of Theorem 7.7, we derive an alternative
proof of this result. To achieve this, we make use of Cai’s ZPPNP algorithm [6] for finding strong
CIC (Theorem 6.2). Next we sketch the alternative proof.

Theorem 7.8 [13] There exists an ZPPNP algorithm that takes as input a circuit C succinctly
representing a 2n × 2m payoff matrix M of a 0-1 zero-sum game and a parameter ǫ and outputs a
pair of ǫ-optimal mixed strategies (P̃ , Q̃). The running time of the algorithm is polynomial in |C|
and 1/ǫ.

Proof: We adapt the proof of Theorem 7.7. The first step is to approximately find the value of
a given game; namely, we need a ZPPNP algorithm for the problem considered in Theorem 7.5.
Theorem 7.4 presents a FPprSp

2 for this problem. By extending Cai’s result [6] that Sp
2 ⊆ ZPP, we

can show that FPprSp
2 can be simulated in ZPPNP (see Appendix). Thus, we get a ZPPNP algorithm

for approximating the value of a given game.
To find the near-optimal strategies, we follow the algorithm given in Theorem 7.7. Notice that

the above algorithm runs in polynomial time, given a black-box for computing α-strong CIC’s for
S2-type matrices. In the original proof, we made use of the FPprAM algorithm for finding strong
CICs given by Theorem 6.3. Instead, here we use Cai’s ZPPNP algorithm (Theorem 6.2) for finding
the required strong CICs. This yields a ZPPNP algorithm for finding the ǫ-optimal strategies P̃ and
Q̃. �

8 Conditional Derandomization

As mentioned in the introduction, our main results can be derandomized under suitable hardness
hypotheses. For the ease of exposition, we had presented slightly weaker derandomization results
in the introduction. Here, we state the actual stronger results. These are obtained by combining
our results with the hitting set generator construction of Miltersen and Vinodchandran [22]. The
following result directly follows from their construction.

27



Theorem 8.1 ([22]) • Suppose there exists a language L computable in ENP
|| and an ǫ > 0

such that for sufficiently large n, SV-nondeterministic circuits of size 2ǫn cannot compute
L ∩ {0, 1}n. Then, PprAM

|| = PNP
|| .

• Suppose there exists a language L computable in ENP and an ǫ > 0 such that for sufficiently
large n, SV-nondeterministic circuits of size 2ǫn cannot compute L∩{0, 1}n. Then, PprAM =
PNP.

• Suppose there exists a language L computable in ENP and an ǫ > 0 such that for sufficiently
large n, SV-nondeterministic circuits of size 2ǫn cannot compute L∩{0, 1}n. Then, FPprAM =
FPNP.

The following surprising result was first proved by Shaltiel and Umans [29]. We obtain an
alternative proof by combining Theorem 8.1 with Theorem 3.4 and 4.9.

Theorem 8.2 ([29]) • Suppose there exists a language L computable in ENP
|| and an ǫ > 0

such that for sufficiently large n, SV-nondeterministic circuits of size 2ǫn cannot compute
L ∩ {0, 1}n. Then, BPPNP

|| = PNP
|| .

• Suppose there exists a language L computable in ENP and an ǫ > 0 such that for sufficiently
large n, SV-nondeterministic circuits of size 2ǫn cannot compute L∩{0, 1}n. Then, Sp

2 = PNP.

The following result offers a conditional derandomization of Theorem 7.7. It shows how to find
ǫ-optimal strategies of a succinctly presented zero-sum game in FPNP, under a suitable hardness
hypothesis. It is not clear whether the following derandomization can be achieved for the ZPPNP

algorithm by Fortnow et al. [13] (given in Theorem 7.8).

Theorem 8.3 Suppose there exists a language L computable in ENP and an ǫ > 0 such that for
sufficiently large n, SV-nondeterministic circuits of size 2ǫn cannot compute L ∩ {0, 1}n. Then,
there exists an FPNP algorithm that takes as input a circuit C succinctly representing a 2n × 2m

payoff matrix M of a 0-1 zero-sum game and a parameter ǫ and outputs a pair of ǫ-optimal mixed
strategies (P̃ , Q̃). The running time of the algorithm is polynomial in |C| and 1/ǫ.

9 Open Problems

Here we state some open problems. We showed that BPPNP
|| ⊆ PprAM

|| . The most interesting and

challenging open problem asks whether BPPNP is contained in PprAM. An affirmative answer would
have two interesting implications. First, this would show that BPPNP ⊆ PΣp

2 . The second impli-
cation is that BPPNP can be derandomized under the hardness hypothesis used for derandomizing
AM.

We presented a FPprSp
2 algorithm for approximating the value of a succinct zero-sum game. It

is open whether near-optimal strategies can be found in FPprSp
2 . We know that PprMA ⊆ ZPPNP

and PprSp
2 ⊆ ZPPNP, and also that PMA ⊆ Sp

2 and PSp
2 ⊆ Sp

2. It is open whether PprMA and PprSp
2

are contained in Sp
2.

28



Acknowledgments

We thank Eric Allender, Dieter van Melkebeek and N.V.Vinodchandran for useful comments and
suggestions. We also thank Dieter van Melkebeek for sharing with us his alternative proof of
Theorem 3.4.

References

[1] I. Althöfer. On sparse approximations to randomized strategies and convex combinations.
Linear Algebra and its Applications, 199, 1994.

[2] V. Arvind and J. Köbler. On pseudorandomness and resource-bounded measure. Theoretical
Computer Science, 255(1-2):205–221, 2001.

[3] V. Arvind, J. Köbler, U. Schöning, and R. Schuler. If NP has polynomial-size circuits, then
MA=AM. Theoretical Computer Science, 137(2):279–282, 1995.

[4] L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system, and a hierarchy
of complexity classes. Journal of Computer and System Sciences, 36(2):254–276, 1988.

[5] N. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries that are
sufficient for exact learning. Journal of Computer and System Sciences, 52(3):421–433, 1996.

[6] J. Cai. Sp

2 ⊆ ZPPNP. Journal of Computer and System Sciences, 73(1), 2007.

[7] R. Canetti. More on BPP and the polynomial-time hierarchy. Information Processing Letters,
57(5):237–241, 1996.

[8] V. Chakaravarthy and S. Roy. Oblivious symmetric alternation. In Proceedings of the 23rd
Annual Symposium on Theoretical Aspects of Computer Science, 2006.

[9] V. Chakaravarthy and S. Roy. Arthur and merlin as oracles. In Proceedings of the 33rd
International Symposium on Mathematical Foundations of Computer Science, 2008.

[10] V. Chakaravarthy and S. Roy. Finding irrefutable certificates for Sp
2 via Arthur and Merlin. In

Proceedings of the 25th Annual Symposium on Theoretical Aspects of Computer Science, 2008.

[11] D. Du and K. Ko. Computational Complexity. John Wiley and sons, 2000.

[12] J. Feigenbaum, D. Koller, and P. Shor. A game-theoretic classification of interactive complexity
classes. In Proceedings of the 10th Annual IEEE Conference on Computational Complexity,
1995.

[13] L. Fortnow, R. Impagliazzo, V. Kabanets, and C. Umans. On the complexity of succinct
zero-sum games. Computational Complexity, 17(3):353–376, 2008.

[14] L. Fortnow, A. Pavan, and S. Sengupta. Proving SAT does not have small circuits with an
application to the two queries problem. Journal of Computer and System Sciences, 74(3):358–
363, 2008.

29



[15] O. Goldreich and A. Wigderson. Improved derandomization of BPP using a hitting set gener-
ator. In RANDOM-APPROX, 1999.

[16] O. Goldreich and D. Zuckerman. Another proof that BPP ⊆ PH (and more). Technical Report
TR97–045, ECCC, 1997.

[17] R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits: Derandom-
izing the XOR lemma. In Proceedings of the 29th ACM Symposium on Theory of Computing,
1997.

[18] R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes.
In Proceedings of the 12th ACM Symposium on Theory of Computing, 1980.

[19] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs
unless the polynomial hierarchy collapses. SIAM Journal on Computing, 31(5):1501–1526,
2002.

[20] J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits. SIAM
Journal on Computing, 28(1):311–324, 1998.

[21] R. Lipton and N. Young. Simple strategies for large zero-sum games with applications to
complexity theory. In Proceedings of the 26th ACM Symposium on Theory of Computing,
1994.

[22] P. Miltersen and N. Vinodchandran. Derandomizing Arthur-Merlin games using hitting sets.
Computational Complexity, 14(3):256–279, 2005.

[23] J. Neumann. Zur theorie der gesellschaftspiel. Mathematische Annalen, 100, 1928.

[24] J. Newman. Private vs. common random bits in communication complexity. Information
Processing Letters, 39:67–71, 1991.

[25] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994.

[26] G. Owen. Game Theory. Academic Press, 1982.

[27] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[28] A. Russell and R. Sundaram. Symmetric alternation captures BPP. Computational Complex-
ity, 7(2):152–162, 1998.

[29] R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling. Com-
putational Complexity, 15(4):298–341, 2007.

[30] M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th ACM
Symposium on Theory of Computing, 1983.

[31] L. Stockmeyer. The complexity of approximate counting. In Proceedings of the 15th ACM
Symposium on Theory of Computing, 1983.

30



A Upperbounds for PprAM and related classes

Here, we catalogue some upperbounds for PprAM and related classes. We start with the following
simple result.

Theorem A.1 • PprAM ⊆ BPPNP.

• PprAM
|| ⊆ BPPNP

|| .

• FPprAM is contained in the function class BPPNP.

• FPprAM
|| is contained in the function class BPPNP

|| .

Next, we turn our attention to PprMA. Let us first recall some known results: (i) MA ⊆ Sp
2 [28];

(ii) Sp
2 ⊆ ZPPNP [6]; (iii) MA ⊆ ZPPNP [16, 2]. An easy extension of (i) shows that prMA ⊆ prSp

2.

Below, we extend (ii) as PprSp
2 ⊆ ZPPNP. Thus, we get a generalization of (iii) giving PprMA ⊆

ZPPNP.

Theorem A.2 PprSp
2 ⊆ ZPPNP.

Proof: We sketch the proof here. It is straightforward to show that the following promise language
is prSp

2-hard.
Promise language Sp

2-MembershipTest:The input consists of circuit succinctly representing
a Boolean matrix M .
Positive instance: M is a row-side S2-type matrix.
Negative instance: M is a column-side S2-type matrix.

Cai’s result [6] that Sp
2 ⊆ ZPPNP provides a ZPPNP algorithm for the above problem. The

algorithm has the following characteristics. (i) If the input matrix M is a row-side S2-type matrix,
then the output is either “row-side” or “?”, where “?” will be output with small probability. (ii)
If the input matrix M is a column-side S2-type matrix, then the output is either “column-side”
or “?”, where “?” will be output with small probability. (iii) If the input matrix is not an S2-
type matrix, then the output can be “row-side”, “column-side” or “?”, with no guarantees on the
probability with which these possibilities will be output (in particular, “?” may be output with
high probability).

Consider a language L ∈ PprSp
2 . Let A be a polynomial time algorithm which given oracle access

to Sp
2-MembershipTest computes L. We shall design a ZPPNP algorithm for L. Let C be a query

raised by A, where C succinctly represents a Boolean matrix M of size 2n × 2m. Clearly, we can
simulate Cai’s ZPPNP algorithm on C. A concern here is that M may not be a S2-type matrix and
so, Cai’s algorithm may output an arbitrary answer as “row-side” or “column-side”. This is not
an issue, since the algorithm A should be able to tolerate either answer, by definition. The more
serious issue is that Cai’s algorithm may output “?” with high probability.

We handle this issue by appealing to Lemma 4.14, due to Goldreich and Wigderson [15]. Using
the above lemma, we convert the given matrix into two matrices at least one of which is guaranteed
to be an S2-type matrix. The construction is similar to the one used in the proof of Theorem 4.15.

We define two Boolean matrices M1 and M2 as follows. The matrix M1 is of size 2nm × 2m.
Each row of M1 corresponds to a sequence 〈y1, y2, . . . , ym〉 of m rows of M . Each column z of

31



M1 corresponds to a single column of M . The entries of M 1 are defined as below. For a row
〈y1, y2, . . . , ym〉 ∈ {0, 1}nm and a column z ∈ {0, 1}m, the entry is defined as:

M1[〈y1, y2, . . . , ym〉, z] =

{
1 if some yi beats z in M
0 otherwise

The matrix M 2 is defined analogously. Each row y of M1 corresponds to a single row of M .
Each column of M2 corresponds to a sequence 〈z1, z2, . . . , zn〉 of n columns of M . Thus, M2 is
matrix of size 2n × 2mn. The entries of M 2 are defined as below. For a row y and a column
〈z1, z2, . . . , zn〉 ∈ {0, 1}mn, the entry is defined as:

M 2[y, 〈z1, z2, . . . , zn〉] =

{
0 if some zi beats y in M
1 otherwise

Observe that the following claims are true. (i) If M is a row-side S2-type matrix then both M 1

and M2 are row-side S2-type matrices; (ii) If M is a column-side S2-type matrix then both M 1 and
M2 are column-side S2-type matrices; (iii) If M is not an S2-type matrix then M1 is a row-side
S2-type matrix or M2 is a column-side S2-type matrix (or both) - this follows from Theorem 4.14.

We can construct in polynomial time circuits C1 and C2 that succinctly encode the matrices
M1 and M2, respectively. We run Cai’s algorithm on both these circuits. Let s1 and s2 be the
outcome of these two runs. Apply the following procedure to find an “unified” outcome s:

• Case 1: At least one of s1 or s2 is “row-side”. In this case, set s=“row-side”.

• Case 2: Neither s1 and s2 is “row-side”, but at least one of s1 or s2 is “column-side”. In this
case, set s=“column-side”.

• Case 3: Both s1 and s2 are “?”. In this case, set s=“?”.

If s=“?”, then output “?” and stop simulating A. Otherwise, take s to be the answer to the query
C and continue simulating A.

It can now be argued that our algorithm is a ZPPNP algorithm for L. In particular, on any
input, it would output “?” with only a low probability. �

Corollary A.3 PprMA ⊆ ZPPNP.

The above theorems can be extended for function classes.

Theorem A.4 • FPprSp
2 is contained in the function class ZPPNP.

• FPprMA is contained in the function class ZPPNP.

B Proving SAT Does not Have Small Size Circuits

In [14], Fortnow, Pavan and Sengupta showed that if PNP[1] = PNP[2] then PH = Sp
2. This was

shown by building on a key lemma that provides a mechanism for proving that SAT does not have
small size circuits, if that is the case. Here we derive an alternative proof of this result as a corollary
of Theorem 4.14, due to Goldreich and Wigderson [15].

Let C be a (possibly incorrect) circuit claimed to compute SAT at certain length n. Recall that
C is nice, if C does not accept unsatisfiable formulas.

32



Lemma B.1 [14] Fix n > 0. For every k > 0, if SAT does not have nk+2 size circuits at length n,
then there exists a set S of satisfiable formulas of length n, called counter-examples, such that every
nice circuit of size nk is wrong on at least one formula from S. The cardinality of S is polynomial
in n.

Proof: Fix a length n. Construct a Boolean matrix M as follows. Each satisfiable formula of length
n constitutes a row in M . Each nice circuit of size at most nk constitutes a column in M . Thus
M has at most 2n rows and at most 2nk

columns. For a satisfiable formula ϕ and a nice circuit C,
the entry M [ϕ,C] is defined as:

M [ϕ,C] =

{
1 if C(ϕ) = reject
0 if C(ϕ) = accept

By Theorem 4.14, the matrix M has at least one of the following: (i) a row-side CIC of size at
most nk; (ii) a column-side CIC of size at most n. Suppose (ii) happens. Let C be the assumed
column-side CIC of size n. Construct a circuit C∗ that works as follows: given a formula ϕ of length
n, C∗ accepts ϕ, if at least one circuit in C accepts it; otherwise ϕ is rejected. In other words, C∗ is
the OR of all the circuits in C. Notice that C∗ is a correct circuit for SAT and that the size of C∗

is nk+1. This contradicts the assumption that SAT at length n does not have circuits of size nk+2.
Thus, the only possibility is (i): there exists a row-side CIC S of cardinality at most nk. Observe
that every nice circuit is incorrect on at least one formula in S. We take S to be the claimed set of
counter-examples. �

33


