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Abstract

We propose a generalized definition for the multi-objective traveling salesman problem which
uses multigraphs and which allows multiple visits of cities. The definition has two benefits: it
captures typical real-world scenarios and it contains the conventional definition (componentwise
metric cost function) as a special case.

We provide approximation algorithms for this general version of the two-objective traveling
salesman problem (2-TSP). At the same time, with these algorithms we improve the best known
approximations for the conventional case. For 2-TSP we obtain a deterministic 2-approximation,
a randomized (3/2+ε, 2)-approximation, and a randomized (3/2, 2+ε)-approximation. Moreover,
we construct similar algorithms for two-objective traveling salesman path problems.

Further we present arguments that indicate the hardness of improving our randomized ap-
proximation algorithms in the sense that such improvements force us to improve the best known
approximations for TSP, TSPPs, and TSPPst (Christofides 1976, Hoogeveen 1991). In this
way, we can narrow down the approximation ratios for 2-TSP that could be within reach, i. e.,
that will not immediately improve well-studied approximations. This leads to the question of
whether 2-TSP has an (α, β)-approximation where 5/3 ≤ α, β < 2.

1 Introduction

The traveling salesman problem is one of the oldest combinatorial optimization problems. For a
given set of cities, one has to find a shortest cycle that visits each city exactly once. This problem
was first mentioned in 1831 as a problem of a traveling salesman who wants to cover as many
locations as possible without visiting locations twice [Voi31]. In the 1950s and 1960s the traveling
salesman problem became increasingly popular in mathematics and computer science.

In the original formulation, the salesman is not allowed to visit a city more than once. There are two
arguments against this restriction: First, it does not make sense for the substantial majority of real-
world traveling salesman problems, including all geometric versions [JP85]. Second, it considerably
degrades the approximability of the problem. Therefore, with a minimum loss of generality, one
often studies the traveling salesman problem where multiple visits of cities are allowed. This is
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equivalent to the metric traveling salesman problem (TSP), where one assumes a metric distance
function. A special case of TSP is the Euclidean variant, where each city is located at some point
in the plane, and the distance function is defined as the Euclidean distance of two cities.

In 1972, a breakthrough was achieved by Karp [Kar72] who proved the NP-hardness of TSP. This
shows that the search for a polynomial-time algorithm for TSP is an extremely challenging endeavor
and raises the question for good approximation algorithms. For a long time, the best known
approximation for the metric and the Euclidean variant was the simple tree-doubling method. In
1976, Christofides [Chr76] improved this significantly by showing that a combination of a minimum
spanning tree with a minimum matching yields a Hamiltonian cycle with approximation ratio
3/2. The latest breakthrough in this line of research was achieved by Arora [Aro98] who found a
polynomial-time approximation scheme (PTAS) for the Euclidean TSP. However, after 30 years of
research, Christofides’ basic algorithm is still the best known approximation for the metric traveling
salesman problem.

Regarding lower bounds, Papadimitriou and Vempala [PV06] showed that TSP cannot be approx-
imated with a ratio better than 220/219, unless P = NP. Another variant of TSP is studied by
Papadimitriou and Yannakakis [PY93] who construct a 7/6-approximation algorithm for TSP(1,2),
which is the restriction of TSP where all distances are either 1 or 2. Furthermore, TSP motivates
several path problems where for given cities, one has to find a shortest path that visits each city
exactly once and that starts and ends in specified (resp., arbitrary) cities. To this end, Hoogeveen
[Hoo91] introduced the problems TSPP, TSPPs, and TSPPst, which are the metric traveling sales-
man path problems with 0, 1, and 2 specified vertices. He showed 3/2-approximations for TSPP and
TSPPs, and a 5/3-approximation for TSPPst.

Two-Objective TSP: In this paper we study the traveling salesman problem in the presence of
two cost functions. For instance, we could be interested in tours that minimize both the transporta-
tion costs and the transportation time. Since these objectives are conflicting, we cannot hope for a
single optimal solution, but there will be trade-offs. The Pareto set captures the notion of optimal-
ity in this setting. It consists of all solutions that are optimal in the sense that there is no solution
that is strictly better. So for a given situation (i. e., cities and connections with transportation
costs and transportation time), the Pareto set shows all optimal decisions (i. e., all optimal tours).

For a general introduction to multi-objective optimization we refer to the survey by Ehrgott and
Gandibleux [EG00] and the textbook by Ehrgott [Ehr05]. Regarding the approximability of Pareto
sets, Papadimitriou and Yannakakis [PY00] show the following important result: Every Pareto set
has a (1 + ε)-approximation of size polynomial in the size of the instance and 1/ε. Hence, even
though a Pareto set might be an exponentially large object, there always exists a polynomial-size
approximation. This clears the way for a general investigation of the approximability of Pareto sets
of multi-objective optimization problems.

The multi-objective traveling salesman problem was first studied by Gupta and Warburton [GW86].
Angel, Bampis, and Gourvès [ABG04] give a 3/2-approximation for the two-objective variant of
TSP(1,2). Furthermore, Angel et al. [ABGM05] investigate the non-approximability of this prob-
lem. Ehrgott [Ehr00] studies the multi-objective traveling salesman problem and uses the l1-norm
(i.e., the sum of the components) to aggregate the cost functions into one. The approximation
ratio obtained by this approach is incomparable to the two-component approximation ratios that
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we consider in our paper. Manthey and Ram [MR09] give a (2 + ε)-approximation algorithm for
multi-objective TSP with componentwise metric cost functions.

Our Contribution: 1. Generalized Realistic Models
We propose a generalized definiton for the multi-objective traveling salesman problem that is based
on multigraphs and that allows multiple visits of cities. It captures typical real-world scenarios and
it contains as a special case the conventional definition, the componentwise metric multi-objective
TSP [MR09, Ehr00]. The latter, however, is not generally applicable, since in many realistic
situations the cost function is not componentwise metric.

2. Improved Approximation Algorithms
Even though we generalize the definition of the multi-objective TSP, we can provide more accurate
approximations. For 2-TSP we obtain a deterministic 2-approximation, a randomized (3/2 + ε, 2)-
approximation, and a randomized (3/2, 2+ε)-approximation, where we build on the following known
approximation schemes: An FPTAS for multi-objective minimum spanning tree, an FPTAS for
multi-objective shortest path, and an FPRAS for multi-objective minimum matching. All three
approximation schemes are known by Papadimitriou and Yannakakis [PY00], while an FPTAS
for the two-objective shortest path is already known by Hansen [Han79]. In order to apply these
algorithms, we have to extend them to multigraphs. So as a byproduct we provide approximation
schemes for the multigraph variants of the mentioned problems.

The deterministic 2-approximation for 2-TSP is inspired by Christofides’ approximation for TSP,
but contains three new aspects. First, we have to work on multigraphs. Second, we cannot assume
metric instances and therefore, we have to switch from matchings to path matchings. Third, since
we aim at a deterministic algorithm, we cannot use the randomized approximation scheme for
multi-objective minimum matching (or its extension to multi-objective minimum path matching).
Instead, we deterministically extract a suitable two-objective path matching from an approximate
two-objective minimum spanning tree. We show how to charge the error introduced by the FPTAS
for two-objective minimum spanning tree against an error-reduction that is obtained by combining
suitable pairs of spanning trees and path matchings. This results in the approximation ratio of 2.

If we allow randomness, then we can use an FPRAS for multi-objective minimum path matching.
This computes the path matchings more accurately and results in the improved approximation
ratios (3/2+ε, 2) and (3/2, 2+ε). Note that 3/2 exactly meets the ratio of Christofides’ approximation.

Manthey [Man09] notes that most approximation algorithms for multi-objective TSP use random-
ness for computing approximate Pareto sets of cycle covers (resp., matchings), and he raises the
question of whether there are improved and derandomized algorithms for multi-objective TSP:

Are there algorithms for multi-objective TSP that are faster,
deterministic, and achieve better approximation ratios?

Our results give a positive answer to this question. With the deterministic 2-approximation for
2-TSP we slightly improve the deterministic (2 + ε)-approximation for the componentwise metric
2-TSP [MR09]. Furthermore, the version of our algorithm for simple graphs is faster than the
algorithm by Manthey and Ram, since the expensive approximation of the Pareto-minimal match-
ings is replaced by an easy graph algorithm (cf. the algorithm match at page 12 and the preceding
remark).
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Besides the approximations for 2-TSP, we further construct approximation algorithms for the two-
objective traveling salesman path problems 2-TSPP, 2-TSPPs, and 2-TSPPst. Table 1 summarizes
the obtained approximation ratios.

3. Lower Bound Arguments
We present arguments that indicate the hardness of improving our approximation algorithms. For
this we demonstrate approximation preserving reductions that allow us to translate well-studied
problems like TSP or TSPPst to the two-objective optimization problems 2-TSP, 2-TSPP, and
2-TSPPs. From this we obtain that certain improvements of the approximation algorithms for
2-TSP, 2-TSPP, and 2-TSPPs force us to improve the best known approximation algorithms for
TSP, TSPPs, and TSPPst [Chr76, Hoo91]. Improvements of the latter approximations seem very
difficult to obtain and hence improving our algorithms is difficult as well. Table 2 summarizes these
arguments.

As a consequence of our results, we obtain a particular interesting situation for 2-TSP (cf. Fig-
ure 1): We know that 2-TSP is randomized (3/2, 2 + ε)-approximable and randomized (3/2 + ε, 2)-
approximable. It is difficult to improve these approximations with respect to any component, and
it is also difficult to obtain a (5/3− ε, 2− ε)-approximation. However, we have no evidence in favor
of or against an (α, β)-approximation where 5/3 ≤ α, β < 2. The search for such an algorithm
remains a challenging open problem.

Organization of the Paper: The preliminaries in section 2 give some basics on the concept of
multi-objective optimization and define the problems studied here. Section 3 provides approxima-
tion schemes for the multigraph variants of multi-objective minimum spanning tree, multi-objective
shortest path, and multi-objective minimum matching. Section 4 contains the deterministic and
randomized approximation algorithms for 2-TSP, while section 5 provides algorithms for the trav-
eling salesman path problems 2-TSPP, 2-TSPPs, and 2-TSPPst. In section 6 we argue that it is
difficult to improve the approximation ratios of our algorithms. Finally, in section 7 we summarize
the open questions of this paper.

2 Preliminaries

2.1 Multi-Objective Optimization

Consider some minimization problem with a k-dimensional cost function c with components ci
that maps solutions to Nk. For solutions y, y′ of some problem instance x we say y (α1, . . . , αk)-
approximates y′ if ci(y) ≤ αi · ci(y′) for all i. We call a set of solutions (α1, . . . , αk)-approximate
Pareto set if every solution y′ is (α1, . . . , αk)-approximated by some y contained in the set. We say
that some algorithm is an α-approximation algorithm if it returns an α-approximate Pareto set of
x in polynomial time for all input instances x, and call it randomized if it does so with probability
at least 1/2 over all of its executions (however, in all cases we require its output to be a set of valid
solutions of the input instance).

An algorithm is an FPTAS (fully polynomial-time approximation scheme) for a given optimization
problem, if on input x and ε > 0 it computes a (1 + ε)-approximate Pareto set of x in time
polynomial in |x|+ 1/ε. If the algorithm is randomized, then it is called FPRAS (fully polynomial-
time randomized approximation scheme).

4



Problem Det. Approx. Randomized Approx. Ref.

2-TSP (2, 2) (3/2 + ε, 2), (3/2, 2 + ε) 4.2, 4.4

2-TSPP (2 + ε, 2 + ε) (3/2 + ε, 5/3 + ε) 5.5, 5.2

2-TSPPs (2 + ε, 2 + ε) (3/2 + ε, 2 + ε) 5.5, 5.3

2-TSPPst (2 + ε, 2 + ε) (2 + ε, 2 + ε) 5.4

Table 1: Summary of the approximation ratios obtained in this paper where ε > 0.

Problem Approximation ratio An improvement . . . yields . . . for Ref.
proved in this paper to ratio . . . ratio of . . . problem

2-TSP (3/2, 2 + ε) (3/2− ε, α) (3/2− ε) TSP 6.1

(3/2 + ε, 2) (5/3− ε, 2− ε) (5/3− ε) TSPPst 6.7

2-TSPP (3/2 + ε, 5/3 + ε) (3/2− ε, α) (3/2− ε) TSPP 6.8

(3/2− ε, 2− ε) (3/2− ε) TSPPs 6.12

(3/2− ε, 5/3− ε) (5/3− ε) TSPPst 6.10

2-TSPPs (3/2 + ε, 2 + ε) (3/2− ε, α) (3/2− ε) TSPPs 6.13

(3/2 + ε, 2− ε) (3/2 + ε) TSPPst 6.16.1

(3/2− ε, 2− ε) (3/2− ε) TSP 6.16.2

2-TSPPst (2 + ε, 2 + ε) (5/3− ε, α) (5/3− ε) TSPPst 6.17

Table 2: Arguments that indicate the difficulty of improving the obtained randomized approximations where ε > 0
and α > 1. The table shows that if the deterministic (resp., randomized) approximation ratio of a two-objective
problem is improved, then this also improves the deterministic (resp., randomized) approximation ratio of a well-
studied optimization problem. Each argument holds for all considered versions of the multi-objective problems: the
general version, the metric version, and the componentwise metric version. For instance, if componentwise metric
2-TSPPs is randomized (3/2− ε, 2− ε)-approximable, then TSP is randomized (3/2− ε)-approximable.

1 3
2

5
3

2

3/2

5/3

2

A

B

C

Dr1

r2

Figure 1: Approximation ratios for 2-TSP. An approximation ratio inside A would improve Christofides’ approx-
imation and a ratio inside B would improve Hoogeveen’s approximation. We further prove approximation ratios r1
and r2, hence area D is of no further interest. However, evidence against approximation algorithms within C is not
known.
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2.2 Relevant Problems

A multigraph is a pair G = (V,E) of finite sets such that E ⊆ {({u, v}, i) | u, v ∈ V, i ∈ N}. V is
the set of vertices (or nodes) and E is the set of edges, where the last component of an edge is used
to distinguish edges that connect the same pair of vertices. For example, the edges e1 = ({u, v}, 1)
and e2 = ({u, v}, 2) are different objects that both connect the vertices u and v. If there are no
different edges that connect the same vertices, we call G simple. For a given edge e = ({u, v}, i),
the connection induced by e is denoted by [e] = {u, v}. If e is an edge of a simple graph, we identify
e with [e]. An Nk-labeled multigraph (Nk-labeled simple graph, resp.) is a triple G = (V,E, c) where
(V,E) is a multigraph (simple graph, resp.) and c : E → Nk. We also extend c in the obvious way
to sets and multisets of edges. For any vertex v ∈ V , let degG(v) denote the degree of v in G, i. e.,
the number of edges incident to v.

Let a walk (from v0 to vm) be a sequence v0, e1, v1, . . . , em, vm of vertices and edges where ei
connects vi−1 and vi. A closed walk is a walk with v0 = vm, a spanning walk is a walk that covers
all vertices of G, and a path is a walk without repeated vertices. For any U ⊆ V with #U = 2r we
define a path matching of U in G as a set P of r paths in G such that every vertex in U is endpoint
of exactly one path in P . For simplicity, we will represent walks as sets of edges.

We now define the main problems of this paper. Recall that we only consider minimization prob-
lems, so all costs have to be minimized.

Traveling Salesman (k-TSP)
Instance: Nk-labeled multigraph (V,E, c)
Solution: closed spanning walk W
Costs: c(W )

We justify the terminology “k-TSP” as follows: In the case of 1-TSP, multiple edges between
the same vertices do not make sense as they can be replaced by the edges with minimal weight.
Therefore, 1-TSP is equivalent (w.r.t. approximation preserving reductions) to the single-objective
TSP where multiple visits of cities are allowed. Similarly, 1-TSP is equivalent to the metric single-
objective TSP which is the most commonly studied variant of TSP. So for a single objective, these
natural variants of TSP are equivalent.

The situation changes when we consider TSP with multiple objectives. Here there exist at least
three natural variants of different strengths. k-TSP is the most general variant, which handles
arbitrary multigraphs and which allows multiple visits of cities. Metric k-TSP is the restriction
of k-TSP where we require that if there is a path between two points in the multigraph, then
there is also a direct edge that is at least as short in all components (i. e., a direct connection is
always a shortest path between two points). Note that in this variant one can easily avoid multiple
visits by taking a shortcut if a node was visited before. Componentwise metric k-TSP is the
restriction of metric k-TSP where we require a simple graph that is componentwise metric, i. e.,
the triangle inequality holds with respect to each component. This variant was studied by Manthey
and Ram [MR09], and here again it is easy to avoid multiple visits. Against the background of
several variants of different strengths we use the notion k-TSP for the most general variant of the
problem.

We define the traveling salesman path problems similar to k-TSP except that we do not require the
walk to be closed (but rather to have fixed endpoints in {s, t} ⊆ V if s, t are given). Regarding
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terminology, the same remarks apply as in the case of k-TSP. In particular, there exist metric and
componentwise metric restrictions of these problems.

Traveling Salesman Path (k-TSPP)
Instance: Nk-labeled multigraph (V,E, c)
Solution: spanning walk W
Costs: c(W )

Traveling Salesman Path with Start Vertex (k-TSPPs)
Instance: Nk-labeled multigraph (V,E, c), start vertex s ∈ V
Solution: spanning walk W starting at s
Costs: c(W )

Traveling Salesman Path with Start and End Vertex (k-TSPPst)
Instance: Nk-labeled multigraph (V,E, c), start vertex s ∈ V , end vertex t ∈ V
Solution: spanning walk W starting at s and ending at t
Costs: c(W )

Finally, we extend the minimum spanning tree (resp., minimum matching and shortest path) prob-
lem to Nk-labeled multigraphs and introduce the problem of finding a minimum cost path matching
for an input graph and some given subset of vertices with even cardinality.

Minimum Spanning Tree on Multigraphs (multigraph k-MST)
Instance: Nk-labeled multigraph (V,E, c)
Solution: spanning tree T ⊆ E
Costs: c(T )

Minimum Perfect Matching on Multigraphs (multigraph k-MM)
Instance: Nk-labeled multigraph (V,E, c)
Solution: perfect matching M of V in (V,E)
Costs: c(M)

Minimum Path Matching on Multigraphs (multigraph k-MPM)
Instance: Nk-labeled multigraph (V,E, c), set U ⊆ V of even cardinality (vertices to match)
Solution: path matching M of U in (V,E)
Costs: c(M)

Shortest Path on Multigraphs (multigraph k-SP)
Instance: Nk-labeled multigraph (V,E, c), start and end vertices s, t ∈ V
Solution: path P from s to t in (V,E)
Costs: c(P )

3 Matching and Spanning Tree Algorithms on Multigraphs

It is known that the multi-objective variants of minimum spanning tree (k-MST), shortest path (k-
SP), and minimum matching (k-MM) are NP-hard [PY82, GJ79, PY00]. We need approximation
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algorithms for the multigraph variants of these problems. For this we extend known approximation
schemes on simple graphs such that they work for multigraphs. In a second step we extend the
approximation scheme for multi-objective minimum matching on multigraphs such that it works
for multi-objective minimum path matching on multigraphs.

Theorem 3.1 ([PY00]) For any k ≥ 1 there is an FPTAS for k-MST, an FPRAS for k-MM,
and an FPTAS for k-SP.

Theorem 3.2 For any k ≥ 1 there is an FPTAS for multigraph k-MST, an FPRAS for multi-
graph k-MM, and an FPTAS for multigraph k-SP.

Proof

1. multigraph k-MST: We reduce the problem for Nk-labeled multigraphs to the case of Nk-
labeled simple graphs, where the existence of an FPTAS is known by Theorem 3.1.

Let G = (V,E, c) be an Nk-labeled multigraph. We transform G to a simple graph G′ by splitting
each edge into three parts. If an edge e ∈ E connects the vertices u and v, then we add two new
vertices ue and ve to the graph and replace e by the three edges f(e) = {{u, ue}, {ue, ve}, {ve, v}}.
Furthermore, the edge in the middle {ue, ve} is labeled with c(e), while the remaining two edges
are labeled with (0, . . . , 0).

Formally, G′ = (V ∪ U,E′, c′) where U = {ve | e ∈ E, v ∈ [e]}, E′ =
⋃

e∈E f(e), and c′ : E′ → Nk

such that

c′(e′) =

{
c(e) if [e′] = {ue, ve} for some u, v ∈ V, e ∈ E and
(0, . . . , 0) if [e′] * U.

We extend f to subsets E1 ⊆ E:
f(E1) =

⋃
e∈E1

f(e)

So f translates subsets E1 ⊆ E into subsets E′1 ⊆ E′. For the converse translation, let

g(E′1) = {e ∈ E | {ue, ve} ∈ E′1 for some u, v ∈ V }

for E′1 ⊆ E′. Observe that f and g respect the sum of the labels, i. e.,

c(E1) = c′(f(E1)) and c′(E′1) = c(g(E′1)). (1)

Each path in some E′1 ⊆ E′ that starts and ends in nodes from V induces a path in g(E′1) with the
same start and end nodes. Therefore,

E′1 is connected and covers V ⇒ g(E′1) is connected and covers V . (2)

We describe the FPTAS for multigraph k-MST on input G = (V,E, c) and ε > 0: Transform G
into G′ as described above and run the FPTAS by [PY00] on input G′ and ε. We obtain a (1 + ε)-
approximation A of all minimal spanning trees of G′. For each T ′ ∈ A, compute g(T ′), prune this
graph as long as it contains any cycles, and output the resulting tree.
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The running time of the algorithm is polynomial in |G| and 1/ε.

Let T be a minimal spanning tree of G = (V,E, c). We argue that the algorithm above outputs a
(1 + ε)-approximation of T . Observe that f(T ) ∪ {e′ ∈ E′ | [e′] * U} is a spanning tree of G′ with
costs c′(f(T )) = c(T ). So A contains a spanning tree T ′ of G′ such that c′(T ′) ≤ (1 + ε) · c(T ). By
(2), g(T ′) is connected and by (1), c(g(T ′)) = c′(T ′) ≤ (1 + ε) · c(T ). Hence the algorithm outputs
a spanning tree of G with costs at most (1 + ε) · c(T ).

2. multigraph k-MM: We again reduce this problem to the case of minimal perfect matchings
in an Nk-labeled simple graph, where the existence of an FPTAS is known by Theorem 3.1. For
this, let G = (V,E, c) be an Nk-labeled multigraph. We transform G to the same Nk-labeled simple
graph G′ = (V ∪ U,E′, c′′) as in the first part, only the cost function c′′ is defined differently. So
recall U and E′ from the first part. The label of the original edge c(e) is put on both outer edges,
while the edge in the middle is labeled with zero. More formally:

c′′(e′) =

{
c(e) if [e′] = {v, ve} for some v ∈ V, e ∈ E and
(0, . . . , 0) if [e′] ⊆ U

We also define a different converse translation h (which is not inverse to f):

h(E′1) = {e ∈ E | {ue, ve} /∈ E′1 for u, v ∈ V with {u, v} = [e]}

for E′1 ⊆ E′.

The FPRAS for multigraph k-MM on input G = (V,E, c) and ε > 0 works as follows: Transform
G into G′ as described above and run the FPRAS by [PY00] on input G′ and ε. We obtain a
(1 + ε)-approximation A of all minimal perfect matchings G′. For each M ′ ∈ A, output h(M ′).

The running time of the algorithm is polynomial in |G| and 1/ε. It remains to show that the
returned edge sets are in fact perfect matchings and that they approximate the minimal perfect
matchings of G with probability at least 1/2.

For the first part, consider some perfect matching M ′ ⊆ E′ of G′. Observe that for any e ∈ E with
[e] = {u, v}, we have {u, ue}, {ve, v} ∈M ′ ⇐⇒ {ue, ve} /∈M ′. So since any vertex v ∈ V must be
matched exactly once in M ′, there is exactly one e ∈ E such that {v, ve} ∈M ′. Since u is uniquely
determined by {u, v} = [e], we get that there is exactly one u ∈ V such that {u, v} ∈ h(M ′) and
thus h(M ′) is a perfect matching of G′.

For the second part, first note that for any perfect matching M ′ of G′ we have

c′′(M ′) = 2c(h(M ′)). (3)

Now let M be a perfect matching of G and consider M ′ = {{v, ve} | v ∈ [e], e ∈M} ∪ {{ue, ve} |
{u, v} = [e], e ∈ E \M}. Obviously, M ′ is a perfect matching of G′ and h(M ′) = M . So we have
c′′(M ′) = 2c(M), and the output of the FPRAS must contain some perfect matching M̃ ′ of G′ such
that c′′(M̃ ′) ≤ (1 + ε)c′′(M ′) = 2(1 + ε)c(M) with probability at least 1/2. From M̃ ′, we obtain a
perfect matching M̃ = h(M̃ ′) of G such that c(M̃) = 1

2c
′′(M̃ ′) ≤ (1+ε)c(M) and thus the assertion

is proved.

3. k-SP: For multigraph shortest path, we use exactly the same construction as in part 1. So recall
the notions from part 1. The algorithm works as follows:
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On input of a multigraph (V,E, c), s, t ∈ V and ε > 0, construct G′ = (V ∪ U,E′, c′) as in part 1,
run the FPTAS for k-SP on G′, s, t and ε, apply g to the paths found by the FPTAS and return
the results.

The algorithm obviously runs in polynomial time and solves the problem because of the properties
of f , g and c already noted in part 1. 2

The FPRAS for multigraph k-MPM that is stated in the following theorem is based on the approx-
imation schemes for multigraph k-SP and multigraph k-MM.

Theorem 3.3 For k ≥ 1 there is an FPRAS for multigraph k-MPM.

Proof Let G = (V,E, c) be an Nk-labeled multigraph, U ⊆ V be a set of even cardinality and
ε > 0.

We start with the construction of an Nk-labeled multigraph G′ = (U,E′, c′) by approximately
computing shortest paths between vertices of U and letting each path be an edge in G′ between its
endpoints. More formally: For every two-element subset {s, t} of U , run the FPTAS for multigraph
k-SP (cf. Theorem 3.2) on G, s, t and ε to obtain the approximate Pareto set {p{s,t}1 , . . . , p

{s,t}
m{s,t}} of

shortest paths between s and t in G and let E′ = {({s, t}, i) | s, t ∈ U, s 6= t and 1 ≤ i ≤ m{s,t}}
and c′({s, t}, i) = c(p{s,t}i ) for ({s, t}, i) ∈ E′.

Now run the FPRAS for multigraph k-MM (cf. Theorem 3.2) onG′ and ε and obtain an approximate
Pareto set of matchingsM. Finally, for each perfect matching M ∈M, return {p{s,t}i | ({s, t}, i) ∈
M}.

The running time of the algorithm is polynomial in |G| and 1/ε, and the returned sets are path
matchings, since every vertex s ∈ U is matched by exactly one edge in M and thus by exactly one
path. Concerning the approximation ratio, let P be a path matching of U in G. Every path p ∈ P
with endpoints s, t ∈ U is approximated by the FPTAS for multigraph k-SP, which means that there
is some 1 ≤ i ≤ m{s,t} such that c(p{s,t}i ) ≤ (1+ε)c(p). For P̃ being the set of these (approximately)

shortest paths p{s,t}i for all paths p ∈ P , we obtain c(P̃ ) ≤ (1 + ε)c(P ). Furthermore, P̃ is a path
matching and thus corresponds to a perfect matching M of G′ with the same costs. This perfect
matching is approximated by a perfect matching M̃ using the FPRAS for multigraph k-MM. For
the path matching P̃ ′ finally obtained from M̃ , we have the inequality

c(P̃ ′) = c′(M̃)

≤ (1 + ε)c′(M) = (1 + ε)c(P̃ )

≤ (1 + ε)(1 + ε)c(P ) = (1 + 2ε+ ε2)c(P )
≤ (1 + 3ε)c(P )

which means that the algorithm described above is an FPRAS for k-MPM. 2

We denote the multigraph approximation schemes for k = 2 by 2-MST-Approx(V,E, c, ε),
2-MM-ApproxR(V,E, c, ε), 2-SP-Approx(V,E, c, s, t, ε), and 2-MPM-ApproxR(V,E, c, U, ε), where
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(V,E, c) is an Nk-labeled multigraph, s, t ∈ V are start and end vertices, U ⊆ V are the ver-
tices to match (even cardinality), and ε is the approximation factor. We will repeatedly call the
approximations 2-MM-ApproxR and 2-MPM-ApproxR in our randomized algorithms that will follow.
In each algorithm, we assume that these approximations are amplified in a way such that the
probability that all calls succeed is at least 1/2.

4 Approximation for 2-TSP

The best known approximation for a multi-objective traveling salesman problem is the deterministic
(2 + ε)-approximation for the componentwise metric 2-TSP that was given by Manthey and Ram
[MR09]. In this section we present algorithms that improve this result in two ways:

1. The new algorithms manage more general and more realistic scenarios of the multi-objective
traveling salesman problem. More precisely, we do not assume componentwise metric in-
stances, but only allow multiple visits of cities, which is a much weaker assumption.

2. We improve the known approximation ratios. More precisely, for 2-TSP we give a determin-
istic 2-approximation and randomized approximations with ratios (3/2 + ε, 2) and (3/2, 2 + ε).
In particular, the first component exactly meets the approximation ratio of Christofides’
algorithm, which is still the best known approximation for the single-objective TSP.

4.1 Deterministic Approximation for 2-TSP

Our deterministic 2-approximation for 2-TSP is inspired by Christofides’ approximation for TSP.
In contrast to the single-objective problem, we cannot assume that the instances of 2-TSP are
metric. Therefore, it does not suffice to compute perfect matchings for the odd degree vertices
in the tree, but we have to switch to the notion of path matchings. The second major difference
to Christofides’ algorithm is the fact that we do not directly compute the two-objective minimal
path matchings (e. g., by generalizing the randomized approximation algorithm for two-objective
minimum matching [PY00]). Instead, we show that a suitable two-objective path matching can
be extracted deterministically from an approximate two-objective minimum spanning tree. More
precisely, we transform a spanning tree into a path matching of at most the same costs. Thus we
avoid the randomness of the approximation algorithm for two-objective minimum path matching
(2-MPM). Of course, we obtain a path matching that is by far not optimal. Nevertheless, this path
matching suffices to improve the approximation, since at present, the bottleneck of approximations
for 2-TSP is not the method of finding a good path matching, but is the argument that a good
path matching exists.

Let V be a set of nodes, U ⊆ V a set of even cardinality, and T a spanning tree on V . By
pT (u, v) ⊆ T we denote the unique path from node u to node v in T . Note that this path can be
computed in time polynomial in the size of T . To extract a path matching of U with costs less
than or equal to c(T ), we take an arbitrary path matching M on U and consider any distinct paths
p, p′ ∈ M , where p = pT (u, u′) and p′ = pT (v, v′) for some u, u′, v, v′ ∈ U . If p and p′ intersect on
at least one edge, we can easily remove this intersection by re-pairing p and p′ in M (cf. Figure 2).
We repeat this process until there are no more intersections in M . It follows that c(M) ≤ c(T ).

11



We now give a formal definition of the matching algorithm sketched above. In order to simplify
the proofs, we use an iterative algorithm. We remark that there exists a recursive algorithm that
has the same properties and that additionally runs in linear time.

Algorithm: match(U, T)

Input : tree T and subset U of its vertices of even cardinality
Output: path matching P on U in T

1 let M ⊆ U × U be some subdivision of U into pairs;

2 P := {pT (u1, u2) | (u1, u2) ∈M};
3 while there are distinct but non-disjoint pT (u, u′), pT (v, v′) ∈ P do

4 P := P \ {pT (u, u′), pT (v, v′)};
5 if pT (u, v) ∩ pT (u′, v′) = ∅ then

6 P := P ∪ {pT (u, v), pT (u′, v′)}
7 else

8 P := P ∪ {pT (u, v′),pT (u′, v)} // note that pT (u, v′) ∩ pT (u′, v) = ∅
9 end

10 end

11 return P

Lemma 4.1 Let G = (V,E, c) be some Nk-labeled multigraph for k ≥ 1 and let T ⊆ E be a
spanning tree of G. Then, for any U ⊆ V of even cardinality, match(U, T ) finds in polynomial time
a path matching M of U in T such that c(M) ≤ c(T ).

Proof Let m denote the number of edges of T , and S(P, T ) =
∑

p∈P #p be the sum of the number
of edges of all paths used in T for some path matching P . Note that at any time in the algorithm,
the value of the variable P is a path matching on U in T . Clearly, S(P, T ) ≤ m2/2, since there are
at most m edges per path and at most m/2 distinct pairs of endpoints of paths. In every iteration,
we redirect two paths, which reduces S(P, T ) by at least two. Hence, the algorithm terminates after
at most m2/4 iterations. Since all operations of the algorithm (comparison of two unique paths in
a tree and set operations) are polynomially time-bounded, we obtain a polynomial-time algorithm.

After the termination of the algorithm, any two distinct pT (u, v),pT (u′, v′) ∈ P are completely
disjoint. We can now estimate the overall costs of P by

c(P ) =
∑
p∈P

c(p) ≤ c(T ).

2

u

v u′

v′

Figure 2: The paths pT (u, u′) and pT (v, v′) intersect on the dashed edges. In this setting, pairing u with
v and u′ with v′ will remove the intersecting edges and thereby improve the costs of M .
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We proceed with the following deterministic algorithm that on input of an N2-labeled multigraph
(V,E, c) computes a (2, 2)-approximation for 2-TSP. For this, recall the definition of the algorithm
2-MST-Approx (in the text after Theorem 3.3).

Algorithm: 2-TSP-ApproxDet(V,E, c)

Input : N2-labeled multigraph (V,E, c)
Output: set of closed spanning walks of (V,E, c)

1 ε := 1
2#V

;

2 S := ∅;
3 T := 2-MST-Approx(V,E, c, ε);
4 foreach (T1, T2) ∈ T × T do

5 U := {v ∈ V | degT1
(v) is odd};

6 M := match(U, T2);

7 Wapprox := closed spanning walk of (V,E) using the edges of T1 and M;

8 S := S ∪ {Wapprox}
9 end

10 return S

Theorem 4.2 2-TSP is (2, 2)-approximable.

Proof Let V be a finite set, E a finite set of edges for V , c : E → N2 a function representing
the costs and W an arbitrary closed spanning walk of the multigraph (V,E). We show that
2-TSP-ApproxDet(V,E, c) contains a closed spanning walk Wapprox such that c(Wapprox) ≤ 2c(W ).

As in the algorithm 2-TSP-ApproxDet, let m = #V and ε = 1
2m . We split W into contiguous

subwalks W1, . . . ,Wm such that every vertex is at one end of at least one of the subwalks. This
can be achieved by letting every subwalk start at the first occurrence of some vertex in W . For
every i ∈ {1, 2} there is some 1 ≤ pi ≤ m such that ci(Wpi) ≥ 1

mci(W ). By removing Wpi from W ,
the multiset of edges Ei thus obtained is connected and covers every vertex of V . Thus (V,E) has
spanning trees T ′i with no higher costs than Ei, which means that

c
(
T ′1
)
≤

((
1− 1

m

)
c1 (W ) , c2 (W )

)
and

c
(
T ′2
)
≤

(
c1 (W ) ,

(
1− 1

m

)
c2 (W )

)
.

The FPTAS for the minimum spanning tree, 2-MST-Approx(V, c, ε), provides an ε-approximation
of every spanning tree of G. So T ′1 and T ′2 are approximated by say T1 and T2 such that

c (T1) ≤
(

1 +
1

2m

)
c
(
T ′1
)

and

c (T2) ≤
(

1 +
1

2m

)
c
(
T ′2
)

.

Let us now consider the iteration of the loop for exactly this pair of trees and let M and Wapprox

be as in the algorithm. The number of vertices of odd degree in an undirected graph is even, so
c(M) ≤ c(T2) by Lemma 4.1. Wapprox can be easily constructed, since all vertices of odd degree in
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T1 are matched by edges in M and thus every vertex has even degree when the edges of T1 and M
are used. Concerning the costs we obtain

c (Wapprox) ≤ c (T1) + c (M)
≤ c (T1) + c (T2)

≤
(

1 +
1

2m

)(
c
(
T ′1
)

+ c
(
T ′2
))

≤
(

1 +
1

2m

)((
1− 1

m

)
+ 1
)
c (W )

=
(

2− 1
2m2

)
c (W )

< 2c (W ) .

It remains to show that 2-TSP-ApproxDet runs in polynomial time. The runtime of the FPTAS
2-MST-Approx is polynomially bounded in m+ 1

ε = 3m. Thus, the cardinality of T itself is bounded
by a polynomial in m, say p. For each of the p2 combinations of spanning trees, the steps 5–8 can be
done in polynomial time (cf. Lemma 4.1). Hence 2-TSP-ApproxDet is a polynomial-time algorithm.

2

4.2 Randomized Approximation for 2-TSP

The randomized algorithm that is given below provides both a (3/2 + ε, 2)-approximation and a
(3/2, 2 + ε)-approximation for 2-TSP. This algorithm is an enhanced variant of a randomized ap-
proximation for the componentwise metric 2-TSP that was studied by Manthey and Ram [MR09].
First, it computes approximations of the Pareto-minimal spanning trees, then considers the ver-
tices that have odd degree in a single tree, computes approximations of the Pareto-minimal path
matchings of these vertices, and finally pairwise combines all trees with all suitable matchings which
results in a set of closed spanning walks. A precise analysis provides approximation ratios that are
better than the ones stated in [MR09], even though the new algorithm manages a more general
variant of the problem.

The algorithm below calls the algorithms 2-MST-Approx and 2-MPM-ApproxR, which were defined
in Section 3. The use of the FPTAS for the two-objective minimum spanning tree problem is
essential, as it allows us to reduce the error far enough such that it is dominated by the costs of a
contiguous subwalk of an optimal walk. This makes it possible to remove an ε-error in one of the
two objectives.
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Algorithm: 2-TSP-ApproxRandε(V,E, c)

Input : N2-labeled multigraph (V,E, c)
Output: set of closed spanning walks of (V,E, c)

1 m := #V ; ε1 := ε
m2 ; ε2 := ε

2m
;

2 S := ∅;
3 P := 2-MST-Approx(V,E, c, ε1);
4 foreach T ∈ P do

5 U := {v ∈ V | degT (v) is odd};
6 A := 2-MPM-ApproxR(V,E, c, U, ε2);
7 foreach M ∈ A do

8 Wapprox := closed spanning walk using the edges of T and M;

9 S := S ∪ {Wapprox}
10 end

11 end

12 return S

Lemma 4.3 For every ε > 0, the algorithm 2-TSP-ApproxRandε runs in polynomial time.

Proof Since 2-MST-Approx is an FPTAS, its running time is polynomial in n + 1
ε1

= n + m2

ε
where n is the size of the input (V,E, c). So we can obtain P in polynomial time and P contains
only polynomially many elements. This means that the first loop is iterated polynomially often.
2-MPM-ApproxR runs in polynomial time in the length of (V,E, c, U) + 1

ε2
and thus also in n. This

in turn means that A contains only polynomially many matchings, so the second loop is iterated
only polynomially often. The operation in line 8 can obviously be carried out in polynomial time
and thus the whole algorithm runs in polynomial time. 2

Theorem 4.4 For every ε > 0, 2-TSP is randomized (3/2 + ε, 2)-approximable and randomized
(3/2, 2 + ε)-approximable.

Proof We show that these approximations are realized by 2-TSP-ApproxRandε. By Lemma 4.3,
the algorithm runs in polynomial time, so it remains to show the approximation ratio. Let ε > 0
and w.l.o.g. let ε ≤ 1 (otherwise, just call the algorithm with ε = 1). Furthermore, assume that
there are at least two vertices in the input graph. We show that the algorithm 2-TSP-ApproxRandε

computes a (3/2 + ε, 2)-approximation and a (3/2, 2 + ε)-approximation for every 2-TSP instance
(V,E, c) with probability at least 1/2.

Let (V,E, c) be some N2-labeled multigraph and W be an arbitrary closed walk of (V,E).

We split W into contiguous subwalks W1, . . . ,Wm such that every vertex is at one end of at least
one of the subwalks. This can be achieved by letting every subwalk start at the first occurrence of
some vertex in W . Then, there is some 1 ≤ r ≤ m such that c2(Wr) ≥ 1

mc2(W ). By removing Wr

from W , the multiset of edges E′ thus obtained is connected and covers every vertex of V . Thus,
(V,E, c) has a spanning tree T ′ with no higher costs than E′, which means that

c
(
T ′
)
≤

(
c1 (W ) ,

m− 1
m

c2 (W )
)
.

15



By ε1 = ε
m2 , the algorithm 2-MST-Approx finds a spanning tree T1 with costs

c(T1) ≤
(

1 +
ε

m2

)(
c1(W ),

m− 1
m

c2(W )
)
.

By a symmetric argumentation, 2-MST-Approx also finds a spanning tree T2 with costs

c (T2) ≤
(

1 +
ε

m2

)(m− 1
m

c1 (W ) , c2 (W )
)
.

Let U1 ⊆ V be the vertices of odd degree in T1 and note that U1 has even cardinality. From W we
can easily find two path matchings M1 and M2 of U1 in (V,E, c) such that c(M1) + c(M2) ≤ c(W ):
For each u ∈ U1, fix the first occurrence in W , and cut W at each of those #U1 positions to
obtain #U1 subwalks S1, . . . , S#U1 . For each i, we remove any cycles from Si and obtain a path
Pi with c(Pi) ≤ c(Si). Then, both M1 = {Pi | i even} and M2 = {Pj | j odd} are path matchings
of U1 in (V,E, c). Hence, there is some path matching M ′ of U1 in (V,E, c) such that c(M ′) ≤
(1
2c1(W ), c2(W )).

By ε2 = ε
2m , the algorithm 2-MPM-ApproxR(V,E, c, U1, ε2) must return some approximate minimum

path matching M1 (with probability at least 1/2) such that

c (M1) ≤
(

1 +
ε

2m

)
c
(
M ′
)

≤
(

1 +
ε

2m

)(1
2
c1 (W ) , c2 (W )

)
.

Again using symmetric arguments, 2-MPM-ApproxR(V,E, c, U2, ε2) must return some approximate
minimum path matching M2 (with probability at least 1/2) such that

c (M2) ≤
(

1 +
ε

2m

)(
c1 (W ) ,

1
2
c2 (W )

)
.

By combining T1 and M1 we obtain a spanning walk Wapprox,1 such that the following holds (note
that m ≥ 2 and ε ≤ 1):

c1 (Wapprox,1) ≤ c1 (T1) + c1 (M1)

≤
(

1 +
ε

m2

)
c1 (W ) +

(
1 +

ε

2m

) 1
2
c1 (W )

=
(

3
2

+ ε

(
1
m2

+
1

4m

))
c1 (W )

≤
(

3
2

+ ε

)
c1 (W )

and

c2 (Wapprox,1) ≤ c2 (T1) + c2 (M1)

≤
((

1 +
ε

m2

) m− 1
m

+
(

1 +
ε

2m

))
c2 (W )
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≤
((

1 +
1
m2

)
m− 1
m

+ 1 +
1

2m

)
c2 (W )

=
(
m− 1
m

+
m− 1
m3

+ 1 +
1

2m

)
c2 (W )

=
(

2− 1
m

+
m− 1
m3

+
1

2m

)
c2 (W )

=

(
2 +
−m2 +m− 1 + 1

2m
2

m3

)
c2 (W )

=

(
2 +
−1

2m
2 +m− 1
m3

)
c2 (W )

≤

(
2 +
−1

2m
2 + 1

2m
2 − 1

m3

)
c2 (W )

=
(

2− 1
m3

)
c2 (W )

≤ 2c2 (W ) .

This shows the first part of the theorem. For the second part, we combine T2 and M2 which results
in a spanning walk Wapprox,2 such that:

c1 (Wapprox,2) ≤ c1 (T2) + c1 (M2)

≤
(

1 +
ε

m2

) m− 1
m

c1 (W ) +
(

1 +
ε

2m

) 1
2
c1 (W )

≤
(

1 +
1
m2

)
m− 1
m

c1 (W ) +
(

1 +
1

2m

)
1
2
c1 (W )

=
(
m− 1
m

+
m− 1
m3

+
1
2

+
1

4m

)
c1 (W )

=
(

3
2
− 1
m

+
m− 1
m3

+
1

4m

)
c1 (W )

=

(
3
2

+
−m2 +m− 1 + 1

4m
2

m3

)
c1 (W )

=

(
3
2

+
−1 +m− 3

4m
2

m3

)
c1 (W )

≤
(

3
2
− 1
m3

)
c1 (W )

≤ 3
2
c1 (W )

and

c2 (Wapprox,2) ≤ c2 (T2) + c2 (M2)
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≤
(

1 +
ε

m2

)
c2 (W ) +

(
1 +

ε

2m

)
c2 (W )

≤
(

1 +
ε

4

)
c2 (W ) +

(
1 +

ε

4

)
c2 (W )

≤ (2 + ε) c2 (W ) .

2

5 Approximation for Traveling Salesman Path Problems

Regarding two-objective traveling salesman path problems we obtain the following results.

• randomized (3/2 + ε, 5/3 + ε)-approximation for 2-TSPP
• randomized (3/2 + ε, 2 + ε)-approximation for 2-TSPPs

• (2 + ε, 2 + ε)-approximation for 2-TSPPst

The deterministic approximation for 2-TSPPst is easily obtained by a tree-doubling of the ap-
proximated Pareto-minimal spanning trees. The constructions of the randomized approximation
algorithms are more complicated. Each of them relies on an argument that assures the existence
of a path matching with sufficiently low costs, which is constructed in a separate, combinatorial
lemma. With this lemma at hand we can follow the standard strategy for TSP: We compute
approximations of the Pareto-minimal spanning trees and, for every single tree, we consider the
vertices that have odd degree, compute approximations of the Pareto-minimal path matchings of
these vertices and finally pairwise combine these matchings with their corresponding tree.

The following lemma assures that path matchings with sufficiently low costs exist.

Lemma 5.1 Let G = (V,E, c) be some N2-labeled multigraph, U ⊆ V be a nonempty set and W
be some spanning walk of (V,E).

1. If #U is odd, then there exist a vertex s ∈ U and a path matching M of U \ {s} in (V,E)
such that

c(M) ≤
(

1
2c1(W ), c2(W )

)
.

2. If #U is even, then there exist distinct vertices s, t ∈ U and a path matching M of U \ {s, t}
in (V,E) such that

c(M) ≤
(

1
2c1(W ), 2

3c2(W )
)
.

Proof The lemma is obvious for #U < 3, so assume #U ≥ 3. Let (v1, . . . , vr) denote the vertices
of U in the order of their first appearance in W . We cut the walk W at each vi to obtain a set
of r − 1 subwalks {W1,W2, . . . ,Wr−1}, where Wi connects vi and vi+1, and extract a set of paths
P = {P1, P2, . . . , Pr−1} by removing cycles in each Wi.

Define the following distinct sets that partition P .

Modd = {Pi ∈ P | i is odd}
Meven = {Pi ∈ P | i is even}
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If #U is odd, then Modd is a path matching on U \{vr}, and Meven is a path matching on U \{v1}.
In this case, choose the path matching with the lower costs in c1. From Meven ∪Modd = P and
c(P ) ≤ c(W ), the first part of the lemma follows.

So assume #U is even. In this case Modd is a path matching on U and Meven is a path matching on
U \{v1, vr}. We show this part by contradiction. Hence assume that the second part of Lemma 5.1
does not hold, which means that for every path matching M of U \ {s, t} for any two s, t ∈ U it
holds that

c1(M) > 1
2c1(W ) or c2(M) > 2

3c2(W ). (4)

This also holds for path matchings of U , since otherwise, by removing an arbitrary path, we obtain
a path matching that leaves two vertices unmatched and that contradicts (4).

Consider the following two cases:

Case 1: c2(Modd) ≤ 2
3c2(W ) and c2(Meven) ≤ 2

3c2(W ).

From c1(Meven) + c1(Modd) = c1(P ) ≤ c1(W ) it follows that c1(Modd) ≤ 1
2c1(W ) or c1(Meven) ≤

1
2c1(W ). So at least one of the path matchings Modd (of U) and Meven (of U \ {v1, vr}) contradicts
(4).

Case 2: c2(Modd) > 2
3c2(W ).

Since c2(Meven) + c2(Modd) = c2(P ) ≤ c2(W ), we have

c2(Meven) ≤ c2(W )− c2(Modd) < 1
3c2(W ). (5)

For every 1 ≤ k < r, the set of paths Pi that lie left (resp., right) of the first visit of vk is denoted
by Lk (resp., Rk), i. e.,

Lk = {Pi | 1 ≤ i < k} and Rk = {Pi | k + 1 ≤ i < r}.

Consider the largest odd k such that c2(Lk ∩Modd) ≤ 1
2c2(Modd). From Pk ∈Modd, Pk /∈ Lk ∪Rk,

and the maximality of k, it follows that c2(Rk ∩Modd) ≤ 1
2c2(Modd).

Referring to Figure 3, we now show that either the path matching M1 = (Lk∩Modd)∪ (Rk∩Meven)
on U \ {vk, vr} or the path matching M2 = (Lk ∩ Meven) ∪ (Rk ∩ Modd) on U \ {v1, vk+1} is a
matching that contradicts (4).

Let us estimate the costs in the second component of M1 and M2:

c2(M1) = c2(Lk ∩Modd) + c2(Rk ∩Meven) c2(M2) = c2(Lk ∩Meven) + c2(Rk ∩Modd)
≤ 1

2c2(Modd) + c2(Meven) ≤ c2(Meven) + 1
2c2(Modd)

By (5) we know that c2(Meven) < 1
3c2(W ) and thus we obtain

c2(M1), c2(M2) ≤ 1
2c2(Modd) + c2(Meven)

= 1
2(c2(P )− c2(Meven)) + c2(Meven)

= 1
2(c2(P ) + c2(Meven))

< 1
2(c2(W ) + 1

3c2(W ))
= 2

3c2(W ).
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M2

M1

Meven

Modd

v1 v2 v3 v4 vk−1 vk vk+1 vk+2 vr−3 vr−2 vr−1 vr

. . . . . .

. . . . . .Lk Rk

Figure 3: We obtain M1 by merging the left part of Modd with the right part of Meven, leaving vk and vr

unmatched. Analogously, we obtain M2 by merging the left part of Meven with the right part of Modd, leaving v1
and vk+1 unmatched.

Note that M1 and M2 are disjoint. Therefore, c1(M1) + c1(M2) ≤ c1(P ) and hence

c1(M1) ≤ 1
2c1(W ) or c1(M2) ≤ 1

2c1(W ).

So M1 or M2 contradicts (4).

Case 3: c2(Meven) > 2
3c2(W ).

This case is very similar to Case 2, so we concentrate on the differences. We get c2(Modd) < 1
3c2(W )

and define Lk and Rk in the same way as in Case 2. Consider now the largest even k such that
c2(Lk ∩Meven) ≤ 1

2c2(Meven). From Pk ∈Meven, Pk /∈ Lk ∪Rk, and the maximality of k, it follows
that c2(Rk ∩Meven) ≤ 1

2c2(Meven).

We now show that either the path matching M1 = (Lk∩Modd)∪(Rk∩Meven) on U \{vk+1, vr} or the
path matching M2 = (Lk ∩Meven)∪ (Rk ∩Modd) on U \ {v1, vk} is a matching that contradicts (4).

We similarly get c2(M1), c2(M2) ≤ c2(Modd) + 1
2c2(Meven) and using c2(Modd) < 1

3c2(W ) we ob-
tain c2(M1), c2(M2) < 2

3c2(W ) and also c1(M1) ≤ 1
2c1(W ) or c1(M2) ≤ 1

2c1(W ). So M1 or M2

contradicts (4).

This finishes the proof of Lemma 5.1. 2

Theorem 5.2 For every ε > 0, 2-TSPP is randomized (3/2 + ε, 5/3 + ε)-approximable.

Proof Let ε > 0. The approximation is achieved by the following algorithm which works on input
of an N2-labeled multigraph (V,E, c). Please recall the definitions of the algorithms 2-MST-Approx
and 2-MPM-ApproxR from section 3.
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Algorithm: 2-TSPP-Approxε(V,E, c)

Input : N2-labeled multigraph (V,E, c)
Output: set of spanning walks of (V,E, c)

1 S := ∅;
2 P := 2-MST-Approx(V,E, c, ε

2
);

3 foreach T ∈ P do

4 U := {v ∈ V | degT (v) is odd};
5 foreach s, t ∈ U with s 6= t do

6 A := 2-MPM-ApproxR(V,E, c, U \ {s, t}, ε
2
);

7 foreach M ∈ A do

8 Wapprox := spanning walk of (V,E) using the edges of T and M;

9 S := S ∪ {Wapprox}
10 end

11 end

12 end

13 return S

Observe that the set U in line 4 has an even number of elements. Also, note that in line 8, the
spanning walk can be constructed, since after combining M and T , the vertices s and t have odd
degree, while all remaining vertices have even, nonzero degree. Since line 6 uses an FPRAS, our
algorithm is randomized. Observe that each line of the algorithm is computable in polynomial
time and each of the sets P, U and A has only a polynomial number of elements. Therefore,
2-TSPP-Approxε is a randomized polynomial-time algorithm.

It remains to argue that 2-TSPP-Approxε computes a (3/2 + ε, 5/3 + ε)-approximate Pareto set. For
this, let W denote an arbitrary spanning walk of (V,E, c). We show that 2-TSPP-Approxε outputs
at least one spanning walk Wapprox such that

c1(Wapprox) ≤
(

3
2 + ε

)
c1(W ) and c2(Wapprox) ≤

(
5
3 + ε

)
c2(W ).

Fix a spanning tree Tapprox with costs c(Tapprox) ≤ (1+ ε
2)c(W ) from the (1+ ε

2)-approximate Pareto
set P computed in line 2. P contains such a tree, because W is a spanning walk on (V,E, c) and
thus contains a spanning tree whose costs are not greater than those of W , and for every spanning
tree, the algorithm finds an approximation within ratio (1 + ε

2). From now on we consider the
iteration of the loop beginning in line 3 that uses the tree Tapprox.

By Lemma 5.1, there exists a path matching M on U that leaves exactly two vertices s, t ∈ U
unmatched and that has costs c(M) ≤ (1

2c1(W ), 2
3c2(W )). Therefore, with probability at least 1/2,

the (1 + ε
2)-approximate Pareto set A in line 6 contains a path matching Mapprox that leaves some

s and t unmatched such that

c(Mapprox) ≤
(
1 + ε

2

)
·
(

1
2c1(W ), 2

3c2(W )
)
≤
((

1
2 + ε

2

)
c1(W ),

(
2
3 + ε

2

)
c2(W )

)
.

We combine Tapprox and Mapprox to obtain a spanning walk from s to t with costs

c(Wapprox) = c(Tapprox) + c(Mapprox)
≤
(
1 + ε

2

)
c(W ) +

((
1
2 + ε

2

)
c1(W ),

(
2
3 + ε

2

)
c2(W )

)
≤
((

3
2 + ε

)
c1(W ),

(
5
3 + ε

)
c2(W )

)
and hence W is (3/2 + ε, 5/3 + ε)-approximated by Wapprox. 2
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Theorem 5.3 For every ε > 0, 2-TSPPs is randomized (3/2 + ε, 2 + ε)-approximable.

Proof The proof is similar to the proof of Theorem 5.2. Therefore, the proof below concentrates
on the details that are different.

Let ε > 0. The approximation is achieved by the following algorithm which works on input of an
N2-labeled multigraph (V,E, c) and some starting vertex s ∈ V .

Algorithm: 2-TSPPs-Approxε(V,E, c, s)

Input : N2-labeled multigraph (V,E, c) and some s ∈ V
Output: set of spanning walks of (V,E, c), each starting at s

1 S := ∅;
2 P := 2-MST-Approx(V,E, c, ε

2
);

3 foreach T ∈ P do

4 U := {v ∈ V | degT (v) is odd if and only if v 6= s};
5 foreach t ∈ U do

6 A := 2-MPM-ApproxR(V,E, c, U \ {t}, ε
2
);

7 foreach M ∈ A do

8 Wapprox := spanning walk of (V,E) using the edges of T and M;

9 S := S ∪ {Wapprox}
10 end

11 end

12 end

13 return S

Observe that the set U in line 4 has an odd number of elements. Also, note that in line 8, the
spanning walk exists and can be easily constructed, since after combining M and T , the vertices s
and t have odd degree, while all remaining vertices have even degree greater than zero. We obtain
that 2-TSPPs-Approxε is a randomized polynomial-time algorithm.

It remains to argue that 2-TSPPs-Approxε computes a (3/2 + ε, 2 + ε)-approximate Pareto set. For
this, let W denote an arbitrary spanning walk that starts at s. We show that 2-TSPPs-Approxε

contains at least one spanning walk Wapprox that starts in s such that

c1(Wapprox) ≤
(

3
2 + ε

)
c1(W ) and c2(Wapprox) ≤ (2 + ε) c2(W ).

Fix a spanning tree Tapprox with costs c(Tapprox) ≤ (1+ ε
2)c(W ) from the (1+ ε

2)-approximate Pareto
set P computed in line 2. From now on we consider the iteration of the loop starting in line 3 that
uses the tree Tapprox.

By Lemma 5.1, there exists a path matching M on U that leaves exactly one vertex t ∈ U un-
matched and that has costs c(M) ≤ (1

2c1(W ), c2(W )). Therefore, with probability at least 1/2, the
approximate Pareto set A in line 6 contains a path matching Mapprox that leaves some t unmatched
such that

c(Mapprox) ≤
(
1 + ε

2

)
·
(

1
2c1(W ), c2(W )

)
≤
((

1
2 + ε

2

)
c1(W ),

(
1 + ε

2

)
c2(W )

)
.

We combine Tapprox and Mapprox to obtain a spanning walk Wapprox from s to t with costs

c(Wapprox) = c(Tapprox) + c(Mapprox)
≤
(
1 + ε

2

)
c(W ) +

((
1
2 + ε

2

)
c1(W ),

(
1 + ε

2

)
c2(W )

)
≤
((

3
2 + ε

)
c1(W ), (2 + ε) c2(W )

)
.
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Hence W is (3/2 + ε, 2 + ε)-approximated by Wapprox. 2

Theorem 5.4 For every ε > 0, 2-TSPPst is (2 + ε, 2 + ε)-approximable.

Proof We argue that the tree doubling method will deterministically find a (2 + ε, 2 + ε)-
approximate Pareto set for 2-TSPPst.

Let (V,E, c) be an arbitrary N2-labeled multigraph, s, t ∈ V with s 6= t and ε > 0. Furthermore, let
A = 2-MST-Approx(V,E, c, ε

2). For each tree T ∈ A we do the following: We double each edge in T
and then delete the unique path from s to t once. Clearly, we obtain a connected multigraph whose
vertices have even degree greater than zero except for s and t. Therefore we can find a spanning
walk Wapprox from s to t, having costs c(Wapprox) ≤ 2c(T ).

Fix any arbitrary spanning walk W from s to t. Since W contains a spanning tree, there is a
spanning tree T ∈ A such that c(T ) ≤ (1 + ε

2)c(W ). By the tree doubling method we get a
spanning walk Wapprox from s to t with c(Wapprox) ≤ 2c(T ) ≤ (2 + ε)c(W ). 2

Corollary 5.5 For every ε > 0, 2-TSPP and 2-TSPPs are (2 + ε, 2 + ε)-approximable.

6 Lower Bound Arguments

This section provides arguments that indicate the hardness of improving the two-objective ap-
proximation algorithms that were given in sections 4 and 5. In summary, if one can improve our
randomized approximations for 2-TSP, 2-TSPP, 2-TSPPs, or their componentwise metric restric-
tions, then this improves the best known approximations for TSP, TSPPs, and TSPPst, i. e., the
approximations by Christofides [Chr76] and Hoogeveen [Hoo91]. Improvements of these well-studied
approximations seem very difficult to obtain. Table 2 summarizes the results of this section.

6.1 Lower Bound Arguments for 2-TSP

Below we construct an approximation preserving reduction from TSPPst to componentwise metric
2-TSP. This gives evidence for the difficulty of improving the randomized approximations for 2-TSP
that are given in Theorem 4.4.

An improvement of the first component (i. e., a (3/2 − ε, 2 + ε)-approximation) would improve
Christofides’ 3/2-approximation for TSP [Chr76]. An improvement of the second component (i. e., a
(5/3− ε, 2− ε)-approximation) would improve Hoogeveen’s 5/3-approximation for TSPPst [Hoo91].
We have no evidence in favor of or against an (α, β)-approximation where 5/3 ≤ α, β < 2.

Open Question: Is 2-TSP (α, β)-approximable where 5/3 ≤ α, β < 2?

The first lower bound argument is the easy observation that each approximation algorithm for
componentwise metric 2-TSP can be used as an approximation algorithm for TSP.
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Proposition 6.1 Let α > 1 and ε > 0. The following holds for deterministic/randomized ap-
proximations: If componentwise metric 2-TSP is (3/2− ε, α)-approximable, then TSP is (3/2− ε)-
approximable.

Theorem 6.2 Let α > 1 and ε > 0. The following holds for deterministic/randomized approxima-
tions: If componentwise metric 2-TSP is (α, 2− ε)-approximable, then TSPPst is α-approximable.

Proof Let A be an algorithm that on input of a complete N2-labeled simple graph (V,E, c) with
componentwise metric distance function c returns an (α, 2 − ε)-approximation for componentwise
metric 2-TSP for some α ≥ 1 and some ε > 0. Let ((V,E, c′), s, t) be an arbitrary TSPPst-instance
where V = {s, t, v1, . . . , vk}. Since TSPPst is a single-objective problem, we can assume that the
graph is simple and complete and c′ is metric. We will construct an instance I of componentwise
metric 2-TSP for A that depends on some natural number r > 1/ε (cf. Figure 4). We start by
creating a copy V ′ = {s′, t′, v′1, . . . , v′k} of V and denote by v′ ∈ V ′ the copy of v ∈ V . Furthermore,
we create “bridges” from s to s′ and from t to t′ using r− 1 additional vertices each, which will be
called Bs = {s = bs0, b

s
1, . . . , b

s
r−1, s

′ = bsr} and Bt = {t = bt0, b
t
1, . . . , b

t
r−1, t = btr}. So the vertices

of our componentwise metric 2-TSP instance are V ∪ V ′ ∪ Bs ∪ Bt and we have all possible edges
since the graph must be complete. The labeling function will be defined as follows. First, we define
it directly for some of the edges:

• for e ⊆ V or e ⊆ V ′, we set c(e) = (c′(e), 0)
• for e = {bsi , bsi+1} or e = {bti, bti+1}, we set c(e) = (0, 1)

For all other vertex pairs and for each component, we indirectly define the distance as the length
of the shortest path between these vertices using only edges from the above two categories.

In order to show that the functions c1 and c2 are metric, we have to show that the directly defined
distance between any two vertices is not longer than any path between them that uses edges with
directly defined distances. For c2, this is obviously the case.

We now argue for c1. Let u, v ∈ V and consider a path between u and v. If the path does not use
the bridges and V ′, then it cannot be shorter than c′(u, v) = c1(u, v), since c′ is metric on V . So let
us assume that the path uses the bridges and V ′; w.l.o.g. the s-bridge is used first. So the length
of the path is at least

c1(u, s) + c1(s, s′) + c1(s′, t′) + c1(t′, t) + c1(t, v) = c′(u, s) + 0 + c′(s, t) + 0 + c′(t, v)
≥ c′(u, v) = c1(u, v).

The case where u, v ∈ V ′ is of course symmetric and this property obviously holds for bridge edges,
since they have distance 0. Hence c1 is metric.

Let P be the c′-shortest Hamiltonian path between s and t in V and P ′ its (reversed) copy in V ′.
P ∪{{t, bt1}, . . . , {btr−1, t

′}}∪P ′∪{{s′, bsr−1}, . . . , {bs1, s}} is obviously a Hamiltonian cycle in the new
graph with costs (2c′(P ), 2r). Since it is a valid solution, A must return an (α, 2−ε)-approximation
of it. So A must return a solution S such that c2(S) ≤ 4r− 2εr. We will now show that from S we
can extract a Hamiltonian s-t-Path (in V ) with length of at most α · c′(P ).

Let EBt := {{bti−1, b
t
i} | 1 ≤ i ≤ r} ∪ {{bti, bti−1} | 1 ≤ i ≤ r} be the “simple” edges of the

t-bridge and EBs be the analogously defined “simple” edges of the s-bridge. We can modify S
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V V ′

. . .
(c′(u, v), 0)

u

v

. . .

. . .
s = bs0

t = bt0

bsr = s′

btr = t′

bs1 bs2 bsr−1

bt1 bt2 btr−1

. . .

. . .

(0, 1) (0, 1) (0, 1)

(0, 1) (0, 1) (0, 1)

Figure 4: Creating an instance of componentwise metric 2-TSP from an instance ((V,E, c′), s, t) of TSPPst. We
first make a copy V ′ of V and, for each u, v ∈ V , we set c(u, v) = (c′(u, v), 0) and c(u′, v′) = (c′(u, v), 0). We further
connect s with s′ and t with t′ by r − 1 bridge vertices bsi , b

t
i for 1 ≤ i ≤ r − 1, and distribute the distance of

c(s, s′) = c(t, t′) = (0, r) equally among the bridge edges.

such that edges crossing the set boundaries of V , V ′, Bt and Bs are replaced by a detour via the
corresponding “portal” s, t, s′, or t′, possibly using a bridge. In other words, we only allow edges
from the set {{u, v} | either u, v ∈ V or u, v ∈ V ′} ∪ EBs ∪ EBt . This modification does not raise
any costs, as the costs for edges crossing these boundaries are in fact defined by taking detours
via the portals. Hence, from now on we may assume that S only uses edges from {{u, v} | either
u, v ∈ V or u, v ∈ V ′} ∪ EBs ∪ EBt .

We will now argue that S uses each bridge exactly once. We denote by u(x, y) the number of times
the edge {x, y} is used in S and by d(v) the degree of a vertex v in S considered as a multi-graph.
Furthermore, d(V ) = u(s, bs1) +u(t, bt1) and d(V ′) = u(bsr−1, s

′) +u(btr−1, t
′) are the “degrees” of the

subgraphs V and V ′.

Claim 6.3 The degrees d(v) for every vertex v and d(V ) and d(V ′) are all even.

Proof This holds because S is a Hamiltonian circuit. 2

Claim 6.4 The parity of u(e) is the same for all edges e ∈ EBs ∪ EBt.

Proof We first show that for x ∈ {s, t} the parity of u(e) is the same for all edges e ∈ EBx .

Assume that the parity is not the same for all edges on one bridge. Then there is a vertex bxi with
adjacent edges e1 and e2 such that u(e1) is odd and u(e2) is even. In this case, d(bxi ) must be odd
which contradicts Claim 6.3.

Assume now that the parity is the same for each edge of the same bridge but different on the two
bridges. Then d(V ) must be odd, which contradicts Claim 6.3. 2

Claim 6.5 There can be at most one edge e ∈ EBs ∪ EBt such that u(e) = 0.

Proof If there were two such edges, S would not be connected. 2
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Claim 6.6 All bridge edges e ∈ EBs ∪ EBt have odd usage count u(e).

Proof Assume that all bridge edges e ∈ EBs ∪ EBt have even usage count u(e). This means that
u(e) ≥ 2 for all edges with at most one exception (Claim 6.5) and thus

c2(S) =
∑

e∈EBs∪EBt

u(e) ≥ (2r − 1) · 2 + 0 = 4r − 2 > 4r − 2εr (since r > 1/ε)

which contradicts the approximation ratio of A. 2

If u(e) > 1 for some bridge edge e, we can always remove two uses of this edge from S without
destroying the property of S being a Hamiltonian circuit. So we may assume S to be of the
form such that every bridge edge is used exactly once. This means that S starts at s, visits
every vertex in V , goes to t, uses the bridge to t′, visits every vertex in V ′, goes to s′ and uses
the bridge back to s. So S restricted to V is a Hamiltonian path from s to t and another one
can be obtained by restricting S to V ′. We can thus extract a Hamiltonian path with length at
most 1

2c1(S) ≤ 1
2 · 2 · c

′(P ) · α = c′(P ) · α. This is an α-approximation for the TSPPst-instance
((V,E, c′), s, t). 2

Corollary 6.7 Let ε > 0. The following holds for deterministic/randomized approximations: If
componentwise metric 2-TSP is (5/3−ε, 2−ε)-approximable, then TSPPst is (5/3−ε)-approximable.

6.2 Lower Bound Arguments for 2-TSPP

This section provides two approximation preserving reductions, one from TSPPst to componentwise
metric 2-TSPP, and another one from TSPPs to componentwise metric 2-TSPP. Both reductions
give evidence that the randomized approximation for 2-TSPP that is given in Theorem 5.2 is
difficult to improve.

An improvement of the first component (i. e., a (3/2 − ε, 5/3 + ε)-approximation) would improve
Hoogeveen’s 3/2-approximations for TSPP and TSPPs. An improvement of both components (i. e.,
a (3/2−ε, 5/3−ε)-approximation) would improve Hoogeveen’s 5/3-approximation for TSPPst [Hoo91].

Again we start with the observation that an approximation algorithm for a two-objective problem
also approximates the underlying single-objective problem.

Proposition 6.8 Let α > 1 and ε > 0. The following holds for deterministic/randomized approx-
imations: If componentwise metric 2-TSPP is (3/2 − ε, α)-approximable, then TSPP is (3/2 − ε)-
approximable.

Theorem 6.9 Let α > 1 and ε > 0. The following holds for deterministic/randomized ap-
proximations: If componentwise metric 2-TSPP is (α, 3/2 − ε)-approximable, then TSPPst is α-
approximable.
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Proof We proceed analogously to the proof of Theorem 6.2 and reduce TSPPst to componentwise
metric 2-TSPP. Let therefore A be an algorithm that on input of a complete N2-labeled simple
graph (V,E, c) with componentwise metric distance function c returns an (α, 3/2−ε)-approximation
for componentwise metric 2-TSPP for some α > 1 and some ε > 0, and let furthermore I =
((V,E, c′), s, t) be a TSPPst-instance where V = {s, t, v1, . . . , vk} and (V,E, c) is a complete simple
graph with metric c.

V \ {s, t}
u

v

0

. . .

s t1 1

Figure 5: Structure of distance function c2. For any u ∈ V \{s, t}, we have c2(s, u) = c2(t, u) = 1. Inside V \{s, t},
we have zero c2 distances, hence c2(u, v) = 0 for all u, v ∈ V \ {s, t}.

For each edge e ∈ E, let c1(e) = c′(e). We define c2 : E → N as follows:

c2(u, v) = 0 for u, v ∈ V \ {s, t}
c2(s, u) = 1 for u ∈ V \ {s, t}
c2(t, u) = 1 for u ∈ V \ {s, t}
c2(s, t) = 2

Both c1 and c2 are metric functions on V . Let c = (c1, c2) and define a componentwise metric
2-TSPP instance as I ′ = (V,E, c).

Figure 5 shows the structure of the distance function c2. Obviously, all Hamiltonian paths y between
s and t have length c2(y) = 2, whereas all other Hamiltonian paths y′ must have length c2(y′) ≥ 3.

Let y∗ be an optimal Hamiltonian path between s and t with respect to c′ = c1. Since y∗ is a
Hamiltonian path between s and t we have c2(y∗) = 2. The approximate Pareto set provided by
A(I ′) contains an approximate solution y′ of the Hamiltonian path y∗ such that c2(y′) ≤ (3

2−ε)c2(y∗)
and c1(y′) ≤ αc1(y∗). Hence 3 > c2(y′) = 2 and therefore, y′ is in fact a Hamiltonian path between
s and t. This means that y′ is an α-approximation of the optimal Hamiltonian path y∗ between s
and t with respect to c′ = c1. 2

Corollary 6.10 Let ε > 0. The following holds for deterministic/randomized approximations:
If componentwise metric 2-TSPP is (3/2 − ε, 5/3 − ε)-approximable, then TSPPst is (5/3 − ε)-
approximable.

Theorem 6.11 Let α > 1 and ε > 0. The following holds for deterministic/randomized ap-
proximations: If componentwise metric 2-TSPP is (α, 2 − ε)-approximable, then TSPPs is α-
approximable.
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Proof We reduce TSPPs to componentwise metric 2-TSPP. Let again A be an algorithm that
on input of a complete N2-labeled simple graph (V,E, c) with componentwise metric c returns an
(α, 2 − ε)-approximation for componentwise metric 2-TSPP for some α > 1 and some ε > 0, and
let x = ((V,E, c′), s) be the TSPPs-instance, where V = {s, v1, . . . , vk} and (V,E, c′) is a complete
simple graph with metric c′.

V \ {s}
u

v

0

. . .

s 1

Figure 6: Structure of distance function c2 of x′. For all u ∈ V \ {s}, we set c2(s, u) = 1. All c2 distances inside
V \ {s} are zero: c2(u, v) = 0 for all u, v ∈ V \ {s}.

For each edge e ∈ E, let c1(e) = c′(e). We define c2 : E → N as follows (cf. Figure 6):

c2(u, v) = 0 for u, v ∈ V \ {s}
c2(s, u) = 1 for u ∈ V \ {s}

Again, c1 and c2 are metric functions on V × V . We let c = (c1, c2) and define a componentwise
metric 2-TSPP instance as x′ = (V,E, c).

This time, all Hamiltonian paths y with endpoint s have length c2(y) = 1, whereas all other
Hamiltonian paths y′ must have a length of c2(y′) = 2.

Let y∗ be an optimal Hamiltonian path of x. Since y∗ has endpoint s, we have c2(y∗) = 1. Then,
the approximate Pareto set provided by A(x′) contains an approximate solution y′ of y∗ such that
c2(y′) ≤ (2−ε)c2(y∗) and c1(y′) ≤ αc1(y∗). Hence 2 > c2(y′) = 1 and therefore, y′ is a Hamiltonian
path with endpoint s. This means that y′ is an α-approximation of the optimal Hamiltonian path
of x with endpoint s. 2

Corollary 6.12 Let ε > 0. The following holds for deterministic/randomized approximations: If
componentwise metric 2-TSPP is (3/2−ε, 2−ε)-approximable, then TSPPs is (3/2−ε)-approximable.

6.3 Lower Bound Arguments for 2-TSPPs

Below we construct an approximation preserving reduction from TSPPst to componentwise metric
2-TSPPs, and a similar reduction from TSP to componentwise metric 2-TSPPs. This gives evi-
dence for the difficulty of improving the randomized approximability of 2-TSPPs that is given in
Theorem 5.3.

An improvement of the first component (i. e., a (3/2 − ε, 2 + ε)-approximation) would improve
Hoogeveen’s 3/2-approximation for TSPPs. An improvement of the second component (i. e., a
(3/2 + ε, 2 − ε)-approximation) would considerably improve Hoogeveen’s 5/3-approximation for
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TSPPst[Hoo91]. An improvement of both component (i. e., a (3/2− ε, 2− ε)-approximation) would
improve Christofides’ 3/2-approximation for TSP [Chr76].

Again we start with the observation that an approximation algorithm for a two-objective problem
also approximates the underlying single-objective problem.

Proposition 6.13 Let α > 1 and ε > 0. The following holds for deterministic/randomized approx-
imations: If componentwise metric 2-TSPPs is (3/2− ε, α)-approximable, then TSPPs is (3/2− ε)-
approximable.

Theorem 6.14 Let α > 1 and ε > 0. The following holds for deterministic/randomized ap-
proximations: If componentwise metric 2-TSPPs is (α, 2 − ε)-approximable, then TSPPst is α-
approximable.

Proof We reduce TSPPst to componentwise metric 2-TSPPs. LetA be a deterministic/randomized
algorithm that (α, 2 − ε)-approximates componentwise metric 2-TSPPs for some α > 1 and some
ε > 0. Let ((V,E, c), s, t) be an arbitrary TSPPst-instance where (V,E, c) is a complete simple graph
with metric c and V = {s, t, v1, . . . , vk}. We construct a componentwise metric 2-TSPPs instance I
for A by adding a second distance function that places t “far away” from all other vertices and thus
enforces that the path computed by A ends in t (cf. Figure 7). More precisely, I = ((V,E, c′), s)
where c′ = (c, c2) and c2(x, y) = 0 for all x, y 6= t and c2(x, t) = 1 for all x ∈ {s, v1, . . . , vk}.

V \ {t}
u

v

0

. . .

t 1

Figure 7: Structure of distance function c2 of I. For all u ∈ V \ {t}, we set c2(t, u) = 1. All c2 distances inside
V \ {t} are zero: c2(u, v) = 0 for all u, v ∈ V \ {t}.

We argue that A(I) computes an α-approximation for the TSPPst-instance ((V,E, c), s, t). Let
P ⊆ E be an optimal s-t-path with respect to c. Then P is also a valid solution of the TSPPs-
instance I. This means that A(I) must return an (α, 2−ε)-approximation A of P . Since c2(P ) = 1,
we must have c2(A) ≤ (2− ε)c2(P ) = 2− ε < 2 and thus only one edge incident to t can be used by
A, because all edges to t have length 1. So t must be the end point of A and s must be the starting
point (or vice-versa) and we have c(A) = c1(A) ≤ αc(P ). This means that A is an α-approximation
of P . 2

Proposition 6.15 Let α > 1. The following holds for deterministic/randomized approximations:
If TSPPst is α-approximable, then TSP is α-approximable.

Proof Assume that TSPPst is (randomized) α-approximable. The following (randomized) algo-
rithm α-approximates TSP.

29



Let I = (V,E, c) be a given TSP-instance where V = {v1, . . . , vm}. For all t ∈ V \{v1}, approximate
an optimal Hamiltonian path between v1 and t, and add the edge {t, v1} to this tour. Finally, under
all tours obtained in this way, choose the shortest one.

Observe that a suitable choice of t (e.g., t = successor of v1 in an optimal Hamiltonian tour) yields
an α-approximation of an optimal tour. 2

Corollary 6.16 Let ε > 0. The following holds for deterministic/randomized approximations:

1. If componentwise metric 2-TSPPs is (3/2 + ε, 2− ε)-approximable, then TSPPst is (3/2 + ε)-
approximable.

2. If componentwise metric 2-TSPPs is (3/2−ε, 2−ε)-approximable, then TSPPst and TSP are
(3/2− ε)-approximable.

Proof Follows from Theorem 6.14 and Proposition 6.15. 2

6.4 Lower Bound Arguments for 2-TSPPst

Regarding lower bounds for 2-TSPPst we only have the weak argument that an approximation
algorithm for the two-objective problem also approximates the underlying single-objective problem.

Proposition 6.17 Let α > 1 and ε > 0. The following holds for deterministic/randomized ap-
proximations: If componentwise metric 2-TSPPst is (5/3 − ε, α)-approximable, then TSPPst is
(5/3− ε)-approximable.

7 Open Questions

The results in the previous sections raise the following questions, which apply to all considered
versions of the multi-objective problems: the general version, the metric version, and the compo-
nentwise metric version.

1. By Theorem 4.4, 2-TSP is randomized (3/2, 2 + ε)-approximable and randomized (3/2 + ε, 2)-
approximable. By Proposition 6.1 and Corollary 6.7, it is difficult to improve these approx-
imations with respect to any component. It is even difficult to obtain a (5/3 − ε, 2 − ε)-
approximation. However, so far there is no evidence in favor of or against an (α, β)-
approximation where 5/3 ≤ α, β < 2. Can one find such an approximation for 2-TSP? Or can
one find evidence for the difficulty of such an improvement?

2. By Theorem 5.2, 2-TSPP is randomized (3/2+ε, 5/3+ε)-approximable, and by Corollary 6.12,
it is difficult to obtain an ε-improvement in the first component. However, up to now we
have no evidence for the difficulty of improving the second component. So from this point of
view, there is no argument against a randomized (3/2+ε, α)-approximation for 2-TSPP where
3/2 ≤ α ≤ 5/3. Can one find such an approximation for 2-TSPP? Or can one find evidence for
the difficulty of such an improvement?
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Similarly, by Theorem 5.4, 2-TSPPst is (2 + ε, 2 + ε)-approximable, and by Proposition 6.17,
it is difficult to obtain a randomized (5/3−ε, 2+ε)-approximation. Can one find a randomized
(α, 2 + ε)-approximation for 2-TSPP where 5/3 ≤ α ≤ 2? Or can one find evidence for the
difficulty of such an improvement?

3. In section 6, we gave the following reductions that were used to translate approxima-
tions from one to another optimization problem: TSPPst ≤ 2-TSP, TSPPst ≤ 2-TSPP,
TSPPs ≤ 2-TSPP, TSPPst ≤ 2-TSPPs, and TSP ≤ TSPPst. Can one find nontrivial reduc-
tions between the single-objective problems TSP, TSPP, TSPPs, and TSPPst? For instance,
does the existence of a (5/3−ε)-approximation for TSPPst imply a (3/2−ε)-approximation for
TSP? Conversely, does the existence of a (3/2− ε)-approximation for TSP imply a (5/3− ε)-
approximation for TSPPst? Such translations of the approximability between the single-
objective problems would give a better understanding of the difficulty of these problems.
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erhalten und eines glüklichen Erfolgs in seinen Geschäften gewiß zu sein. Von einem
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