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Abstract

We study solution sets to systems of generalized linear equations of the form

ℓi(x1, x2, · · · , xn) ∈ Ai (mod m)

where ℓ1, . . . , ℓt are linear forms in n Boolean variables, each Ai is an arbitrary subset of
Zm, and m is a composite integer that is a product of two distinct primes, like 6. Our
main technical result is that such solution sets have exponentially small correlation, i.e.
exp

(

− Ω(n)
)

, with the boolean function MODq, when m and q are relatively prime. This
bound is independent of the number t of equations.

This yields progress on limiting the power of constant-depth circuits with modular gates.
We derive the first exponential lower bound on the size of depth-three circuits of type
MAJ ◦ AND ◦ MODA

m (i.e. having a MAJORITY gate at the top, AND/OR gates at the
middle layer and generalized MODm gates at the base) computing the function MODq. This
settles a decade-old open problem of Beigel and Maciel [5], for the case of such modulus m.

Our technique makes use of the work of Bourgain [6] on estimating exponential sums
involving a low-degree polynomial and ideas involving matrix rigidity from the work of
Grigoriev and Razborov [15] on arithmetic circuits over finite fields.
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1 Introduction

1.1 Background

Proving strong lower bounds on the size of constant-depth boolean circuits comprising MODm

gates for computing an explicit function is a fundamental open problem in theoretical computer
science. Despite the fact that Razborov [23] and Smolensky [24] obtained strong lower bounds,
more than twenty years ago, on the size of circuits of constant depth having AND, OR and
MODp gates, it has proved surprisingly difficult to extend that result to composite modular
counting (see for example [2, 25, 22, 16, 27, 4, 18, 26]). The class of boolean functions that can
be computed by circuits of constant depth and polynomial size, having AND, OR and MODm

gates, where m is any fixed positive integer, is called ACC0. It is the smallest naturally arising
circuit complexity class that currently cannot be separated from NP.

Part of the difficulty of this problem was explained by surprising upper bounds, where a
composite modulus, even a MOD6 gate, allows more efficient algorithms than a prime modulus
MODp. The canonical example of this power is that every Boolean function can be computed
by a depth-2 circuit of MOD6, whereas for any prime p, a depth-2 circuit (indeed, any constant
depth circuit) of MODp gates can only compute Boolean functions which are constant degree
polynomials over Zp, an exponentially small fraction of all Boolean functions. Yet another
example of that power was demonstrated by Barrington, Beigel and Rudich [3]. They showed
that while polynomials representing the AND function on n variables require degree Ω(n) over
the field Fp for any fixed prime p, this function has degree O(

√
n) over the ring Z6. Moreover,

if m has t distinct prime factors the degree upper bound drops further to n1/t. This advantage
of a composite modulus is not restricted to just computing the AND function, but also comes
into play for computing MODq as exhibited by Hansen [20].

Another distinction surfaces when defining MODm as a Boolean function. A flexibility, used
in many of these upper bounds, is to pick a subset A ⊂ Zm, and let MODA

m(z1, · · · , zk) output
1 if z1 + · · ·+ zk(mod m) ∈ A and 0 otherwise. It is easy to see that if m = p is prime, than the
choice of A is immaterial, in the sense that constant-depth circuits of such gates (with varying
A’s) can be simulated with similar size and depth circuits in which A is fixed for all MODp

gates, say A = {0}. This reduction uses the identity xp ≡ x over the field Fp, which fails for
rings Zm for composite m.

Indeed, it is known even in contexts outside of circuit complexity that the flexibility of
choosing an arbitrary accepting set A affords non-trivial advantage over choosing a singleton
accepting set. A striking example of this is the recent design of 3-query locally decodable codes
of subexponential length by Efremenko [10], using the earlier intriguing construction of set
systems by Grolmusz [17]. Finally, and this point will be crucial for this work, linear systems of
equations modulo m are completely understood when m = p is a prime, due to the availability
of division and Gaussian elimination. This breaks down when m is composite, and some of the
upper bounds use the strange structure of Boolean solutions to linear equations over Zm.

Can this extra power and complexity of composite moduli help significantly in computing
functions using modular gates? It remains consistent with our knowledge that circuits, com-
prising only MOD6 gates, of depth-three and linear size can compute an NP-complete function
like SAT. On the other hand, Smolensky [24] conjectured that circuits having AND, OR and
MODm gates, cannot even compute the MODq function in sub-exponential size and constant
depth, when m, q are co-prime. This remains an outstanding conjecture and is one of the driving
themes of past work and our work here.
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1.2 Past lower bounds

To attack Smolensky’s conjecture researchers have considered a variety of restricted models,
and have tried to prove weaker lower bounds in attempt to develop proof techniques dealing
with modular counting.

Chattopadhyay and Hansen [9] have proved superpolynomial lower bounds on the size of
AC0 circuits augmented with a few MODm gates for computing MODq. Chattopadhyay, Goyal,
Pudlák and Thérien [8] proved linear lower bounds on the number of gates and superlinear lower
bounds on the number of wires, for circuits with only MODm gates computing MODq.

Some exponential lower bounds were obtained for more restricted models, in which there is
only a single layer of modular gates in the circuit. Both were achieved for depth-three circuits
only.

One such result, following a sequence of earlier results [11, 22, 12, 13], is Bourgain’s expo-
nential lower bound [6], for MAJ ◦ MODA

m ◦ ANDo(log n) circuits, in which the modular gates
are in the middle layer, and the bottom layer has AND gates of small fan-in (up to o(log n) for
fixed m, q). The intense interest in this kind of circuits followed from the surprising observa-
tion by Allender [1] that showed that these circuits can simulate in quasipolynomial size and
polylogarithmic bottom fan-in, circuits of arbitrary but constant depth and quasipolynomial
size comprising AND, OR and MODpk gates, where p is any prime dividing m and k is a con-
stant integer. No non-trivial lower bounds are currently known for such circuits, even when the
bottom fan-in is log n + 1.

The other result is by Beigel and Maciel [5], who proved exponential lower bounds for

MAJ ◦ AND ◦ MOD
{0}
m circuits for computing MODq, in which the modular gates are at the

bottom layer and have a singleton accepting set. To prove that, they use an argument similar
to the one used by Razborov and Smolensly in the case of MODp gates, to reduce the fan-in of
the AND gates to a constant. They, then use arguments from the earlier work of Krause and
Pudlák [22] who proved exponential lower bounds for MAJ ◦ ANDO(1) ◦ MODm circuits, i.e.
AND gates in the middle layer are restricted to have constant fan-in. Unfortunately, the Beigel-
Maciel technique breaks down for general MODA

m gates. In particular, there is no known way of
reducing the fan-in of AND gates when they receive their inputs from generalize MODm gates.
In fact, as a MODm gates with a singleton accepting set is not closed under complementation,

no non-trivial lower bound was known even for circuits of type AND ◦ OR ◦ MOD
{0}
m .

1.3 New results and techniques

In this paper, we improve upon the result of Beigel and Maciel, obtaining exponential lower
bounds for MAJ◦AND ◦MODA

m circuits computing MODq. Specifically, we can handle general
modular gates MODA

m in the bottom layer. Let A ⊆ Zm be an arbitrary set. Then, the boolean
function MODA

m is defined as follows: MODA
m(x1, . . . , xn) = 1 iff x1 + · · · + xn ∈ A modulo m.

We show:

Theorem 1 (Main Theorem) Let m, q be co-prime integers such that m is square-free and
has at most two prime factors. Let C be any circuit of type MAJ◦G◦MODA

m where G is either
AND or OR gate and the MODm gates at the base have arbitrary accepting sets. If C computes
MODq then the top fan-in, and hence the circuit size, must be 2Ω(n).

Like other results for circuits with a top level Majority gate (see [19, 11, 12]), the key
technical part is obtaining an exponentially small correlation bound of the target MODq function

2



with any depth-2 subcircuit of our circuit. This we obtain by an exponential sum bound which
is the main technical contribution of this paper. We note that the depth-2 circuits we consider
are of the form AND ◦ MODA

m, which accept solutions to a system of linear equations MODm

(more precisely, equations of the form ℓi(x) ∈ Ai where each ℓi is a linear form and Ai is a
subset of Zm). We show that such solution sets have only exponentially small correlation with
MODq.

Define the correlation of a function f with MODq, denoted by Corr(f ,MODq), as follows:

maxa∈Zq

{
∣

∣

∣

∣

Pr
x

[

f(x) = 1
∣

∣

∑

i

xi = a (mod q)
]

− Pr
x

[

f(x) = 1
∣

∣

∑

i

xi = 0 (mod q)
]

∣

∣

∣

∣

}

Lemma 2 (Main Technical Result) Let C be any circuit of type G ◦MODA
m, where m is a

fixed square-free integer that has at most two distinct prime factors and G is either an AND or
an OR gate. Then, for any fixed q that is co-prime with m,

Corr
(

C,MODq

)

≤ exp
(

− Ω(n)
)

(1)

Note the “duality” with Bourgain’s similar exponential correlation bound for MODA
m◦AND,

in which the order of the conjunction and modular counting are reversed.
In order to prove our result, we are naturally lead to study the set of boolean solutions to

linear systems of t equations of the form

ℓi(x1, x2, · · · , xn) ∈ Ai (mod m) (2)

(where ℓ1, · · · ℓt are linear forms). We first show that when each Ai is a singleton, then using
simple exponential sums, one can prove exponentially small upper bounds on the correlation
between the solution set of such equations and MODq. This provides a very short and simple
alternative proof to the Biegel-Maciel result. We also show how to extend this to solutions of
polynomial equations of low degree, as long as the modular gates are singleton. Using this, we
get exponential lower bounds on depth-4 circuits of the form MAJ◦AND◦MODm◦AND, when
the bottom AND gates have sub-logarithmic fan-in.

It is easy to see that, running over all possible choices of elements ai ∈ Ai, the solu-
tion set to the above system is the union over exp(t) “normal” linear systems of the form
ℓi(x1, x2, · · · , xn) = ai ( mod m). But as t may be arbitrarily large, one cannot simply use a
union bound.

The main idea that we use to overcome this difficulty originates in the world of arithmetic
circuits. To see the connection, observe that when working in e.g. F3, addition in the field
is a (non Boolean) MOD3 gate, while multiplication (when restricted to the nonzero elements
1, -1) is equivalent to a MOD2 computation. Thus MOD6 gates can easily perform both field
operations. This explains their power, mentioned before, to compute every Boolean function in
depth two. A natural idea, which has been used on arithmetic circuits, is to focus on the linear
forms ℓi, and treat differently the cases when they are “low rank” and “high rank”. Intuitively,
thinking that equations in (2) were over a field, for high rank ≥ r there will only be exp(−r)
solutions to such systems (and so low correlation with any nontrivial function), and for high
rank ≤ r the union bound above will only be over exp(r), as opposed to exp(t) cases of singleton
equations, which can be hopefully handled by simpler methods.
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And this idea can be made to work! However, its implementation is quite complex. The
main problem of course is that we are not over a field. Thus, even standard notions of rank are
problematic, and linear algebraic methods as above cannot be used directly. To resolve this, we
borrow and generalize the ingenious definitions of “rigidity-rank” and “communication-rank”,
introduced by Grigoriev and Razborov [15] to handle a related problem, in the context of
depth-3 arithmetic circuits over finite fields. On the high-rank part these generalizations are
straightforward. In the low-rank part they raise complications special to the fact that we use
composite moduli. In particular, we need to handle the special case of a combination of sparse
linear systems (where each equation has few nonzero coefficients) with low-rank systems. We
do so using estimates of exponential sums by Bourgain involving low-degree polynomials over
Zm. This is the part which restricts our result to handle only moduli m with just two distinct
prime factors.

Our analysis further reveals that in the low-rank case we can prove exponential correlation
bounds not only for AND ◦ MODA

m circuits, but also for MODA
m ◦ MODA

m circuits. While still
far from general lower bounds for such depth-2 circuits of composite modular gates, we believe
that our partial result here may be useful in attacking this important challenge. Currently, no
superlinear lower bounds are known in general for such depth-two circuits.

Finally, it is worth noting that our work is interesting from another point of view. Recently,
Hansen and Koucky [21] have observed that polynomial size ACC0 circuits can be simulated
by poly-size OR ◦ AND ◦ CC0 circuits, where CC0 denotes constant-depth circuits comprising
only modular gates. Our result is a natural step towards this by establishing lower bounds for
OR ◦ AND ◦ MODA

m, when m is a product of two different primes.

Organization After the some preliminaries in Section 2, we present the lower bound in
the “low-rigid” case in Section 3, and in the complementary “high-rigid” case in section 4,
motivating in both cases the exact definitions of these terms. Section 5 combines them.

2 Preliminaries

The main tool that we use for lower bounding the size of our circuits for computing MODq is the
so-called ǫ-Discriminator Lemma, introduced by Hajnal et.al.[19]. We state here a specialized
version of it that is particularly convenient for our work, and has been also used in earlier works
(see for example [6, 8]).

Lemma 3 (Discriminator Lemma) Let C be a circuit that has a MAJORITY gate at its
output that is being fed by t subcircuits C1, . . . , Ct. If C computes MODq, then there exists a
subcircuit Ci, such that Corr

(

Ci,MODq) ≥ 1/t.

The way it is useful for us is the following: let eq(y) represent the function that is obtained
by raising the q-th primitive root of unity to its yth power, i.e. eq(y) = exp

(

2πiy/q
)

, where i
is the non-trivial square-root of unity. Recall the following elementary fact: for any integer y,
the expression (1/q)

∑q−1
a=0 eq(ay) evaluates to 1 if y ≡ 0 (mod q), and otherwise evaluates to 0.

This gives rise to the following useful fact: MOD
{b}
q = (1/q)

∑q−1
a=0 eq

(

a(
∑

i xi − b)
)

. For any
f : {0, 1}n → {0, 1} and a ∈ Zq, let S(f, q, a) = Ex

[

f(x)eq(a
∑

i xi)
]

. Then, the above identities
can be easily made to yield (see for example [6, 8])

Corr
(

f,MODq

)

≤ 2q · max
{

S(f, q, a)
∣

∣ a ∈ Zq, a 6= 0
}

+ 2−Ω(n) (3)
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The Discriminator Lemma along with (3), immediately sets us a target of obtaining exponen-
tially small upper bounds for the quantity S(f, q, a), where f is the output of a circuit like
AND ◦ MODA

m. Such a bound would yield desired exponential lower bounds on the top fan-in
of MAJ ◦ AND ◦ MODA

m, for computing MODq. The key to obtaining such upper bounds on
S(f, q, a) will be the usage of exponential sums.

We will need estimates of exponential sums that were first obtained in the breakthrough
work of Bourgain [6] and refined progressively in further works [14, 30, 7]. We state the most
refined estimate below:

Theorem 4 ([7]) Let m, q be two fixed positive co-prime integers and let P be any n-variate
multilinear polynomial of degree d with coefficients in Zm. Then, there exists a constant β =
β(m, q) such that the following holds:

∣

∣

∣

∣

Ex∈{0,1}nem

(

P (x)
)

eq

(

∑

i

xi

)
∣

∣

∣

∣

≤ exp(−βdn). (4)

We point out that the above estimate fails to give anything non-trivial when the degree d of the
polynomial P is more than log n. Finding exponentially small upper bounds for the exponential
sum in (4) for d > log n, even when m is prime, remains a very interesting open problem.

3 Low rigid-rank systems of equations

This section will deal with systems of equations which have low rigid-rank, a notion we will
define below. We start this section with four subsections dealing with special cases, allowing
us to introduce technical background, develop some necessary machinery, and motivate the
definition and use of rigid-rank in the final subsection.

3.1 MODm gates with a singleton accepting set

In this subsection, we prove a simple exponential sum, for systems of equations in which the
modular gates have an accepting set of size 1. Without loss of generality, such gates have
accepting set {0}. This will yield a correlation bound that yields an alternative proof to the
main result of Beigel-Maciel [5].

Lemma 5 Let m be any positive integer, and C = AND ◦ MOD
{0}
m be any depth-two circuit.

Then the correlation of C with MODq is exp
(

− αn
)

for some constant 0 < α(m, q) < 1, when
m, q are co-prime.

Proof: Let ℓi be the linear form associated with the ith MODm gate at the base of C and the
fan-in of the output AND gate be t. Then,

S(C, q, b) = Ex∈{0,1}n

[ t
∏

j=1

(

1

m

m−1
∑

a=0

em(aℓi(x))

)]

eq

(

b(x1 + · · · + xn)
)

Expanding the product of sums into a sum of products along with the linearity of expectation
yields

1

mt

mt
∑

j=1

Ex∈{0,1}n

[

em(rj(x))eq

(

b(x1 + · · · + xn)
)

]

(5)
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where, each rj is a linear polynomial obtained by a Zm-linear combination of ℓi’s. Writing
rj(x) = aj,1x1 + · · · + aj,nxn , we can separate variables and obtain

∣

∣

∣

∣

Ex∈{0,1}n

[

em

(

rj(x)
)

eq

(

b(x1 + · · · + xn)
)

]
∣

∣

∣

∣

=
n

∏

i=1

∣

∣

∣

∣

Exi∈{0,1}

[

em

(

aj,ixi

)

eq

(

bxi

)

]
∣

∣

∣

∣

≤ exp
(

− αn
)

for some 0 < α < 1, where the last inequality follows from the simple fact that every term in
the product is bounded away from 1 in absolute value . Thus, using triangle inequality, we get
S(f, q, b) ≤ 2−αn for all b ∈ Zq. Applying (3) with the Discriminator Lemma proves our lemma.

First observe that the proof works with any singleton accepting set, not just the set A = {0},
simply by adding the affine shift in the exponential sum. Futher, note that the above bound

already yields exponential lower bounds for depth-three circuits of type MAJ ◦AND ◦MOD
{0}
m .

As mentioned above, such a bound was obtained by Beigel and Maciel [5], through different
techniques. The advantage of using our technique is that in tandem with powerful estimates
by Bourgain [6] of exponential sums involving low-degree polynomials, our argument yields the
following significantly stronger result for depth-four circuits.

Theorem 6 Let C be a depth-four circuit of type MAJ ◦ AND ◦ MOD
{0}
m ◦ ANDo(log n), where

the bottom AND gates have fan-in of o(log n). If C computes MODq, then the top fan-in of C
must be 2Ω(n), when m, q are co-prime fixed integers.

We do not give a formal proof of this theorem here, but point out that it follows in a very
similar way as the proof of Lemma 5, where instead of exponentiating linear polynomials we
exponentiate degree d polynomials over Zm if the fan-in of the bottom AND gates are at most
d. In the step that is analogous to (5) in the proof above, we get exponential sums of the type
in (4). Plugging their bounds from Theorem 4, yields Theorem 6.

As suggested by Beigel and Maciel, a natural next step is to tackle the problem of obtaining
strong lower bounds for depth-three circuits with generalized modular gates at the bottom, i.e.
circuits of type MAJ ◦ AND ◦ MODA

m, where A is an arbitrary subset of Zm. Let us see what
happens when we try to apply the same method for such gates.

3.2 Generalized MODA
m gates and systems with few equations

The upshot of this subsection is that the above argument can be extended to general modular
gates of the form
MODA

m(z1, · · · , zk)) output 1 iff z1 + · · · + zk ∈ A(mod m),
as long as the number of such gates is small. The lemma below essentially appears in [8].

Lemma 7 Let C be a circuit of type AND◦MODA
m, with top fan-in t. Then, Corr(C,MODq) ≤

(m − 1)t2−αn for some constant 0 < α = α(m, q) < 1.

Proof: The proof simply reduces to Lemma 5. Note that the output of every MODA
m gate can

be expressed as a sum of at most m− 1 simple MODm gates with singleton accepting sets, one
for each element of A, since at most one of them can be 1 for any fixed input x. Expressing

every modular gate in C this way, we get that C =
∑mt

j=1 Cj , where each Cj(x) tests if x satisfies
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the linear system ℓi(x) = aj,i for all t, where each of the constants aj,i is an element of Ai. Note
that for every input x at most one of the Cj(x) can output 1. This, linearity of expectation

and triangle inequality allow us to derive directly Corr(C,MODq) ≤
∑mt

j=1 Corr(Cj ,MODq) ≤
(m − 1)t2−αn.

This bound is useful only for fan-in t ≤ δn, for some constant δ. Hence, it cannot provide a
superlinear lower bound. We next show that this is possible if the system of equations has low
rank.

3.3 Low-rank systems

We note that henceforth, unless otherwise stated, we consider generalized modular gates with
arbitrary accepting sets. Thus, we may assume, w.l.o.g, that the linear forms associated with
all MODm gates are homogeneous. The rank of C, denoted by rank(C), is defined as the size
of a minimal subset S of the set of its underlying linear forms, such that every linear form of
C is generated by a Zm-linear combination of the forms in S.

Lemma 8 Let C be a circuit of type AND◦MODA
m. Then, Corr(C,MODq) ≤ (m−1)rank(C)2−αn

for some constant 0 < α = α(m, q) < 1.

Proof: Let ℓ1, . . . , ℓt be the linear forms in our circuit. Let r = rank(C), and assume w.l.o.g.,
that ℓ1, . . . , ℓr span the remaining t − r forms. Now we can write C =

∑

j∈J Cj going over all
possible r-tuples of values of the singletons composing Ai for i ≤ r, and keeping only those
tuples for which satisfying these r equations implies satisfying the remaining t − r equations
determined by them. Thus |J | ≤ (m − 1)r and we conclude as in the proof of Lemma 7.

We will now see that, using another idea, we can handle more general situations than just
low-rank systems. For this we take a detour to a different restriction on our gates.

3.4 Sparse MODm gates

Here we handle generalized modular gates with few inputs. Let us call a linear form k-sparse if
the number of non-zero coefficients appearing in it is at most k. A mod gate is called k-sparse if
the associated linear form is k-sparse. We show that AND of sparse gates has small correlation
with MODq.

Lemma 9 Let C be a G ◦ MODA
m circuit in which each bottom gate is k-sparse. Then,

Corr
(

C,MODq

)

≤ exp(−βkn).

Proof: Consider any MODA
m gate at the base. As it is computing a boolean function of at

most k-variables, there is a polynomial of degree at most k over Zm that exactly represents the
output of the gate. Let P1, . . . , Pt be these polynomials for the t gates at the bottom. Then,
one can write the following:

S(C, q, b) =

∣

∣

∣

∣

Ex∈{0,1}n

[( t
∏

j=1

(

1

m

m−1
∑

a=0

em(aPi(x))

))

eq

(

b(x1 + · · · + xn)
)

]
∣

∣

∣

∣

(6)
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Mimicking the argument as in the proof of Lemma 5, one obtains that

S(C, q, b) ≤ 1

mt

mt
∑

j=1

∣

∣

∣

∣

Ex∈{0,1}n

[

em(sj(x))eq

(

b(x1 + · · · + xn)
)

]
∣

∣

∣

∣

(7)

where, each sj is a polynomial of degree at most k obtained by a Zm-linear combination of Pi’s.
Applying in the estimate given by (4) to the RHS of (7), proves our result.

3.5 Low rigid-rank

We now combine Lemma 9 and Lemma 8 in the following way, to show that we can handle
systems of equations which can be made low rank after a sparse change to each equation. This
is inspired by Valiant’s famous notion of rigidity [28, 29], used to attack (so far unsuccessfully)
size-depth trade-offs for computing linear systems over fields. We use the following definition:

A depth-two circuit of type AND ◦ MODA
m is called (k, r)-sparse if its associated linear

forms ℓ1, . . . , ℓt satisfy the following property: each ℓi can be written as ℓ′i + Li such that the
set {Li|1 ≤ i ≤ t} has rank r and every ℓ′i is k-sparse.

Lemma 10 Let C be a depth-two circuit of type AND ◦ MODA
m that is (k, r)-sparse. Then,

Corr
(

C,MODq

)

≤ mrexp(−βkn)

Proof: As before, we look at the possible evaluations of the various linear forms. Let t be the
top fan-in, and let ℓi = ℓ′i + Li. Wlog, assume that L1, . . . , Lr are the linearly independent
forms that span every other Li. Then our idea is to split the sum into at most mr different
ones, corresponding to the possible evaluations of L1, . . . , Lr. Let u be any such evaluation,
where ui represents the evaluation of Li. Given u, we know what each Li evaluates to in Zm,
for all i ≤ t. Hence, we know the set of values in Zm, denoted by Au

i , that ℓ′i could evaluate to
so that ℓi evaluates to some element in Ai. In other words, Au

i = {a ∈ Zm|a + ui ∈ Ai}. Since,
ℓ′i depends on at most k variables, there exists a multilinear polynomial P u

i over Zm of degree
at most k such that P u

i (x) = 0 (mod m) iff ℓ′i(x) ∈ Au
i . These observations allow us to write

the following:

S
(

C, q, b
)

=

∣

∣

∣

∣

∑

u∈[m]r

Ex

[( r
∏

j=1

1

m

m−1
∑

a=0

em

(

a(Lj(x)−u1)
)

)( t
∏

i=1

1

m

m−1
∑

a=0

em

(

aP u
i (x)

)

)

eq

(

b
n

∑

i=1

xi

)

] ∣

∣

∣

∣

Expanding out the product of sums into sum of products,

S
(

C, q, b
)

≤
∑

u∈[m]r

1

mr+t

mr
∑

i=1

mt
∑

j=1

∣

∣

∣

∣

Ex

[

em

(

Ru
i (x) + Qu

j (x)
)

eq

(

b

n
∑

i=1

xi

)

] ∣

∣

∣

∣

,

where each Qu
j (x) is a polynomial of degree at most k obtained by a Zm-linear combination of

the t polynomials P u
1 , . . . , P u

t , and each Ru
i is a linear polynomial obtained by the ith Zm-linear

combination of the Li’s. Thus, applying the bounds from (4), we are done.

As it happens, even low rigid-rank will not suffice, and we now generalize this result further in
the next section.
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3.6 Low rigid-rank in one prime factor of m

Let m = p1p2 with both pi prime. We now show how to bound the exponential sum even if the
given linear system is (k, r)-sparse only modulo one of them.

Let C be a depth-two circuit of type G◦MODA
m, with top fan-in t. Then, let L = {ℓ1, . . . , ℓt}

be the set of the associated linear forms over Zm. Using chinese remaindering, let Lp1 =
{ℓp1

1 , . . . , ℓp1

t } and Lp2 = {ℓp2

1 , . . . , ℓp2

t } be respectively the corresponding set of linear forms over
Zp1

and Zp2
.

Lemma 11 If Lp1 (or Lp2) is (k, r)-sparse, then, Corr
(

C,MODq

)

≤ mrexp(−βk+mn), when
m, q are co-prime and β = β(m, q) > 0.

Proof: Assume LP1 is (k, r)-sparse. For each 1 ≤ i ≤ t, let ℓp1

i = ℓ′i + Li, be the decomposition,
over Zp1

, of linear forms such that each ℓ′i has k variables with non-zero coefficients. Wlog, let
L1, . . . , Lr span all the other Li’s. The idea is we split the correlation into (p1)

r different sums
corresponding to the (p1)

r possible evaluations of L1, . . . , Lr. Let u be any such evaluation.
Then for every i, 1 ≤ i ≤ t we know what Li evaluates to. There are thus at most |Ai| possible
evaluations of ℓ′i over Zp1

that will keep ℓp1

i evaluate to something that is admissible in the
accepting set. For each such evaluation of ℓ′i, we know the set of admissible evaluations of ℓp2

i

over Zp2
. It is simple to verify that the characteristic function of the set of points of the cube

which result in admissible evaluations for ℓ′i and ℓp2

i can be exactly represented over Zp2
by a

polynomial of degree at most k + p2 − 1. We call this polynomial, as before, P u
i . Having found

this polynomial allows us to carry on our calculations in an identical way as in the proof of
Lemma 10. Thus,

S
(

C, q, b
)

=

∣

∣

∣

∣

∑

u∈[p1]r

Ex

[( r
∏

j=1

1

p1

p1−1
∑

a=0

ep1

(

a(Lj(x)−u1)
)

)( t
∏

i=1

1

p2

p2−1
∑

a=0

ep2

(

aP u
i (x)

)

)

eq

(

b

n
∑

i=1

xi

)

]
∣

∣

∣

∣

Expanding out the product of sums into sum of products,

S
(

C, q, b
)

≤
∑

u∈[p1]r

1

pr
1p

t
2

pr
1

∑

i=1

pt
2

∑

j=1

∣

∣

∣

∣

Ex

[

ep1

(

Ru
i (x)

)

ep2

(

Qu
j (x)

)

eq

(

b
n

∑

i=1

xi

)

]
∣

∣

∣

∣

,

where each Qu
j (x) is a polynomial of degree at most k + p2 − 1 obtained by a Zp2

-linear com-
bination of the t polynomials P u

1 , . . . , P u
t , and each Ru

i is a linear polynomial obtained by the
ith Zp1

-linear combination of the Li’s. Note that using chinese remaindering, one can combine
Qu

j (x) and Ru
i to a polynomial over Zm of degree at most k+p2−1. Thus, applying the bounds

from (4), we are done.

Finally, we observe that the lemma above can be generalized to systems which can be decom-
posed into a few subsystems, each sparse modulo one of the prime factors of m. It is this
generalization that will be needed for proving our Main Lemma. Let Sp1

, Sp2
be a partition of

[t], such that the set of linear forms, over Zpi
, indexed by elements of Si is (ki, ri)-sparse (over

Zpi), where each pi is either p1 or p2. Further, assume |Si| = si. Then,

9



Lemma 12 Let C be a circuit whose underlying linear forms admit a partition into sets Sp1
, Sp2

as described above. Then, if m, q are co-prime and m = p1p2,

Corr
(

C,MODq

)

≤ mrexp

(

− βn
(

m2m−1
)k+m−1

)

= mrexp
(

− β0(m, q, k)n
)

,

where r = r1 + r2 and k = max{k1, k2}.

Proof: The argument proceeds almost identically as in the proof of Lemma 11, where the system
of equations Lp1 is (k, r)-sparse w.r.t. Zp1

. Wlog, let us assume that L1
1, . . . , L

1
r1 (L2

1, . . . , L
2
r2)

be the linear forms over Zp1
(over Zp2

) that span the perturbed linear forms in sets Si where
pi = p1 (pi = p2). Assume that the size of set Spi

is ti. Then, just as above, we can write,

S
(

C, q, b) = (8)
∣

∣

∣

∣

∑

u1∈[p1]r
1 ;u2∈[p2]r

2

Ex

[( r1

∏

j=1

1

p1

p1−1
∑

a=0

ep1

(

a(L1
i (x) − u1

j )
)

)( t1
∏

j=1

1

p2

p2−1
∑

a=0

ep2

(

aP u1

i (x)
)

)

×

×
( r2

∏

j=1

1

p2

p2−1
∑

a=0

ep2

(

a(L2
i (x) − u2

j )
)

)( t2
∏

j=1

1

p1

p1−1
∑

a=0

ep1

(

aP u2

i (x)
)

)

eq

(

b

n
∑

i=1

xi

)

] ∣

∣

∣

∣

,

which, as before, expands out into

Corr
(

C,MODq

)

≤ (9)

∑

u1∈[p1]r
1 ;u2∈[p2]r

2

1

pt1+r2

2 pt2+r1

1

∑

i≤p
t1
2

;i′≤pr2

2
;j≤p

t2
1

;j′≤pr1

1

∣

∣

∣

∣

Ex

[

ep1

(

Ru1

j′ (x) + Qu2

j (x)
)

ep2

(

Ru2

i′ (x) + Qu1

i (x)
)

eq

(

b

n
∑

i=1

xi

)

]
∣

∣

∣

∣

,

Combining polynomials, via chinese remaindering, the argument is finished exactly as before
invoking the estimates from (4).

4 A set of gates having high rigid rank

Next, we extend a result from the work of Grigoriev and Razborov [15] about a set of linear
forms. The overall plan is to show that in this case, the probability that a random Boolean
input will satisfy any such system is exponentially small in n, independent of the number of
equations. Naturally, this is what one expects over a field, and when the inputs are chosen
randomly from that field. We work over a ring, and the inputs are only Boolean. Nevertheless,
notions of rank introduced in [15] naturally extend to yield the result, as well as complement
the low rigid rank case we used in the previous section.

Given a set L of t linear forms in n variables over Zm, we identify them in the natural way
with a t × n matrix denoted by A(L). When clear from the context, we simply denote the
matrix by A. Define the k-rigid rank of this matrix over Zp, denoted by rrankp

k

(

A
)

, as the
rank (over Zp) of a minimal rank matrix that differs from A in at most k entries per row. Let
m = p1p2 · · · ps be a product of s distinct prime numbers. The k-communication rank of A, over
Zm, denoted by ccrankm

k

(

A
)

is the maximum number r such that there exists a subset I of the
rows of A satisfying the following: a) |I| = r, and b) For each 1 ≤ i ≤ s, there exists k pairwise

10



disjoint subsets J i
1, . . . , J

i
k of the columns of A, each of size r, such that every submatrix A{I,Ji

j}

has rank r, i.e. has full rank, over Zpi
. The notions of rigid rank and communication rank are

related. If a matrix A has high rigid rank over every Zpi
, then we expect that the rank is well

distributed over the columns in the sense that several disjoint submatrices of A should have
high rank. This intuition is captured by the following lemma.

Lemma 13 (extension of Lemma 3.3 of Grigoriev and Razborov [15]) Let m = p1p2 · · · ps

be any number, where each pi is a distinct prime. Let A be any t × n matrix with entries in
Zm such that the ccrankm

k (A) = r. Then, the rows of A can be partitioned into s sets I1, . . . , Is,
such that the sk-rigid rank of A{Ii,[n]} over Zpi

is at most (sk + 1)r.

Proof: From the assumption on A, there exists s pairwise disjoint families of subsets of columns
of A, denoted by J 1, . . . ,J s, where each J i = {J i

1, . . . , J
i
k} contains k pairwise disjoint sets of

columns, each of size r. Further, there exists a set of rows I, such that each submatrix A{I,Ji
j}

has full rank over Zpi
, i.e. has rank r. Trying to enlarge r (which we can’t, since r is maximal)

we derive some structure leading to bound on rigid-rank.
Consider any row ρ that is not in I. For each J i

j , notice that the vector A{ρ,Ji
j}

modulo pi is

obtained by a unique linear combination of the rows of A{I,Ji
j}

. Label this linear combination

θi
j. Define a set of columns J i

j [ρ] in the following way: a column c outside of ∪i=1J i is in J i
j [ρ]

precisely if the linear combination θi
j when applied to the elements of the vector A{I,c} fails to

produce the element A{ρ,c} modulo pi.
The first thing to observe is that for each such row ρ, there exists i, j such that |J i

j [ρ]| ≤ sk.

Otherwise, for all i, j we have |J i
j [ρ]| ≥ sk + 1. Then, it is easy to verify, that we can add one

distinct element from each J i
j [ρ] to J i

j and add ρ to I, certifying that ccrankm
k (A) is at least

r + 1. This yields a contradiction. Hence, for each row ρ there exists an iρ, and a jρ, such that

|J iρ
jρ
| ≤ sk.

Let Ia = {ρ /∈ I|iρ = a}, for all 1 ≤ a ≤ s. We now show that the sk-rigid rank of any such

Ia is at most (sk+1)r. Consider any ρ ∈ Ia. We change the at most sk elements of J
iρ
jρ

to agree

with each coordinate of the vector generated by the linear combination θ
iρ
jρ

of the rows of the

submatrix A
{I,J

iρ
jρ

}
modulo pj. Let the modified row be ρ′. We finish the argument by showing

that the rank of the set of slightly perturbed rows La = {ρ′|ρ ∈ Ia} is at most (sk + 1)r over
Zpj

. Define δi
j,t to be the unit n dimensional vector that has a zero in every co-ordinate, except

the co-ordinate that corresponds to the tth column of the set J i
j where it has a 1. Then, it is

simple to verify that the set of vectors I ∪ {δi
j,t|1 ≤ i ≤ s; 1 ≤ j ≤ k; 1 ≤ t ≤ r} generates every

vector in La, proving that the sk-rigid rank of Ia is at most skr + r.
Finally, we note that we could add the rows in I to any one of the set Ia, without increasing

the sk-rigid rank of the resulting system beyond (sk + 1)r.

The lemma above yields the following convenient dichotomy: when m is a product of two
distinct primes, either the given set of AND◦MODA

m subcircuits can be partitioned into two sets
of subcircuits, each of which gives rise to a linear system with low rigid-rank w.r.t. one prime,
OR, the m-communication rank of the entire system is large. The former case was handled in
the last section. The latter is handled below by extending a result of Grigoriev and Razborov
[15]. They worked with linear forms over finite fields and we, extend it to forms over finite
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rings of the form Zm. Before we proceed with this extension, we need a detour into arithmetic
combinatorics of sumsets over these rings.

4.1 Sumsets over Zm

Let A, B be subsets of any group. Then, the sumset A+B is defined as the set {c = ai+bi | ai ∈
A, bi ∈ B}.

When the underlying group is Zp, p prime, then the famous Cauchy-Davenport lemma
states that the sumset always grows (if it has room to grow), more specifically that |A + B| ≥
min{|A|+ |B| − 1, p}. Thus adding enough subsets would cover the whole group Zp. This fails,
of course, over rings Zm when m is composite, due to the existence of subrings. However, in
this subsection we show that a weaker statement still holds for these rings. This can be roughly
stated as follows: adding sufficiently many 2-sets, each pair differing modulo one of the divisiors
of m, will eventually generate Zm.

Lemma 14 Let m = p1 · · · ps be a product of s distinct primes. For each 1 ≤ i ≤ s, we consider
m subsets Ai

1, . . . , A
i
m ⊂ Zm, each |Ai

j | = 2, such that the mod pi component of the two elements

of Ai
j are different. Then,

∑s
i=1

∑m
j=1 Ai

j = Zm.

For any set A and element a ∈ Zm, let Aa represent the translate of A by a, i.e. Aa = A+{a}.
The following simple observation is useful for estimating the size of sumsets:

Observation 15 Let A,B ⊆ Zm. Then, for any a, b ∈ Zm, |Aa + Bb| = |A + B|.

Proof:[of Lemma 14] We prove by induction of s that |∑s
i=1

∑m
j=1 Ai

j| = p1p2 · · · ps. This
is clearly equivalent to Fact 14. For s = 0, this is vacuously true. Assume, by Inductive
hypothesis, it is true for s = t. Let m′ = p1 · · · pt. View B,At+1

1 , . . . , At+1
m as subsets of

Zm′ × Zpt+1
. Then, the hypothesis implies, via chinese remaindering, that the sumset B =

∑t
i=1

∑m
j=1 Ai

j has the following property: for each element a ∈ Zm′ , there is an element (a, b)
in B, with b ∈ Zpt+1

. We show that for every set B satisfying this property, the following holds:
|B + At+1

j | = min{|B| + 1,m}. To show that, using Observation 15 about translates, assume

w.l.o.g. that At+1
j = {(0, 0), (a, b)}, for some a ∈ Zm′ and non-zero b ∈ Zpt+1

.
If B = Zm′ × Zpt+1

, then we have nothing to prove. Otherwise, there exists some c ∈ Zpt+1

and a′ ∈ Zm′ such that (a′, c) does not occur in B. By inductive property of B, there exists
c′ ∈ Zpt+1

such that (a′, c′) does occur in B. Let c = c′ + d for d ∈ Zpt+1
. As m′, pt+1

are co-prime, there exists an integer k such that k ≡ 0 mod(m′) and k ≡ b−1d mod(pt+1).
Now if B + (a, b) 6= B, we are done. Otherwise, B = B + (a, b) = B + k(a, b). But, (a′, c)
occurs in B + k(a, b), yielding a contradiction. Thus, in this case, B + (a, b) 6= B. Hence,
|B + At+1

j | ≥ |B| + 1 and we complete the induction.

Lemma 14 is used next to prove the main result of this section.

4.2 The correlation bound

We are now ready to state the main result of this section.

Lemma 16 (extension of Lemma 4.1 of Grigoriev and Razborov) Let L = {ℓ1, . . . , ℓt}
be a system of t linear forms, in n variables, over Zm, where m is a fixed positive integer. Let
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A(L) be the associated t × n matrix, with entries from Zm. If r = ccrankm
m

(

A(L)), then

Pr
x∈R{0,1}n

[ t
∧

i=1

ℓi(x) ∈ Ai

]

≤ exp
(

− Ω(r)
)

,

where each Ai ( Zm is an arbitrary set.

Proof: The argument follows closely the one given in Grigoriev and Razborov [15]. From the
definition of communication rank, we get a set of rows I, with |I| = r such that there are m
pairwise disjoint sets of columns, each of size r and denoted by J i

1, . . . , J
i
m, 1 ≤ i ≤ s and

A(Lpi){I,Ji
j}

has full rank, i.e. has rank r modulo pi for every i. Put d = ms. It is convenient

for us, here, to consider an enumeration of the above d disjoint sets of columns. With a slight
abuse of notation, we denote this enumeration as J1, . . . , Jd. The relevant prime that comes
into play, when considering the rank of the submatrix A(L){I,Jj}, is denoted by p[j].

Let x1, . . . , xd be random variables representing boolean assignments to variables indexed
by these sets of columns. Each xi is thus a boolean vector of length r. Let us focus our
attention only to linear froms corresponding to rows indexed by elements of I. We show below
the following stronger bound that clearly implies the result we want to prove: let J = ∪d

i=1Ji.
Let ℓi(x

1, . . . , xd) denote the linear form that is obtained by retaining in ℓi just the terms that
correspond to variables indexed by sets in J . Then, the following holds:

Pr
x1,...,xd

[

∧

i∈I

ℓi(x
1, . . . , xd) ∈ Ai

]

≤ exp
(

− Ω(r)
)

,

where each Ai ( Zm is an arbitrary subset.
Instead of showing this directly, we do the following: let h(x1, . . . , xd) be a random indicator

variable that outputs 1 if ℓi(x
1, . . . , xd) ∈ Ai, for all i ∈ I, and otherwise outputs 0. Then, (by

now) a routine use of d-repeated applications of Cauchy-Schwarz inequality yields

(

Prx1,...,xd

[

∧

i∈I

ℓi(x
1, . . . , xd) ∈ Ai

])2d

=

(

Ex1,...,xd

[

h(x1, . . . , xd)
]

)2d

≤ E
xj
0
,xj

1
; 1≤j≤d

[

∏

u∈{0,1}d

h
(

x1
u1

. . . , xd
ud

)

]

(10)

= Pr
x1
0
,x1

1
,...,xd

0
,xd

1

[

∀i ∈ I; ∀u ∈ {0, 1}d; ℓi

(

x1
u1

, . . . , xd
ud

)

∈ Ai

]

(11)

The rest of the argument provides an exponentially small upper bound for the probability of
the event (11), thereby proving our Lemma.

This probability is estimated in two steps. In the first step, we prove the following claim,
which roughly asserts that every full rank block J i

j is likely to provide us (when multiplied by
a random Boolean vector) with a pair of distinct elements modulo pi (to be later used in the
sumset argument).
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Claim: There exists constants γ and ν, such that with probability at least 1−exp(−νr), there
exists a set of rows I ′ of size r/γd , such that for each i ∈ I ′, we have ℓi(x

j
0) 6= ℓi(x

j
1) mod(p[j]),

for all 1 ≤ j ≤ d.
Before we prove this, let us see how, in the second step, it yields our desired result. We

want to show that some equation fails to hold. Now if r is sufficiently large so that r/γd ≥ 1,

then Claim provides us at least one row k such that ℓk(x
j′

0 ) 6= ℓk(x
j′

1 ) mod(p[j′]), for 1 ≤ j′ ≤ d.

Let J i
j be the set that appears as Jj′ in our enumeration. Set Ai

j = {a0, a1}, where a0 = ℓk(x
j′

0 )

and a1 = ℓk(x
j′

1 ). Applying Lemma 14, we have that
∑s

i=1

∑m
j=1 Ai

j = Zm. Hence, there exists

a u ∈ {0, 1}d such that ℓk

(

x1
u1

, . . . , xd
ud

)

6∈ Ak. The Claim shows that such a k exists with
probability at least (1 − exp(−νr)). The desired bound on the quantity in (11) follows.

Hence, all that remains is to prove the Claim. We do so by induction on d. Our inductive
hypothesis is that the Claim holds for d = u. We show that it should then hold for d = u + 1.
Consider Iu to be the set of all rows k ∈ I for which every ℓk(x

j
0) 6= ℓk(x

j
1) (mod p[j]), for all

j ≤ u. The inductive hypothesis is that Pr
[

|Iu| ≥ r/γu
]

≥
(

1 − exp
(

νur
))

, for some constant
νu. Let p = p[u + 1]. Consider any fixed xu+1

0 . This fixes y0 = A(Lp){Iu,Ju+1} · xu+1
0 , where

y0 ∈ Z
|Iu|
p . We consider the set V of vectors in Z

|Iu|
p that differ from y0 in at most |Iu|/γ

coordinates. Then,

|V| =

|Iu|/γ
∑

j=0

(|Iu|
j

)

(p − 1)j

We show

∀v ∈ V; Pr
xu+1

1

[

A(Lp){Iu,Ju+1} · xu+1
1 = v

]

= 2−|Iu|. (12)

This is sufficient to complete the induction because, if γ is large enough, there exists a
constant η such that Prxu+1

1

[

A(Lp){Iu,Ju+1} · xu+1
1 ∈ V

]

≤ exp
(

− ηr
)

. In other words,

Pr
x1
0
,x1

1
,...,xu+1

0
,xu+1

1

[

|Iu+1| ≥ r/γu+1
]

≥
[

1 − exp
(

νur
)][

1 − exp
(

ηr
)]

≥ 1 − exp
(

− νu+1r
)

for an appropriately chosen constant νu+1. That proves the Claim, assuming (12).
We finish our argument by establishing (12). Since matrix A(Lp){Iu,Ju+1} has rank |Iu|, we

choose a subset of columns, denoted by K ⊆ Ju+1 so that |K| = |Iu|, such that the square
matrix A(Lp){Iu,K} has full rank over Zp. Let xu+1

1 |K be the projection of the vector xu+1
1

to coordinates indexed by K. Consider an arbitrary assignment to co-ordinates of xu+1
1 that

do no not correspond to variables indexed by elements of K. For every such assignment and

any v ∈ V, there is exactly one vector in Z
|Iu|
p that A(Lp){Iu,K} · xu+1

1 |K must evaluate to, so

that A(Lp){Iu,Ju+1} · xu+1
1 evaluates to v. The full rank of A(Lp){Iu,K}, thus ensures that the

probability of this happening is at most 2−|Iu| and we are done.

5 Putting things together

In this section, we present the proof of our main lemma (Lemma 2) that depth-two circuits of
type G ◦ MODA

m have exponentially small correlation with MODq, when G is an AND or an
OR gate and m contains exactly two distinct prime factors and is square-free.
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Proof:[of Lemma 2] We assume that G is an AND gate in the argument below. The case when
G is an OR gate is handled by using De-Morgan’s law as follows: if f is the function computed
by C, then ¬f is computed by a depth-two circuit where the output gate is an AND gate and
the base layer is the same as that of C with the accepting set of each MODm gate being the
complement of what it was before. As the correlation of f with MODq is small iff the correlation
of ¬f and MODq is small, we are done by handling just the case when the output gate G is an
AND gate.

Let L be the set of underlying linear forms, and A(L) the associated matrix with entries
from Zm. There are two cases to consider. First, assume that the m-communication rank of
A(L) is large, i.e. larger than αn for some constant α < 1 to be set later. Then, Lemma 16
directly implies that the correlation of C and MODq is at most exp

(

− δ(m,α)n
)

. In the other
case, applying Lemma 13, we can partition L into two parts L1 and L2, such that each Li has
2m-rigid rank over Zpi

at most (2m + 1)αn. Then, setting k = 2m, upper bounding both r1

and r2 by (2m+1)αn, we apply Lemma 12 to obtain an upper bound of exp
(

−{β0(m, q, 2m)−
2(2m + 1)α log m}n

)

on the correlation between C and MODq.
Thus, setting

γ(m, q) = maxα

[

min{β0(m, q, 2m) − 2(2m + 1)α log m; δ(m,α)}
]

,

we see that the correlation is always at most exp(−γn).

Using the Discriminator Lemma of Hajnal et.al [19], we get an exponential lower bound on
depth-three circuits with generalized MODm gates at the base, that proves Theorem 1.
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