
Strip Exchanging is Hard

Swapnoneel Roy?

Department of Computer Science and Engineering,
State University of New York at Buffalo,
Buffalo, New York 14220, United States

http://www.cse.buffalo.edu/

Abstract. The sorting by strip exchanges (aka strip exchanging) prob-
lem is motivated by applications in optical character recognition and
genome rearrangement analysis. While a couple of approximation algo-
rithms have been designed for the problem, nothing has been known
about its computational hardness till date. In this work, we show that
the decision version of strip exchanging is NP-Complete. We present a
few new lower bounds for the problem along with the stated result. The
NP-Completeness proof is based on reducing sorting by strip moves, an
already known NP-Complete problem, to strip exchanging. The former is
a widely studied problem also motivated by optical character recognition
and genome rearrangement analysis.

Introduction

0.1 Motivation

The sorting by strip exchanges problem is minimizing the number of strip ex-
changing moves to sort a permutation. A strip exchanging move constitutes in-
terchanging the positions of two strips in the permutation. A strip is a maximal
sorted sub-string of the initial permutation. As an example, in the permutation
8 2 5 6 3 9 1 4 7 on nine elements, there are eight strips, and {5 6} is the only
strip containing more than a single element. Strips once formed are not broken
in subsequent steps, but are joined to form larger strips. The final permutation
is the sorted or identity permutation, which contains only one strip. As an ex-
ample, the permutation 1 4 3 2 5 could be sorted to 1 2 3 4 5 by using a single
strip exchanging move: exchange 4 and 2. Without loss of generality, the strips
of any permutation could be replaced by just a single element.

The sorting by strip exchanges problem is motivated by its application in the
area of optical character recognition. In optical character recognition, certain
text regions are marked and referred to as zones. Its essential to have all the
zones in the correct order in the final output. This could be achieved by a strip
exchanging algorithm. In this aspect, its quite similar to the problem of sorting

? Research supported in part by NSF grant CCF-0844796.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 95 (2009)

http://www.cse.buffalo.edu/

2 Strip Exchanging is Hard

by strip moves 1 [1], [2], [3], [4], [5]. The sorting by strip moves problem is
minimizing the number of strip moves to sort a permutation. A strip move is
just moving a strip to a different position in the permutation. As an example,
the same permutation 1 4 3 2 5 could be sorted to 1 2 3 4 5 by using 2 strip
moves: move 4 and move 2. Bein et al [3] showed that the problem of getting
the zones in order is essentially equivalent to sorting by strip moves. From now
on, we would refer sorting by strip moves simply by strip moves, and sorting
by strip exchanges simply by strip exchanging in this paper. Both the problems
strip moves and strip exchanges are combinatorial optimization problems which
optimize the number of steps to sort a given permutation π into the identity
permutation id. This sorting essentially involves reducing the number of strips
s in π to 1 in id. So algorithms designed for both the problems should target to
reduce the number of strips by the maximum possible at each step.

Its easy to note that a single strip move can reduce the number of strips by at
most 3 at each step. In contrast, a single strip exchanging move can reduce the
number of strips at most by 4. Since the maximum number of strips that can
reduced by a strip exchanging move is more than that of a strip move, algorithms
for the strip exchanging problem are expected to perform better than those for
strip moves for the optical character recognition problem. A little insight into
the problem of strip moves will reveal the fact that a strip move in fact also
interchanges the positions of two sub-strings in π. One is the strip being moved,
and the other is its adjacent sub-string, which might or might not be a strip.
Hence the cost of a strip move operation is essentially equal to the cost of a strip
exchanging operation, which also involves interchanging the positions of two
sub-strings in π. Hence its really interesting to know about the computational
hardness of the strip exchanging problem and have efficient algorithms designed
for it. The strip move problem has been shown to be NP-Complete and the best
known algorithm for it is a 2-approximation. Anything about the computational
hardness of strip exchanging has not been known till date, and the best known
algorithm for it is a 2-approximation.

The strip exchanging problem falls under the category of a class of problems
called the genome rearrangement problems. Over the last decade, sorting under
different such primitives like reversals [8], [9], [10], [11], transpositions [12],
[13], [14], strip moves [1], [2], [3], [4], [5], and block interchanges [6], [7] have
been extensively studied. While sorting under reversals [8] has been proved to be
computationally hard, a big open problem for over a decade is the computational
complexity of sorting by transpositions.

One way to define transposition is, it involves interchanging the positions of
any two adjacent sub-strings of any length in the given permutation π. A block

1 The sorting by strip moves problem [1], [2] is also known as block sorting [3], [4],
[5] in the literature. In order to avoid confusion with another problem, sorting by
block interchanges, we use the term strip moves for block sorting in this paper.

Strip Exchanging is Hard 3

interchange is a generalization of a transposition. In a block interchange the po-
sitions of any two non-intersecting sub-strings of any length are interchanged in
π. Sorting by block interchanges has been shown to be polynomially solvable [6].
Another way to define transposition is, it involves moving a sub-string of any
length to a different position in π. According to this definition, a strip move
is a restricted case of transposition. A strip move a transposition in which the
sub-string moved is a strip. Sorting by strip moves has been proved to be NP-
Complete [3]. Our primitive at hand, the strip exchange, is a restricted case of
block interchanges. A strip exchange is essentially a block interchange where the
sub-strings interchanged are strips. The study of the computational complexity
of strip exchanging may give further insight into the computational complex-
ity of transpositions, which is a very important open question in genome rear-
rangement analysis. A general case of transpositions, the block interchanges is
polynomial, while a restricted case of it, the strip moves is NP-Complete. Strip
exchanging, like transpositions, lies somewhere in between block interchanges
and strip moves. Hence knowing about its complexity is definitely going one
step ahead to knowing about the computational complexity of transpositions.
Moreover, as with the other primitives, it is interesting to study strip exchanging,
and develop new algorithms for it to apply in the genome rearrangement analysis.

0.2 Overview of the result and techniques

The sorting by block interchanges problem has been shown to be polynomially
solvable by an algorithm called the minimal block interchanges algorithm [6].
Given an unsorted permutation π, we note that there must be at least two
elements x and y in π which are in wrong order. That is x < y but π =
[1 . . . y . . . x . . .]. The algorithm chooses x and y to be the minimum and maxi-
mum such values respectively. Thus, by this choice, we have the element x − 1
to the left of y and the element y + 1 to the right of x in π. Hence π is like π
= [1 . . . x − 1 . . . y . . . x . . . y + 1 . . .]. Now interchanging the sub-strings starting
from the element exactly to the right of x − 1 till y and starting from x till the
element exactly to the left of y + 1 by a block interchanging move gives us the
permutation π′ = [1 . . . x − 1x . . . yy + 1 . . .]. So by this move, we have at least
brought a pair of elements in order. If two elements are adjacent in π and are
not adjacent in the sorted or identity permutation id, those two elements form
a break-point in π. By performing the move mentioned here, we have essentially
removed at least 2 breakpoints from π. This has been showed to be optimal
in [6]. We note that id does not contain any break-point.

Note that the removal of 1 break-point corresponds to decreasing the number
of strips in π by 1. We remark that the algorithm minimal block interchanges
might not work for strip exchanges. Notice that the two sub-strings which the
algorithm interchanges might always not be strips. If they are not strips, the
move would not be permitted by the primitive strip exchanges.

4 Strip Exchanging is Hard

A reversal in π is a pair of consecutive elements ab such that a > b. While re-
ducing strip moves to strip exchanging, we first construct a red-blue graph G(π)
for π, as described in [3]. Given π, we draw the blue edges between each pair of
reversals. The red edges are drawn between consecutive elements forming a max-
imal increasing sub-sequence in π. If there are more than one such sub-sequence,
we choose any one of them. As an example. for π = 4 3 1 9 5 2 11 8 6 10 7 12,
the reversals are (4, 3), (3, 1), (9, 5), (5, 2), (11, 8), (8, 6) and (10, 7). Hence we
have 7 blue edges in G(π). There are several maximal increasing sub-sequences
in π. Some of them are: 4−5−8−10−12, 3−5−8−10−12, 1−5−8−10−12,
1−2−8−10−12 and, 1−2−6−7−12. If we choose any one of them, we would
have 4 red edges in G(π). In [3], the intuition behind drawing the red edges has
been shown. We would illustrate it briefly in section 1. Further it was shown
in [3] that G(π) cannot have cycles (over both kinds of edges). In [3] a lower
bound for strip moves was identified as the number of blue edges in G(π). This
lower bound was shown to be tight for π iff G(π) is a tree. To be more precise,
iff G(π) is connected. We identify a new lower bound for strip exchange here as
half the number of blue edges in G(π). Next we note that G(π) being a tree is a
necessary but not a sufficient condition for a strip exchanging schedule to exist
on π, which matches this lower bound.

In the reduction, an arbitrary instance of strip moves is reduced to a specific
instance of strip exchanging. The reduction procedure goes on like this: Given
any arbitrary permutation π, we try to construct a longer permutation π′ by
inserting at most b(π) elements in π, where b(π) is the number of blue edges in
G(π). Our insertion procedure meets the following conditions:

– If G(π) is connected, then we have an optimal strip moves schedule for π.
In this case, G(π′) remains connected after the procedure and we have an
optimal strip exchanging schedule on π′.

– If G(π) is not connected, then we do not have an optimal strip moves sched-
ule for π. In this case, G(π′) remains disconnected after the procedure is
performed. Hence we do not have an optimal strip exchanging schedule on
π′.

The idea behind the reduction procedure is to have two reversals in π′ (blue
edges e1, e2 in G(π′)), for each reversal in π (blue edge e in G(π)) such that we
have a strip moves move to eliminate e from G(π) iff we have a strip exchanging
move to eliminate e1 and e2 from G(π). The steps following by the procedure
are as follows:

– Input: An arbitrary permutation π.

– Output: A specific permutation π′.
– Construct red-blue graph G(π) from π.
– For each blue edge e.

• Insert an element i in π such that it creates another blue edge e′ in π′ and
we have a strip exchanging move to eliminate both e and e′.

Strip Exchanging is Hard 5

– Graph G(π′) for the reduced permutation π′ is obtained at the end of the
reduction.

There are some cases in the above procedure where a slight variation of the above
steps are followed. But nevertheless, we note that the maximum number of ele-
ments inserted in π would by the above reduction procedure would be b(π) (one
for each blue edge in G(π)). Also each new element inserted would add exactly
one new blue edge in G(π). Now let b(π) and b(π′) are the number of blue edges
in G(π) and G(π′) respectively. Then the above reduction procedure guarantees
that there exists a strip moves schedule for π of b(π) steps iff there exists a strip
exchanging schedule for π′ of b(π′)/2 steps. We note that b(π) and b(π′)/2 are
lower bounds for strip moves and strip exchanging respectively. Hence the re-
duction procedure guarantees that there exists an optimal strip moves schedule
for π iff there exists an optimal strip exchanging schedule for π′).

The reduction outlined above proves that the problem of strip exchanging is
NP-Complete. In Section 1, we present various lower bounds for the problem. In
Section 2, we show the decision version of the problem to be NP-Complete by
reducing a known NP-Complete problem, strip moves (aka block sorting) to it.

1 Lower Bounds for Strip Exchanging

A strip exchanging schedule se(π) for π is a shortest sequence of strip exchanging
moves to sort π. The decision version of the strip exchanging problem would be,
given a permutation π and an integer k > 0, is se(π) = k? In other words,
can we find a strip exchanging schedule of length k? It is trivial to observe
that strip exchanging belongs to NP. But the open question was whether it was
NP-Complete or polynomially solvable.

In section 0.2, we observed that a lower bound for this problem is se(π) ≥
d(s − 1)/4e, where s is the number of strips in π. We illustrated the concept
of a red-blue graph G(π) for a permutation π in section 0.2. Here we use this
concept to get a new lower bound for strip exchanging. Later on, the concept of
this graph has been used in the hardness reduction. We now formally define and
illustrate a few terms from [3] which have already been introduced in section 0.2.

Definition 1 (Reversals). In π, a reversal is a pair of consecutive elements
ab such that a > b.

Definition 2 (Maximal increasing sub-sequence). In π, a longest increas-
ing sub-sequence is a maximal sequence of elements which are monotonically
increasing.

We now state a prove a new lower bound for strip exchanging.

Lemma 1. Let rev(π) be the number of reversals in π. Then se(π) ≥ drev(π)/2e.

6 Strip Exchanging is Hard

Proof. It is easy to see that one strip exchanging move can reduce rev(π) at
most by 2. Since id does not contain any reversals, strip exchanging is simply
reducing rev(π) to 0. Hence it would require at least drev(π)/2e strip exchanging
moves to sort π. Hence lemma 1 holds. ut
We denote the position of element a in π as π(a). Note that all the strips in π
could be replaced by a single element without loss of generality. This is because
we do not break any strip in a strip move or a strip exchanging schedule. When
all the strips in π is replaced by a single element, it is termed as reduced permu-
tation [3] or a kernel permutation [5]. Now onwards we assume π to be reduced
or kernel w.l.o.g. We observe in a short while that this also does not change the
number of blue or red edges in the red-blue graph G(π) constructed from π.
Given π, we construct the red-blue graph G(π) in the following way:

– A blue edge is constructed between the participating elements a and b of
each reversal (a, b).

– A red edge is constructed between two elements a and b if a and b are
consecutive elements of a maximal increasing sub-sequence of π.

The intuition behind the red edges is to treat the elements (strips) participating
as already in their correct positions [3]. We need to move only the other elements
in the strip move or strip exchanging schedule. Thus we effectively save a few
moves here. Now we present a few properties about the red edges proved in [3].
We would state them here as lemmas but would not prove them.

Lemma 2. [3] A red edge is constructed between elements a and b in π if:

– a < b and π(a) < π(b) and
– a and b are joined to form a strip before either is moved and
– If π(a) < π(c) < π(b), then c is moved before a and b are joined.

Lemma 3. [3] Any node x can have a red degree of at most 2. One from y to
x where y < x another from x to z where x < z.

Lemma 4. [3] For any π, G(π) is acyclic over both red and blue edges.

A perfect strip moves schedule [3] on π is a strip moves schedule which sorts
π in rev(π) moves. Note that rev(π) is equal to the number of blue edges in
graph G(π).

Lemma 5. [3] There exists a perfect strip moves schedule on π iff G(π) is a
tree.

An exact strip exchanging schedule on π is a strip exchanging schedule which
sorts π in drev(π)/2e moves. Both perfect strip moves and exact strip exchanging
are optimal.

Lemma 6. The red-blue graph G(π) should be a tree in order for an exact strip
exchanging schedule on permutation π to exist.

Strip Exchanging is Hard 7

Proof. By Lemma 4, G(π) cannot have any cycles implies, it could only be a
tree, or a forest. Now when G(π) is a forest, let it have two components C1 and
C2. Since G(π) is not connected, at a stage of any strip exchanging schedule, we
would have a vertex which is isolated. This happens after all the elements in the
connected components have been joined to form strips. We note that we cannot
find any strip exchanging move to move the strip in an isolated vertex which
decreases the number of blue edges by 2. This is because, the strip (element) of
the isolated vertex does not participate in a reversal, and hence is not connected
to any vertices with a blue edge. We could reduce the number of blue edges at
most by 1 by performing a strip exchanging move involving that element. So we
clearly need more moves than drev(π)/2e to sort π by strip exchanging, which
is not exact. ut

Its important to note that Lemma 5 is a necessary and sufficient condition for
having a perfect strip moves schedule on π [3]. In case of a exact strip exchanging
schedule, its a necessary, but by no means a sufficient condition. This is because,
the lower bound for strip exchanging with respect to the number of reversals
(blue edges in G(π)) is approximately just half of the lower bound for strip
moves.

2 The Strip Exchanging Problem is NP-Complete

In this work, we reduce strip moves to strip exchanging in this way: Given
any arbitrary instance of strip moves, a permutation π, we construct a specific
instance of strip exchanging, another permutation π′ by adding a few elements
to π. We then show that a perfect strip moves schedule would exist for π iff there
exists an exact strip exchanging schedule for π′.

2.1 In NP

First, its easy to see that strip exchanging belongs to NP. A polynomial-time
non-deterministic Turing machine can always be designed that simply guesses a
schedule of k exchanges and then deterministically checks whether the schedule
when applied on the given permutation π, results in id.

2.2 Construction of π
′ from π

The idea is for each blue edge b in π, we try to insert an element e in π such
that it creates a new blue edge b′ in π′. And we have a strip exchanging move
to simultaneously remove b and b′ from π′.We introduce a few terms used in the
reduction.
A blue (red) chain in the red-blue graph G(π) is a maximal sequence of adjacent
elements connected by blue (red) edges. As an example the sequence 7 5 4 2 in
the permutation 1 7 5 4 2 6 3 forms a blue chain. For any element i in π, prev(i)
= i − 1 and next(i) = i + 1.For the smallest element i in id (and π), we define
prev(i) = 0 and for i = n, we define next(i) = ∞, where n is the number of
elements in π (and id).

8 Strip Exchanging is Hard

Definition 3 (Move element). For each blue edge b in G(π), a move element
i is an element in π which:

– is one of the end vertices of b and

– has no red degree and

– is not a move element for any other blue edge b′.

If both the vertices x and y to which b is adjacent, have no red degree, and is not
a move element for any other blue edge b′, then the move element for b is the
smaller element among x and y. A variable move(i) associated with every move
element i in π. Initially move(i) = 0 for all the move elements. It gets updated
for two elements in the resulting permutation, after each step of execution of the
reduction procedure. A free element during any step in the reduction is a move
element for which move(i) = 0. Note that both x and y cannot have a red degree.

We would have the following variables and subroutines in the reduction proce-
dure:

– We consider blue edge b = (x, y) (clearly x > y) with the least free element
either x or y at each step of execution of the reduction procedure.

– Clearly, the least free element at this step (either x or y) is the move element
of blue edge (x, y).

– Three pivotal elements p1, p2, and p3. They, along with a few other elements
compute the value of the new element e and its position to be inserted at
each step.

– Subroutines findPivotalLess(x, y) and findPivotalMore(x, y) called when y
is least free element and x is least free element respectively, determine the
pivotal elements p1, p2, and p3 at each step.

– Subroutines placeInFront(x, y, p1, p2, p3) and placeAtBack(x, y, p1, p2, p3)
called when y is least free element and x is least free element respectively,
determine the value and position of the new element e to be inserted.

We describe the main reduction procedure in Algorithm 1. Two subroutines
findPivotalLess and placeInFront used in the main reduction procedure, are de-
scribed in Algorithms 2 and 3 respectively.

Strip Exchanging is Hard 9

Input: Any arbitrary permutation π from any given instance of strip
moves

Output: Permutation π′ for a specific instance of strip exchanging
Construct red-blue graph G(π) and mark the move elements for each blue
edge in G(π);
foreach Move element i in π do

Set move(i) = 0;
end
while There are unmarked blue edges in G(π) do

Let b = (x, y) be the blue edge under consideration;
/* b has least free element in π which might be x or y */

/* x is the larger element in b that is, x > y */

if y is least free element then
findPivotalLess(x, y);
Let p1, p2, and p3 be the three pivotal elements;
placeInFront(x, y, p1, p2, p3);

end
else

/* x is least free element */

findPivotalMore(x, y);
Let p1, p2, and p3 be the three pivotal elements;
placeAtBack(x, y, p1, p2, p3);

end

end
Permutation π′ is obtained from constructed red-blue graph G(π′);

Algorithm 1: The reduction procedure

The other two subroutines findPivotalMore(x, y) and placeAtBack(x, y, p1, p2,
p3) are very similar and omitted here due to space constraints. We include it in
the appendix section however. This finishes the construction of permutation π′,
given π. Please see Figure 1 in the appendix for an example. Here the reduction
procedure function f is defined for all arguments π by f(π) = π′. We prove
the correctness and complexity of this reduction procedure in Section 2.3 and
Section 2.4 respectively.

10 Strip Exchanging is Hard

Input: The elements x and y
Output: The pivotal elements p1, p2, and p3
/* This subroutine is called when y is least free element */

/* Decide p1 */

if move(x) does not exist, or move(x) is equal to 0 then
p1 = x;

end
else

/* This case arises if x has been inserted at a previous

step of the reduction. */

Start from x and traverse the chain containing x and y towards left;
Stop at element w, where w is either not a move element, or not a free
element;
p1 = w;

end
/* Decide p2 */

if y is the rightmost element of the chain containing y then
p2 = next(y)

end
else

Let r be the rightmost element of the chain containing y;
if move(r) is equal to next(y) then

p2 = next(next(y));
end
else

p2 = next(y);
end

end
/* Decide p3 */

if z is just before p2 and there exists a blue edge between z and p2 then
p3 = z;

end
else

p3 = 0;
end

Algorithm 2: The findPivotalLess(x, y) subroutine

2.3 Complexity

It is not hard to see that f is computable in polynomial time. Constructing G(π)
takes O(n2) time, setting move(i) for all the move elements takes O(n). Each

Strip Exchanging is Hard 11

subroutine in the while loop takes O(n) time; so the loop takes O(n2) time to
execute. This makes the total run-time of f equal to O(n2).

Input: The elements x and y and the pivotal elements p1, p2, and p3
Output: A new element e to be inserted and its position to be inserted

based on some cases
if p3 is equal to 0 then

e is an element with a value between p1 and next(p1) i.e
p1 < e < next(p1);
Insert e just in front of p2 (adjacent to p2);
Set move(y) to e and move(e) to y ;
Mark blue edges (x, y) and (e, p2);

end
else

/* p3 is not equal to 0 */

if p3 is free and is equal to next(p1) then
/* This is the only case in which we do not need to

insert any new element */

Set move(y) to p3 and move(p3) to y;
Mark blue edges (x, y) and (p3, p2);

end
if (p3 is greater than next(p1)) or (p3 is not free and is equal to
next(p1)) then

e is an element with a value between p1 and next(p1) i.e
p1 < e < next(p1);
Insert e between p3 and p2;
Set move(y) to e and move(e) to y;
Mark blue edges (x, y) and (e, p2);

end
if p3 is less than p1 then

e is an element with a value between prev(p3) and p3 i.e
prev(p3) < e < p3;
Insert e right after p1 i.e at position π(p1) + 1;
Set move(y) to p3 and move(p3) to y;
if p1 is not equal to x then

Mark blue edges (x, y) and (p3, p2);
end
else

Mark blue edges (e, y) and (p3, p2);
end

end

end

Algorithm 3: The placeInFront(x, y, p1, p2, p3) subroutine

12 Strip Exchanging is Hard

2.4 Correctness

We need to show here that a perfect strip moves schedule exists for π iff an exact
strip exchanging schedule exists for π′. For that we prove the following lemmas.

Lemma 7. A new element e, whenever added to π at any step in the reduction
procedure f , creates and adds exactly 1 blue edge in G(π).

Proof. We consider each of the 3 cases of element insertion of the subroutine pla-
ceInFront (Algorithm 3) and show that in each of these cases exactly one blue
edge is created and added to G(π). The arguments for the subroutine placeAt-
Back is analogous and is omitted here. For a recap, we call placeInFront when
we consider a blue edge (x, y), with x > y, and y is the least free element.

– Case 1 (p3 = 0): We have p1 equal to x or w here. Clearly, w > x since it
lies to the left of x in a chain. Again p2 equals next(y) or next(next(y)). We
take p1 = x, and p2 = next(y) for the sake of simplicity. We however note
the claim holds for the other values of p1 and p2 as well.
Since x > y, and next(y) > y, p1 ≥ p2. Now we have p1 < e < next(p1).
Hence e > p2 and therefore (e, p2) is a new blue edge in G(π). Moreover,
if there was an element z right in front of p2, and p2 and z did not form a
blue edge, we have z < p2. Hence z < e, and z and e do not form a blue
edge in G(π). Therefore only one new blue edge (e, p2) is added to G(π). If
p1 = w > x, and p2 = next(next(y)), we clearly have p1 > p2, since p1 6= p2.
Hence the lemma holds.

– Case 2 (p3 6= 0): In this case (p3, p2) is a blue edge in G(π). Clearly p3 < p2.
There are two sub-cases in which a new element e gets added. We omit the
sub-case in which no element gets added, because there is nothing to prove.
∗ p3 > next(p1): Just like above, lets take p1 = x, and p2 = next(y). Here

we insert element e where p1 < e < next(p1) between p3 and p2. Since
p3 > next(p1), we have p3 > e, and thus (p3, e) forms a blue edge in
G(π). Again e > p1, and p1 ≥ p2. Hence e > p2. Hence (e, p2) forms a
blue edge. Here due to this insertion, blue edge (p3, p2) is eliminated, and
two new blue edges (p3, e), and (e, p2) are added to G(π). Hence effectively
a single new blue edge gets added. The arguments for the other case where
p1 = w > x and p2 = next(next(y)) are very similar.

∗ p3 < p1: In this case we insert prev(p3) < e < p3 right after p1. Since
e < p3 < p1, (p1, e) forms a new blue edge. Now if we take p1 = x and
p2 = next(y), then since p3 > p2, we have e > p3 > y. Hence (e, y)
forms another new blue edge. Therefore in this case, blue edge (x, y) gets
eliminated by the insertion, and two new blue edges (x, e) and (e, y) get
added to G(π). Hence a single blue edge is inserted in effect. The case
where p1 = w > x would follow by a very similar argument. The case
where w does not form a blue edge with the element u to its right (if u
exists) is trivial. In the other case, (w, u) is a blue edge with w > x and
u > y, since it lies to the left of blue edge (x, y) in the same chain. The
argument in this case is very similar to the above.

Strip Exchanging is Hard 13

ut

Observation 1 A new element e, whenever added to π at any step in the re-
duction procedure f , does not change the number of red edges in G(π).

Corollaries 1 and 2 immediately follow from Lemma 7 and Observation 1.

Corollary 1. The number of new blue edges inserted to G(π) during the reduc-
tion, is equal to the number of new elements inserted to π.

Corollary 2. If G(π) is a tree, G(π′) is also a tree.

Lemma 8. If G(π′) is a tree, G(π) is also a tree.

Proof. In case G(π) was not a tree, it was disconnected. This implies there is
at least two components C1 and C2 in G(π). Now suppose x new elements get
inserted to π to form π′ during the reduction. By corollary 1 the number of blue
edges which gets added to G(π) to form G(π′) is x. But at least x + 1 edges
are required to connect C1 and C2 along with the x new elements. Hence G(π′)
cannot be connected too. Hence the lemma. ut

Lemma 7 implies, in case we have a perfect strip moves schedule on π, we
could have an exact strip exchanging schedule in π′. Lemma 7 was important
to prove because had G(π′) got disconnected due to the procedure, then by
lemma 6, we could not obtain an exact strip exchanging schedule for π′.

Lemma 9. If there exists a perfect strip moves schedule for π, then there exists
an exact strip exchanging schedule for π′.

Proof. We note that the following algorithm would give us an exact strip ex-
changing schedule for π′:

1. Pick the least unsorted element i in π′

2. Exchange the strip s1 containing element i with the strip s2 containing
move(i)

3. Return to first step while there are blue edges left in G(π′)

Note that the above algorithm eliminates 2 blue edges from G(π′) at every step.
Eliminating the 2 blue edges do not affect other edges or add any new edge since
both the elements interchanged join with some other strip in π′. The number
of strips reduces by at least 2 at each step. Hence it gives us an exact strip
exchanging schedule. ut

Lemma 10. If there exist an exact strip exchanging schedule for π′, then there
exist a perfect strip moves schedule for π.

Proof. If there exists an an exact strip exchanging schedule for π′, then G(π′)
must be a tree. Then by Lemma 8, G(π) is also a tree. Hence by Lemma 5, there
is a perfect strip moves schedule for π. ut

Lemma 9 and Lemma 10 implies that a perfect strip moves schedule exists
for π iff an exact strip exchanging schedule exists for π′. This leads to the main
result.

Theorem 1. Strip exchanging is NP-Complete.

14 Strip Exchanging is Hard

3 Conclusion

We have shown the strip exchanging problem to be NP-Complete here. This
was interesting because sorting under exchanging any two sub-strings and not
just strips has been shown to be polynomial. This proves that the additional
constraint of the sub-strings exchanged to be strips makes the problem hard.
It would be interesting to know what happens if we relax the constraint a bit.
What if one of the sub-strings exchanged be a strip while the other could be any
sub-string of the given permutation? Another interesting problem would be to
find whether strip exchanging is APX-Hard.

Acknowledgments. I would like to thank my mentor Atri Rudra for being a
constant source of encouragement and inspiration.

References

1. Meena Mahajan, Raghavan Rama, and S. Vijayakumar. Towards Constructing Op-
timal Strip Move Sequences. Lecture Notes in Computer Science, Volume 3106/2004,
Pages 33-42.

2. Meena Mahajan, Raghavan Rama, Venkatesh Raman and S. Vijayakumar. Merging
and Sorting By Strip Moves. Lecture Notes in Computer Science, Volume 2914/2003,
Pages 314-325.

3. W.W. Bein, L.L Larmore, S. Latifi, and I.H Sudborough. Block sorting is hard.
International Journal of Foundations of Computer Science, 14(3):425-437, 2003.

4. Bein W, Larmore LL, Morales L, Sudborough IH. A Faster and Simpler 2-
Approximation Algorithm for Block Sorting. Proceedings of the 15th International
Symposium on Fundamentals of Computation Theory, Luebeck, Germany, Lecture
Notes in Computer Science 3623, Springer Verlag, 2005, pages 115-124.

5. Meena Mahajan and Raghavan Rama and S Vijayakumar. Block Sorting: A Char-
acterization and some Heuristics. Nordic Journal of Computing, Volume 14 (2007),
Pages 126-150.

6. David A. Christie. Sorting permutations by block-interchanges. Information Pro-
cessing Letters. Volume 60, Issue 4, 25 November 1996, Pages 165-169

7. Lin YC, Lu CL, Chang HY, Tang CY. An efficient algorithm for sorting by block-
interchanges and its application to the evolution of vibrio species. Journal of Com-
putational Biology. Volume 12(1), 2005, Pages 102-112.

8. A. Caprara. Sorting by reversals is difficult. In Proceedings 1st Conference on Com-
putational Molecular Biology, pages 75-83. ACM, 1997.

9. David A. Christie. A 3/2-approximation algorithm for sorting by reversals. Sympo-
sium on Discrete Algorithms. Proceedings of the ninth annual ACM-SIAM sympo-
sium on Discrete algorithms, San Francisco, California, United States. Pages: 244 -
252, 1998.

10. V. Bafna and P.A. Pevzner. Genome rearrangements and sorting by reversals.
SIAM Journal on Computing, 25:272-289, 1999.

11. Piotr Berman, Sridhar Hannenhalli, and Marek Karpinski. 1.375-Approximation
Algorithm for Sorting by Reversals. Lecture Notes in Computer Science, Volume
2461/2002. Pages 401-408, 2002.

Strip Exchanging is Hard 15

12. V. Bafna and P.A. Pevzner. Sorting by transposition. SIAM Journal on Discrete
Mathematics, 11:224-240, 1998.

13. Tzvika Hartman and Ron Shamir. A simpler and faster 1.5-approximation algo-
rithm for sorting by transpositions. Information and Computation, Volume 204 ,
Issue 2, Pages: 275 - 290, 2006.

14. I. Elias and T. Hartman. A 1.375-Approximation Algorithm for Sorting by Trans-
positions IEEE/ACM Transactions on Computational Biology and Bioinformatics
2006 (TCBB), Conference version in Workshop on Algorithms in Bioinformatics
2005 (WABI’05).

15. Swapnoneel Roy and Ashok K Thakur: Approximate Strip Exchanging. Interna-
tional Journal of Computational Biology and Drug Design, Vol. 1, No. 1, pp.88-101,
2008.

16 Strip Exchanging is Hard

4 Appendix

4.1 An intuition behind choosing the pivotal elements p1, p2, and
p3, and inserting the new element e at each step

Recall that a blue edge (x, y) is drawn between adjacent elements xy such that
x > y. Say (x, y) is the blue edge in G(π) to be considered at the current re-
duction step, and y is its move element, that is the current least free element
of the permutation. The intuition behind the insertion of the new element e is,
we would try to create a new blue edge in G(π) in such a way that we have a
strip exchanging move to eliminate (x, y) and the newly created edge. Also we
would try to do this in a way such that the move element y is one of the strips
exchanged in that strip exchanging move.

Intuitively, the way out is to create a move such that y is moved after y + 1 to
form a new strip {y y + 1}. Again x should form a strip with the newly inserted
element. Note that the strip exchanging move which exchanges y and e places e
after x. Hence the value of e should be in between x and x + 1. Hence the best
way seems to be inserting e = x + 0.5 before y + 1.
Now if there is nothing in front of y + 1, or if y + 1 does not have a blue edge
with the element z exactly in front of it since x > y, we have x + 0.5 > y + 1.
Hence (x + 0.5, y + 1) forms a new blue edge. Again since z < y (no blue edge
between them), z < x+0.5. Hence z and x+0.5 do not form a blue edge. Hence
in this case only one new blue edge is added to G(π) and we are done.

If there exists a blue edge (z, y + 1):

– If x + 0.5 < z, the blue edge (z, y + 1) gets eliminated because x + 0.5 is
inserted in between z and y + 1. But two new blue edges (z, x + 0.5) (since
x + 0.5 < z), and (x + 0.5, y + 1) (since x + 0.5 > y + 1) are formed. Hence
we have effectively only one new blue edge inserted here, and we are done.

– If x + 0.5 > z, then inserting x + 0.5 in between z and y + 1 forms only one
new blue edge and disconnects the graph. The blue edge (z, x+0.5) does not
form. Hence to fix this, we make a different insertion here. Instead of taking
element e = x + 0.5, we take e = z − 0.5 here and insert it between x and y.
The idea is, we would exchange z and y in the strip exchanging move. Note
that the move brings yy + 1 and z − 0.5z together and thus two new strips
get formed. But it still remains to be proved that only one new blue edge
is inserted in G(π) due to this insertion. Note that the blue edge (x, y) gets
eliminated due to this insertion. Now x + 0.5 > z, hence x > z − 0.5, hence
(x, z−0.5) forms a blue edge. Again since (z, y+1) is a blue edge, z > y +1,
hence z − 0.5 > y and therefore (z − 0.5, y) forms a new blue edge and we
are done.

For the above case, the elements which determine the value and position of the
element e to be inserted are x, y + 1, and z. These are the pivotal elements.
However there are some small exceptions to this. Element x might have been

Strip Exchanging is Hard 17

inserted in a previous step by the reduction. In that case, we consider the element
w which is the first element in the current not inserted in any previous step. The
second step in Figure 2 is such an example. In this step, (3.5, 2) is the blue edge
currently under consideration. But since 3.5 was inserted in a previous step, we
consider the pivotal element as 5 instead of it.

4.2 An example of execution of the reduction procedure

We illustrate the reduction procedure with an example permutation π = 4 3 1
9 5 2 11 8 6 10 7 12 in Figure 1. π′ = 4 3 1 9 5.5 5 3.7 3.5 2 11 8 6 3.6 10 8.5 7
12 is the output of the reduction. Each move element i its move(i) shown in the
boxes in the figure. All the blue edges are marked at the end of the reduction.
Note that this is a YES instance of the problem.

18 Strip Exchanging is Hard

Fig. 1. Execution of the reduction procedure on a permutation.

Strip Exchanging is Hard 19

Finally we include the subroutines findPivotalMore and placeAtBack, which are
almost alike the findPivotalLess and placeInFront subroutines. We had omitted
these subroutines earlier due to space constraints:

Input: The elements x and y
Output: The pivotal elements p1, p2, and p3
/* This subroutine is called when x is least free element */

/* Decide p1 */

if move(y) does not exist, or move(y) is equal to 0 then
p1 = y;

end
else

/* This case arises if y has been inserted at a previous

step of the reduction. */

Start from y and traverse the chain containing x and y towards right;
Stop at element w, where w is either not a move element, or not a free
element;
p1 = w;

end
/* Decide p2 */

if x is the leftmost element of the chain containing x then
p2 = prev(x)

end
else

Let l be the leftmost element of the chain containing x;
if move(r) is equal to prev(x) then

p2 = prev(prev(x));
end
else

p2 = prev(x);
end

end
/* Decide p3 */

if z is just after p2 and there exists a blue edge between z and p2 then
p3 = z;

end
else

p3 = 0;
end

Algorithm 4: The findPivotalMore(x, y) subroutine

20 Strip Exchanging is Hard

Input: The elements x and y and the pivotal elements p1, p2, and p3
Output: A new element e to be inserted and its position to be inserted

based on some cases
if p3 is equal to 0 then

e is an element with a value between p1 and prev(p1) i.e
p1 > e > prev(p1);
Insert e just after p2 (adjacent to p2);
Set move(x) to e and move(e) to x ;
Mark blue edges (x, y) and (e, p2);

end
else

/* p3 is not equal to 0 */

if p3 is free and is equal to prev(p1) then
/* This is the only case in which we do not need to

insert any new element */

Set move(x) to p3 and move(p3) to x;
Mark blue edges (x, y) and (p3, p2);

end
if (p3 is less than prev(p1)) or (p3 is not free and is equal to
prev(p1)) then

e is an element with a value between p1 and next(p1) i.e
p1 > e > prev(p1);
Insert e between p3 and p2;
Set move(x) to e and move(e) to x;
Mark blue edges (x, y) and (e, p2);

end
if p3 is greater than p1 then

e is an element with a value between next(p3) and p3 i.e
p3 < e < next(p3);
Insert e right before p1 i.e at position π(p1) − 1;
Set move(x) to p3 and move(p3) to x;
if p1 is not equal to y then

Mark blue edges (x, y) and (p3, p2);
end
else

Mark blue edges (x, e) and (p3, p2);
end

end

end

Algorithm 5: The placeAtBack(x, y, p1, p2, p3) subroutine

For a recap, these two subroutines are called from the main reduction procedure
if and when x (the greater element) is the move element for the current blue
edge (x, y) under consideration.

Strip Exchanging is Hard 21

4.3 An example of the application of strip exchanging in OCR

In figure 2, we illustrate this concept with an example inspired by an application
in optical character recognition. Here we have a permutation “How ? they did it
do” recognized, but not in the correct order “How they did do it ?”. We observe
that it requires 2 strip exchanging moves to sort the permutation. The strips
have been moved and combined with other strips to form larger strips at each
step.

Fig. 2. How to sort “How ? they did it do” using strip exchanging.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

