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Abstract

In the present paper we show some new complexity bounds for the matching problem
for special graph classes. We show that for graphs with a polynomially bounded number
of nice cycles, the decision perfect matching problem is in SPL, it is hard for FewL, and
the construction perfect matching problem is in AC0(C=L) ∩⊕L. We further significantly
improve the upper bounds, proved in [AHT07], for the polynomially bounded perfect match-
ing problem by showing that the decision version is in SPL, and the construction and the
counting version are in C=L∩⊕L. Note that SPL,⊕L,C=L, and AC0(C=L) are contained
in NC2.

Furthermore, we show that the problem of computing a maximum matching for bipartite
planar graphs is in AC0(C=L). This is a positive answer to Open Question 4.7 stated in
the STACS’08-paper [DKR08] where it is asked whether computing a maximum matching
even for bipartite planar graphs can be done in NC. We also show that the problem of
computing a maximum matching for graphs with a polynomially bounded number of even
cycles is in AC0(C=L).

1 Introduction

A set M of edges in an undirected graph G such that no two edges of M share a vertex is called
a matching in G. A matching with a maximal cardinality is called maximum. A maximum
matching is perfect if it covers all vertices in the graph. Graph matchings because of their
fundamental properties are one of the most fundamental objects well-studied in mathematics
and in theoretical computer science (see e.g. [LP86, KR98]). In the wide research-topic about
graph matchings, perfect matchings and maximum matchings w.r.t. parallel computations
receive a great interest.

From the viewpoint of complexity theory it is well-known that a maximum matching can be
constructed efficiently in polynomial time [Edm65]. Hence the problem of deciding whether a
graph has a perfect matching (short: Decision-PM) and the problem of computing a perfect
matching in a graph(short: Search-PM) are in P. Regarding parallel computations, computing
a maximum matching is known to be in randomized NC [KUW86, MVV87], and in nonuniform
SPL [ARZ99] (see Section 2 for more detail of the complexity classes). Therefore, both problems
Decision-PM and Search-PM are in nonuniform SPL. But it is a big open question whether
Decision-PM is in NC. Note that if the search version would be in NC then also the decision
version of the problem. There is a huge gap among the complexities of the search and the
counting version of the perfect matching problem (short: Counting-PM) because computing
the number of all perfect matching in a bipartite graph is known to be #P-complete [Val79].
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By Tutte’s Theorem [Tut47] (see next section for more detail), the problem Decision-PM
can be reduced to the problem of testing if a symbolic determinant is zero. This algebraic
setting puts Decision-PM into a special case of the well-studied problem Polynomial Identity
Testing (short: PIT) where PIT is the problem of testing if a polynomial given in an implicit
form, like an arithmetic circuit or a symbolic determinant, is zero. PIT can be solved randomly
by the Schwartz-Zippel Lemma [Sch80, Zip79], but whether the method can be derandomized
is a very prominent open question. Due to a result by Impagliazzo and Kabanets [KI04] stating
that the problem of derandomizing PIT is computationally equivalent to the problem of proving
lower bounds for arithmetic circuits, the matching problem attracts a great attention.

The topic of the present paper is about the complexity of the matching problem. The
motivation for the work comes directly from the crucial importance of the matching problem
mentioned above. Since it is open whether the perfect matching problem is in NC, diverse
special cases of the problem have been studied and solved before. For example, NC algorithms
are known for Decision-PM for the following graph classes: planar graphs [Kas67, Vaz89],
regular bipartite graphs [LPV81], strongly chordal graphs [DK86], and dense graphs [DHK93].
Search-PM is also known in NC for bipartite planar graphs [MN95, MV00, DKR08], and for
graphs with a polynomially bounded number of perfect matchings [GK87, AHT07].

In the first part of the paper, in Section 3, we focus on the complexity of the perfect match-
ing problem for graphs with a polynomially bounded number of so-called nice cycles. An even
cycle C in a graph G is called nice [LP86] if the graph obtained from G by deleting all vertices
of C has some perfect matching. Since the number of nice cycles in a graph is at most the
number of all perfect matching in the graph, the considered problem seems to be a general-
ization of the polynomially bounded perfect matching problem. But note that the number of
all perfect matchings in a graph with a polynomially bounded number of nice cycles may be
exponentially big. The polynomially bounded perfect matching problem has been investigated
first by Grigoriev and Karpinski [GK87], then Agrawal, Hoang, and Thierauf [AHT07] improve
the NC3 upper bound stated in [GK87] to NC2 for it.

In Section 3, following a general paradigm for derandomizing polynomial identity testing by
Agrawal [Agr03] and by a method which is different from the method of [AHT07] for solving the
polynomially bounded perfect matching problem, we show that for graphs with a polynomially
bounded number of nice cycles

• Decision-PM is in SPL, it is hard for FewL, and

• Search-PM is in AC0(C=L) ∩ ⊕L,

where FewL ⊆ SPL ⊆ ⊕L ⊆ NC2 and SPL ⊆ C=L ⊆ AC0(C=L) ⊆ NC2 (see Section 2 for
more detail of these complexity classes). Furthermore, our method gives further a significant
improvement of the complexity bounds proved in [AHT07]. In particular, we show that both the
construction and the counting versions, Search-PM and Counting-PM, of the polynomially
bounded perfect matching problem are in C=L ∩ ⊕L. Moreover, our result gives an evidence
that in general the perfect matching problem might be solvable by the concept we describe in
Section 5.

In the second part of the paper, in Section 4, we show an algebraic method for constructing
a maximum matching once there some weight function for isolating a maximum matching is
given. By this method we give a positive answer to Open Question 4.7 in [DKR08] which is asked
whether the problem of constructing a maximum matching even for bipartite planar graphs is
in NC. Namely, we show that the maximum matching problem for bipartite planar graphs is
in AC0(C=L). Furthermore, we show that the maximum matching problem for graphs with a
polynomially bounded number of even cycles is also in AC0(C=L).

2



2 Preliminaries

Algebraic Graph Theory. We describe some basic materials about graph matchings. For
more detail we refer the readers to [LP86, MSV99] and to standard textbooks in linear algebra
and in graph theory.

Let G = (V,E) be an undirected graph with n vertices, V = {1, 2, . . . , n}, and m edges
E = {e1, . . . , em} ⊆ V × V . A matching in G is a set M ⊆ E, such that no two edges in M
have a vertex in common. A matching M is called perfect if M covers all vertices of G, i.e.
|M | = 1

2 n, M of maximal size is called maximum. The weight of a matching in a weighted
graph is defined as the sum of all weights of the edges in the matching.

Basically, graph G can be presented by its adjacency matrix. This is an n × n symmetric
matrix A ∈ {0, 1}n×n where Ai,j = 1 iff (i, j) ∈ E, for all 1 ≤ i, j ≤ n. Assign weights w(i, j) to
edges (i, j) to get the weighted graph G. Assign orientations to the edges of weighted graph G,
i.e. edge (i, j) gets one of two orientations, from i to j or from j to i, we obtain an orientation
~G for which we have a so-called Tutte skew-symmetric matrix T as follows:

Ti,j =
{

Ai,j w(i, j) , if an edge of ~G is directed from i to j,
−Ai,j w(i, j) , otherwise.

In the case when all directed edges of ~G are oriented from smaller to larger vertices, the ori-
entation ~G and the matrix T are called canonical. The Pfaffian of a skew-symmetric matrix T
from an orientation ~G, denoted by pf(T ) or pf(~G, w), is defined as follows:

pf(~G, w) =
∑

perfect matching M in G

sign(M) value(M)

where sign(M) ∈ {−1,+1} is the sign of M that depends on the orientation ~G, and value(M) =∏
(i,j)∈M w(i, j) is the value of M that depends on the weighting scheme for G. It is known

from linear algebra that det(S) = pf2(S) if S is a skew-symmetric matrix of even order, and
pf(S) = 0 for all skew-symmetric matrices of odd order. We refer the reader to [Kas67, MSV99]
for more detail of the Pfaffian.

Assign indeterminates xi,j to the edge (i, j) of a graph G we get the graph G(X). Let T (X)
be the canonical Tutte skew-symmetric matrix of G(X). The perfect matching problem can be
decided randomly by the following theorem and by using Schwartz-Zippel Lemma [Sch80, Zip79].

Theorem 2.1 (Tutte) Graph G has no perfect matching iff pf(T (X)) = 0.

An orientation such that all perfect matchings in G have the same sign +1 (or −1) is called
a Pfaffian orientation [Kas67]. Hence the number of perfect matchings in a graph G can be
computed by finding a Pfaffian orientation in it and then by computing the Pfaffian. But there
are graphs which do not admit any Pfaffian orientation, the complete bipartite graph K3,3 is an
example of them. However, planar graphs [Kas67] and K3,3-free graphs [Vaz89] admit always
Pfaffian orientations which are in NC computable,and thus the number of all perfect matchings
in such a graph can be computed efficiently.
Complexity Classes.

Basically, the complexity classes P, L, NP, and NL are well known. As stated below, we
mention briefly some other classes within we are working. More detail of these classes can be
found in e.g. [AO96, ABO99, ARZ99].

The classes NCk, for fixed k, consists of families of Boolean circuit with ∧-, ∨-gates of fan-in
2, and ¬ -gates, of depth O(logkn) and of polynomial size. NC = ∪k≥0NCk. The classes AC0
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is defined as the set of families of Boolean circuit with (unbounded fan-in) ∧-, ∨-gates, and
¬ -gates, of constant-depth and of polynomial-size. It is know that

AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC ⊆ P.

For an NL machine M , we denote the number of accepting and rejecting computation
paths on input x by #accM (x) and by #rejM (x), respectively. FewL is the class of lan-
guages accepted by NL machines with at most a polynomial number of accepting computa-
tions [BDHM91]. The class GapL consists of all functions gapM , where M is an NL-machine,
and for all x, gapM (x) = #accM (x)−#rejM (x). This class is characterized by the determinant
of integer matrices [Dam91, Tod91, Vin91, Val92]. Note that the determinant of an integer
matrix is in NC2 [Ber84]. GapL is closed under addition, subtraction, multiplication, and
restricted composition [AO96, AAM03]. The following classes are related to GapL.

• ⊕L is the class of sets A for which there exists a function f ∈ GapL such that ∀ x : x ∈
A ⇐⇒ f(x) 6≡ 0( mod 2). Obviously, we have L⊕L = ⊕L.

• C=L (Exact Counting in Logspace) consists of all problems of verifying a GapL-function,
i.e. it is the class of sets A for which there exists a function f ∈ GapL such that
∀ x : x ∈ A ⇐⇒ f(x) = 0.

• The Hierarchy over C=L collapses to AC0(C=L) [ABO99], i.e. LC=L = AC0(C=L),
which is the class of all problems AC0-reducible to C=L. The problem of computing the
rank of an integer matrix is complete for AC0(C=L).

• SPL [ARZ99] is the class of all languages for which their characteristic functions are
in GapL, i.e. SPL = {L ∈ Σ∗|χL ∈ GapL}. It is known that SPL is closed under
complement, i.e. LSPL = SPL. Note that the conclusion NL ⊆ SPL remains open.

We list some known conclusions among the mentioned classes:

L ⊆ FewL ⊆ SPL ⊆ C=L ⊆ AC0(C=L) ⊆ NC2,

SPL ⊆ ⊕L ⊆ NC2, L ⊆ FewL ⊆ NL ⊆ C=L, L ⊆ #L ⊆ GapL ⊆ NC2.

In this paper we study the following problems. Given a graph G

• Decision-PM is the problem of deciding whether G has some perfect matchings,

• Search-PM is the problem of computing a perfect matching in G,

• Counting-PM is the problem of computing the number of perfect matchings in G,

• Search-MM is the problem of computing a maximum matching in G.

The Pfaffian of an integer skew-symmetric matrix is known to be in GapL [MSV99]. Given a
univariate polynomial matrix A(x), i.e. the elements of A(x) are polynomials in x of logarithmic
bit long in the degree, the problem of computing det(A(x)) is known to be in GapL [AAM03]:
all the coefficients of det(A(x)) are computable in GapL. By following the latter and the
combinatorial setting for Pfaffians in [MSV99], it is not hard to show that in the case when
A(x) is skew-symmetric, all the coefficients of pf(A(x)) are GapL-computable.
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3 Isolating and computing a perfect matching

In this section we show that the perfect matching problem for graphs with a polynomially
bounded number of nice cycles is in NC2.

W.r.t. parallel computations, a perfect matching can be computed by two steps: one can
first isolate a perfect matching by a weight function and then extract out the isolated perfect
matching. (Obviously, the decision perfect matching problem follows from computing a perfect
matching.) By this method, Isolating Lemma [MVV87] is a powerful tool for isolating a perfect
matching. We state it as follows.

Lemma 3.1 (Isolating Lemma [MVV87]) Let U be a universe of size m and S be a con-
sidered family of subsets of U . Let w : U → {1, . . . , 2m} be a random weight function. Then
with probability at least 1

2 there exists a unique minimum weight subset in S.

Let G = (V,E) be a graph with n vertices V = {1, 2, . . . , n}, m edges E = {e1, e2, . . . , em},
and with at most nk nice cycles where k is a fixed positive integer. Recall that an even cycle C
in G is called nice if the graph obtained by deleting from G all vertices of C has some perfect
matchings or it is empty. Now we show how to deterministically isolate a perfect matching in
G.

Let w be a weight function for the edges of G, i.e. edge e gets the weight w(e), for every e.
Observe that a simple cycle C (in G) with 2l edges, l > 0, has exactly two perfect matchings
N1 and N2, each of them is of size l. By W (N1) and W (N2) we denote the weights of N1 and
N2, respectively. Recall that the weight of a matching is the sum of all weights on the edges of
this matching. The difference of the weights of two perfect matchings in an even cycle is called
the circulation of the cycle [DKR08]:

circulation(C) = |W (N1)−W (N2)|.

The circulations of nice cycles play a central role for isolating a perfect matching in a graph.
Lemma 3.2 in [DKR08] states that if all the cycles of a bipartite graph have non-zero circulations,
then the minimum weight perfect matching in it is unique. In general, Lemma 3.2 in [DKR08]
holds also for non-bipartite graphs. We omit the proof of the following lemma because it is in
analogy to the proof of Lemma 3.2 in [DKR08].

Lemma 3.2 ( [DKR08]) If all nice cycles in a weighted graph have non-zero circulations,
then there is a unique minimum weight perfect matching in it.

It is easy to see that the converse of Lemma 3.2 is not true. For example: we can assign integer
weights to 6 edges of K4, the complete graph with 4 vertices, such that the minimum weight
perfect matching is unique but there is a nice cycle of zero circulation.

We call a weight function admissible for G if it assigns positive integers with a logarithmically
bounded number of bits to the edges of a graph G such that a minimum weight perfect matching
becomes unique. By Lemma 3.2, in order to isolate deterministically a perfect matching we can
determine an admissible weight function such that all nice cycles in the graph get non-zero
circulations.

Lemma 3.3 Let G = (V,E) be an undirected graph with |V | = n vertices and m edges E =
{e1, e2, . . . , em}, and let the number of nice cycles in G be at most nk, for some positive constant
k. Then there exists a prime number p ≤ 2nk(m+1) such that the weight function wp : E 7→ Zp

where wp(ei) = 2i mod p is admissible for G.
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Proof . Assign 2i to every edge ei in G. Then each nice cycle C in G has a non-zero circulation
because two perfect matchings defined in C have different weights. Consider the product of all
the circulations:

Q =
∏

C is a nice cycle

circulation(C).

Since the number of nice cycles in G is at most nk and since 0 < circulation(C) < 2m+1 holds
for every nice cycle C, we get 0 < Q ≤ 2nk(m+1). It is well-known from Number Theory that∏

all primes pi≤2N

pi > 2N , for all N > 2.

Therefore, there exists a prime p ≤ 2nk(m + 1) such that p is not a factor of Q, i.e. we have
Q mod p 6= 0, or equivalently: circulation(C) mod p 6= 0 for all nice cycles C in G. Hence
by Lemma 3.2 a minimum weight perfect matching becomes unique under the weight function
wp : E → Zp where

wp(ei) = 2i mod p, for i = 1, 2, . . . ,m.

Note that all the primes q < 2nk(m+1) and the weight functions wq are computable in logspace.
This completes the proof of the lemma. �

Lemma 3.3 can be used for isolating a perfect matching in a graph with a polynomially bounded
number of nice cycles. Recall Isolating Lemma [MVV87] that by randomly assigning small
weights to all the edges of a graph with high probability we get a unique minimum weight
perfect matching. Hence Isolating Lemma for isolating a perfect matching will be derandomized
if there exists an admissible weight function for any graph. We conjecture that there is an NC-
computable admissible weight function for an arbitrary graph. In Section 5 we give a discussion
on this topic.

Theorem 3.4 For graphs with a polynomially bounded number of nice cycles the decision perfect
matching problem Decision-PM is in SPL, and the construction perfect matching problem
Search-PM is in AC0(C=L) ∩ ⊕L.

Proof . Let G = (V,E) be a graph with n vertices, m edges E = {e1, . . . , em}, and with at most
nk nice cycles, for some positive constant k. Let U = {p1, . . . , pt} be the set of all primes at
most 2nk(m + 1), for some t. Define the weight functions wp : E → Zp, for each p ∈ U , where
wp(ei) = 2i mod p for every edge ei.

Let x be an indeterminate. Assign xwp(e) to each edge e in G to get the graphs Gp(x), for
every p ∈ U . By G

(−e)
p (x) we denote the result of deleting edge e from Gp(x). The canonical

Tutte skew-symmetric matrices of Gp(x) and G
(−e)
p we denote respectively by Tp(x) and by

T
(−e)
p (x). Considering the Pfaffian of these matrices we observe that in the Pfaffian polynomial,

the value of a perfect matching M becomes xW (M) where W (M) is the weight of M , the
coefficient of xW (M) in the polynomial is the sum of all signs of all perfect matchings having
the same weight W (M). Define K = nk+1(m + 1). Then we can write:

pf(Tp(x)) = cp,0 + cp,1x
1 + · · ·+ cp,KxK ,

pf(T (−e)
p (x)) = c

(−e)
p,0 + c

(−e)
p,1 x1 + · · ·+ c

(−e)
p,K xK .

It is clear that all pf(Tp(x)) and pf(T (−e)
p (x)) vanish if G has no perfect matching.
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Consider the case when G has a perfect matching. By Lemma 3.3 there exists some p ∈ U
such that the graph G under wp has a unique minimum weight perfect matching. Let M0

be this unique matching and let I be its weight under wp. Observe that the coefficient of xI

in pf(Tp(x)), occurred as the lowest non-zero coefficient in the polynomial, should be cp,I =
sign(M0) ∈ {+1,−1}, or equivalently c2

p,I = 1. Recall from Section 2 that all the coefficients of
the polynomials we consider are computable in GapL. Therefore the following zero-one-valued
GapL-function

h(G) = 1−
∏

0≤i≤K, p∈U

(1− c2
p,i)

is the characteristic function for the problem of testing if G has a perfect matching, i.e.
Decision-PM is in SPL.

It remains to show that Search-PM ∈ AC0(C=L) ∩⊕L. Observe that if wp is admissible
for G, then G has the unique minimum weight perfect matching M0 with weight 0 ≤ I ≤ K.
Thus we have

c2
p,I = 1 and c

(−e)
p,I =

{
0 , if e ∈ M0

cp,I , otherwise.

Therefore, in C=L we can construct all edge-sets Mp,i as follows:

e ∈ Mp,i iff c2
p,i = 1 and c

(−e)
p,i = 0, for each edge e, for all p ∈ U and 0 ≤ i ≤ K.

It is easy to see that the same edge-sets will be constructed by the same procedure in Z2, i.e. in
⊕L we can construct all the sets Mp,i. After that in logspace we can determine and output all
perfect matchings from the constructed edge-sets Mp,i. Note that there at least one edge-set,
namely Mp,I , from our construction is indeed a perfect matching in G.

Since LC=L = AC0(C=L) [ABO99] and since L⊕L = ⊕L, we obtain Search-PM ∈
AC0(C=L) ∩ ⊕L. This completes the proof of the theorem. �

Allender et. al. [ARZ99] show that in general a perfect matching can be constructed in nonuni-
form SPL. Unfortunately, in the proof of Theorem 3.4 we do not know how to perform in
(uniform) SPL the decision which prime p from U is ”right” for isolating a minimum weight
perfect matching.

The best-known upper bounds for the polynomially bounded perfect matching problem
taken from [GK87, AHT07] are given in the following theorem.

Theorem 3.5 ([AHT07]) For graphs with polynomially bounded number of perfect matchings,
the decision problem is in coC=L, the counting problem is in AC0(C=L), and all the perfect
matchings can be constructed in NC1(GapL).

Note that coC=L ⊆ AC0(C=L) ⊆ NC1(GapL) ⊆ NC2 where NC1(GapL) is the class of all
problems NC1-reducible to the determinant. We improve the bounds given in Theorem 3.5 by
the following theorem.

Theorem 3.6 For graphs with a polynomially bounded number of perfect matching

1. the decision problem Decision-PM is in SPL, it is hard for FewL, and

2. all the perfect matchings can be constructed in C=L ∩ ⊕L. The number of all perfect
matchings can be computed in C=L.

Proof . (1) By Theorem 3.4 we get Decision-PM ∈ SPL. We omit the proof that
Decision-PM is hard for FewL since it is straightforward by modifying the reduction from the
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directed connectivity problem, which is NL-complete, to the bipartite unique perfect matching
problem [HMT06], or to the bipartite perfect matching problem [CSV84].

(2) Let G = (V,E) be an undirected graph with n vertices, m edges |E| = {e1, . . . , em}, and
with at most nk perfect matchings. We show how to construct all perfect matching in G. Our
construction consists of two standard steps as follows:

a) compute a prime p such that wp : wp(ei) = 2i mod p isolates all perfect matchings,

b) construct all perfect matchings from the Pfaffians pf(Tp(x)) and pf(T (−e)
p (x)).

Consider Step a). Let’s call a prime p from Step a) “right” if wp isolates all perfect matchings
in G. Observe that any perfect matchings M and N have different weight under w : w(ei) = 2i,
i.e. 0 < |W (M) − W (N)| < 2m+1 where W (M) and W (N) are the weights of M and N ,
respectively.

0 < Q :=
∏

M 6=N

|W (M)−W (N)| < 2(m+1) (nk

2 ) < 2
1
2

(m+1) n2k
.

Therefore, there exists a prime p ≤ (m + 1) n2k such that Q mod p 6= 0.
Define U = {p1, p2, . . . , pl} as the set of all primes at most (m + 1) n2k. Observe that

prime p ∈ U is ”right” iff in pf(Tp(x)) all coefficients should be contained in {−1, 0,+1} and
the number of non-zero coefficients should be maximized. The latter is the number of perfect
matchings in G.

Define K = (m + 1)n2k, and for every q, q′ ∈ U define the following GapL-functions:

hq :=
∑K

i=0(c
2
q,i − 1) c2

q,i, gq :=
∑K

i=0 c2
q,i, Hq,q′ :=

∏Kn4k

a=1 (hq′ − a)
∏Kn2k

a=0 (gq − gq′ − a).

We see that hq = 0 iff all cq,i ∈ {−1, 0, 1}. For a ”right” prime p, gp is the number of all non-zero
coefficients. Moreover, observe that Hq,q′ = 0 iff hq′ 6= 0 or gq = gq′ + a for some non-negative
integer a. Hence we get gq > gq′ as long as hq′ = 0. Thus, in C=L we can select a “right” prime
p from U as follows:

p is “right” iff hp = 0 and Hp,q = 0 for all p 6= q ∈ U.

Consider Step b). In C=L we can construct the edge-sets Mp,i corresponding to cp,i ∈
{−1,+1} in pf(Tp(x)) as stated in the proof of Theorem 3.4. Note that after Step b) we do not
recheck whether the constructed edge-sets are perfect matchings. This shows that all perfect
matchings in G can be constructed in C=L.

The problem is also in ⊕L by following the proof of Theorem 3.4. The number of all perfect
matchings in G can be computed in C=L by verifying gp = a, for some a ≤ nk and by testing
if p from U is ”right”.

This completes the proof of the theorem. �

4 Isolating and computing a maximum matching

We show the following lemma.

Lemma 4.1 Given a weight function w that assigns logarithmic bit long positive integers to
the edges of a graph G such that the weight of a maximum matching in G becomes unique,
the problem of computing a maximum matching in G is AC0(C=L)-reducible to the problem of
computing a perfect matching in a subgraph of G.
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Proof . Let G = (V,E) be a graph with n vertices and m edges. Let M be a maximum matching
of G, and let |M | = l for some positive integer l. Suppose the weight of M is unique under the
weight function w. By GM we denote the subgraph of G, obtained by deleting n − 2l vertices
which are not covered by M .

Observe that the maximum matching M in G becomes perfect and unique in GM under the
weight function w. Therefore, the computation of M can be done by computing GM and then
by extracting a perfect matching in GM .

Let x be an indeterminate. By G(x) we denote the graph G by assigning xw(e) to every edge
e of G. By this weighting scheme we obtain GM (x) from GM . Let TG(x) and TGM

(x) be the
canonical Tutte skew-symmetric matrix of G(x) and of GM (x), respectively.

Since in GM the weight of the perfect matching M is unique under w, the Pfaffian poly-
nomial pf(TGM

(x)) should be non-zero and the order of TGM
(x) should be 2l. Hence we have

det(TGM
(x)) = pf2(TGM

(x)) 6= 0, and rank(TGM
)(x) = 2l. Moreover, since l is maximum,

TGM
(x) is a maximal non-singular polynomial skew-symmetric sub-matrix of TG(x). As a con-

sequence we have rank(TG(x)) = rank(TGM
)(x) = 2l.

Conversely, consider an n-bit vector ~b associated to a maximal set of linearly independent
columns of TG(x). We call vector ~b a column-basis of TG(x). Observe that the subgraph G~b

of
G that contains all vertices i of G such that ~bi = 1 has always perfect matchings of the size
l, and these matchings are maximum in G. Thus, in order to compute a subgraph having a
maximum matching of G we can compute a column-basis of TG(x).

The problem of computing a column-basis of an integer matrix [zG93] is known to be in
AC0(C=L). For polynomial matrices, we show that a) the problem of computing a column-
basis is reduced to the problem of computing the rank and b) the rank can be computed in
AC0(C=L).

a) Let A(x) be an n× n univariate polynomial matrix where the degrees of matrix elements
are at most nc, for some positive constant c. Let ~a1(x), . . . , ~an(x) be its columns. One
has to compute a column-basis of A(x).

Let Ai(x) be the matrix formed by the first i columns ~a1(x), . . . , ~ai(x) of A(x), for all
1 ≤ i ≤ n. It is well known from linear algebra that a column-basis can be selected as
the collection of all ~ai(x) where rank(Ai−1(x)) + 1 = rank(Ai(x)), for every 1 ≤ i ≤ n.
Therefore, the computation of a column-basis is reduced to the problem of computing the
rank of a polynomial matrix.

b) Let B(x) be an n × m univariate polynomial matrix, where the degrees of the matrix-
elements are at most nc, for some positive constant c. One has to compute rank(B(x)).

It is known that 2 rank(B(x)) = rank(C(x)) where C(x) =
(

0 B(x)
Bt(x) 0

)
and Bt(x)

is the transpose of B(x). Since C(x) is an N ×N symmetric matrix, where N = m + n,
we can compute rank(C(x)) by the characteristic polynomial χC(x) = det(yI − C(x)),
where y is an indeterminate.

Let χC(x) = yN + pN−1(x)yN−1 + · · ·+ p1(x)y + p0(x), where pi(x) is a polynomial in x.
It is known that, for some 0 ≤ j ≤ N , rank(C(x)) = j iff p0(x) = · · · = pN−j−1(x) = 0
and pN−j(x) 6= 0.

Consider a polynomial pi(x) of them. If pi(x) = 0 then it is clear that pi(a) = 0 for all a’s.
Otherwise, if pi(x) 6= 0 then there exists an integer a from a set S = {0, 1, . . . ,deg(pi(x))}
such that pi(a) 6= 0. Since deg(pi(x)) ≤ N nc = (m + n)nc, for all 0 ≤ i ≤ N − 1, where
c is a constant, define S = {0, 1, . . . , (m + n)nc}. In summary, the rank of B(x) is equal
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the maximal rank of the matrices B(a), for a ∈ {0, 1, . . . , (m + n)nc}. Note that the rank
of integer matrices is known to be in AC0(C=L) [ABO99].

This completes the proof of the lemma. �

Now we solve the maximum matching problem for bipartite planar graphs.

Lemma 4.2 ([DKR08]) In logspace one can assign polynomially bounded weights to the edges
of a bipartite planar graph such that the circulation of any cycle is non-zero.

By Lemma 4.1, a subgraph GM of a given bipartite planar graph G can be computed in
AC0(C=L) such that perfect matchings in GM are maximum in G. Computing a perfect
matching for bipartite planar graphs is in SPL [DKR08]. Since SPL ⊆ C=L ⊆ AC0(C=L),
the maximum matching problem for bipartite planar graph is in AC0(C=L). This is a positive
answer to Open Question 4.7 stated in [DKR08].

Theorem 4.3 The maximum matching problem for bipartite planar graph is in AC0(C=L).

A promise version of the maximum matching problem which is in NC is given by the
following theorem.

Theorem 4.4 The maximum matching problem for graphs with a polynomially bounded number
of even cycles is in AC0(C=L).

Proof . Let G be a graph with a polynomially bounded number of even cycles. In analogy to
Lemma 3.3 we can show that there exists a small prime p such that all even cycles in G haven
non-zero circulations under wp : E 7→ Zp where wp(ei) = 2i mod p, for every edge ei. Thus, all
nice cycles in any subgraph H of G such that perfect matchings in H are maximum matchings
in G have non-zero circulations under wp. Hence by Lemma 3.2 H has a unique minimum
weight perfect matching. By Lemma 4.1 such a graph H can be computed in AC0(C=L). By
Theorem 3.4 a perfect matching in H can be computed in AC0(C=L). Therefore a maximum
matching in G can be computed in AC0(C=L). �

5 Discussion

As we have seen in the paper, deterministic isolations of matchings in a graph play a crucial
role for a potential NC algorithm for both the decision and the search versions of the matching
problem. Such a isolation has been show for bipartite planar graphs [DKR08], for graphs
with a polynomially bounded number of perfect matchings [AHT07], and for graphs with a
polynomially number of nice cycles (the present paper). We don’t know if the method used in
the paper works also in general for solving the perfect matching problem (without any promise).
We conjecture that the method stated bellow can be used for isolating a perfect matching in
general.

Assign to each edge ei of the graph G a polynomial gi(x) in x such that the circulation
polynomial pC(x) of each even cycle C is non-zero in the ring Z[x], for example: gi(x) := aix

i

for arbitrary small integers ai. Consider pC(x) in the field F = ZP [x]/(h(x)) where P is a small
prime (polynomially bounded) and h(x) is an irreducible polynomial in the polynomial ring
ZP [x]. Since F has P deg(h) elements, we need to chose h(x) of a constant degree, say deg(h(x)) ≤
l for a constant l. If all the polynomials pC(x) are non-zero in F, then there exists a ∈ ZQ,
where Q is a small prime of the size at least P l ≤ nkl, such that all the circulation polynomials
do not vanish at the point a. Formally, we have (pC(x) mod P, h(x)) mod Q, x− a 6= 0 for all
C under the weight function w : w(ei) := (aix

i mod P, h(x)) mod Q, x− a, for every edge ei.
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The main problem we have to avoid is that how to define gi(x), h(x), and P such that pC(x)
is in F \ 0 for every C. A positive answer to this question would give a deterministic isolation
as described. A classification of special graphs for which the described isolation works may be
helpful.
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