
Explicit Dimension Reduction and Its Applications

Zohar S. Karnin∗ Yuval Rabani† Amir Shpilka∗

Abstract

We construct a small set of explicit linear transformations mapping Rn to RO(log n),
such that the L2 norm of any vector in Rn is distorted by at most 1 ± o(1) in at least
a fraction of 1− o(1) of the transformations in the set. Albeit the tradeoff between the
distortion and the success probability is sub-optimal compared with probabilistic argu-
ments, we nevertheless are able to apply our construction to a number of problems. In
particular, we use it to construct an ε-sample (or pseudo-random generator) for spherical
digons in Sn−1, for ε = o(1). This construction leads to an oblivious derandomization of
the Goemans-Williamson MAX CUT algorithm and similar approximation algorithms
(i.e., we construct a small set of hyperplanes, such that for any instance we can choose
one of them to generate a good solution). We also construct an ε-sample for linear
threshold functions on Sn−1, for ε = o(1).

∗Faculty of Computer Science, Technion, Haifa 32000, Israel. Email:
{zkarnin,shpilka}@cs.technion.ac.il. Research supported by the Israel Science Foundation (grant
number 439/06).

†The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel. Email: yrabani@cs.huji.ac.il. Research supported by Israel Science
Foundation grant number 1109/07 and by US-Israel Binational Science Foundation grant number 2008059.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 121 (2009)

1 Introduction

In this paper we construct a small set of explicit dimension reducing linear transformations
mapping vectors in `n

2 into vectors in `d
2, for d � n. The celebrated Johnson-Lindenstrauss

Lemma [JL84] states the following. In any Hilbert space, a random linear mapping into `d
2

preserves the norm of any vector up to a factor of 1±ε with probability at least 1−exp(−ε2d).
In fact, quite simple sample spaces suffice for points in `n

2 ; see [DG99, Ach03, Mat08]. Thus,
in order to preserve approximately all pairwise distances among n points in Hilbert space, one
can reduce the dimension to O(ε−2 log n).

In addition to its intrinsic impact in functional analysis (see, e.g., [JN09] for a recent
discussion), the Johnson-Lindenstrauss Lemma is a cornerstone of high dimensional compu-
tational geometry. Its numerous applications include approximate nearest neighbor search,
learning mixtures of Gaussians, sketching and streaming algorithms, approximation algo-
rithms for clustering high dimensional data, and speeding up linear algebraic computations
(see, e.g., the introduction of [AC06]). Thus, understanding the computational aspects of
Johnson-Lindenstrauss style dimension reduction, a so-called JL transform, is fundamentally
interesting.

A JL transform can be computed very efficiently by probabilistic algorithms [AC06, AL08].
The probabilistic constructions can be derandomized using the method of conditional expec-
tations [EIO02, Siv02]. However, there is no construction that uses a poly(n) size sample
space. Simple and efficient probabilistic constructions typically use Ω(n) random bits; the
derandomization via pseudo-random generators for RL [Siv02] is currently best implemented
using Ω((log n)3/2) random bits [SZ99]. A construction using O(log n) random bits would yield
a fixed collection of poly(n) mappings that contains, for every configuration of n points, a JL
transform for that configuration.

We construct a set An,d of linear mappings A : `n
2 → `d

2 of cardinality

|An,d| = n1+o(1) · 2O(log3/2 d)

(note that if d = exp(o(log2/3 n)), then |An,d| = n1+o(1)). We show that An,d satisfies the
following.

Theorem 1.1. There is a constant c > 0 such that for every n and for every d, for every
vector x ∈ `n

2 , a fraction of at least 1− d−c of A ∈ An,d satisfies that

(1− d−c) · ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + d−c) · ‖x‖2 .

Even though our explicit construction falls short of providing a poly(n)-size sample space
for the JL transform, we nevertheless use it to derive new and interesting corollaries. In
particular, we construct an ε-sample for spherical digons in the unit sphere Sn−1 ⊂ Rn. Given
a measurable set Ω endowed with a probability measure µ and a family F of measurable
subsets of Ω, a (finite) set Pε ⊂ Ω is called an ε-sample for (Ω, µ,F) iff for every F ∈ F ,∣∣∣∣ |Pε ∩ F |

|Pε|
− µ(F)

∣∣∣∣ ≤ ε.

1

In our case, Ω is the unit sphere Sn−1, endowed with the uniform (Haar) measure µ. The
family F is the set of spherical digons, i.e., all sets of the form {x ∈ Sn−1 : sign (〈x, u〉) 6=
sign (〈x, v〉)}, for some u, v ∈ Sn−1. It is easy to show that sampling O(n/ε) points i.i.d. from
µ gives an ε-sample with high probability. We construct, for every ε > 0, a set Pε ⊂ Sn−1 of
cardinality |Pε| = n1+o(1) · 2O(log3/2(1/ε)). (Notice that for ε > 1/ exp(o(log2/3 n)), Pε has nearly
linear size.) We prove the following theorem.

Theorem 1.2. Pε is an ε-sample for spherical digons.

Our methods also give an ε-sample for halfspaces (or linear threshold functions). More
precisely, we consider the case where Ω is Rn, µ is the uniform measure on Sn−1, and F is all
sets of the form {x ∈ Rn : 〈x, u〉 ≥ θ}, for some u ∈ Sn−1 and θ ∈ R. In this case, too, it is
easy to show that sampling O(n/ε) points i.i.d. from µ gives an ε-sample with high probability.

We construct, for every ε > 0, a set Qε ⊂ Rn of cardinality |Qε| = n1+o(1) · 2O(log3/2(1/ε)), and
prove the following.

Theorem 1.3. Qε is an ε-sample for halfspaces.

Hitting sets (or ε-nets) of size poly(n/ε) for linear threshold functions on the binary cube
and on the unit sphere were recently constructed in [RS09]. Also recently, Diakonikolas et
al. [DGJ+09] constructed an ε-sample of cardinality nO(ε−2 log2(1/ε)) for linear threshold func-
tions on the binary cube. To the best of our knowledge, our paper presents the first construc-
tion of a non-trivial ε-sample for linear threshold functions on the unit sphere. In addition,
the size of our ε-sample is significantly smaller than that of [DGJ+09], and in particular is
nearly linear for ε > 1/ exp(o(log2/3 n)). Recently, [MZ09] gave explicit constructions of ε-
samples (a.k.a. pseudo-random-generators) for threshold functions of degree d polynomials,
over the boolean cube. For ε = o(1) their ε-sample has a polynomial size when d = 1 (i.e. the
underlying function is a linear threshold function) and ε > 1/poly(log n). For a constant ε,

their construction has polynomial size for every d (the size is n1/εO(d)
).

Construction of ε-samples (often called pseudo-random generators) is a core challenge
in the study of randomness and computation. It has applications in computational learn-
ing theory, combinatorial geometry, derandomization theory, cryptography, and other areas;
see, e.g., [KV94, Cha00, AB09, Gol01]. Our construction, in particular, can be used to de-
randomize the Goemans-Williamson random hyperplane rounding technique for semidefinite
programming relaxations [GW95], and its applications in the design and analysis of approxi-
mation algorithms. We note that applications of the Goemans-Williamson rounding technique
have been derandomized previously using the method of conditional expectations in conjunc-
tion with Nisan’s [Nis92] deterministic simulation of RL [EIO02, Siv02]. Our derandomization
differs from these previous results in it being oblivious to the instance solved. In other words,
whereas previous derandomization results used a large sample space of possible hyperplanes
(and thus had to adapt the choice of hyperplane to the specific instance being solved), we con-
struct a small sample space of hyperplanes, such that for any instance one of those hyperplanes
is guaranteed to produce the correct outcome.1 Henceforth we refer to such a derandomization

1Because checking a solution can be done in polynomial time, trying all hyperplanes in the support of the
sample space guarantees the correct outcome for every instance.

2

as an oblivious derandomization.
In order to understand the connection between Theorem 1.2 and the Goemans-Williamson

approximation algorithm for MAX-CUT [GW95], and other similar algorithms, such as the
Karger-Motwani-Sudan approximation algorithm for coloring graphs [KMS98], we briefly re-
view their algorithm. The Goemans-Williamson algorithm first solves a semidefinite program-
ming relaxation of MAX-CUT, mapping the nodes of an n-node input graph to points on the
unit sphere Sn−1, then constructs a cut by choosing a vector x ∈ Sn−1 uniformly at random,
then separates the mapped nodes by the hyperplane through the origin perpendicular to x.
If u, v ∈ Sn−1 are the images of the endpoints of an edge of the input graph, then the set of
vectors x that cause the edge to be cut is the union of two antipodal spherical digons (i.e., if x
is in one of them, then −x is in the other), hence the immediate connection to the constructed
ε-sample.

To illustrate our proof techniques, we briefly discuss the construction of an ε-sample for
spherical digons. The measure of a spherical digon is proportional to the angle between the
two hyperplanes that bound it. The first step of the construction is to apply many projections
of Sn−1 onto a lower dimensional space Rd. These projections, stipulated by Theorem 1.1, are
generated as follows. Using a construction of Indyk [Ind07], we first embed Sn−1 in a higher
dimensional space RN in such a way that the norm of each vector is almost uniformly spread
across many coordinates. (In other words, we embed Sn−1 into an n-dimensional almost
Euclidean linear subspace of `N

1 .) We then produce samples of d coordinates of the image
using known sampling techniques [Gol97]. Each sample, properly scaled, gives a projection
of Sn−1 onto Rd. Such a projection preserves `2 distances approximately, and therefore it
preserves angles approximately, with high probability over the choice of sample. Due to the
low dimension, we can produce in Sd−1 a poly(n)-size ε-sample for spherical digons using a
pseudo-random generator for space bounded computation [Nis92, SZ99]. Our construction
lifts this ε-sample for spherical digons in low dimension back to Rn. Each low dimensional
sample point is lifted many times, once for each of the constructed projections of Sn−1 into
Rd. The ε-sample for spherical digons in Sn−1 is composed essentially of the entire collection
of lifted low dimensional sample points.

1.1 Organization

In Section 3.1 we prove Theorem 1.1. We then use it to give an ε-sample for digons in Sec-
tion 4.1, thus proving Theorem 1.2. In Section 5 we show how to derandomize the Goemans-
Williamson algorithm using the ε-sample for digons. In section 5.2 we use similar techniques
to derandomize the graph coloring algorithm of [KMS98]. In Section 6 we give an ε-sample
for linear threshold functions (Theorem 1.3).

2 Preliminaries

For n ∈ N denote [n]
∆
= {1, . . . , n}. For x ∈ Rn and a subset S = {i1, i2, . . . , i|S|} ⊆ [n]

define xS as the restriction of x to the indices of S. That is, xS
∆
= (xi1 , xi2 , . . . , xi|S|) where

3

i1 < i2 < . . . < i|S|. A unit vector x ∈ Rn is a vector satisfying ||x||2 = 1 (where || · ||2 is the
Euclidean norm). For non-zero α, β ∈ Rn define ^(α, β) to be the angle between them (the
angle ranges between −π and π). We write a = b ± c to indicate that b − c ≤ a ≤ b + c.
`n
2 denotes the Euclidian space of dimension n (Rn equipped with the || · ||2 norm) and `N

1

denotes RN equipped with the || · ||1 norm.

3 Derandomization of the J-L Lemma

In this section we prove Theorem 1.1. Namely, we construct a set A of polynomially many
linear transformations from Rn to Rt such that any unit vector has its `2-norm preserved,
up to additive distortion of t−Ω(1), in almost all of the linear transformations in A. Our

methods work for any t = exp
(
O

(√
log(n)

))
. The size of A grows with t. However, for any

t = exp
(
o
(√

log(n)
))

, we get |A| = n1+o(1).

Remark 3.1. We can prove essentially the same results for any t = exp
(
O

(
log2/3(n)

))
. To

achieve this however, we need to reprove Corollary 5.2 of [Ind07], using an improved version
of Theorem 6 of [Ind06] that relies on the small space generator of [SZ99] and not on that of
[Nis92]. Here, for simplicity, we use the generator of Nisan and to avoid reproving Corollary
5.2 of [Ind07].

We begin with a formal definition of the norm-preserving property.

Definition 3.2. A set A of linear transformations from Rn to Rt is called (γ, δ)-norm pre-
serving when for any unit vector α ∈ Sn−1 it holds that

Pr
A∈A

[∣∣||Aα||22 − 1
∣∣ > δ

]
< γ.

I.e., the norm α remains the same up to a multiplicative factor of 1±δ with probability ≥ 1−γ.

We construct a
(
t−Ω(1), t−Ω(1)

)
-norm preserving set A in the following way: First, we embed

Rn in RN for some N > n. This embedding has the property that all the vectors in its image
are ‘well spread’. Intuitively, this means that all the vectors have most of their entries within
a certain factor from their average (i.e around 1/

√
N). The set A is then composed out of

various samples of subsets of the rows of the embedding matrix. We give a construction of the
required embedding in Section 3.1 and discuss how to sample subsets of its rows in Section
3.2. Finally, we present the construction and analysis of the set A in Section 3.3, where we
also give the proof of Theorem 1.1.

3.1 Euclidean sections of `n
1

Intuitively, a vector that is well spread should have a large ratio between its `1 and `2 norms
(i.e. close to the square root of the dimension). We define the notion of distortion of an
embedding and then see its relation to the spreadness of the vectors in the image.

4

Definition 3.3. Let n ≤ N be integers and ε > 0. The distortion of F : `n
2 → `N

1 is defined
as

∆(F)
∆
=
√

m max
0 6=x∈ln2

||F (x)||2
||F (x)||1

.

The distortion of an n-dim subspace V ⊆ `N
1 is the distortion of the embedding from `n

2 to it.

The next lemma proves that vectors in the image of a low distortion embedding are well
spread.

Lemma 3.4. Let V ⊆ RN be a subspace and ρ
∆
= 1 − 1/∆(V). Let x ∈ V be a unit vector.

Let S ∈ [N] be of size |S| ≤ ρN . Then it holds that ||xS||22 ≤ 8ρ.

Proof. First notice that ||xS||1 ≤
√
|S|||xS||2 ≤

√
ρN ||xS||2. Now, for S̄

∆
= [N] \ S,

||xS̄||2 ≥
||xS̄||1√

N
=
||x||1 − ||xS||1√

N
≥ ||x||2

∆(V)
−||xS||2

√
ρ =

1

∆(V)
−||xS||2

√
ρ = 1−ρ−||xS||2

√
ρ.

We get that

1− ρ−√
ρ ·

√
1− ||xS̄||22 ≤ ||xS̄||2.

Viewing this as a degree 2 polynomial in ||xS||2 leads to the inequality ||xS||22 ≤ 1−(1−4ρ)2 ≤
8ρ.

Using the low distortion embedding of [Ind07] we get that almost all the entries, of any
unit vector in this low distortion subspace, are bounded by O(1√

N
).

Theorem 3.5. (Corollary 5.2 of [Ind07]) Let n = 22k where k > 0 is some integer2. Let
ε > 0. There exists an explicit embedding F : `n

2 → `N
1 with distortion ∆(F) ≤ 1 + ε

where N = N(n, ε) = n1+o(1) exp
(
O

(
log2 (ε−1)

))
. Furthermore, for any x ∈ Rn it holds that

||Fx||2 = ||x||2.

Corollary 3.6. Let n > 0 be an integer and ρ > 0. There exists an explicit embedding
F : Rn → RN with the following properties: N = n1+o(1) exp

(
−O

(
log2 (ρ−1)

))
. For any

x ∈ Rn it holds that ||Fx||2 = ||x||2. Let i1, . . . , iN be a permutation of [N] s.t. |(Fx)i1 | ≥
|(Fx)i2| ≥ . . . ≥ |(Fx)iN |. Then |(Fx)iρN

| ≤
√

8||Fx||2√
N

and
∣∣∣∣(Fx)[ρN]

∣∣∣∣
2
≤
√

8ρ||Fx||2.

Proof. Let F be an embedding of distortion ∆(F) = 1
1−ρ

as in Theorem 3.5. By Lemma 3.4
we get

|(Fx)iρN
|2 ≤

||(Fx)[ρN]||22
ρN

≤ 8ρ||Fx||22
ρN

.

2Notice that for any integer n that is not a natural power of 4 we may initially embed Rn in Rn′ for an
integer n′ < 4n that is a power of 4 in some arbitrary way and achieve an embedding to N(n′, ε) with distortion
1 + ε.

5

3.2 Samplers

The previous section gave an embedding F that spreads the coordinates of any nonzero vector.
We shall now use this map in order to reduce the dimension while still keeping the `2 norm.
This can be done by taking several different projections of F to subsets of the coordinates. In
order to pick these subsets we shall use a combinatorial object called a sampler, whose main
property (from our perspective) is that it can be thought of as a tool to estimate well the
expectation of any bounded function using a small number of queries (that are independent
of f). More accurately, samplers for functions from [N] to [0, 1] compute a subset of [N].
They estimate the average of each f : [N] → [0.1] by its average on the subset. Clearly, a
deterministic sampler would require Ω(N) queries to achieve a small error. However, if we
allow the sampler to be randomized then the number of samples significantly drops. For more
on samplers see [Gol97].

Lemma 3.7 (Good sampler). [Gol97] Let N be an integer and ε, γ > 0. There exists an ex-
plicit family T of subsets of [N], each of size t = O (ε−2 log(γ−1)) with the following properties:
T is of cardinality |T | = N · γ−O(1) · ε−O(1). For any f : [N] → [0, 1],

Pr
T∈T

[∣∣∣∣∣1t ∑
i∈T

f(i)− Ei∈[N][f(i)]

∣∣∣∣∣ > ε

]
< γ.

Furthermore, for any i1, i2 ∈ [N], PrT∈T [i1 ∈ T] = PrT∈T [i2 ∈ T].

We would like to use samplers in order to project F into a subspace of RN (the samplers
will choose the coordinates to project on). For this we will define for every vector x ∈ Rn a
function fx : [N] → R by fx(i) = N · F (x)2

i . By Lemma 3.4, fx is usually at most 8 (that
is, it is almost a function from [N] to [0, 8]). However, it may obtain large values on some
elements of [N]. Nevertheless, it is not difficult to see that the expectation of f over [N] is
almost equal to its expectation over the points in which fx ∈ [0, 8]. As this happens most
of the time we can still estimate E[fx] by using the sampler. To formalize this property, we
say that a function f : [N] → R is η-bounded in a segment I ⊆ R when the following holds:
Pri∈[N] [f(i) ∈ I] ≥ 1− η and Ei∈[N][f(i)] = Ei∈[N] [f(i)|f(i) ∈ I]± η.

Theorem 3.8. Let N be an integer and δ, γ, η > 0 where η < δ2. Let f : [N] → R be some
η-bounded function in some segment I. Let T be the family defined in Lemma 3.7 for N ,
ε = δ − η and γ. Then,

Pr
T∈T

[∣∣∣∣∣1t ∑
i∈T

f(i)− µ

∣∣∣∣∣ > δ

]
< γ + O

(
ηδ−2 log(γ−1)

)
.

Proof. Denote by µ the expectation of f over a uniform distribution on [N]. Define S ⊂ [N] as

the points in which f(i) /∈ I. Since f is η-bounded in I we have that µS̄
∆
= Ei6∈S[f(i)] = µ± η.

Let g : [N] → I be the following function: For all i /∈ S, set g(i) = f(i). For i ∈ S, set
g(i) = µS̄. By the union bound we get that

Pr
T∈T

[∃i ∈ T s.t. f(i) 6= g(i)] ≤ tη.

6

Now, Lemma 3.7 and the fact that the expectation of g is µS̄ imply that

Pr
T∈T

[∣∣∣∣∣1t ∑
i∈T

g(i)− µS̄

∣∣∣∣∣ > δ

]
≤ Pr

T∈T

[∣∣∣∣∣1t ∑
i∈T

g(i)− µ

∣∣∣∣∣ > δ − η

]
< γ.

Finally, by the union bound we obtain

Pr
T∈T

[∣∣∣∣∣1t ∑
i∈T

f(i)− µ

∣∣∣∣∣ > δ

]
≤ Pr

T∈T

[∣∣∣∣∣1t ∑
i∈T

g(i)− µ

∣∣∣∣∣ > δ

]
+ Pr

T∈T
[∃i ∈ T s.t. f(i) 6= g(i)] <

γ + ηt = γ + O
(
η(δ − η)−2 log(γ−1)

)
= γ + O

(
ηδ−2 log(γ−1)

)
.

For simplicity, we restate the theorem for the parameters that we shall later use.

Corollary 3.9. Let N, t be integers where t < N . There exists a universal constant c such
that if t > c, then there exists an explicit family T of subsets of [N] with the following
properties: T is of size |T | = N · tO(1). Each member of T is a set of size t. There exists

some δ = O
(
log1/3 t/

√
t
)

s.t. for any function f : [N] → R which is t−1.5-bounded in [0, 1] it

holds that

Pr
T∈T

[∣∣∣∣∣1t ∑
i∈T

f(i)− Ei∈[n][f(i)]

∣∣∣∣∣ > δ

]
< δ.

3.3 The Norm Preserving Set

Let F : Rn → RN be the linear transformation guaranteed in Theorem 3.5 satisfying ∆(F) ≤
1/(1 − t−1.5). Let T be the family of subsets of [N] guaranteed by corollary 3.9. For every
T ∈ T define AT : RN → Rt as the projection to the indices of T . I.e., AT (x) = xT . The set
A is defined as

A ∆
=

{√
N/t · AT · F

∣∣∣ T ∈ T
}

.

Theorem 1.1 is an immediate consequence of the next theorem.

Theorem 3.10. Let t > 0. The set A (defined w.r.t. t) is
(
t−Ω(1), t−Ω(1)

)
-norm preserving.

Its cardinality is |A| = n1+o(1) · exp
(
O

(
log2(t)

))
.

Proof. The claim regarding |A| stems directly from Theorem 3.5 and corollary 3.9. Let α ∈ Rn

be some fixed vector. Assume w.l.o.g. that ||α||2 = 1. Let f : [N] → R be the function

f(i)
∆
= N · ((F (α))i)

2. Notice that the expectation of f is equal to ||F (α)||22 = ||α||22 = 1.
Corollary 3.6 shows that

Pr
i∈[N]

[f(i) /∈ [0, 8]] < 1− 1

∆(F)
≤ t−1.5.

7

We also have that for any T ⊆ [N],∣∣∣∣∣∣√N/t · AT F (α)
∣∣∣∣∣∣2

2
=

1

|T |
∑
j∈T

f(j).

Hence, by the properties of T and Corollary 3.9 applied to the function f/8, we get that for

some δ = O
(
log1/3 t/

√
t
)

= t−Ω(1), it holds that PrA∈A [| ||Aα||22 − 1 | > δ] < δ.

4 A sample set for digons

In this section we prove Theorem 1.2. Namely, we present a method of constructing an
ε-sample for digons. Recall that digons are characterized by functions of the following form:

fα,β(x)
∆
= sign(〈α, x〉) · sign(〈β, x〉)

where α, β, x ∈ Sn−1. In [GW95], it was shown that the expression Ex∈Sn−1 [fα,β(x)] relies
only on the angle between α and β. Using this observation we construct the ε-sample via
the following process: We prove that a norm-preserving set also preserves the angle between
any two given vectors (w.h.p.). This leads to a reduction from the problem of constructing
an ε-sample for digons in Sn−1 to the problem in St−1 for some t � n. We then construct an
ε-sample in Rt of quasi-polynomial (in t) size using a pseuso-random generator for log-space
machines (see section 4.1). The parameter t will be set to a sufficiently small value so that
the size of the low-dimensional ε-sample is polynomial in n.

4.1 Pseudo Random Generator for Bounded Space Machines

Let F be a family of functions from {0, 1}m to {−1, 1}. Let d < m and G : {0, 1}d → {0, 1}m

be a function expanding d bits into m bits. We say that G is an ε-pseudo-random generator
(PRG) for F when ∣∣Ex∈{0,1}m [f(x)]− Ey∈{0,1}d [f (G(y))]

∣∣ < ε

for every function f ∈ F . In other words, G expands a seed of d truly random bits into m
bits that look random to any function in F . Notice that by taking F to be the family of all
digon indicator functions, we get that the image of an ε-PRG for F is an ε-sample for digons.
Denote by space(S) the family of functions that can be computed using at most S bits of
space.

Theorem 4.1 ([Nis92]). Let ε = 2−O(S). Then there exists an explicit ε-PRG for space(S),
G : {0, 1}O(S log(m)) → {0, 1}m.

Applying the same ideas as [Siv02] we use such PRGs in order to fool digon indicator func-
tions in low dimensions. Notice that such functions (i.e., fα,β) in St−1 can be well approximated
by rounding the entries of α, β to O(log(t)) bits (i.e., storing only the O(log(t)) significant
bits of each entry in α and β). The resulting function will have the same expectation up to

8

a 1/poly(t) error. Now, this approximating function can be computed using O(log(t)) bits of
memory3. Hence, in order to “fool” digon indicator functions in low dimensional spaces, it suf-
fices to use the pseudo-random generator of Nisan that fools bounded space machines. Note,
that the above argument works without any change also for linear threshold functions. That
is, any LTF can be approximated, with error of 1/poly(t), by a function requiring O(log(t))
bits of memory. By using the notations of Theorem 4.1 and taking m ≈ t log(t), S ≈ log(t)
we get the following corollary.

Corollary 4.2. Let ε = t−1. There exists an explicit ε-PRG for indicator functions of digons
(and for linear threshold functions) in St−1, G : {0, 1}O(log2(t)) → {0, 1}O(t log(t)), where the
output of G is interpreted as a vector in St−1 in which each entry is written using O(log t)
bits.

Rephrased in our original terms, the ε-sample for digons (and spherical caps) in low di-
mensional subspaces is the image of G. I.e., the set {G(y)}y∈{0,1}d where d = O

(
log2(t)

)
.

Corollary 4.3. Let t be some integer. There exist a (t−1)-sample for digons (and for spherical
caps) in St−1 of cardinality tO(log(t)) that can be constructed in tO(log(t)) time.

4.2 Norm preserving implies angle preserving

In this section we prove that a set of linear transformation that is norm preserving is also
angle preserving.

Definition 4.4. A set A of linear transformations from Rn to Rt is called (γ, δ)-angle pre-
serving when for any fixed pair of unit vectors α, β ∈ Sn−1 it holds that

Pr
A∈A

[|^(α, β)− ^ (Aα, Aβ)| > δ] < γ.

For simplicity, we discuss only the case where A is (δ, δ)-norm preserving. We start by
proving that for two unit vectors α, β it holds that cos (^ (α, β)) = 〈α, β〉 is roughly equal to
〈Aα, Aβ〉 which is roughly equal to cos (^ (Aα, Aβ)).

Lemma 4.5. Let α, β ∈ Rn be unit vectors. Let A be a (δ, δ)-norm preserving set of linear
transformations. Then for a random A ∈ A, we have that with probability at least 1− 3δ

|〈Aα, Aβ〉 − 〈α, β〉| ≤ 3δ.

Proof. Due to the norm-preserving property of A, we have, by the union bound, that with
probability at least 1− 3δ∣∣||Aα||2 − 1

∣∣ < δ,
∣∣||Aβ||2 − 1

∣∣ < δ,
∣∣||Aα− Aβ||2 − ||α− β||2

∣∣ < δ||α− β||2 ≤ 4δ .

3Specifically, the inner products 〈α, x〉 and 〈β, x〉 need to be computed. Each of these expressions can be
computed by keeping an index of the indices (log(t) bits), the sum so far, up to 1/poly(t) precision (O(log(t))
bits) and computing each product αi · xi, up to 1/poly(t) precision, separately O(log(t)) bits

9

It follows that ||α− β||2 = 〈α− β, α− β〉 = 〈α, α〉 − 2〈α, β〉+ 〈β, β〉 = 2(1− 〈α, β〉) and∣∣||Aα− Aβ||2 − 2(1− 〈Aα, Aβ〉)
∣∣ = |〈Aα− Aβ, Aα− Aβ〉 − 2 (1− 〈Aα, Aβ〉)| =

|〈Aα, Aα〉 − 2〈Aα, Aβ〉+ 〈Aβ, Aβ〉 − 2 + 2〈Aα, Aβ〉| ≤
∣∣||Aα||2 − 1

∣∣ +
∣∣||Aβ||2 − 1

∣∣ ≤ 2δ.

Hence,

|〈Aα, Aβ〉 − 〈α, β〉| ≤ δ +
|||Aα− Aβ||2 − ||α− β||2|

2
≤ 3δ.

Lemma 4.6. Let α, β ∈ Rn be unit vectors. There exists some universal constant δ0 such that
for δ < δ0 the following holds: Let A be a (δ, δ)-norm preserving set. Then with probability of
at least 1− 3δ we have

|^(α, β)− ^(Aα, Aβ)| ≤ 7
√

δ.

Proof. It suffices to show that if the norms of α, β, α − β were all preserved (up to a 1 ± δ
multiplicative factor) then the claim holds. Define for briefness θ as the angle between α, and
β and with θ′ the angle between Aα and Aβ. Then

cos(θ′) =
〈Aα, Aβ〉

||Aα||2||Aβ||2
, cos(θ) = 〈α, β〉

and by the previous lemma,

| cos(θ′)− cos(θ)| =
∣∣∣∣ 〈Aα, Aβ〉
||Aα||2||Aβ||2

− 〈α, β〉
∣∣∣∣ ≤∣∣∣∣ 〈Aα, Aβ〉

||Aα||||Aβ||
− 〈Aα, Aβ〉

∣∣∣∣ + |〈Aα, Aβ〉 − 〈α, β〉| ≤

‖|Aα|| · ||Aβ||
∣∣∣∣(1

||Aα||||Aβ||
− 1

)∣∣∣∣ + 3δ ≤ (1 + δ)2
(
(1− δ)−2 − 1

)
+ 3δ < 6δ . (1)

The last inequality holds since δ < 1.
We have two cases: In the first case we assume that |θ| ≤ 2

√
δ or ||θ| − π| ≤ 2

√
δ. By

symmetry, assume w.l.o.g. that |θ| ≤ 2
√

δ. Then cos(θ) ≥ 1 − θ2

2
≥ 1 − 2δ (by Taylor

expansion) and thus cos(θ′) ≥ 1−8δ. As 1−8δ ≤ cos(θ′) ≤ 1− θ′2

2
+ θ′4

24
we get that |θ′| < 5

√
δ

and so |θ − θ′| < 7
√

δ.
In the second case, 2

√
δ < θ < π − 2

√
δ. In particular, | cos(θ)| ≤ 1 − 2δ + 2δ2/3. We

evaluate θ′ as arccos(cos(θ′)) via the Taylor expansion of arccos(·) around the point cos(θ):

|θ − θ′| < | cos(θ)− cos(θ′)|√
1− cos2(θ)

+ O

(
| cos(θ)− cos(θ′)|2 · sin(θ) cos(θ)

(1− cos2(θ))1.5

)
(1)
<

6
√

δ + O
(
δ2 · sin(θ)−2 cos(θ)

) (2)
= 6

√
δ + O(δ)

(3)
< 7

√
δ.

Inequality (1) follows from Equation(1). Equality (2) holds since for 2
√

δ < θ < π − 2
√

δ we
have that sin(θ) ≥ sin(2

√
δ) > 2

√
δ − 4δ3/2/3 >

√
δ (for a small enough δ). Inequality (3)

follows for sufficiently small δ.

10

Corollary 4.7. There exist universal constants δ0 > 0, c > 0 such that for any δ ≤ δ0, if A
is (cδ2, cδ2)-norm preserving, then it is also (δ, δ)-angle preserving.

4.3 The sample set

We now construct the ε-sample. First, we state a lemma indicating that the value of the
expression Ex∈Sn−1 [fα,β(x)] depends only on the angle between α and β.

Lemma 4.8. [Lemma 2.2 of [GW95]] Ex∈Sn−1 [fα,β(x)] = 1− 2^(α, β)/π .

Recall that the angle preserving set was meant to reduce our problem to a t dimensional

space. Let t > 0 (we shall eventually set t = exp
(
O

(√
log(n)

))
) and P (t) ⊆ St−1 be a

1/t-sample for digons guaranteed by Corollary 4.3. Notice that |P (t)| = exp
(
O

(
log2(t)

))
.

The sample (multi) set is defined as

P =

{
x′T · A
||x′T · A||

∣∣∣∣ x′ ∈ P (t), A ∈ A
}

where A is a (cδ2, cδ2)-norm preserving set, guaranteed by Theorem 3.10, for some δ = t−Ω(1)

and c as in Corollary 4.7. Note, that P may be a multi-set. Also note that there may exist
x′ ∈ P (t) and A ∈ A s.t. x′T A = 0. Currently, we set their corresponding vector to 0. We
shall later see that these 0 vectors can be omitted without affecting the properties of P , so we
could indeed assume that P is contained in Sn−1. Theorem 1.2 is implied by the next theorem.

Theorem 4.9. Let ε
∆
= 5δ + O(δ2). The set P is an ε-sample for digons and is of cardinality

|P | = n1+o(1) · exp
(
O

(
log2(ε−1)

))
.

Proof. The claim regarding |P | stems directly from its definition (since ε = t−Θ(1)). Notice
that for any non-zero vector x, any non-zero scalar λ and any digon D, x ∈ D iff λx ∈ D.
Hence, we may analyze P as if it was the set

{
x′T · A

∣∣ x′ ∈ P (t), A ∈ A
}
.

Let α, β ∈ Sn−1 be two given vectors and denote by θ the angle between them. First,
We define Â as the set of all linear transformation in A that preserved the angle between the
vectors up to a ±δ additive factor and additionally4 satisfy that Aα, Aβ 6= 0. Notice that since
A is (δ, δ)-angle preserving (by Corollary 4.7) and (δ, δ)-norm preserving, |Â| ≥ (1 − 3δ)|A|.
Correspondingly, we define P̂ =

{
x′T A

∣∣∣ x′ ∈ P (t), A ∈ Â
}

. Then

Ex∈P [sign (〈x, α〉) · sign (〈x, β〉)] = Ex∈P̂ [sign (〈x, α〉) · sign (〈x, β〉)]± 3δ

since at most a fraction of 3δ vectors of P are not in P̂ . Due to the properties of P̂ , P (t) and
the fact that Aα, Aβ 6= 0 we get

Ex∈P̂ [sign (〈x, α〉) · sign (〈x, β〉)] = EA∈Â,x′∈P (t) [sign (〈x′, Aα〉) · sign (〈x′, Aβ〉)] (1)
=

4The proof of Lemma 4.6 shows that the additional requirement does not reduce the bound on |Â|.

11

EA∈Â,y∈St−1 [sign (〈y, Aα〉) · sign (〈y, Aβ〉)]± δ
(2)
= EA∈Â

[
1− 2

^ (Aα, Aβ)

π

]
± δ

(3)
=

1− 2^ (α, β)

π
± 2δ

(4)
= Ex∈Sn−1 [sign (〈x, α〉) · sign (〈x, β〉)]± 2δ

where equality (1) stems from P (t) being a δ-sample for t dimensional digons, equalities (2)
and (4) follow from Lemma 4.8 and equality (3) holds due to the definition of Â. By combining
with the previous equation we get the required result.

Notice that as defined, P might not be a subset of Sn−1 as it might contain zero vectors.
However, as A is (cδ2, cδ2)-norm preserving we see that at most a fraction of cδ2 of the vectors
in P are zeroes and so we can remove them from P and only change ε (in Theorem 4.9) by
O(δ2).

5 Applications

In this section we give an application of the ε-sample for digons constructed in Section 4.
Specifically, we use the ε-sample to derandomize certain rounding procedures of solutions
of semi definite programs. For example, in the famous Goemens-Williamson algorithm, the
rounding scheme of the SDP solution is done by picking a random hyperplane and mapping
the solution vectors to {1,−1} according to the side of the hyperplane they belong to. It is
not hard to show that the probability that two vectors will map to different values depends
only on the angle between them. In fact, a hyperplane will separate the vectors if and only if
sign(〈α, x〉) · sign(〈β, x〉) = −1, where x is perpendicular to the hyperplane. Hence, in order
to choose hyperplanes that appear random to such a process we need a sample set for digons.
From now on Pε denotes an ε-sample for digons. Another application for derandomizing the
coloring algorithm of [KMS98] appears in Section 5.2.

5.1 Deterministic approximation of Max-Cut

Max-Cut is the following problem: Given a graph G = (V, E), we seek a subset S ⊆ V
of vertices that maximizes the number of edges from it to V \ S. Namely, Max-Cut(G) =
maxS E(S, V \S). Goemans and Williamson [GW95] gave a randomized approximation algo-
rithm for the max-cut problem using semi-definite programing (SDP for short): First notice
that max-cut can be solved by the following integer program:

Maximize
1

2

∑
1≤i<j≤|V |

wi,j(1− vi · vj) subject to ∀i vi ∈ {−1, 1} . (2)

The following is an SDP relaxation of the integer program.

Maximize
1

2

∑
1≤i<j≤|V |

wi,j(1− 〈vi, vj〉) subject to ∀i vi ∈ Sn−1 . (3)

12

An approximation to the integer problem (2) can be obtained from a solution to (3)
in the following way: Choose a random unit vector x and construct the following cut:
S = {i |〈x, vi〉 ≥ 0}. Let W denote the size of the cut produced this way and E[W] its
expectation. [GW95] proved that the approximation given by the SDP is good by first ob-
serving that

E[W] =
∑
i<j

wi,j
arccos(vi · vj)

π

and then showing that∑
i<j

wi,j
arccos(vi · vj)

π
≥ α

1

2

∑
i<j

wi,j(1− vi · vj) ≥ α ·OPT

for α > 0.87856, where OPT denotes the size of the maximal cut. Using the conditional
expectation method, a set S can be found whose corresponding W (cut weight) is at least as
large as the expectation, and thus is at least α times the size of the maximum cut [MR99].

We derandomize this process by choosing the vector x, with respect to which we will define
S, uniformly from the set Pε described in the beginning of this section5 for some ε = o(1). To
prove that this works we simply go over the steps of the proof of Goemans and Williamson.
We note that the only part that is sensitive to the fact that x is not completely random is
in the analysis of E[W]. Below we show that E[W] (almost) does not change when picking
x ∈ Pε instead of x ∈ Sn−1.

Lemma 5.1. Ex∈Pε [W] ≥ Ex∈Sn−1 [W]− 2ε ·OPT.

Proof. By definition of W : Ex∈Sn−1 [W] =
∑

i<j wi,j Prx∈Sn−1 [sign (vi · x) 6= sign (vj · x)] =∑
i<j wi,j (Prx∈Pε [sign (vi · x) 6= sign (vj · x)]± ε) = Ex∈Pε [W]± ε

∑
i<j wi,j . Notice that OPT

is bounded from below by 1
2

∑
i<j wi,j. This is since a set S randomly chosen by picking each

vertex with probability 1/2 will have an expected weight of 1
2

∑
i<j wi,j. Hence,

|Ex∈Pε [W]− Ex∈Sn−1 [W]| ≤ ε
∑
i<j

wi,j ≤ 2ε ·OPT .

Thus, by choosing x ∈ Pε at random instead of x ∈ Sn−1, we get an (α−2ε)-approximation
algorithm. Keeping in mind that ε = o(1), the ratio is practically the same.

Corollary 5.2. Let ε > 0 and n ∈ N. There exists an oblivious algorithm that transforms
any solution to the SDP relaxation of Max-Cut into an (α− ε) approximation for Max-Cut.

5This gives a randomized algorithm using only a logarithmic number of random bits. This algorithm can
be derandomized by going over all possible settings for the random bits and choosing the best solution.

13

5.2 Coloring 3-Colorable Graphs

A coloring of a graph is an assignment of colors to its vertices such that each pair of neighbors
is colored differently. A graph is said to be k-colorable if it has a coloring with k distinct colors.
We deal with the following promise problem: Given a graph on n vertices that is 3-colorable,
efficiently find a coloring of the graph with a minimal number of colors. This problem is well
known to be NP-hard. [KMS98] gave an approximation algorithm that efficiently colors a
3-colorable graph with O

(
min

{
n0.387, ∆log3 2 log n

})
colors where ∆ is the maximum degree

of any vertex. 6

We now give a brief description of the approximation algorithm: First, solve a semi-definite
program assigning each vector to a vertex such that the angle between any pair of neighbors
is large (2π

3
radians). Notice that the existence of such an assignment is guaranteed by the

3-colorability of the graph. Then assign colors to the vertices in the following way: Choose r
random unit vectors independently x1, . . . , xr. Each vertex will receive r bits. The value of
the i’th bit of a vertex with corresponding vector v will be set according to the sign of 〈v, xi〉.
The color of the vertex will be described by the r bits. The probability that two neighboring
vertices will have the same i’th bit is at most 1/3 due to the large angle between their vectors
(same analysis as in the Goemans-Williamson algorithm). As a result we get that the color
assigned to two neighboring vectors is equal with probability at most 3−r. The probability
that a vertex v will have a neighbor having the same color is at most ∆3−r where ∆ is the
maximum vertex degree. By taking r = dlog3(∆) + 2e we get that the expectation of the
percentage of vertices that have neighbors with the same color is 1/4. By trying several times
we get a “semi-coloring” for which at least half the vertices have no neighbors of the same
color. We now repeat this process recursively with a new set of colors on the vertices with
neighbors of the same color (we later explain how this repetition is made in the derandomized
version). This will result with O(∆log3 2) ≈ O(∆0.631) colors when ∆ = Ω(nc) for some constant
c > 0 or O(∆log3 2 log n) colors for general ∆. Notice that ∆ may be as high as n − 1. In
such cases, the approximation can be improved by using the following method: For any vertex
whose degree is higher than δ ≈ n0.613, color its neighboring vertices (they can be 2-colored
efficiently) in 2 new colors. This will use at most 2n/δ colors and reduce the maximum degree
to δ. Taking the optimal value for δ (δ ≈ n0.613) results in a n0.387 approximation.

Our derandomization differs in that we choose the r ‘random’ vectors from the set Pε

described in the previous section (as opposed to random unit vectors) by taking a random
expander walk of length r. For the analysis we shall require several known results concerning
expander graphs that are given in Section 5.2.1. Let ε > 0 be some small constant. The
set Pε denotes an ε-sample for digons as guaranteed by Theorem 1.2. We describe a random
algorithm that will use a logarithmic number of bits. This can be derandomized by going over
all settings for the random bits. We choose the vectors x1, . . . , xr in the following way.

• Construct an expander graph of parameters (n′, d, λ) where n′ = |Pε|, d = O(ε−2) and7

6In fact, they show two methods where the second method obtains a coloring of
min

{
O

(
∆1/3 log1/2 ∆ log n

)
, O

(
n1/4 log1/2 n

)}
colors. However, our methods derandomizes the first

method, yielding the slightly worse approximation.
7We set d as the smallest integer for which there exist an efficient construction for an expander graph with

14

λ ≤ εd.

• Label each vertex of the graph as a vector in Pε.

• Let r be a parameter. Choose x1, . . . , xr ∈ Pε by taking a random walk of length r in
the expander.

The amount of random bits required in order to choose x1, . . . , xr is

log(n′) + r log(d) = log(|Pε|) + 2 log3 2 log(ε−1) log(∆) + O(log(ε−1)) = O(log(ε−1) log n) .

Hence, the support size of possible r-tuples of vectors is polynomial in n assuming a constant
ε (or of size nO(log(ε−1)) for general ε). We define this set of r-tuples as X .

The following lemma bounds the probability that the chosen r-tuple does not ‘separates’
two neighboring vectors from the graph (the original graph which we are coloring). It actually
proves a slightly stronger statement that will be put to use later:

Lemma 5.3. Let v1, v2 be two vectors corresponding to two neighboring vectors of the graph.
Let c1, c2 be the colors assigned to each vector according to the choice of (x1, . . . , xr′) for some
r′ ≤ r. Then

Pr
(x1,...,xr)∈X

[c1 = c2] < (1/3 + 2ε)r′−1 .

Proof. Let B be the set of vectors in Pε for which sign(〈v1, x〉) = sign(〈v2, x〉). Notice that
due to the properties of Pε and the fact that the angle between v1, v2 is 2π

3
we have that

|B|
|Pε|

= Pr
x∈Pε

[sign(〈v1, x〉) = sign(〈v2, x〉)] < 1/3 + ε.

The vertices corresponding to v1, v2 are assigned the same color only when the entire random
walk lies within the set B. We bound the probability of this event by using Theorem 5.4
which leads to the following bound:

Pr [∀i ∈ [r′], xi ∈ B] <

(
|B|
|Pε|

+
λ

d

)r′−1

≤ (1/3 + 2ε)r′−1.

Hence, following the original algorithm’s notations, we now take r =
⌈
log 1

1/3+2ε
(∆) + 3

⌉
instead of r = dlog3(∆) + 2e and the analysis remains the same. By the outline sketched
above, this gives a good coloring of at least n/2 vertices, however there may be n/2 vertices
that were not properly colored. Therefore we need to repeat this process until all of the vertices
are isolated (this will require O(log n) repetitions). Notice that in order to find a coloring of
n/4 vertices among the remaining n/2 vertices we can use the same vectors generated by the
random walk and just look for the best one among them. Thus after repeating this process
for log n steps we achieve a coloring using n0.387+ε many colors, for any ε > 0, with a running
time nO(log(ε−1)).

λ ≤ εd. Since there exist graphs with λ ≈
√

d, d = O(ε−2) is sufficiently large.

15

5.2.1 Expander graphs

An undirected graph G = (V, E) is called an (n, d, λ)-expander if |V | = n, the degree of each
node is d and the second largest eigenvalue, in absolute value, of the adjacency matrix of G
is λ. For every d = p + 1 where p is a prime congruent to 1 modulo 4, there are explicit
constructions for infinitely many n of (n, d, λ)-expanders where λ ≤ 2

√
d− 1 [Mar88, AL88].

In particular, there exist explicit constructions for infinitely many n of (n, 6, 4)-expanders.
A random walk of length t on G is the following random process: First pick a vertex of

G uniformly at random. Denote this vertex with v1. At the i’th step (for 1 < i ≤ t) we
pick a neighbor of vi−1 uniformly at random and label it with vi. The walk is the ordered list
(v1, v2, . . . , vt). We shall make use of the following theorem regarding such walks

Theorem 5.4. [AKS87, AFWZ95] Let G be an (n, d, λ)-expander. Let B ⊂ V (G) be a subset
of vertices. Denote by E the event that a random walk (v1, . . . , v`) stays inside B. That is,
the event in which ∀i, vi ∈ B. The probability for the event E to occur is at most(

|B|
|V (G)|

+
λ

d

)`−1

.

6 Fooling Linear Threshold Functions

A linear threshold function (LTF) is a function f : Rn → {−1, 1} of the following form:
fw,θ(x) = sign (〈w, x〉 − θ) where w ∈ Rn, θ ∈ R and sign(0) is defined as 1. Functions of this
form are indicator functions of spherical caps. In this section we construct a sample set for
spherical caps. Using similar methods to the case of digons, we show that a norm-preserving
set can reduce the problem to that of finding a sample for spherical caps of dimension t � n.
Then we use Nisan’s pseudo-random generator for log-space machines (see section 4.1), as in
the case of digons. Specifically, we construct a set Q ⊂ Sn−1 for which it holds that

Ex∈Q [fw,θ(x)] ≈ Ey∈St−1

[
f

w′,
√

n√
t
θ
(y)

]
≈ Ex∈Sn−1 [fw,θ(x)]

where w′ is some unit vector in St−1. We now explain how to construct Q. Let A be a (δ, δ)-

norm preserving set of linear transformations from Rn to Rt, where t = exp
(
c
√

log(n)
)

for

some constant c and δ = t−Ω(1) (see Theorem 3.10). Q = QA is defined in the following way:
Let Q′ ⊆ Rt be a δ-sample for LTFs in t dimensions. Note that an explicit such set, of size
nO(c2), exists due to corollary 4.3. QA is defined as

QA
∆
=

{√
t/n · x′T A

∣∣∣ x′ ∈ Q′, A ∈ A
}

.

Notice that the elements of QA are not necessarily unit vectors. As a result we refer to
QA as a weak ε-sample since, as we shall see, it still has the property that

Ey∈Sn−1 [fw,θ(y)] = Ex∈QA [fw,θ(x)]± ε.

Our result is given in the next theorem.

16

Theorem 6.1. Let f be some LTF. If A is (δ, δ)-norm preserving, for δ > 1/t then

|Ex∈Sn−1 [f(x)]− Ex∈QA [f(x)]| < Õ(δ) .

Before given the analysis of QA we state some known facts regarding Ex∈Sn−1 [fw,θ(x)],
basically showing the connection to the standard normal distribution N(0, 1). Denote by
Φ(z) the probability that a random variable from the normal gaussian distribution takes a

value larger than z. That is Φ(z)
∆
= PrY∼N(0,1) [Y > z]. The following two lemmas are well

known so we postpone their proof to Appendix A.

Lemma 6.2. Let d be an integer and w ∈ Sd−1 some fixed unit vector. For any z ∈ R it holds
that

Pr
[
〈x, w〉 > z/

√
d
]

= Φ(z)± Õ (1/d) ,

where x is a d-dimensional unit vector chosen at random.

Lemma 6.3. Let z > 0 and 0 < δ < 1.Then

Φ (z · (1± δ)) = Φ(z)± Õ(δ) .

We can now prove Theorem 6.1.

Proof. Let w ∈ Sn−1 and z ∈ R be such that f(x) = sign (〈x, w〉 − z/
√

n). For simplicity we
assume w.l.o.g. that z ≥ 0.8 By Lemma 6.2,

Pr
x∈Sn−1

[
〈x, w〉 > z/

√
n
]

= Φ(z)± Õ (1/n) = Pr
x∈St−1

[
〈x, w〉 > z/

√
t
]
± Õ (1/t) .

Let Â ⊂ A be the set of all A ∈ A such that ||Aw|| = 1± δ. Then for any A ∈ Â we have

Pr
x′∈St−1

[
〈x′, Aw〉 > z/

√
t
]

= Pr
x′∈St−1

[
〈x′, w′〉 > z/(1± δ)

√
t
]

(4)

where w′ is some t-dimensional unit vector. Observe that

Pr
x′∈St−1

[
〈x′, w′〉 > z/(1± δ)

√
t
]

(1)
= Φ (z/(1± δ))± Õ (1/t)

(2)
=

Φ(z)± Õ (δ)
(3)
= Pr

x∈Sn−1

[
〈x, w〉 > z/

√
n
]
± Õ (δ) . (5)

Equalities (1) and (3) stem from Lemma 6.2 and the fact that δ > 1/t. Equality (2) is implied
by Lemma 6.3. Calculating we get

Pr
x∈QA

[
〈x, w〉 > z/

√
n
] (1)

= Pr
x′∈Q′,A∈A

[
〈x′, Aw〉 > z/

√
t
]

(2)
=

8Define f̂ = sign
(
〈x,−w〉 − −a√

n

)
and note that f(x) = −f̂(x).

17

Pr
x′∈Q′,A∈Â

[
〈x′, Aw〉 > z/

√
t
]
±O (δ)

(3)
= Pr

x′∈St−1,A∈Â

[
〈x′, Aw〉 > z/

√
t
]
±O (δ)

(4)
=

Pr
x∈Sn−1

[
〈x, w〉 > z/

√
n
]
± Õ (δ) ,

where equality (1) follows by the definition of QA, equality (2) holds as we replaced A by Â,
equality (3) is by the definition of Q′ and equality (4) is implied by Equations (4) and (5).
This proves the claim.

Corollary 6.4. For any ε > 0, there exists a weak ε-sample QA for spherical caps of cardinality
|QA| = exp(log2(1/ε))n1+o(1). Furthermore, QA can be constructed in exp(log2(1/ε))nO(1)

time.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

[AC06] N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform. Proceedings of the thirty-eighth annual ACM symposium
on Theory of computing, pages 557–563, 2006.

[Ach03] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with
binary coins. Journal of Computer and System Sciences, 66(4):671–687, 2003.

[AFWZ95] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman. Derandomized graph prod-
ucts. Computational Complexity, 5(1):60–75, 1995.

[AKS87] M. Ajtai, J. Komlós, and E. Szemerédi. Deterministic simulation in logspace. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing
(STOC), pages 132–140, 1987.

[AL88] and P.Sarnak A. Lubotzky, R. Phillips. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

[AL08] N. Ailon and E. Liberty. Fast dimension reduction using rademacher series on
dual bch codes. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1–9, 2008.

[Cha00] Bernard Chazelle. The discrepancy method: randomness and complexity. Cam-
bridge University Press, New York, NY, USA, 2000.

[DG99] S. Dasgupta and A. Gupta. An elementary proof of the Johnson-Lindenstrauss
Lemma. International Computer Science Institute, Technical Report, pages 99–
006, 1999.

18

[DGJ+09] I. Diakonikolas, P. Gopalan, R. Jaiswal, R. A. Servedio, and E. Viola. Bounded
independence fools halfspaces. CoRR, abs/0902.3757, 2009.

[EIO02] L. Engebretsen, P. Indyk, and R. O’Donnell. Derandomized dimensionality re-
duction with applications. In Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 705–712, 2002.

[Gol97] O. Goldreich. A sample of samplers - a computational perspective on sampling
(survey). Electronic Colloquium on Computational Complexity (ECCC), 4(20),
1997.

[Gol01] Oded Goldreich. Foundations of cryptography: basic tools. Cambridge University
Press, 2001.

[GW95] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J.
ACM, 42(6):1115–1145, 1995.

[Ind06] P. Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. J. ACM, 53(3):307–323, 2006.

[Ind07] P. Indyk. Uncertainty principles, extractors, and explicit embeddings of l2 into
l1. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing
(STOC), pages 615–620, 2007.

[JL84] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz maps into a hilbert
space. Contemporary Mathematics, 26:189–206, 1984.

[JN09] W. B. Johnson and A. Naor. The johnson-lindenstrauss lemma almost character-
izes hilbert space, but not quite. In Proc. of the 19th Ann. ACM-SIAM Symp. on
Discrete Algorithms, pages 885–891, 2009.

[KMS98] D. R. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidef-
inite programming. J. ACM, 45(2):246–265, 1998.

[KV94] Michael J. Kearns and Umesh V. Vazirani. An introduction to computational
learning theory. MIT Press, Cambridge, MA, USA, 1994.

[Mar88] G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes
and their applications in the construction of expanders and concentrators. Prob-
lems of Information Transmission, 24(1):39–46, 1988.

[Mat08] J. Matousek. On variants of the johnson-lindenstrauss lemma. Random Struct.
Algorithms, 33(2):142–156, 2008.

[MR99] S. Mahajan and H. Ramesh. Derandomizing approximation algorithms based on
semidefinite programming. SIAM J. Comput., 28(5):1641–1663, 1999.

19

[MZ09] R. Meka and D. Zuckerman. Pseudorandom generators for polynomial threshold
functions. http://arxiv.org/abs/0910.4122, 2009.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combi-
natorica, 12(4):449–461, 1992.

[RS09] Y. Rabani and A. Shpilka. Explicit construction of a small epsilon-net for linear
threshold functions. In Proceedings of the 41st Annual ACM Symposium on Theory
of Computing (STOC), pages 649–658, 2009.

[Siv02] D. Sivakumar. Algorithmic derandomization via complexity theory. In Proceedings
of the 34th Annual ACM Symposium on Theory of Computing (STOC), pages 619–
626, 2002.

[SZ99] M. E. Saks and S. Zhou. Bp hspace(s) subseteq dspace(s3/2). J. Comput. Syst.
Sci., 58(2):376–403, 1999.

A The Distribution of a Projected Random Unit Vector

Before we start proving Lemma 6.2, we present the following well known property of the
gaussian distribution:

Lemma A.1. For any α > 0,

Φ(α) ≤ 1

α
√

2π
exp

(
−α2/2

)
.

Proof. Note that for every τ and α it holds that −τ 2/2 ≤ α2/2− ατ . Hence,

Φ(α) =

∫ ∞

α

1√
2π

exp
(
−τ 2/2

)
dτ ≤

∫ ∞

α

1√
2π

exp(α2/2− ατ)dτ =

exp(α2/2)√
2π

∫ ∞

α

exp(−ατ)dτ =
1

α
√

2π
exp

(
−α2/2

)
.

We restate Lemma 6.2:
Lemma Let t be an integer and x a t-dimensional unit vector chosen at random. Let w ∈ St−1

be some fixed unit vector. For any α ∈ R, we have

Pr

[
〈x, w〉 >

α√
t

]
= Φ(α)± Õ (1/t) .

20

Proof. We prove the claim for a positive α as the other case is similar. Denote with X the
random variable X = 〈x, w〉. Since x is randomly chosen from the unit sphere, we may assume
w.l.o.g. that w is the vector e1 = (1, 0, . . . , 0), meaning that X = x1. Define St(r) as the
surface area of the sphere of radius r in Rt. Then

St(r) = πt/2rt−1/Γ(t/2) = St(1)r
t−1

where Γ is the Γ-Function9. Let τ, h > 0. Consider the surface area of the “strip” of the
unit sphere in which x1 ∈ (τ − h, τ). Its surface is bounded from below by hSt−1(r) where
r =

√
1− τ 2. It is also bounded from above by hSt−1(r

′) where r′ =
√

1− (τ − h)2. By
dividing by St(1) we get bounds for the probabilities that x1 ∈ [τ − h, τ]. Therefore, for any
0 ≤ α ≤ β ≤ 1

Pr

[
α√
t

< X <
β√
t

]
=

∫ β√
t

α√
t

St−1(1) · (1− τ 2)
t−2
2

St(1)
dτ . (6)

To compute the integral we first analyze the ratio St−1(1)
St(1)

. When t is even:

St−1(1)

St(1)
=

2(2π)(t−2)/2

1·3·...·(t−3)

(2π)t/2

2·4·...·(t−2)

=
2t−2 · ((t− 2)/2)!2

π · (t− 2)!

(∗)
=

1√
2π

√
t− 2

(
1±O

(
1

t

))
=

1√
2π

√
t

(
1±O

(
1

t

))
(7)

where equality (∗) follows from Stirling’s approximation. For odd t we get the same result ana-
logically. Let us now analyze the function within the integral in equation 6: For convenience
we change τ to be α√

t
.(

1− α2

t

)(t−2)/2

=

(
1− α2

t

)t/2

·
(

1− α2

t

)−1

=

exp(−α2/2)

(
1 + O

(
α4

t

)) (
1− α2

t

)−1
(1)
= exp(−α2/2)

(
1 + O

(
α4

t

))
. (8)

Equation (1) holds since ex =
(
1 + x

n

)n
(1 + O(x2

n
)) when x = o(

√
n). From Equations 6, 7

and 8 we get

Pr

[
α√
t

< X <
β√
t

]
=

√
t√

2π

(
1±O

(
β4

t

)) ∫ β√
t

α√
t

exp(−τ 2t

2
)dτ =

1±O
(

β4

t

)
√

2π

∫ β

α

exp(−τ 2

2
)dτ =

(
1±O

(
β4

t

))
Φ(α, β) (9)

9For an integer t, the Γ function is given by Γ(t) ∆=

{ (
t−2
2

)
! t even(

(t−2)(t−4)...1
2(t−1)/2

)
! t odd

21

where Φ(α, β) is defined as the probability of a normal gaussian to take values between α and
β. We divide our discussion to two cases. First, assume that α ≥

√
3 ln (t). We upper bound

Pr
[
X > α√

t

]
by the relative surface area of the strip of the unit sphere in which x1 ≥ α√

t
:

Pr

[
X >

α√
t

]
<
St−1(1) · (1− α2/t)

t−2
2

St(1)
= O

(√
t · exp (−1.5 ln(t))

)
= O(1/t).

The second equality stems from equations 7 and 8. By Lemma A.1, Φ(α) <
1

α
√

2π
exp (−α2/2) < 1/t and therefore, Pr

[
X > α/

√
t
]
≤ Φ(α) + O(1

t
). Assume now that

α <
√

3 ln (t). By setting β =
√

3 ln (t) we get from Equation 9 that

Pr

[
X >

α√
t

]
= Pr

[
α√
t

< X <
β√
t

]
+ Pr

[
X >

β√
t

]
=

Φ (α, β)

(
1±O

(
β4

t

))
+ O

(
1

t

)
= Φ(α)± Õ

(
1

t

)
.

We now present the proof of Lemma 6.3.
Lemma Let α > 0, 0 < δ < 1/4.Then

Φ (α · (1± δ)) = Φ(α)± Õ(δ).

Proof. Assume first that α <
√

3 ln(δ−1). Then for any γ = α(1± δ),

|Φ (γ)− Φ (α)| =
∣∣∣∣ 1√

2π

∫ α

γ

exp(−τ 2/2)dτ

∣∣∣∣ < α · δ = Õ(δ).

Assume now that α ≥
√

3 ln(δ−1). Let γ
∆
= αδ. by Lemma A.1,

Φ(α + γ) < Φ(α) < Φ(α− γ) <
1

(α− γ)
√

2π
exp

(
−(α− γ)2/2

)
< exp

(
− (α− γ)2 /2

)
≤

exp
(
− ln

(
δ−1

)
· 3 (1− δ)2 /2

)
≤ δ.

The last equality holds since δ < 1/4.

22

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

