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Abstract

The finite field Kakeya problem deals with the way lines in different direc-
tions can overlap in a vector space over a finite field. This problem came up
in the study of certain Euclidean problems and, independently, in the search
for explicit randomness extractors. We survey recent progress on this problem
and describe several of its applications.

1 Overview

The geometry of finite fields has played an important role in the development of
theoretical computer science in the past couple of decades. Properties of finite
field polynomials have been used extensively in proving some of the seminal results
of the field. Some notable examples are the PCP theorem [ALM+98, AS98], list
decodable error correcting codes [Sud97, GS99, PV05, GR08], randomness extrac-
tors [TSUZ01, SU05, GUV09, DW08, DKSS09] and hardness-randomness tradeoffs
[BFNW93, SU05]. These problems, while having nothing to do originally with finite
fields, admit extremely elegant solutions using finite field machinery. The application
of finite fields is, in many cases, in the form of constructions of certain maps with
seemingly ‘magical’ properties that are then used as a tool to obtain the required
result or, sometimes, even present the solution to the problem itself.

It occasionally happens that a certain problem attracts attention from the di-
rection of both mathematicians working on finite field geometry and from computer
scientists interested in problems such as the ones listed above. One such instance is
the finite field Kakeya problem. This question, regarding the limitations of packing
lines in different directions into small sets, emerged in the late 90’s in connection with
the famous Euclidean Kakeya conjecture and was studied by researchers interested in
that problem [Wol99, Rog01, MT04, BKT04]. The exact same question, in a different
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setting, came up independently in connection with a specific construction of random-
ness extractors [LRVW03, DS07] which are objects that are of interest in theoretical
computer science.

In [Dvi08] the Polynomial method was applied to attack the finite field Kakeya
problem. This technique, while not new in the context of extractors, was appar-
ently not considered before by mathematicians working on the problem. The proof
technique was developed further in subsequent works [SS08, DKSS09, EOT09] to
derive stronger and more general results on Kakeya type problems in finite fields.
These new techniques were applied in [DW08, DKSS09] to derive new results on
randomness extractors and also lead to progress on two related problems in Eu-
clidean space – the multilinear Kakeya conjecture [Gut08] and the Joints conjecture
[GK08, EKS09, KSS09].

The purpose of this note is to survey the above developments and to discuss the
connections between them. We will include, in some places, complete proofs or proof
sketches and in others only state the results. The sections are organized as follows:
In Section 2 we discuss the finite field Kakeya conjecture, the development of its
proof and its generalizations. We continue in Section 3 to describe the applications
to randomness extractors. Section 4 discusses the progress on related problems in
Euclidean space.

2 Finite field Kakeya sets

Let F denote a finite field of size q. A set K ⊂ Fn is called a Kakeya set1 if it contains
a line in every direction. More formally, if for every (direction) b ∈ Fn there exists a
point a ∈ Fn such that the set {a + t · b | t ∈ F} is contained in K. In a survey paper,
Wolff [Wol99] made a conjecture about the size of such sets.

Conjecture 1 (The finite field Kakeya conjecture [Wol99]). Let K ⊂ Fn be a
Kakeya set, then

|K| ≥ Cn · qn,

where Cn is a constant depending only on n.

This conjecture originates from the famous Euclidean Kakeya conjecture which
deals with bounding the dimension of sets in Rn containing a unit line segment in
every direction (more on this connection in Section 4). This natural question on
the geometry of finite fields was posed by Wolff as a ‘stripped down’ version of its
Euclidean sibling on which new ideas could be tested without having to deal with the
technical difficulties of Euclidean geometry.

Until recently, progress on the finite field Kakeya problem and on the Euclidean
problem went hand-in-hand. The best bounds for both problems were obtained using

1The term Besicovitch set is also used in the literature.
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a technique of Bourgain [Bou99] (later improved in [KT02]) which uses tools from
additive combinatorics. These techniques (which are beyond the scope of this survey

and are still the most effective for the Euclidean problem) give a lower bound of ≈ q
4
7
n

on the size of K [Rog01, MT04]. We note that a bound of the form |K| ≥ qn/2 can
be easily obtained by observing that the difference set K −K is equal to the whole
space. Recently, the finite field Kakeya conjecture was proved [Dvi08]. In this section
we describe this proof and the improvements/generalizations that followed.

2.1 The polynomial method

We start with the first proof of the finite field Kakeya conjecture appearing in [Dvi08].
The constant Cn obtained here is not optimal and was improved in subsequent works
(these will be described later). The proof uses the polynomial method, which works,
in general, by interpolating a non-zero low-degree polynomial on the set in question,
and then proceeds to derive a contradiction by showing that the polynomial has too
many zeros and so must be identically zero. The original proof appearing in [Dvi08]
gave a slightly weaker bound than the one appearing here. The improved proof,
which was included in a later version of that paper, incorporates an observation
made independently by N. Alon and T. Tao.

Theorem 2.1 ([Dvi08]). Let K ⊂ Fn be a Kakeya set, then

|K| ≥ 1

n!
· qn.

The interpolation of a polynomial that vanishes on K is achieved using the fol-
lowing simple lemma.

Lemma 2.2. Let S ⊂ Fn be such that |S| <
(

d+n
n

)
. Then there exists a non-zero

polynomial g(x1, . . . , xn) ∈ F[x1, . . . , xn] of degree ≤ d such that g(x) = 0 for all
x ∈ S.

Proof. The number of monomials in n variables of degree at most d is exactly
(

d+n
n

)
.

The constraints g(a) = 0 for a ∈ S are all homogeneous and linear in the coefficients
of g. Therefore, since there are more coefficients than constraints, we can find a non
zero solution satisfying all of these constraints.

Another ingredient in the proof is the Schwartz-Zippel lemma, which bounds the
number of zeros of a non-zero polynomial.

Lemma 2.3 ([Sch80, Zip79]). Let g ∈ F[x1, . . . , xn] be a non-zero polynomial with
degree at most d. Then

|{x ∈ Fn | g(x) = 0}| ≤ d · qn−1.
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We are now ready to prove Theorem 2.1: Suppose in contradiction that

|K| < 1

n!
· qn <

(
q − 1 + n

n

)
.

Then, using Lemma 2.2, we can find a non-zero polynomial g(x) of degree d ≤ q − 1
that vanishes on K. We proceed by considering the restriction of g to lines in different
directions passing through K. Let b ∈ Fn be some direction and let a ∈ Fn be such
that

{a + t · b | t ∈ F} ⊂ K.

The restriction of g to this line (passing through a in direction b) is a univariate
polynomial given by

ha,b(t) = g(a + t · b) = g(a1 + t · b1, . . . , an + t · bn).

One can easily verify that the coefficient of the monomial td in ha,b is exactly gd(b),
where gd is the homogeneous part of g of highest degree. Therefore,

ha,b(t) = gd(b) · td + O(td−1).

We now observe that ha,b(t) = 0 for every t ∈ F (since all the points a + tb are in
K and g vanishes on K). This implies that ha,b is identically zero, since otherwise it
could have at most d ≤ q − 1 zeros (this is just the fundamental theorem of algebra
or the one-dimensional case of the Schwartz-Zippel lemma). Since ha,b is identically
zero, its leading coefficient, gd(b), has to be zero. Since b ∈ Fn was arbitrary, we
conclude that gd vanishes on the entire space Fn. This contradicts Lemma 2.3, since
gd is non-zero of degree d ≤ q − 1 and so can have at most (q − 1) · qn−1 < qn zeros.
This completes the proof of Theorem 2.1.

2.2 Introducing multiplicities

In [SS08] an improvement to the constant Cn from Theorem 2.1 was derived. This was
done by considering polynomials that vanish with high multiplicity on the Kakeya set
K. This idea, of using multiplicities to enhance the polynomial method, was already
used in the context of list decodable error correcting codes in [GS99] and can be traced
back even to Stepanov’s proof of Weil’s theorem [Ste71] (via “Stepanov’s Method”).

The notion of multiplicities is very easy to define for univariate polynomials: a
polynomial h(t) vanishes with multiplicity m at a point a ∈ F iff h(t) is divisible by
(t − a)m. This implies, in particular, that a univariate polynomial of degree d can
have at most d zeros counting multiplicities, a fact that will be used later in the
proof.

The generalization of the notion of multiplicities to the multivariate case is as
follows: we say that a polynomial g(x1, . . . , xn) vanishes with multiplicity m at a
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point a ∈ Fn if the shifted polynomial g(x + a) contains only monomials of degree
m and higher. We define mult(g, a), the multiplicity of g at a, to be the largest m
such that g vanishes at a with multiplicity m. One can easily see that this definition
indeed generalizes the univariate one.

We now prove the result from [SS08] (the constant 4 can be improved to 2.6 using
a more clever choice of parameters).

Theorem 2.4 ([SS08]). Let K ⊂ Fn be a Kakeya set, then

|K| ≥ 1

4n
· qn.

We will begin the proof by interpolating a low degree polynomial (this time bound-
ing the individual degrees instead of the total degree) that vanishes on K with high
multiplicity. This is achieved using the following lemma.

Lemma 2.5. Let S ⊂ Fn be such that

|S| < qn

(
m+n−1

n

)

Then there exists a non-zero polynomial g ∈ F[x1, . . . , xn] such that mult(g, a) ≥ m
for all x ∈ S and such that g has individual degrees at most q − 1 (that is, each
variable appears with degree at most q − 1).

Proof. As before, g will be found by solving an under-determined system of homoge-
neous linear equations. Each condition of the form mult(g, a) ≥ m corresponds to
the

(
m+n−1

n

)
homogeneous linear constraints (on the coefficients of g) requiring that

the coefficients of monomials of degree less than m in g(x+a) are zero (one condition
per monomial). In total, we have |S| · (m+n−1

n

)
constraints, which is smaller than qn

– the number of coefficients in g (as each variable can appear with degree between 0
and q − 1).

The second ingredient in the proof will be the following (folklore) lemma, which
will be used instead of the Schwartz-Zippel lemma.

Lemma 2.6. Let g ∈ F[x1, . . . , xn] be a non-zero polynomial with individual degrees
at most q − 1. Then there exists a point a ∈ Fn such that g(a) 6= 0.

We now turn to prove Theorem 2.4. Assuming

|K| < qn

4n
≤ qn

(
2n−1

n

) ,

we can find, using Lemma 2.5, a non-zero polynomial g(x) with individual degrees
bounded by q − 1 such that mult(g, a) ≥ n for every a ∈ K. As before, we fix some
b ∈ Fn and let a ∈ Fn be such that the set {a + t · b | t ∈ F} is contained in K. The
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polynomial ha,b(t) = g(a+ t ·b) now has q zeros of multiplicity at least n (one needs to
verify that the restriction operation can only increase multiplicities). As the degree
of ha,b is at most (q − 1) · n (the sum of individual degrees of g) we conclude that
ha,b is identically zero. This implies, as before, that gd(b) = 0. Using Lemma 2.6 we
derive the required contradiction (gd cannot vanish everywhere). This completes the
proof.

2.3 More multiplicities

As we saw in the previous section, using polynomials of higher degree (total degree
(q − 1)n instead of q − 1) resulted in a tighter bound on the size of Kakeya sets. It
is natural to wonder whether we can push this idea further. At first glance it seems
that we cannot, since a non-zero polynomial with individual degrees larger than q−1
can potentially vanish on the entire space (e.g the polynomial xq

1− x1). The solution
is to use a more general form of the Schwartz-Zippel lemma that is useful also for
polynomials of degree higher than the field size. This is done, again, by considering
the more general case of zeros with multiplicities.

Lemma 2.7 ([DKSS09]). Let g ∈ F[x1, . . . , xn] be a non-zero polynomial of degree
at most d. Then ∑

a∈Fn

mult(g, a) ≤ d · qn−1.

Using this lemma we can improve the value on Cn in the Kakeya bound to 1/2n.
This improvement brings the lower bound on the size of Kakeya sets to within a factor
of 2 of the known upper bounds (these are described in the next section).

Theorem 2.8 ([DKSS09]). Let K ⊂ Fn be a Kakeya set. Then

|K| ≥ 1

2n
· qn.

We will not give the complete proof but rather sketch the idea. As in the previous
proofs we first interpolate a non-zero degree d polynomial that vanishes on K with
multiplicity m (d and m will be chosen later). An argument similar to the one used
in Lemma 2.5 tells us that this is possible as long as

|K| <
(

d+n
n

)
(

m+n−1
n

) . (1)

Next, we consider the restrictions ha,b(t) to lines through K. In the previous proofs,
each restriction gave us a simple (multiplicity one) zero of gd. We will modify this
step so that we will derive a zero of high multiplicity of gd at b. That is, we will
show that mult(g, b) ≥ m/2 for every b. This part of the proof (which uses Hasse
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derivatives and is omitted due to its technicality) goes through as long as

d <
m

2
· q (2)

Using Lemma 2.7 and the above argument (carried out for each b ∈ Fn) we have that

m

2
· qn ≤

∑

b∈Fn

mult(gd, b) ≤ d · qn−1,

which is a contradiction, by Equation. 2.

We complete the proof by picking d and m as follows: d will go to infinity in
multiples of q. That is, d = q ·R, with R an integer tending to infinity. We then pick

m = 2 · d

q
+ 1

so that Eq. 2 is satisfied. Observing Eq. 1 we see that this choice of parameters (when
taking R to infinity) results in a bound of

|K| ≥
(

d+n
n

)
(

m+n−1
n

) → dn

mn
≈ qn

2n
,

as was required.

2.4 A construction of small Kakeya sets

We now turn to describing the smallest known Kakeya sets which are of size

|K| ≤ qn

2n−1
+ O(qn−1),

which is, asymptotically as q tends to infinity, to within a factor of 2 of the lower bound
obtained in [DKSS09]. The construction for the case n = 2 was given by [MT04] and
the generalization for larger n was observed by the author for odd characteristic and
by [SS08] for even characteristic. We give here the construction for odd characteristic.

We will only worry about lines in directions b = (b1, . . . , bn) with bn = 1. The rest
of the lines can be added using an additional qn−1 points, which is swallowed by the
low order term. Our set is defined as follows:

K =
{(

v2
1/4 + v1 · t, . . . , v2

n−1/4 + vn−1 · t, t
) ∣∣ v1, . . . , vn−1, t ∈ F

}
.

Let b = (b1, . . . , bn−1, 1) be some direction. Then K clearly contains the line in
direction b through the point (b2

1/4, . . . , b
2
n−1/4, 0). We now turn to showing that

|K| ≤ qn

2n−1 . Notice that the sum of the first coordinate of K and the square of the
last one is equal to

v2
1/4 + v1 · t + t2 = (v1/2 + t)2
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and so is a square in F. Since F has odd characteristic it contains at most ≈ q/2
squares. Let x1, . . . , xn denote the coordinates of the set K. Fixing the last coordinate
we get that the first coordinate x1 can take at most ≈ q/2 values. The same holds
for x2, . . . , xn−1 and so we get a bound of ≈ qn

2n−1 on the size of K.

2.5 The Kakeya maximal function estimate

The finite field Kakeya conjecture tells us that we cannot hope to pack lines in all
directions into a small set. But perhaps there is some large family of directions such
that lines in these directions can be packed efficiently? Another question one might
ask is what if we only require each line to intersect our set in many points, instead of
being contained in it completely? When perused further, this line of inquiry bring us
to the Kakeya maximal function estimate, which gives a highly precise statement on
the way lines in different directions can be packed together.

In order to state this result we require some notations. Let Pn−1(F) denote the
set of directions of lines in Fn (this is simply the n− 1 dimensional projective space
over F). For a direction w ∈ Pn−1(F) and for a point a ∈ Fn, let `a,w ⊂ Fn denote the
line through a in direction w. For every function f : Fn 7→ R we define its Kakeya
maximal function, f ∗ : Pn−1(F) 7→ R, as follows

f ∗(w) = max
a∈Fn

∑

x∈`a,w

|f(x)|.

In other words, f ∗(w) is equal to the maximum, over all lines in direction w, of the
sum of absolute values of f along this line. In particular, if f is the indicator function
of a Kakeya set, then f ∗(w) = q for every w. Similarly, if f is the indicator function
of a set which is ‘close’ to being a Kakeya set (e.g it contains many partial lines in
many directions) then the `1 norm of f ∗ will be large, since for many w’s there exists
an a for which the sum of absolute values of f on `a,w is large. In general, there is no
reason to limit f to be an indicator function – f can be an arbitrary measure on the
space Fn.

We are now ready to state the Kakeya maximal estimate in its full generality. This
estimate, which was recently proved in [EOT09], was first conjectured in [MT04] and
corresponds to a similar estimate in the Euclidean domain, generalizing the Euclidean
Kakeya conjecture. Its proof (which is too technical to fit here) builds on the poly-
nomial method while introducing several new ideas.

Theorem 2.9 ([EOT09]). Let f : Fn 7→ R be a function and let f ∗ : Pn−1(F) 7→ R
be its corresponding Kakeya maximal function. Then

∑

w∈Pn−1(F)
|f ∗(w)|n ≤ Cn · qn−1 ·

∑

x∈Fn

|f(x)|n,

where Cn depends only on n.

8



In order to demonstrate the strength of this theorem we consider a special case.
Suppose K ⊂ Fn is a set intersecting m lines (with different directions) in at least
k points each. Intuitively, we expect K to have size roughly ≈ mk. Let f be the
indicator function of K. Then, |f ∗(w)| ≥ k for at least m different values of w.
Plugging this information into the estimate in Theorem 2.9 we get

m · kn ≤ Cn · qn−1 · |K|.
Rearranging, we get that

|K| ≥ C−1
n ·

(
k

q

)n−1

·mk,

which is Ωn(mk) whenever, say, k = Ωn(q).

In fact, a more general estimate, involving curves instead of lines, was proved
in [EOT09]. The idea to use the polynomial method to control the intersections of
curves was first used in [DW08] in the context of randomness extractors. This leads
us to the second part of this survey which deals with the application of Kakeya type
estimates to the construction of randomness extractors.

3 Application to randomness extractors

As was mentioned before, the finite field Kakeya problem originated independently in
the quest for constructing functions with ‘special’ properties used in theoretical com-
puter science. These functions, called randomness extractors (or just extractors for
short), play an important role in the proofs of many results on a large number of top-
ics including de-randomization (the relation between deterministic and randomized
algorithms), error correcting codes, cryptography and many others.

Roughly speaking, an extractor is a function that ‘extracts’ randomness from
arbitrary random distributions, with the help of a short random seed. More formally,
an extractor is a function

E : {0, 1}n × {0, 1}d 7→ {0, 1}m

such that for every random variable X on {0, 1}n with min-entropy2 at least k, the
random variable E(X, Ud) is close, in statistical distance, to the uniform distribution,
where Ud is uniform on {0, 1}d and independent of X. We think of d as being much
smaller than k and m and so E can be said to ‘extract’ the entropy of X (and not that
of Ud). In the definition above, k is said to be the entropy threshold of the extractor
and X is said to be an extractor for sources of entropy k.

Another useful way to view an extractor is as an unbalanced bipartite graph with
2n left vertices and 2m right vertices and with left-degree 2d. The fact that E is an

2A random variable X has min entropy at least k if Pr[X = x] ≤ 2−k for every x ∈ {0, 1}n.
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extractor, say for sources of min-entropy k, means that every set of left vertices of size
at least 2k is mapped almost uniformly to the right hand side of the graph. Naturally,
we wish to maximize m (the amount of entropy extracted) and to minimize d and
the statistical error (it can be shown that the need for an independent random seed
is unavoidable).

One important thing to keep in mind when talking about extractors is that picking
E at random will give, with overwhelming probability, an extractor with the best
possible parameters. The challenge is therefore, not to show that good extractors
exists, but rather to give explicit (efficiently computable) constructions, matching
the parameters of a random construction. This type of challenge is similar to the one
arising in the construction of good error correcting codes, expander graph, Ramsey
graphs and other combinatorial objects.

Since this is not a survey on extractors (the curious reader is referred to [Sha02,
GUV09, DW08, DKSS09] and references within) we will not delve into all the intrica-
cies surrounding them, but rather concentrate on their connection to the finite field
Kakeya problem. In order to make clear this connection we have to introduce the no-
tion of mergers. Mergers are similar to extractors in the sense that they are functions
that extract randomness from weak distributions. However, unlike extractors, they
relax two of the conditions on the input and output distributions. The first relaxation
is a structural condition on the input X. Instead of being an arbitrary distribution
(with high min entropy), X is now divided into s blocks X1, . . . , Xs, each of length n
bits, and we are guaranteed that one of these blocks is uniform (the dependencies be-
tween the blocks can be arbitrary). This type of source is referred to in the literature
as a ‘somewhere-random source’. The second relaxation is that, instead of requiring
the output, another n-bit string, to be close to uniform, we only require it to have
very high min-entropy (say, at least 9

10
n). As is the case with extractors, mergers

have to rely on an additional short random seed.

Stated more formally, a merger is a function

M : ({0, 1}n)s × {0, 1}d 7→ {0, 1}n

such that if X = (X1, . . . , Xs) is a random variable on ({0, 1}n)s for which one of the
Xi’s is uniform, then M(X,Ud) has (up to some small statistical error) min entropy
at least 9

10
n (the choice of constant 9

10
is arbitrary). It was shown in [TS96, NTS99]

that explicit constructions of good mergers (for a large number of blocks) imply good
constructions of extractors and so the task of building good mergers became one of
equal interest to that of building extractors.
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3.1 Mergers using finite fields

The connection to the finite field Kakeya problem arose in an attempt to analyze a spe-
cific, very natural, construction of mergers 3. This construction, given by [LRVW03],
is the following: pick a finite field F of size q and interpret each block Xi ∈ {0, 1}n

as an element of Fr for r ≈ n/ log2(q). Now, use the seed Ud to pick s field elements
a1, . . . , as and output the linear combination

∑s
i=1 aiXi. In other words, the merger

picks a uniform element in the span of the blocks X1, . . . , Xs. The question is whether
this construction can be called a merger?

In order to to see how this question leads to the Kakeya problem we will consider
the simplest case of merging just two blocks. This boils down to bounding the entropy
of a random variable of the form

a1X1 + a2X2,

with either X1 or X2 uniform in Fr and with a1, a2 uniform and independent of X1, X2.
Suppose there was a Kakeya set K ⊂ Fr such that

|K| ¿ q
9
10

r ≈ 2
9
10

n.

Then, we could define a function fK : Fr 7→ Fr such that for every x ∈ Fr and for
every t ∈ F we would have

fK(x) + t · x ∈ K

(the line through fK(x) in direction x is contained in K). Now, consider the pair of
random variables (X1, X2) with X1 uniform on Fr and X2 = fK(X1). The random
variable

Z =
a1

a2

·X1 + X2 =
a1

a2

·X1 + fK(X1)

(we assume a2 6= 0 for simplicity) is now supported on the set K and so has entropy
at most

log2 |K| ¿
9

10
n.

Multiplying Z by a2 cannot increase its entropy by much (since log2(q) is relatively
small compared to n) and so we get that the merger fails on the input X1, X2. In
other words, if we show that the merger output has high entropy then we also show
that there are no small Kakeya sets! Of course, there is a direct connection between
the fraction of entropy extracted by the merger and the minimum size of Kakeya sets.
The analog to the finite field Kakeya conjecture would be to show that the merger
outputs a string with entropy close to n.

Even though the reduction above, converting merger bounds to Kakeya bounds,
is one-way, it is not surprising that results can be usually translated also in the

3This demonstrates a recurring theme in theoretical computer science, when constructions using
finite fields are often the most natural.
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reverse direction. The proof method of [Dvi08], for example, can be used to show
that the merger of [LRVW03] has output entropy very close to n. This result, while
interesting in its own right, does not lead to progress on extractors due to the fact
that the seed length, d, grows linearly with the number of blocks (this makes the
reduction to extractors outlined in [TS96, NTS99] practically useless). The situation
can be remedied, however, by replacing lines with curves.

3.2 Curves instead of lines

In [DW08] a new merger was constructed that makes use of the fact that the poly-
nomial method can be applied just as efficiently to control intersections of low de-
gree curves instead of lines. roughly speaking, the merger passes a low degree curve
through the s points X1, . . . , Xs ∈ Fr and outputs a random point on this curve.
More formally, we find (using interpolation) an r-tuple of univariate polynomials

φ(t) = (φ1(t), . . . , φr(t)) ∈ (F[t])r

of degree at most s− 1 such that

φ(1) = X1, . . . , φ(s) = Xs,

where we assume for simplicity that F is prime and so contains the elements 1, 2, . . . , s.
The output of the merger is φ(Ud), where we need to take d ≈ log2(q) so that Ud will
have enough bits to sample a uniform element in F (the exact choice of field size will
be discussed below).

The way to argue about the min-entropy of this merger’s output is as follows
(we only give a rough sketch of the argument): Suppose that M(X, Ud) has entropy
smaller than k. Then, we can find a small set K of size roughly 2k such that for
‘many’ fixings of X = x we have

Pr[M(x, Ud) ∈ K] ≥ 1/10.

In other words, the set K intersects ‘many’ curves (each curve corresponding to a
fixing of X = x) in at least q/10 points. The fact that we have many curves follows
from the fact that one of the Xi’s is uniform (and so the curves ‘cover’ the entire
space). We can thus use the polynomial method (as was done in [DW08]) or the
polynomial method with multiplicities (as in [DKSS09]) to derive a contradiction.
The argument is a straightforward generalization of the one used for lines – we first
find a polynomial vanishing (with high multiplicity) on the set K and then consider its
restrictions to all the relevant curves passing through K. As long as the degree of the
vanishing polynomial is chosen to be sufficiently small, we get that this polynomial
must vanish identically on all of these curves, and so (since the curves cover the space
uniformly) must have many zeros (or many zeros with high multiplicities). We then
use the Schwartz-Zippel lemma (with multiplicities) to get a contradiction. This final
result is described by the following theorem.
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Theorem 3.1 ([DKSS09]). The output of the merger described above is ε-close (in
statistical distance) to having min entropy at least (1− δ) · n, whenever

q ≥
(

2 · s
ε

) 1
δ

.

This theorem improves a weaker bound obtained in [DW08] (without the use of
multiplicities) in which the bound on the field size included also the length of each
block. In [EOT09] a more general Kakeya-type result for curves was obtained using an
even more sophisticated application of the polynomial method. The setting studied
in [EOT09] deals with sets inside varieties that intersect many curves in many points
and proves a more refined maximal estimate for this setting (this however, does not
seem to strengthen the merger analysis in any significant way).

As a result of the merger analysis of Theorem 3.1, a new extractor construction was
given in [DKSS09] with parameters that were not obtainable using previous methods
(we refer the interested reader to [DKSS09] for more details on this result).

4 The polynomial method in Euclidean space

Let us go back now and consider the original motivation, given by Wolff [Wol99],
for studying finite field Kakeya sets – namely, the Euclidean Kakeya problem. Let
K ⊂ Rn be a compact set containing a unit line segment in every direction. Such sets
are called Kakeya (or Besicovitch) sets and, surprisingly enough, can have Lebesgue
measure equal to zero [Bes28]. The simplest formulation of the Euclidean Kakeya
problem uses the notion of Minkowski (or covering) dimension, which provides a
more refined way to argue about the ‘size’ of such sets. For every ε > 0 let Nε(K)
denote the minimal number of balls of radius ε needed to cover K. We are interested
in the way Nε(K) grows as ε goes to zero. It is clear that Nε(K) ≤ O(1/εn), where all
hidden constants depend on n, since K is compact and is thus contained in a ball of
finite radius. Roughly speaking, the Minkowski dimension of K is defined to be the
smallest d such that Nε(K) ≤ O(1/εd). Notice that d is a number (not necessarily
integer) between 0 and n. It is not hard to see that this notion of dimension agrees
with our intuition regarding ‘simple’ sets such as bounded ‘chunks’ of vector spaces
or varieties.

The Euclidean Kakeya conjecture states that a Kakeya set in Rn must have
Minkowski dimension equal to n. In other words, in order to cover K with balls
of radius ε, we need at least Ω(1/εn) balls (asymptotically, as ε tends to zero). When
comparing this with the finite field setting we see that the quantity 1/ε corresponds to
the field size q and that the dimension corresponds to logq |K|. With this correspon-
dence in mind, it is not hard to see that a bound of ≈ n/2 on the dimension of Kakeya
sets is relatively easy to obtain. The first bound of the form (1/2 + δ)n was given by
Bourgain [Bou99] using tools from additive combinatorics. This proof method was
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subsequently improved by [KT02] where a bound of ≈ 0.596n was obtained. Proving
the Euclidean Kakeya conjecture (in the form described above or in one of its more
general formulations) is considered to be a major open problem and is connected to
many other unanswered questions in various areas of mathematics (see the surveys
[Wol99, Tao01, Bou00] for more information).

Even though the recent progress on the finite field Kakeya problem did not yet
lead to new bounds on the Euclidean Kakeya conjecture, it did lead to progress on
two related problems in Euclidean space. These are described below.

4.1 The multilinear Kakeya conjecture

The multilinear Kakeya conjecture, stated by [BCT06], is a restricted version of the
general Kakeya conjecture. This version of the problem requires, essentially, that
the line segments passing trough a ‘typical’ point of K cannot be ‘close’ to being
contained in a hyperplane. A nearly complete proof of this conjecture was given in
[BCT06] using Heat-Flow arguments. Recently, a simpler proof, with a better (indeed,
optimal) result, was given by Guth [Gut08]. Guth’s proof is based on an adaptation of
the polynomial method of [Dvi08] to the Euclidean setting. This is made possible via
the Polynomial Ham Sandwich theorem, which replaces Lemma 2.2 in the argument
of [Dvi08].

Theorem 4.1 (The Polynomial Ham-Sandwich theorem [Gro03]). Let

U1, . . . , Us ⊂ Rn

be bounded open sets with

s <

(
d + n

n

)
.

Then, there exists a non-zero polynomial g ∈ R[x1, . . . , xn], of degree at most d, such
that the sets {g(x) < 0} and {g(x) > 0} bisect each of the sets Ui into two equal parts.

Giving a complete account of Guth’s proof is beyond the scope of this survey. We
will, however, attempt to describe the way in which the above theorem appears in the
argument. Suppose Nε(K) = s ¿ 1/εn and let B1, . . . , Bs be balls of radius ε covering
K. Applying Theorem 4.1 we can find a non-zero polynomial g ∈ R[x1, . . . , xn] of
degree d ¿ 1/ε that bisects each of these balls into two equal parts. The main
part of the argument uses this property together with the multilinearity condition to
argue that the hyper-surface H = {g(x) = 0} intersects many of the lines passing
through the points of K. Here we use the fact that H looks locally like a hyperplane
and, therefore, the lines through a typical point cannot all avoid it. Finally, this
information is used to find a single line that intersects the interior of H in more than
d points. The restriction of g to this line is identically zero, since each intersection
with H is a zero and the number of intersections is larger than the degree. By slightly
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perturbing this line we get a family of lines, on which g vanishes, whose union forms
a set of positive measure. This is a contradiction since a non-zero polynomial cannot
vanish on a set of positive measure.

4.2 The joints conjecture

Another Euclidean problem, related to Kakeya, on which recent progress was made
using the polynomial method is the Joints Conjecture of Sharir [Sha94]. This is a
problem which originated from the area of computational geometry and was observed
later to be related to the Euclidean Kakeya problem by Wolff [Wol99]. In this problem
we consider a set of M lines in R3. We say that a point a ∈ R3 is a joint if it is the
intersection of at least three lines which are not co-planar. The joints conjecture
states that there could be at most O(M3/2) joints. This is seen to be the optimal
bound using a trivial arrangement of lines in a lattice of side length

√
M . Using a

variant of the polynomial method, Guth and Katz [GK08] proved this conjecture,
improving the previously best bound of M1.6232 due to Feldman and Sharir [FS05].

Theorem 4.2 ([GK08]). M lines in R3 can create at most O(M3/2) joints.

The proof of this theorem was simplified in [EKS09] and generalized to n dimen-
sions in [KSS09]. The definition of a joint in n dimensions is an intersection of n lines
in n linearly independent directions.

Theorem 4.3 ([KSS09]). M lines in Rn can create at most On(M
n

n−1 ) joints, where
the implied constant depends on n only.

Proof. Let J denote the set of joints created by M lines in Rn. W.l.o.g. we can assume
that each line passes through at least |J |/2M joints (we can through away all other
lines at negligible cost). Suppose in contradiction that

|J | > A ·M n
n−1 ,

with A a constant (depending on n) to be determined later. Let g ∈ R[x1, . . . , xn] be
a non-zero polynomial of minimal degree vanishing on J . Using Lemma 2.2 (which
holds, of course, also over the reals) we have that

d = deg(g) ≤ On(|J |1/n).

If we restrict g to one of the M lines we see that the restriction has at least |J |/2M
zeros, which is, by our assumption, larger than d (as long as we pick the constant A
to be sufficiently large). Therefore, g vanishes identically on each of the M lines. We
will now show that all of the n partial derivatives ∂g

∂xi
of g vanish on J , which will be

a contradiction, since one of them will be non-zero and of degree lower than that of
g.
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Let a ∈ J be a joint and let v1, . . . , vn be the linearly independent directions of n
lines passing through a. Since g vanishes identically on each of these lines we have

hi(t) = g(a + t · vi) ≡ 0

for every i ∈ [n]. Let

∇g(a) =

(
∂g

∂x1

(a), . . . ,
∂g

∂xn

(a)

)

denote the gradient of g. A simple calculation shows that the coefficient of the
monomial t in hi(t) is equal to 〈∇g(a), vi〉. Since hi(t) is identically zero we have
that 〈∇g(a), vi〉 = 0 for every i ∈ [n]. Since the set v1, . . . , vn is a basis of Rn we get
that ∇g(a) = 0. Since a was arbitrary, we have that ∇g vanishes on the entire set J ,
which is a contradiction to the minimality of the degree of g.

We note that the proof above can be made to work also in the setting of finite
fields. One difference is that, in a finite field, a non-constant polynomial can have all
of its partial derivatives equal to zero (e.g xq in Fq). However, one can show that this
can only happen if the polynomial is itself a power of another polynomial and that
this power is divisible by the characteristic. This clearly cannot be the case for g in
the proof due to the minimality of its degree.
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