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Abstract

We prove a simple concentration inequality, which is an extension of the Chernoff bound
and Hoeffding’s inequality for binary random variables. Instead of assuming independence of
the variables we use a slightly weaker condition, namely bounds on the co-moments.

This inequality allows us to simplify and strengthen several known direct-product theorems
and establish new threshold direct-product theorems. Threshold direct-product theorems are
statements of the following form: If one instance of a problem can be solved with probability at
most p, then solving significantly more than a p-fraction among multiple instances has negligible
probability.

Using our concentration inequality we show how to obtain threshold (and standard) direct-
product theorems from known XOR Lemmas. We give examples of this approach and establish
(threshold) direct-product theorems for quantum XOR games, quantum random access codes, 2-
party and multi-party communication complexity, and circuits. Similar results can be obtained
for other models of computation, e.g. polynomials over GF (2) and query complexity.

We believe that our inequality has applications in other contexts as well.

1 Introduction

Direct-product theorems (DPT) are useful tools in computer science, with a wide range of applica-
tions. They are statements of basically this form: If some process (limited by a certain amount of
resources) can compute some function f : {−1,+1}n → {−1,+1} on a randomly chosen input with
probability p, then the probability that a process (with comparable resources) can simultaneously
compute f on k independently chosen inputs becomes exponentially small in k, ideally at most
pk. Closely related are XOR Lemmas, which state that for independently chosen inputs x1, . . . , xk
the advantage of computing

∏k
i=1 f(xi) over guessing becomes exponentially small in k, ideally

(2p− 1)k.
We consider threshold direct-product theorems, sometimes also called concentration bounds.

They are statements saying that even solving significantly more than a p-fraction of k simultaneously
given instances correctly has exponentially small probability in k. Statements of this kind are for
example useful when one wants to distinguish whether some process succeeds with probability s or
c, with s < c. Of course, challenging the process sequentially on many inputs and then accepting if
more than a (s+ c)/2-fraction of the challenges are correct gives a way to boost one’s confidence.
However, sequential repetition might be inefficient, simply impossible in the considered model or
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undesirable for several other reasons [14]. The question is whether this protocol can also be executed
in parallel, such that the process gets all k instances at once and has to output all k answers. In this
case, knowledge of the other inputs could give the process a non-trivial advantage over sequential
repetition, and numerous examples where this is indeed the case are known [34, 37, 33]. On the
other hand, for several models (threshold) direct-product theorems hold under parallel repetition
and we give several examples, see Section 1.1 and Section 4.

Technique Our main technical tool will be (a slightly stronger version) of the following Lemma.
Relative entropy D(·||·) is defined in equation (5).

Lemma 1 (Threshold Lemma). Let Y1, . . . , Yk ∈ {−1,+1} be random variables and −1 ≤ β ≤ 1
such that for all S ⊆ [k]

E[
∏
i∈S

Yi] ≤ β|S|. (1)

Let λ be some number such that β ≤ λ ≤ 1. Then

Pr[
k∑
i=1

Yi ≥ λk] ≤ e−kD(1/2+λ/2||1/2+β/2). (2)

Note that if we have random variables Yi which are independent, and +1 with probability
1/2 + β/2 and −1 with probability 1/2 − β/2, then the assumptions of the Lemma are satisfied
and the bound we get in inequality (2) is the same as the Chernoff bound, see Section 2. However,
unlike the Chernoff bound which requires the variables Yi to be independent, we only require that
the (co)-moments of the Yi are bounded.

Once this lemma is established, our results will follow almost immediately. In our applications
we consider processes, for example resource-bounded algorithms, which attempt to solve k instances
of a problem with binary output simultaneously. We show that with high probability many of them
must fail. For every execution of the k processes we can define syndrome variables Yi ∈ {−1,+1}
with Yi = 1 if and only if the i-th process succeeds. To show that this distribution indeed satisfies
the assumptions of our Threshold Lemma, we use known appropriate XOR Lemmas, which state
that for any S ⊆ [k] the probability that an even number of the processes in S fail is bounded
above by 1/2 + β|S|/2 for some constant 0 < β < 1, implying condition (1). Our Lemma then
immediately establishes a DPT by choosing λ = 1 and a threshold DPT when choosing λ ∈ (β, 1).

1.1 Applications

Typical examples where threshold DPTs are useful are CAPTCHA puzzles, which are widely used
on the internet to verify interaction with a human user. Here a user is challenged to recognize some
barely readable word, which humans can do reasonably well (say with probability c ∈ (0, 1)) and
computers cannot (say with probability at most s < c). That parallel repetition is indeed possible
was recently shown [20]. We will give an alternative, much simpler proof of this in Section 4.4 by
showing that if a circuit can compute one instance of a challenge with probability at most p, then
the probability to compute more than a p-fraction of k instances correctly has probability at most
e−Ω(k).

Another example are proof systems in which a verifier wants to decide whether some input x
belongs to some language L ∈ NEXP and interacts with two (computationally unbounded but non-
communicating and possibly malicious) provers. It was pointed out in [11], using results from [16],
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that for a particular kind of proof systems it is possible to set up the challenges to the provers in
such a way that if x ∈ L then with probability ≈ 12/16 he will accept, and if x 6∈ L then the provers
can trick him into accepting x with probability at most ≈ 11/16. These particular proof systems
are based on XOR games, in which a verifier sends challenges to two provers who reply with bits a
resp. b and the verifier’s answer is only based on the value of a ⊕ b. Indeed, [31] recently showed
that also in this case a threshold DPT holds, i.e., if one game can be won with probability 11/16
then winning significantly more than an 11/16-fraction of multiple games has small probability.
Hence the verifier’s error probability can made arbitrarily small, and this implies MIP=NEXP.1

In Section 4.1 we will prove a threshold DPT for a similar class of protocols, but for the
quantum case, in which the provers may also share entanglement. We show that in order to win a
large fraction of games, the essentially best strategy is to play all games independently optimally.
This is the first threshold DPT for quantum games. An open question is whether MIP∗ = NEXP,
i.e., whether NEXP can be characterized in the same way as above, but when the provers can
additionally share entanglement. Although there has been some progress [21, 22], the question is
still open. It is conceivable that a possible proof starts with some protocol which accepts x ∈ L
with probability c < 1 and x 6∈ L with probability at most s < c and then amplifies the correctness
probability as above, using a (still to be proved) threshold DPT for general quantum games. We
make a first step by proving the first threshold DPT for quantum games, although only for a
particular class, namely quantum XOR games. Unfortunately, this class will probably not be
sufficient to prove MIP∗ = NEXP, unless EXP = NEXP [11], so an extension of this work would
be required.

We also show a threshold DPT for quantum random access codes (QRACs). Assume you want
to encode a string x of n classical bits into m < n qubits, such that any k < n bits of the original
n bits can be recovered, with reasonable success probability σ. Then in Theorem 2 of [4] it is
shown that this is only possible with success probability that is exponentially small in k (for some
reasonable choices of k, n,m and some minor technical assumptions). We extend this and show that
it is hard to get some large fraction of the k bits right, see Theorem 7 in Section 4.2.2 We apply
this result to derive a (threshold) direct-product theorem for the communication complexity of the
disjointness function in the quantum one-way model. This was already shown in [4], however, our
threshold result for QRACs simplifies and strengthens their result.

Furthermore, we show (threshold) DPTs for communication complexity (also for multiparty pro-
tocols) in Section 4.3. Although in these cases standard DPTs were previously known, our approach
improves and simplifies them and also yields threshold DPTs. Further motivating applications of
threshold DPTs can be found in [20, 13].

Further applications There are other XOR Lemmas which can be turned into threshold DPTs:
an XOR Lemma for classical query complexity (Theorem 4 in [23]), an XOR Lemma for bounded-
degree polynomials over GF(2) (Theorem 1.2 in [37]). Furthermore, Theorem 5 in [28] is a gener-
alization of Yao’s XOR Lemma to interactive systems to which our technique can also be applied.

Since our Threshold Lemma is actually a statement about probability distributions, it is likely
that it has further applications in other contexts. For example using the bound (9) it is possible to
give a simple proof of Vazirani’s Parity-Lemma [36], which is used in randomness extraction. This

1Note that there are constructions with better parameters [2, 32].
2Note that using techniques from [4] one could also obtain a similar but weaker result, which does not give optimal

parameters.
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Parity-lemma has been extended in [29], and our inequality does not simply imply this stronger
result. We are aware of at least one other result which immediately follows from our results, namely
the XOR Lemma in [9].

1.2 Relation of XOR Lemmas and DPTs and some related work

The close connection between XOR Lemmas and DPTs is well known, and in particular there are
several results which derive DPTs from XOR Lemmas [37, 12, 4, 30]. However, those reductions
only work for a particular application or they are not as strong as ours. Furthermore, there are no
reductions which establish threshold DPTs, which are our main focus.

The first generic approach to turn XOR Lemmas into direct-product theorems appears in Propo-
sition 1.4 in [37]. However, it does not yield optimal bounds and is slightly more complicated.3 In
particular, starting from the assumption that the XOR on k instances is correct with probability at
most 1/2 + βk/2, their approach can give an upper bound of at most (1/2 + β/2)k/2 (even slightly
worse) for the probability to compute all k instances simultaneously correctly, whereas we can show
a quadratic improvement to (1/2 + β/2)k.

The first example (we are aware of) of optimally turning XOR Lemmas into direct-product
theorems appears in the proof of Theorem 5.1 in [30], but only works for k = 2. The first example
which works for larger k is in [12], whose work we extend. Their whole analysis is geared only
towards quantum XOR games. Their argument was later used in the proof of Theorem 2 in [4].
Our approach can be applied to a much wider class of XOR Lemmas. Furthermore, none of these
results can be used to derive threshold direct-product theorems, which are our main application.

There are also connections known in the other direction, i.e., from DPTs to XOR Lemmas. For
example [15] show how to use the Goldreich-Levin decoding algorithm to obtain XOR Lemmas from
DPTs. However, this approach falls short of giving optimal parameters. In particular, it cannot
show that if computing k instances simultaneously correctly has probability at most (1/2 + β/2)k,
then computing the XOR of k instances correctly has probability at most 1/2 +βk/2, which would
be the expected bound, see also [37]. Furthermore, in certain settings, e.g. quantum XOR games,
this approach fails completely. Moreover, [37] contains an example where a direct-product theorem
is true, but an XOR Lemma is not.

There is also a quantum version of the Goldreich-Levin Theorem [1] which has slightly better
parameters, but suffers essentially the same problems.

In the proof of Theorem 10 in [4] there is also a simple argument for turning direct-product
theorems into threshold direct-product theorems. However, there is some loss in the parameters
and the thresholds they obtain will generally not be optimal.

The fact that reductions from XOR Lemmas to DPTs are often tight whereas the reverse
direction is not, suggests that XOR Lemmas are “better”. This statement is further supported by
a recent result in [35]. They show that standard techniques for proving XOR Lemmas require that
the underlying computational model can compute majority, but there are proofs for DPTs which

3To be fair, we should point out that their result is stronger is some sense: they do not need to make the assumption
that on all subsets of the bits in y the bias is bounded. In terms of XOR Lemmas this means that when deriving a
direct-product theorem for k instances, they do not need to assume that for all k′ ≤ k an XOR Lemma holds. They
only need the assumption that for some sufficiently large k′ = Ω(k) it holds that the XOR on k′ instances is correct

with probability at most 1/2 + 2−O(k′)/2. However, in order to derive a direct-product theorem for all k, they also
need to assume that an XOR Lemma holds for all k′. Furthermore, we are not aware of any XOR Lemmas for which
our stronger assumption is not valid and therefore believe that this difference in assumptions is insignificant.
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do not require that. So, the fact that XOR Lemmas are often “better” comes at the price that
in certain models they are harder to obtain and sometimes simply not true [35, 37]. However, we
want to stress that this only applies to certain models, in other models (for example communication
complexity [26, 37, 34] and quantum XOR games [12]) XOR Lemmas are easier to obtain.

2 Preliminaries

For a function f : {−1,+1}k → R its Fourier transform is a function f̂ : 2[k] → R defined as

f̂(S) =
∑

y∈{−1,+1}k
f(y)

∏
i∈S

yi (3)

for every S ⊆ [k]. Plancherel’s identity (also called Parseval’s identity) states that for f, g :
{−1,+1}k → R ∑

y∈{−1,+1}k
f(y)g(y) =

1
2k
∑
S⊆[k]

f̂(S)ĝ(S). (4)

For independently and identically distributed binary random variables Y1, . . . , Yk ∈ {−1,+1},
where ∀i : E[Yi] = β, the Chernoff bound [8] says that for any λ ≥ β

Pr[
∑
i

Yi ≥ λk] ≤ e−kD(1/2+λ/2||1/2+β/2),

where the binary relative entropy is defined as

D(λ||p) = λ ln
λ

p
+ (1− λ) ln

1− λ
1− p

(5)

(and 0 ln 0 = 0). Note that ∀0 < p < 1, 0 ≤ λ ≤ 1 : D(λ||p) ≥ 0 and D(p||p) = 0.
More generally, if Y1, . . . , Yk ∈ {−1,+1} are independent but not necessarily identically dis-

tributed and ∀i : E[Yi] ≤ βi then Hoeffding’s inequality [17] states that

Pr[
k∑
i=1

Yi ≥ λk] ≤ e−k(λ−
P
i βi/k)

2
/2.

3 Main technical result

The following Lemma extends our earlier version (Lemma 1) by adding parameters E,C, which
make the statement somewhat ugly, but which are crucial to capture XOR Lemmas that do not
behave nicely and contain certain error terms, e.g. Yao’s XOR Lemma, see Section 4.4. Furthermore,
we allow the variables to have different biases and the quantity to be bounded can be a general
linear function of the Yi. Further, we give tight bounds for the probability that

∑
i Yi obtains its

maximal value k.

Lemma 2 (Threshold Lemma). Let Y1, . . . , Yk ∈ {−1,+1} be random variables, −1 ≤ β1, . . . , βk ≤
1, c1, . . . , ck > 0 and E,C > 0 such that for all S ⊆ [k]

E[
∏
i∈S

Yi] ≤ C
∏
i∈S

βi + E. (6)
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Then for all λ with
∑

i ciβi ≤ λk <
∑

i ci it holds

Pr[
k∑
i=1

ciYi ≥ λk] ≤ Ce−(λk−
P
i ciβi)

2
/2

P
i c

2
i + Ee(λk−

P
i βi)(

P
i ci−λk)/

P
i c

2
i . (7)

Moreover, if ∀i : βi = β, ci = 1 and β ≤ λ < 1 then the following stronger bound holds

Pr[
k∑
i=1

Yi ≥ λk] ≤ Ce−kD(1/2+λ/2||1/2+β/2) + E

(
(1 + λ)(1− β)
(1 + β)(1− λ)

)k(1/2−λ/2)

. (8)

For λ = 1 (but the βi can be different) we can bound

Pr[
k∑
i=1

Yi = k] ≤ C
k∏
i=1

1 + βi
2

+ E. (9)

In most cases, the lemma will be used with C = 1,∀ici = 1 and E = 0 (In fact, the lemma is
optimized for E = 0, and it is possible to get slightly better results for E > 0.) In this case, the
bounds (7) resp. (8) simplify to

Pr[
k∑
i=1

Yi ≥ λk] ≤ e−k(λ−
P
i βi/k)

2
/2 (10)

Pr[
k∑
i=1

Yi ≥ λk] ≤ e−kD(1/2+λ/2||1/2+β/2) (11)

which are the same as the familiar Hoeffding’s inequality (restricted to binary random variables)
and the Chernoff bound, see Section 2. However, for binary variables our assumptions are weaker,
as we do not assume independence of Y1, . . . , Yk but only the weaker condition (6).

It is possible to prove similar concentration bounds for variables Yi ∈ [−1,+1], with slightly
worse bounds.

Inequality (9) is easily seen to be optimal. Although not stated explicitly, this inequality can
be distilled from the arguments in Section 3 of [12].

Proof. Set p(y) = Pr[Y1 = y1, . . . , Yk = yk]. For any parameter t ≥ 0 it holds∑
y,

P
i ciyi≥λk

p(y) ≤ e−tλk
∑
y

et
P
i ciyip(y), (12)

because e−tλk+t
P
i ciyi is always at least 0 and e−tλk+t

P
i ciyi ≥ 1 when

∑
i ciyi ≥ λk. Defining

c(y) = et
P
i ciyi we can compute (using the definition in equation (3))

ĉ(S) =
∑

y∈{−1,1}k

∏
i∈S

yie
tciyi

∏
i 6∈S

etciyi =
∏
i∈S

(etci − e−tci)
∏
i 6∈S

(etci + e−tci)

p̂(S) =
∑

y∈{−1,1}k
p(y)

∏
i∈S

yi = E[
∏
i∈S

Yi].
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We now bound (12) further by using Plancherel’s identity (equation (4)) and then the assumptions
of our lemma together with the fact that ∀S : ĉ(S) ≥ 0:

= 2−ke−tλk
∑
S⊆[k]

ĉ(S)p̂(S) (13)

≤ 2−ke−tλk
∑
S⊆[k]

C∏
i∈S

(etci − e−tci)βi
∏
i 6∈S

(etci + e−tci) + E
∏
i∈S

(etci − e−tci)
∏
i 6∈S

(etci + e−tci)


= 2−ke−tλk

(
C

k∏
i=1

((1 + βi)etci + (1− βi)e−tci) + E2ket
P
i ci

)
, (14)

where in the last step we use the identity
∏k
i=1(ai + bi) =

∑
S⊆[k]

∏
i∈S ai

∏
i 6∈S bi once with ai =

(etci − e−tci)βi, bi = (etci + e−tci) and once with ai = (etci − e−tci), bi = (etci + e−tci).
To establish inequality (7) we use Lemma 3 below to bound (14) and then choose t := (λk −∑
i ciβi)/

∑
i c

2
i ≥ 0.

≤ Ce−tλk+t2
P
i c

2
i /2+t

P
i ciβi + Eet(

P
i ci−λk)

= Ce(−λ2k2+λk
P
i ciβi+λ

2k2/2−λk
P
i ciβi+(

P
i ciβi)

2/2+λk
P
i ciβi−(

P
i ciβi)

2))/
P
i c

2
i

+ Ee(λk−
P
i βi)(

P
i ci−λk)/

P
i c

2
i

Transforming the numerator in the exponent of the first exponential as

−λ2k2 + λk
∑
i

ciβi + λ2k2/2− λk
∑
i

ciβi + (
∑
i

ciβi)2/2 + λk
∑
i

ciβi − (
∑
i

ciβi)2

= −λ2k2/2 + λk
∑
i

ciβi − (
∑
i

ciβi)2)/2

= (λk −
∑
i

ciβi)2/2

we arrive at result (7).
To establish inequality (8) we set ci = 1 and choose t := 1

2 ln (1+λ)(1−β)
(1+β)(1−λ) ≥ 0, which means

et =
(

(1+λ)(1−β)
(1+β)(1−λ)

)1/2
. Then (14) becomes

=
C

2k

(
(1 + β)

(
(1 + λ)(1− β)
(1 + β)(1− λ)

)1/2−λ/2
+ (1− β)

(
(1 + λ)(1− β)
(1 + β)(1− λ)

)−1/2−λ/2
)k

+ E

(
(1 + λ)(1− β)
(1 + β)(1− λ)

)k(1/2−λ/2)

Transforming the term in the first big bracket

(1 + β)
(

(1 + λ)(1− β)
(1 + β)(1− λ)

)1/2−λ/2
+ (1− β)

(
(1 + λ)(1− β)
(1 + β)(1− λ)

)−1/2−λ/2

=
(1− β)1/2−λ/2(1 + β)1/2+λ/2

(1− λ)1/2−λ/2(1 + λ)1/2+λ/2
((1 + λ) + (1− λ))

= 2e−D(1/2+λ/2||1/2+β/2)
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gives claim (8) as desired.
Inequality (9) follows from (14) with λ = 1, ∀i : ci = 1 and t −→ ∞ or the following simple

derivation. Define the indicator function Ik : {−1,+1}k → {0, 1} as Ik(y) = 1↔ y = (+1, . . . ,+1).
From the definition in equation (3) we can quickly compute that ∀S : Îk(S) = 1. Then, using the
same arguments as before we can bound

Pr[
k∑
i=1

Yi = k] =
∑

y∈{−1,1}k
Ik(y)p(y) =

1
2k
∑
S

Îk(S)p̂(S)

≤ 1
2k
∑
S

(
C
∏
i∈S

βi + E

)
= C

k∏
i=1

1 + βi
2

+ E.

Lemma 3. For all β, t ∈ R it holds (1 + β)et + (1− β)e−t ≤ 2et
2/2+βt.

Proof. Fix any β. We will show that f(t) := 2et
2/2+βt − (1 + β)et − (1− β)e−t ≥ 0 for all t. Note

that f is analytic. We will use this repeatedly without further mention. Compute f ′(t) = ∂f
∂t =

(2t+2β)et
2/2+βt−(1+β)et+(1−β)e−t and f ′′(t) = ∂2f

∂t2
= (2+2(β+t)2)et

2/2+βt−(1+β)et−(1−β)e−t.
It holds f(0) = 0, f ′(0) = 0 and f ′′(0) = 2 + 2β2 − 1 ≥ 1. Hence, ∃ε > 0∀t ∈ [−ε, ε]\{0} : f(t) > 0.

We now apply a “bootstrapping” argument. Assume there was a t > ε for which f(t) < 0. Then
there must be a smallest t̂ > ε with f(t̂) = 0 and hence ∀0 < t < t̂ : f(t) > 0 . Together with the
fact that ∀t : f ′′(t) − f(t) = 2(β + t)2et

2/2+βt ≥ 0 , this implies that f is strictly convex in [0, t̂].
But then f(0) = 0 and f ′(0) = 0 imply f(t̂) > 0, giving a contradiction.

The argument for t < −ε is analogous.

3.1 Extensions

Our Threshold Lemma can be extended in several ways. These extensions are not relevant for our
later applications but might be interesting for other applications. First we notice that it is possible
to weaken condition (6) by instead demanding that for all l ∈ [k]

E[
∑

S,|S|=l

∏
i∈S

Yi] ≤ C
∑

S,|S|=l

∏
i∈S

βi + E. (15)

This is because the only time we use the bound on E[
∏
i∈S Yi] in the proof of the lemma is in

equation (13) and since ĉ(S) is constant for all S of the same cardinality, equation (13) also holds
with the above weaker condition.

Furthermore, it is also not necessary that condition (6) holds strictly for all S ⊆ [k]. In
particular, from equation (13) we see that if the bounds on E[

∏
i∈S Yi] are only slightly worse, then

the final bound will also be only slightly worse. It is also noteworthy that since ĉ(S) becomes
smaller when |S| increases, the bounds on E[

∏
i∈S Yi] for large |S| are less crucial.4

4To give a concrete example, consider a distribution on k = 2n bits Y1, . . . , Yk which are a random permutation of n
times +1 and n times−1. Clearly,

P
i Yi = 0, hence Pr[

P
i Yi > 0] = 0. However, our lemma in its current form cannot

even show that Pr[
P
i Yi > 0] ≤ 2−Ω(k), because although for all S ⊂ [k] it holds that E[

Q
i∈S Yi] ≤ 0, we also have

E[
Q
i∈[k] Yi] = 1, so the conditions of the lemma are formally not satisfied. However, since 2−ke−tλkbc([k])bp([k]) ≤ 2−k,

one sees by looking at the derivation from line (13) to (14) that the term in (14) plus 2−k is still an upper bound on
(12). And following the rest of the proof one can show that Pr[

P
i Yi ≥ λk] ≤ e−kD(1/2+λ/2||1/2) + 2−k ≤ 2−Ω(k).
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It is also not necessary to assume that ∀i : Yi ∈ {−1,+1} but it is enough to assume that
Yi ∈ [−1, 1], since a distribution which maximizes the right-hand side of equation (12) and satisfies
(6) must have ∀i : Yi ∈ {−1,+1}, by convexity of ex.

4 Applications

4.1 Quantum XOR games

We start by recalling the relevant definitions from [12].

Definition 1. An XOR game G = (f, π) is given by two sets S, T , a predicate f : S×T → {−1,+1}
and a probability distribution π on S×T . The game is played between two provers (Alice and Bob),
who cannot communicate with each other once the game has started, and a verifier. The verifier
selects a pair of questions (s, t) ∈ S×T according to distribution π and send s to Alice and t to Bob.
Alice (Bob) sends back a bit a ∈ {−1,+1} (b ∈ {−1,+1}) to the verifier, who accepts if and only if
a · b = f(s, t). We denote by ωc(G) the maximum success probability (over the provers’s strategy)
and define the bias as εc(G) := 2ωc(G) − 1. In the quantum case, the provers may additionally
share an arbitrary quantum state, and we denote by ωq(G) the maximum success probability (over
the provers’s strategy and their shared quantum state) and similarly, εq(G) := 2ωq(G)− 1

Our definition is for non-degenerate quantum XOR games and all quoted results are for non-
degenerate quantum XOR games.5 We want to analyze how these games behave under parallel
repetition.

Definition 2. For k XOR games G1 = (f1, π1), . . . , Gk = (fk, πk) and g : {−1,+1}k → {−1,+1}
define the g-composition, denoted by g(G1, . . . , Gk), as follows. The verifier chooses questions
((s1, t1), . . . , (sk, tk)) ∈ (S1×T1)×· · ·× (S1×T1) according to the product distribution π1×· · ·×πk,
and sends (s1, . . . , sk) to Alice and (t1, . . . , tk) to Bob. Alice and Bob output bits a1, . . . , ak ∈
{−1,+1} and b1, . . . , bk ∈ {−1,+1}, respectively. They win if g(a1b1f(s1, t1), . . . , akbkf(sk, tk)) = 1
and we denote the maximal winning probability by ωc/q(g(G1, . . . , Gk)) and analogously, εc/q =
2ωc/q(g(G1, . . . , Gk))− 1.

A simple way for Alice and Bob to play g(G) is to independently play each game individually
optimally. For which g is this optimal? Theorem 1 from [12] implies that this is the case if g is
the k-bit XOR function XOR(y1, . . . , yk) =

∏
i yi, i.e., they win if they loose an even number of

individual games.

Theorem 4. [Theorem 1 in [12]] For any XOR games G1, . . . , Gk, εq(XOR(G1, . . . , Gk)) =∏
i εq(Gi).

Using the results from Section 3, we can turn this into a Chernoff-type direct-product Theorem.
For 0 ≤ λ ≤ 1 define the function θ[λ] : {−1,+1}k → {−1,+1} as

θ[λ](y) =

{
+1 if

∑
i yi ≥ λk

−1 otherwise
,

5In degenerate XOR games, the verifier is allowed to accept or reject independently of the value a · b, whereas
in non-degenerate XOR games the verifier has to accept exactly one value a · b for any pair of questions (s, t). For
degenerate XOR games, the results stated in this section are simply not true, see Section 3.2.2 in [37].
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Theorem 5. Let G1, . . . , Gk be quantum XOR games, and let
∑

i εq(Gi)/k ≤ λ ≤ 1. Then,

ωq(θ[λ](G1, . . . , Gk)) ≤ e−k(λ−
P
i βi/k)

2
/2.

In other words, it is highly unlikely to win significantly more than a ωq(G)-fraction of k XOR
games.

Proof. Let θ[λ](G) be a composition of k XOR games and fix any strategy of Alice and Bob to
play this game. For i = 1, . . . , k define random variables Yi = aibif(si, ti). By Theorem 4 for every
S ⊆ [k] : E[

∏
i∈S Yi] ≤

∏
i∈S εq(Gi). Applying our Threshold Lemma (with parameters ci = 1,

C = 1 and E = 0 as in inequality (10)) yields the result.

Note that if all Gi are the same inequality (11) gives slightly stronger results and for the extreme
case λ = 1 the bound in (9) gives optimal bounds. This last result is the content of Theorem 2 in
[12].

4.2 Quantum random access codes

In this section we extend results from [4] about quantum random access codes (QRAC). Roughly
speaking, k-out-of-n-QRACs are mappings from n classical bits x to m qubits |ψx〉, such that it is
possible to recover arbitrary k of the original n bits of x by an appropriate measurement on |ψx〉.
They [4] show lower bounds on the size m of k-out-of-n-QRACs: If m is significantly smaller than
n, then the success probability is exponentially small in k. We can extend this result by showing
a similar lower bound on the size of (l/k)-out-of-n-QRACs, (pronounced as “l-out-of-k-out-of-n-
QRAC”). These are quantum random access codes which are encodings of n-bit strings such that
at least l out of k positions can be recovered correctly. See Definition 4.

In [4] the results about QRAC’s are used to prove direct-product theorems for disjointness in
the quantum one-way communication model. It turns out that using our bounds on (l/k)-out-of-
n-QRACs their proofs can be simplified and strengthened, as we will show in the full version.

The following definition for XOR-QRACs is from [4].

Definition 3. An XOR quantum random access code with parameters (k, n,m, ε) is a map E :
{−1,+1}n → C2m×2m from n classical bits to m-qubit quantum states and a decoding algorithm D,
which takes m-qubit states as inputs and outputs one classical bit in {−1,+1}, with the property
that

Pr
S∼([n]

k )
x∈{−1,+1}n

[D(E(x), S) =
∏
i∈S

xi] ≥ 1/2 + ε/2,

i.e., the probability to correctly output the XOR of k of the n bits is at least 1/2 + ε/2.

Note that usually one demands that the decoding succeeds for all x. However, if one is interested
in lower bounds, this weaker notion of a QRAC, where the probability is taken over random
x ∈ {−1,+1}n, is sufficient.

Theorem 6 (Theorem 7 from [4]). For any η > 2 ln 2 there is a constant Cη such that if n/k is
large enough then for any (k, n,m, ε)-XOR-QRAC it holds that

ε ≤ Cη
(ηm
n

)k/2
.
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To give a feel of appropriate parameters, it turns out that for example choosing constants η = 4,
Cη = 1, the theorem holds for n/k > 2. From this one can get a bound for quantum random access
codes.

Definition 4. An (l/k)-out-of-n quantum random access code (QRAC) on m qubits with success
probability p is a map E : {−1,+1}n → C2m×2m from classical bit strings x ∈ {0, 1}n to m-qubit
quantum states |ψx〉 and a decoding algorithm D, which given |ψx〉 reconstructs l out of k bits of x
correctly, i.e.

Pr
S∼([n]

k )
x∈{−1,+1}n

[
k∑
i=1

D(E(x), S)ixS(i) ≥ 2l − k] ≥ p. (16)

Here S(i) is the i-th largest element of S. The probability is over x, the choice of the k-subset
S ⊆ [n] and the randomness in the encoding and decoding algorithms.

If l = k then our definition coincides with Definition 1 in [4]. Note that for l < k we do not
demand that the decoding algorithm also “knows” on which positions the output is correct.

Theorem 7. For any η > 2 ln 2 there is a constant Cη such that if n/k is large enough and
l ≥ (1/2 +

√
ηm/n/2)k it holds that the success probability for any (l/k)-out-of-n QRAC on m

qubits is at most
p ≤ Cηe−kD(l/k||1/2+

√
ηm/n/2).

The case l = k matches Theorem 2 in [4]. Our result extends this by showing that if an encoding
of strings x ∈ {0, 1}n does not use Ω(n) qubits, then it is also hard to correctly decode a large
fraction of bits of x.

Proof. Fix any D,E. Define Y1, . . . , Yk ∈ {−1,+1} by

Yi = D(E(x), S)i · xS(i),

where S(i) is the i-th largest element of S. Note that the Yi depend on the (random) choice of the k-
subset S ⊆ [n]. Theorem 6 implies that for any T ⊆ [k] it holds: Pr[

∏
i∈T Yi = 1] ≤ 1/2+Cηβ

|T |/2,
with β :=

√
ηm/n. In other words, E[

∏
i∈T Yi] ≤ Cηβ

|T |. Plugging this into our Threshold

Lemma (or equation (11)) yields Pr[
∑k

i=1 Yi ≥ 2l − k] ≤ e−kD(l/k||1/2+
√
ηm/n/2) and noticing that

Pr[
∑k

i=1 Yi ≥ 2l − k] is equal to the lhs of (16) yields the result.

4.2.1 Application: Quantum one-way communication complexity of disjointness

In this section we sketch an application of the previous results to quantum one-way communication
complexity of the disjointness function. (In section 4.3 we will present applications to two-way
communication complexity.) We start by defining the task. See [24] for an introduction to commu-
nication complexity. In this section we will use the {0, 1}-basis for bits.

In the n-bit Disjointness problem Alice gets a string x ∈ {0, 1}n and Bob y ∈ {0, 1}n. The
task is (for Bob) to output DISJn(x, y), which is 0 if ∃i : xi = yi = 1, and 1 otherwise. In the
k-fold disjointness problem DISJ (k), Alice and Bob each receive k strings x1, . . . , xk ∈ {0, 1}n resp.
y1, . . . , yk{0, 1}n and the task is (for Bob) to output DISJn(x1, y1), . . . , DISJn(xk, yk). We say
that DISJ (k)

n can be solved with c qubits and probability p in the quantum one-way model if there
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is a protocol in which Alice sends c qubits to Bob, who outputs DISJn(x1, y1), . . . , DISJn(xk, yk)
with probability at least p for every choice of x1, . . . , xk, y1, . . . , yk ∈ {0, 1}n. In the (l/k) threshold
version we demand that Bob outputs the correct result on at least l of the k instances. It is known
[5] that the quantum one-way communication complexity of DISJn(x, y) is Θ(n) (for any p > 1/2).

We want to show that there is some constant α > 0 such that any protocol which uses fewer than
αkn qubits of communication has success probability exponentially small in k to compute all of
DISJn(x1, y1), . . . , DISJn(xk, yk) correctly. Furthermore, we will show that no protocol can com-
pute more than a large (but constant fraction) of the output bits DISJ(x1, y1), . . . , DISJ(xk, yk)
correctly, except with probability 2−Ω(k). As mentioned earlier, this result is already present in [4],
but using our new result about (l/k)-out-of-n quantum random access codes our proof becomes
simpler and gives stronger bounds. The key is the following lemma.

Lemma 8. Assume there is a quantum one-way protocol P for DISJ (k)
n that communicates at most

m qubits and with probability at least σ there are λk instances on which the protocol is correct. Let
0 < τ ≤ 1 be any number. Then for k′ = τk there is also a (λ(1− τ)k′/k′)-out-of-kn QRAC of m
qubits with success probability at least p = τλσ/2.

The proof goes along similar lines as Lemma 8 in [4].

Proof. From the protocol P we construct a QRAC with the desired properties. Let x = x1 . . . xk ∈
{0, 1}nk be a string with k blocks, each of length n. The encoding of the QRAC is just the message
|ψx〉 Alice would send in the protocol P on input x = x1, . . . , xk. Let S = {i1, . . . , ik′} ∼

([nk]
k′

)
. We

now describe a decoding procedure, which can extract at least λ(1−τ)k′ of the bits x|S = xi1 , . . . , xik′
from |ψx〉 with probability at least Ω(σ).

For each j ∈ [k′] set bj = d ijk e, i.e., ij points into block bj of x. Then, going from j = 1 to j = k

do the following: If there is no j′ < j with bj = bj′ then set ybj = eremn(ij), where remn(i) is the
remainder of i divided by n and ei ∈ {0, 1}n is the i-th standard basis vector.6 We say that block
bj has been “hit” and that j is “good”. Otherwise, if there is a j′ < j with bj = bj′ (i.e., block
bj has already been hit previously), then call j “bad”. For all blocks b which are not hit by this
procedure set yb to something arbitrary, say yb = 0n. Note that this procedure sets each string
y1, . . . , yk to some n-bit string.

The decoding procedure now outputs a guess x̃j for the bit xij as follows: If j was bad, then
output a random bit x̃j . If j was good, then output Bob’s guess for DISJn(xbj , ybj ) in P.

Note, that if P succeeds on DISJn(xbj , ybj ) and j is good then x̃j = xij , as wanted. Otherwise,
the output is correct with probability 1/2.

First note that given that P succeeds on a λ-fraction of the indices, we have for each j: Pr[x̃j =
xij ] = Pr[j is good and points into a block on which P succeeds] + Pr[j is bad]/2 ≥ (1 − τ)λ +
τ/2 ≥ (1−τ/2)λ. Hence, E[|{j : x̃j = xij}|] ≥ k′(1−τ/2)λ. Using the fact that |{j : x̃j = xij}| ≤ k′
and setting s = Pr[|{j : x̃j = xij}| ≥ (1 − τ)λk′] we can use an argument similar to Markov’s
inequality to get s·1+(1−s)(1−τ)λ ≥ (1−τ/2)λ, which implies s(1−(1−τ)λ)+(1−τ)λ ≥ (1−τ/2)λ
and then s ≥ τλ

2(1−(1−τ)λ) ≥ τλ/2.

As mentioned above, this proof closely follows the proof of Lemma 8 in [4]. However, comparing
our proof with theirs we note that our reduction still works if some of the j are not “good” and we
only need to make the weaker assumption that a λ-fraction of the k instances of DISJn succeed,

6The entries of ei are all zero, apart from the i-th, which is 1.
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instead of all k of them. This makes the argument slightly simpler and will also yield stronger
bounds in the next Theorem.

Note further that the construction actually works for all x = x1 . . . xk ∈ {0, 1}nk (but uniformly
chosen S), which is a stronger statement then what we need for our definition of QRAC. Also, the
reduction is of course not tight, but sufficient for our purposes.

This Lemma and Theorem7 immediately imply standard and threshold DPTs for the quantum
one-way communication complexity of the disjointness function.

Theorem 9. Fix any 0 ≤ α < 1. Let η > 2 ln 2. Then for large enough n, any k and any quantum
one-way protocol with at most m ≤ αkn qubits it holds

1. The probability to correctly compute DISJ (k)
n is σ = 2−Ω(k).

2. For any 1/2 +
√
αη/2 < λ ≤ 1 the success probability to compute DISJ

(k)
n correctly on at

least λk instances has success probability σ = 2−Ω(k).

Proof. Clearly, statement 2 implies 1. Assume statement 2 was not true. Choose τ > 0 such that
λ(1− τ) > 1/2 +

√
αη/2. Lemma 8 guarantees the existence of a (λ(1− τ)τk/τk)-out-of-kn-QRAC

with αkn qubits with success probability τλσ/2. However, Theorem 7 states that such a QRAC
can have success probability at most Cηe−τkD(λ(1−τ)||1/2+

√
αη/2) = 2−Ω(k).

This reproves Theorems 9 and 10 in [4]. In particular, we can get slightly better bounds by
optimizing τ from the proof, i.e. maxτ τD(λ(1 − τ)||1/2 +

√
αη/2) s.t. 0 < τ and λ(1 − τ) >

1/2 +
√
αη/2 (or by using a better argument in the proof of Lemma 8).

4.3 Communication complexity

We will now sketch several notions from communication complexity. More extensive explanations
are provided in [24] and for our applications in particular also in [26].

Two-party communication complexity In the standard model of (distributional) communi-
cation complexity two parties, Alice and Bob, want to compute the value f(x, y) of some function
f : {0, 1}n×{0, 1}n → {−1,+1}, but initially x ∈ {0, 1}n is only known to Alice and y ∈ {0, 1}n to
Bob. The question is how many bits do they need to communicate in order for Alice to learn f(x, y)
with probability 1− ε, when each input pair x, y is chosen with probability Px,y. Following [24] we
define DP

ε (f) as the minimum number of bits any deterministic protocol needs to communicate in
order to compute f(x, y) correctly with success probability at least 1 − ε. We can further define
Rε(f) = maxP DP

ε (f). By Yao’s principle this is the minimum number of bits any randomized
protocol needs in order to correctly output f(x, y) with probability at least 1− ε for every x, y.

Discrepancy method Lower bounds on DP
ε (f) are often obtained via the discrepancy method,

which we quickly sketch now. Given f and a probability distribution px,y define the communication
matrix Mf ∈ R2n×2n as

(Mf )x,y := f(x, y)

For matrices A,B ∈ R{0,1}n×{0,1}n we can define their point-wise product as (A ◦B)x,y = Ax,yBx,y
and regarding P as a matrix we can define the discrepancy of Mf with respect to P as

discP (Mf ) = max
x,y∈{0,1}n

|xT (Mf ◦ P )y|
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and general discrepancy as
disc(Mf ) = min

P
discP (Mf ).

discrepancy and distributional complexity are related via the following fact [24]:

DP
ε (f) ≥ log2

1− 2ε
discP (Mf )

, (17)

which can be written as
DP

1/2−β/2(f) ≥ log2

β

discP (Mf )
(18)

by setting β := 1− 2ε. Similarly

R1/2−β/2(f) ≥ log2

β

disc(Mf )
, (19)

Note that Mf1·f2 = Mf1 ⊗Mf2 , and hence the following theorem (extending earlier work in
[34]) gives XOR-lemmas for randomized communication complexity.

Theorem 10 (Theorems 19 and 20 in [26]). For communication matrices A,B and corresponding
probability distributions P,Q as above it holds

discP (A)discQ(B) ≤ discP⊗Q(A⊗B) ≤ 64discP (A)discQ(B). (20)
disc(A)disc(B) ≤ disc(A⊗B) ≤ 64disc(A)disc(B). (21)

DPT for 2-party communication complexity The following theorem can be seen as a (thresh-
old) DPT for discrepancy.

Theorem 11. Let f1, . . . , fk : {0, 1}n × {0, 1}n → {−1,+1} be functions. Assume that ∀i : βi :=
64disc(Mfi) < 1. Choose any

∑
i βi/k ≤ λ < 1. Then there is a distribution Px1,...,xk,y1,...,yk on

({0, 1}n×{0, 1}n)k of inputs for Alice and Bob such that for any c-bit protocol P (trying to compute
f1(x1, y1), . . . , fk(xk, yk) simultaneously) it holds

Pr[P(x1, y1, . . . , xk, yk) = f1(x1, y1), . . . , fk(xk, yk)] ≤ 2c−6
k∏
i=1

(1/2 + βi/2) (22)

Pr[
k∑
i=1

P(x1, y1, . . . , xk, yk)ifi(xi, yi) ≥ λk] ≤ 2c−6e−k(λ−
P
i βi/k)

2
/2, (23)

where the probability is over inputs x1, y1, . . . , xk, yk ∼ P and the randomness of the protocol P.

Proof. As usual, define random variables Yi = P(x1, y1, . . . , xk, yk)if(xi, yi) and for S ⊆ [k] define
βS = E[

∏
i∈S Yi]. Since P is a c-cit protocol we have R1/2−βS/2(

∏
i∈S fi) ≤ c and by inequality (19)

and inequality (21) in Theorem 10 also log 64βS
∏
i∈S

1
64disc(Mfi )

≤ R1/2−βS/2(
∏
i∈S fi). Combining

these last two inequalities yields

βS ≤ 2c−6
∏
i∈S

64disc(Mfi) = 2c−6
∏
i∈S

βi

From this we see that by using parameters C = 2c−6, E = 0 and ∀ici = 1 in our Threshold Lemma
inequality (9) yields (22) and inequality (7) yields (23).
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If all fi are the same it is possible to prove slightly stronger bounds. Furthermore, we stated
our results for Rε(f). The same proof gives analogous results for DP

ε (f) by using (18) instead of
(19) and inequality (20) instead of (21). Our results are probably not tight, since in the proof we
allow each individual instance to use all c bits.

NOF-model An extension of the 2-party model is the so called number-on-the-forehead model
(NOF-model), introduced by Chandra, Furst, and Lipton [6]. In this model q parties want to
compute a function f : {0, 1}n×q → {−1,+1} which depends on q n-bit strings x1, . . . , xq ∈ {0, 1}n
and each party is given one of the q input strings. The i-th party sees all inputs, apart from its own
(which is “written on its forehead”). The question is how many bits c of communication are needed
such that in the end one party (say the first) can output the correct result f(x1, . . . , xq) with some
probability p, when inputs x1, . . . , xq ∈ {0, 1}n are chosen from some worst-case distribution µ.7

The communication is via a broadcast, i.e., every party sees every bit communicated. Note that
by Yao’s principle we may assume that the q parties employ a deterministic protocol.

This generalization might look contrived at first, but lower bounds in this model also imply
lower bounds in various other models of computation, such as ACC circuits, multi-tape Turing
machines, branching programs and Lovasz-Schrijver proof systems. Some lower bounds are known
in this model if q ≤ log2 n, see [25, 37, 24] and references therein. In particular, in a recent
break-through result [25, 7] it was shown that the disjointness function (i.e., the first party has to
announce whether x1∧· · ·∧xq = 0n or not and ∧ is the bit-wise AND) requires Ω

(
n1/(q+1)2−2q−1

)
bits of communication and [3] show that the inner-product function (i.e., the first party has to
announce whether x1 ∧ · · · ∧ xq contains an even or odd number of ones) needs communication at
least Ω(n/22q).

The following theorem for the NOF-model extends Corollary 1.7 in [37] to a threshold direct-
product theorem.

Theorem 12. Let f : {0, 1}n×q → {−1,+1} be a function such that no q-party protocol which also
uses q bits of communication can compute f better than with probability 1/2 + ε/2, for 0 ≤ ε ≤ 1,
when the inputs are chosen uniformly at random. Choose λ such that ε1/2

q ≤ λ ≤ 1. Then for any
q-party protocol P with uniformly random inputs x1,1, . . . , xq,k ∈ {0, 1}n (the i-th player gets inputs
xi,1, . . . , xi,k) and k output bits, which uses c bits of communication, it holds: The probability that
the output of P agrees with f(x1,1, . . . , xq,1) . . . f(x1,k, . . . , xq,k) on at least (1/2 + λ/2)k positions
is at most

Pr[
k∑
i=1

P(x1,1, . . . , xq,k)if(x1,i, . . . , xq,i) ≥ λk] ≤ 2ce−kD(1/2+λ/2||1/2+ε1/2
q
)/2. (24)

Proof. Let P be any protocol. Define random variables Yi = P(x1,1, . . . , xq,k)if(x1,i, . . . , xq,i). By
Theorem 1.3 in [37] (see also [10]) it follows that for any set S ⊆ [k] : E[

∏
i∈S Yi] ≤ 2cε|S|/2

q
. Hence,

the theorem follows with our threshold lemma, with the parameters β = ε1/2
q

and C = 2c.

For λ = 1 the bound in (24) simplifies to 2cεk/2
q
, which is ≤ 1 if ε ≤ 2−c2

q
.

7In the deterministic setting –which we will not consider– we ask for the amount of communication necessary such
that for any input the first party always outputs the correct result.
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4.4 Hardness amplification

In this section we will show a threshold DPT for circuits. Assume that for some boolean function
f : {−1,+1}n → {−1,+1} it holds that no circuit of size s can compute f better than with
probability p (for randomly chosen inputs). We want to show that then also no circuit (of size
comparable to s) can compute the k-fold composition of f (k)(x1, . . . , xk) = f(x1), . . . , f(xk) better
than with probability e−Ω(k). Even more, no such circuit can get significantly more than pk of the
instances correct, except with probability e−Ω(k). This result was recently obtained in [20]. We
give a simpler proof. As pointed out in the introduction, a similar result also follows from the
hardcore Lemma [19], using the stronger recent version in [18], so our result is not at all new. We
have included this statement because our proof is very simple and only uses Yao’s XOR Lemma,
which is simpler and historically earlier than the hardcore Lemma, and will also work for classes
where XOR Lemmas are known, but no hardcore Lemma, for example polynomials over GF(2), see
Theorem 1.2 in [37] and the remark at the end of Section 1.1. Furthermore, in this example the
error constant E of our main Lemma is essential.

We will start with Levin’s version [27] of Yao’s XOR Lemma [38], as stated in [15].

Lemma 13. Let f : {−1,+1}n → {−1,+1} be a function and let 0 ≤ β ≤ 1 be such that for every
circuit C of size at most s it holds Prx∈{−1,+1}n [C(x) = f(x)] ≤ 1/2 + β/2. Then for every E > 0,
any k and any circuit C ′ of size s′ ≤ s·poly(E, 1/k, 1/n) it holds Prx1,...,xk∈{−1,+1}n [C ′(x1, . . . , xk) =∏k
i=1 f(xi)] ≤ 1/2 + βk/2 + E.

Note that in order to make the correctness probability exponentially close to 1/2, it is necessary
to make E exponentially small and hence also s′ ≤ seΩ(−k). This will also show up in the following
threshold DPT, and we do not know of any way to circumvent this problem, even using different
techniques.

Theorem 14. Let f : {−1,+1}n → {−1,+1} be a function and let 0 ≤ β ≤ 1 such that for every
circuit C of size at most s it holds Prx∈{−1,+1}1n [C(x) = f(x)] ≤ 1/2 + β/2. Let β ≤ λ ≤ 1. Then
for any k and any circuit C ′ of size s′ ≤ s ·poly(e−Ω(k), 1/n) (which takes k n-bit inputs and outputs
k bits) it holds

Pr
x1,...,xk∈{−1,+1}n

[
k∑
i=1

C ′(x1, . . . , xk)if(xi) ≥ λk] ≤ e−Ω(k).

Proof. The result follows by Yao’s XOR Lemma with parameter E =
(

(1+λ)(1−β)
(1+β)(1−λ)

)−k(1/2−λ/2)
e−Ω(k)

and then applying inequality (8) of our threshold Lemma.
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