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Abstract

We study the question of whether the value of mathematical programs such as linear and
semidefinite programming hierarchies on a graph G, is preserved when taking a small random
subgraph G′ of G. We show that the value of the Goemans-Williamson (1995) semidefinite
program (SDP) for Max Cut of G′ is approximately equal to the SDP value of G. Moreover,
this holds even if the SDP is augmented with any constraint from a large natural family C of
constraints that includes all constraints from the hierarchy of Lasserre (2001). The subgraph
G′ is up to a constant factor as small as possible.

In contrast, we show that for linear programs this is not the case, and there are graphs G
that have small value for the Max Cut LP with triangle inequalities, but for which a random
subgraph G′ has value 1−o(1) even for the LP augmented with nε rounds of the Sherali-Adams
hierarchy.

Our results yield a general approach to use the Lasserre hierarchy to solve Max Cut on the
average on certain types of input distributions. In particular we show that a natural candidate
for hard instances of Max Cut— the Feige-Schechtman (2002) graphs that are obtained by
sampling a random subset S of the sphere and placing an edge between pairs of points in S
that are almost antipodal— is actually easy to solve by SDPs with triangle inequalities. Such a
result can be considered more or less folklore in the dense case, where S is large enough to form
a close approximation of the sphere, but requires quite different techniques to demonstrate in
the sparse case.
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1 Introduction

Recent years have seen many works on property testing, showing that combinatorial properties
of graphs (and other objects) are at least approximately preserved when taking a small random
subgraph, sometimes even only of constant size [Ron00, Rub06]. Such results give insights on the
properties in question, and can also be used to design more efficient (even sublinear!) algorithms. In
this work we study similar questions, but where the property involved is the value of a mathematical
program such as a semidefinite program (SDP). There are several motivations for this question:

Sparsification / sublinear algorithms. Evaluating an SDP on a small subgraph G′ of G is
obviously more efficient than evaluating it on the whole graph G. Generally if G is an n-vertex
∆-regular graph, we’ll be interested in a subgraph G′ of size O(n/∆), which will have constant
degree. Thus such results can be seen as a form of sparsification of the graph. Compared to
spectral sparsification [ST04], our notion of sparsifiers is more relaxed, but it’s still strong enough
to guarantee that the value of the SDP on G′ is close to the value on G. The advantage is both a
simple and efficient sparsification procedure, and of course allowing to reduce the number of vertices
in the graph, making the SDP much more efficient (indeed possibly sublinear) if the original degree
∆ was large.1

Understanding strong SDPs. One can ask why study the behavior of the SDP value if its
main purpose is to approximate a combinatorial property such as the maximum cut, which is
already known to be preserved under random subsampling (cf. [GGR98]). One answer is that
recent works showed the SDP value is important for its own sake, and not just as an approximation
for an integral value. For example, the Max Cut SDP (and more generally Unique Games
SDP) captures better than the integral value the behavior of the max-cut game under parallel
repetition [BHH+08], while several works showed relations between SDPs and quantum protocols
(see, e.g., [KRT08] and references therein). Another motivation is to help utilize the power of SDP
hierarchies such as Lasserre [Las01, Sch08]. These stronger SDPs give very appealing candidates for
improved approximation algorithms, but very little is known about how to actually take advantage
of their power. In fact, our knowledge on these hierarchies is in the interesting state where we
have several strong lower bounds (i.e., integrality gaps) [Sch08, Tul09, RS09, KS09] but only very
few upper bounds (i.e., algorithms) [Chl07, CS08]. Subsampling gives a new way to argue about
the value of such strong SDPs, at least for average case problems, by deducing the value on the
subgraph G′ from the value on G. The former might be easier because G is much denser (see
below).

Candidate hard instances for unique games. Our original motivation in this work was to
study the question of possible hard instances for Max Cut and Unique Games. Khot’s unique
games conjecture [Kho02] asserts that the unique games problem is NP-hard, which would imply
that it should be hard on the average as well.2 Surprisingly, at the moment there are not even

1Although in a recent beautiful work [BSS09] showed that constant degree spectral sparsifiers exist, they cannot
be found by simple sampling and the known algorithm to find them runs in superlinear time (e.g., O(|V |3|E|)).
Moreover, since spectral sparsifiers only reduce the number of edges and not vertices, they cannot lead to sublinear
algorithms.

2This is assuming NP-hardness is via a standard many to one Karp reduction, and there is a hard on the average
language in NP. The latter assumption is implied by, say, the existence of one-way functions.
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natural candidates for hard input distributions for this problem. (In contrast to problems like 3-SAT
and clique, uniformly random instances of unique games are known to be easy instances [AKK+08].)

A similar observation applies to approximating the maximum cut of a graph better than the
Goemans-Williamson (henceforth GW) algorithm [GW94]. This was shown unique-games hard
in [KKMO04, MOO05]. Specifically, these works imply that if the unique games conjecture is true
then there is some constant c > 0 such that for every γ > 0, there is such a distribution over graphs
whose (normalized) max-cut value is at most 1−√γ, but it is infeasible to certify that the value is
less than 1 − cγ. Since such a distribution must fool the known SDPs for this problem, a natural
choice is the known integrality gap example by Feige and Schechtman [FS02].3 These are random
geometric graphs, in which the vertices are identified with random points in the sphere, and an
edge is placed between every two vertices that are sufficiently far apart. This distribution fools the
GW SDP, but could it be actually hard?

If sufficiently many points are chosen so as to make, say, a γ/10d-net in the sphere (of dimension
d), then it’s easy to certify that the max-cut value is 1 − Ω(

√
γ) since the graph can be covered

uniformly by edge-disjoint odd cycles of length O(1/
√
γ). But in fact the integral value remains

1−√γ even if much fewer points are chosen. It’s fairly straightforward to see that choosing fewer
points can’t make the problem easier, and intuitively this can make the problem harder. Indeed,
the short odd cycles disappear once fewer points can be chosen, and in fact [FS02] did show that
that smaller number of points can fool more powerful algorithms in some settings (they reduced
the number of points to get an instance for the SDP with triangle inequalities achieving integrality
ratio at most 0.891). More generally, starting from an integrality gap instance and obtaining a
distribution on inputs by choosing a random subgraph of it seems like a reasonable approach for
getting a candidate hard distribution.4 Nevertheless, we show that we can still certify with high
probability that the max-cut value is 1 − Ω(

√
γ) for this distribution, as long as the number of

points is some constant factor larger than the minimum needed for the average degree to be more
than 1.5 In fact, this result is a special case of a more general argument, see Section 2.1.

2 Our results

Our main result is that subsampling approximately preserves the SDP value for Max Cut, for
a large family of semidefinite programs. In what follows, denote by sdpk(G) the value of the
Goemans-Williamson (GW) SDP for Max Cut, augmented by k levels of the Lasserre hierarchy.
(Here, the value of a Max Cut SDP relaxation is normalized to be between 0 and 1.)

Theorem 2.1 (Main). For every graph G on n vertices and degree ∆, k ∈ N, and ε > 0, there
is n′ = poly(ε−1)n/∆ such that letting γ = 1 − sdpk(G), if we choose a random subgraph G′ of G
with n′ vertices then w.h.p.

γ

3
− ε 6 1− sdpk(G

′) 6 γ + ε . (1)

The theorem is actually true for a more general family of constraints than Lasserre constraints—
we chose to state in this way for simplicity. We emphasize that the sample complexity is independent
of the set of constraints, and hence k can be chosen arbitrarily between 1 and n.

3In this work we focus on max-cut for graphs that have cuts that cut a 1 − γ fraction of the edges for small γ,
rather than the problem of maximizing the ratio between the maximum cut and the certified value.

4In particular it seems to work for 3SAT [Sch08], see discussion in Section 2.1.
5Below that minimum the graph is mostly empty and the max-cut value is close to 1 for trivial reasons.
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Subsampling quadratic programs. We also obtain a similar result for quadratic programs,
where the value 1− sdpk(G) is replaced with maxx∈[−1,+1]n〈x,Ax〉 . Here, A could be the Laplacian
of a graph, but in fact our results for quadratic programs apply to a more general family of matrices,
and are also quantitatively tighter in the sense that the constant 3 is replaced with 1 in Equation (1).
See Theorem 7.1 for a precise statement.

Property testing for psd matrices. As a corollary of the latter result we give a property testing
algorithm for positive semidefiniteness that uses poly(ε−1)n/∆ samples to distinguish between
positive semidefinite matrices and matrices A for which there is a vector x ∈ [−1,+1]n with
〈x,Ax〉 6 −ε so long as the matrix A satisfies some natural requirements. The runtime of our
tester is polynomial in the size of the sample.

Sherali-Adams lower bound. In contrast we show that such subsampling bounds do not hold
for linear programming hierarchies. Indeed, we show the following theorem:

Theorem 2.2. For every function ε = ε(n) that tends to 0 with n, there exists a function r = r(n)
that tends to ∞ with n and family of graphs {Gn} of degree D = D(n) such that

1. For every n, lp3(Gn) 6 0.8

2. If G′ is a random subgraph of G of size (n/D)1+ε(n) then E[lpr(n)(G′)] > 1− 1
r(n) .

where lpk(H) denotes the value of k levels of the Sherali-Adams linear program for Max-Cut [SA90,
dlVKM07] on the graph H.

Note that Theorem 2.2 shows that subsampling for LPs fails in a very strong way, compared to
the bound for SDPs we get from Theorem 2.1: the size of the sample in Theorem 2.2 is (n/D)1+ε

compared to only O(n/D) vertices in Theorem 2.1, and the value on the subgraph in Theorem 2.2
remains very close to 1 even if we allow the number of rounds of the LP to grow from 3 to an
unbounded function of n.

Edge subsampling. In addition to the above, we also prove preservation of SDP value under
edge subsampling, where one reduces the degree of a ∆-regular graph to constant by letting every
edge of the graph survive with probability p ∼ 1/∆ independently. The proof in this case is much
simpler, and yields tighter quantitative results (replacing 3 with 1 in Equation (1)). But note that
many of our intended applications are not implied by such a result.

2.1 Using SDP hierarchies for average-case problems

One corollary of our work is a general way to use semidefinite programming hierarchies for solving
Max Cut (and possibly other 2-CSPs) in the average-case. Specifically, let G be some distribution
on n-vertex graphs that is obtained by subsampling random vertices and/or edges from a denser
N -vertex graph G of degree at least εN. One example is the distribution Gn,p that is obtained by
subsampling edges from the complete graph.

Now Theorem 2.1 implies that Max Cut on G is well approximated by poly(1/ε) rounds of the
Lasserre hierarchy. Here we say that an SDP approximates well the max-cut value of a graph G if
1−sdp(G) = Θ(1−maxcut(G)). Note under the unique games conjecture such an approximation is
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infeasible in the worst-case. The reason is that Max Cut on ε-dense graphs is easy for a poly(1/ε)-
round SDP (and even a poly(1/ε)-round LP [dlVKM07]) since the known property testing bounds,
e.g. [GGR98], imply that for such graphs the integral value is preserved on a random poly(1/ε)
subsample. Our result shows that the SDP value is preserved as well under subsampling. Note
that the latter is false for linear programs (see Theorem 2.2). Even for semidefinite programs it’s
false for 3-CSPs, as the result of [Sch08] shows that random 3SAT formulas are hard for Lasserre
SDPs and these can be thought of as subsamples of the trivial 3SAT formula containing all possible
clauses.

Our result is more general, and holds even if the original graph has sublinear degree, as long as it
is an easy instance for the r-round Lasserre SDP for some r. In particular we apply it to show how
to solve Max Cut on random geometric graphs. Specifically, we show that the Feige-Schechtman
Max-Cut instances [FS02] can in fact be solved (i.e., certified to have small maximum cut) by the
GW augmented with triangle inequalities:

Theorem 2.3. Let γ ∈ [0, 1] and d ∈ N. Then there is a constant a = a(γ) such that if we let
n = a/µ, where µ is the normalized measure of the 2

√
γ-ball in the sphere Sd−1, and let the n

vertex graph G be obtained by picking n random unit vectors v1, . . . , vn and placing the edge {i, j}
if 1

4‖vi − vj‖
2 > 1− γ, then w.h.p.

sdp3(G) = 1−Θ(
√
γ) .

This theorem also holds for the GW SDP augmented with the `22 triangle inequalities, and
furthermore, from now on we will use sdp3(G) to denote this GW SDP augmented with triangle in-
equalities (This simplifies stating the results somewhat, and comes with almost no loss of generality,
as the 3rd level of the Lasserre hierarchy is not often considered by itself).

We note that the [FS02] instances come with a “planted” SDP solution that does not satisfy
the triangle inequality constraints. The question here is whether there exists any other solution
with approximately the same value that does satisfy these constraints.

If the number of points n is extremely large compared to d, then we believe that such a
result is more or less folklore (though we could not find a reference and hence supply a proof
in Section 9). But the question becomes very different when the number n of points becomes
smaller, or equivalently when the graph becomes sparser. Indeed, Feige and Schechtman used such
sparse graphs to show that there is some specific constants γ, ε > 0 and a choice of n for which
sdp3(G) > maxcut(G) + ε w.h.p for a graph G chosen as in Theorem 2.3. Our result shows that
there is a limit to what can be gained from such sparsification. (We note that Theorem 2.3 applies
to even sparser graphs than those considered by [FS02] since they used graphs of super-constant
degree.)

Under the unique games conjecture, adding triangle inequalities does not help in approximating
max cut in the worst case. Yet Theorem 2.3 shows that triangle inequalities do help for this very
natural distribution of inputs.

2.2 Tightness of our theorem

Theorem 2.1 is weaker than known results for property testing of integral properties in two respects.
First, we only get approximation up to a fixed constant (i.e. 3), rather than approaching the value
as the sample size grows. Second, it does not generalize to k-CSP’s for k > 2 (see [AdlVKK03]).
As we mentioned above, the second limitation is inherent (e.g., Schoenebeck’s result on integrality
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gaps for random 3SAT [Sch08]). (On a related note, we do suspect that our techniques generalize to
arbitrary 2-CSPs.) We believe, though have not yet been able to prove this, that the first limitation
is inherent as well. Specifically, while Feige and Schechtman [FS02] showed that there is a random
geometric graph in which there is an absolute constant gap between the max-cut and the SDP
value (with triangle inequalities), we believe there is no such gap if the random geometric graph
is sufficiently dense. This would show that the constant 3 in Equation (1) of Theorem 2.1 cannot
be replaced by 1. These observations might also explain why our proof doesn’t follow directly from
the techniques and results of property testing, but rather we need to use some other tools such
as [CW04]’s rounding algorithm (which is specific to 2-CSPs) and consider subsampling of a graph
power (resulting in a constant factor loss in the approximation). See our proof overview below.

2.3 Related work

There has been quite some work on estimating graph parameters from random small induced
subgraphs. Goldreich, Goldwasser and Ron [GGR98] show that the the Max-Cut value of a dense
graph (degree Ω(n)) is preserved when passing to a constant size induced subgraph. (In this and
other results, the constants depend on the quality of estimation.) Feige and Schechtman [FS02]
showed that the result holds generally for D-regular6 graphs so long as the degree D > Ω(log n) and
the subgraph is of size at least Ω(n log n/D). (As a corollary of our results, we slightly strengthen
[FS02]’s bounds to hold for any D > Ω(1) and subgraph size larger than Ω(n/D).)

Alon et al [AdlVKK03] generalize [GGR98] for k-CSP’s and improve their quantitative es-
timates. See also [RV07] for further quantitative improvements in the case of k = 2. Simi-
lar techniques were also used in the context of low rank approximation, where the goal is to
approximate a matrix A by a low rank matrix D so as to minimize, say, the Frobenius norm
‖A−D‖F [FKV04, RV07]. [AdlVKK03, RV07]’s result is obtained via a subsampling theorem for
the cut norm which is a special kind of a quadratic program corresponding to a bipartite graph.
Thus our subsampling theorem for quadratic programs can be viewed as an extension of these
results to the general (non-bipartite) case (see also Remark 7.18). [AN04] gave approximation al-
gorithms to the cut norm, while [CW04, AMMN05] gave such algorithms for more general quadratic
programs.

There has also been much work on matrix sparsification by means other than sampling a small
induced submatrix, see for instance [ST04, AHK06, AM07, SS08, BSS09]. However, these don’t
reduce the number of vertices but only the edges. Also, often these methods use non-uniform
sampling techniques to achieve sparsification guarantees that would otherwise be impossible. As
an example, constant degree spectral sparsification [BSS09] cannot be achieved by sampling vertices
(or even edges for that matter) uniformly at random.

3 Overview of proof

In this section we give a broad overview of the proof of Theorem 2.1— our main result. It is
obtained in three steps that are outlined in Figure 1.

6Their result can be generalized to non-regular graphs as well, but in this work we focus our attention only on
regular graphs, as it simplifies many of the calculations.
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(2) Lemma 5.6

G3

(1) Proxy Graph Theorem (Theorem 5.3)

(3) Lemma 5.7:

G

G3[S]

G3[S] approximates G

using Subsampling Theorem for quadratic forms (Theorem 7.1)

G[S]

Figure 1: Overview of the proof of Theorem 2.1. H[S] denotes the graph obtained by subsampling H to a

random subset S of appropriate size. Arrows indicate that the SDP values of the corresponding graphs are related

up to constant factors, dashed arrows being consequences of bold arrows.

Step 1: Proxy graph theorem. The first step (Theorem 5.3) gives a general way to analyze the
behavior of the SDP value of an n vertex graph G under subsampling. Here and in the following,
subsampling will always refer to choosing an induced subgraph uniformly at random. We show that
for every two graphs G and H where G is of degree D and H is at least as dense as G, the following
is true: If the Laplacian of H is close the Laplacian of G, then as we subsample O(n/D) vertices
from each graph the SDP values of the two induced subgraphs will be close to each other. This
reduces the task of analyzing constant degree subsamples of G to the task of analyzing subsamples
of some “proxy graph” H of our choosing. This can be very useful, as we can choose H to be much
denser than G, which means that n/D-sized subgraphs of H will be denser as well. In some sense
this is similar to choosing a much larger sample of vertices, and of course the larger the sample,
the easier it is to argue that the SDP value is preserved. We stress that this result is very general
and works regardless of the additional constraints placed on the SDP.

Tool: Subsampling quadratic programs. The proof of this “proxy graph” step uses the
semidefinite rounding algorithm of Charikar and Wirth [CW04] to reduce the problem to analyzing
subsampling of a quadratic program over [−1,+1]n. (Note that we use rounding here in the “reverse
direction”— reducing a question about semidefinite programs into a question about quadratic
programs.) We then give in Theorem 7.1 a subsampling theorem for such quadratic programs. To
do so we generalize the result of Feige and Schechtman [FS02] (that build on Goldreich, Goldwasser
and Ron [GGR98]), that gave such a subsampling theorem for the integral max-cut program. Some
complications arise since in our setting the matrices can have negative entries, and also there is no
guarantee that there exists an integral optimal solution to quadratic program (i.e., a solution in
{−1,+1}n). Our result is also a bit tighter than [FS02], that required the degree of the subsampled
graph to be at least logarithmic, where we only need constant degree. Still the proof follows the
general ideas of [FS02, GGR98].

Step 2: Use G3 as a proxy. To use the first step, we need to come up with an appropriate
“proxy graph”. This is done in our very simple second step— Lemma 8.1— where we observe that
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the Laplacian of G3 approximates the Laplacian of G in the sense needed for Theorem 5.3.

Step 3: Relate subsample of G3 to sdp(G). The natural last step would be to show that the
value of G3 is preserved under subsampling. (Note that a random subgraph of G3 can be much
denser than a random subgraph of G, and also much denser than the third power of a random
subgraph of G.) However, we don’t know how to show that directly. Rather, in our third step—
Lemma 5.7— we show that a random subsample of G3 is likely to have SDP value close to the value
of G itself! This is enough, since by transitivity we can argue that all these SDP values (of G, G3,
the subsample of G and subsample of G3) are close to one another. To prove this step we use the
fact that one can choose a random edge in G3 by first choosing a random edge e = (u, v) in G,
and then choosing a random neighbor u′ of u and a random neighbor v′ of v. We then argue that
G3 is sufficiently dense so that even if we restrict to neighbors u′, v′ that occur in the subsample,
we still get the uniform distribution on the original edge e. This allows us to claim that one can
“decode” (in a way slightly reminiscent of Dinur’s gap amplification [Din07]) an SDP solution for
the subsample of G3 into an SDP solution for the original graph G. Once more this step applies
to a very general family of SDPs, including essentially any reasonable constraint that holds for
integral solutions.

4 Preliminaries

Let G be a ∆-regular graph with vertex set V = [n] and edge set E (no parallel edges or self-loops).
We give weight 2/∆n to each edge of G so that every vertex of G has (weighted) degree 2/n and G
has total edge weight 1. We say a graph is normalized if it has total edge weight 1. (We choose this
normalization, because we will often think of a graph as a probability distribution over (unordered)
vertex pairs.)

We let L(G) denote the (combinatorial) Laplacian of G defined by L(G) := D(G)−A(G), where
D(G) is the diagonal matrix of the degrees and A(G) denotes the adjacency matrix of G (so that
D(G)i,i =

∑
j A(G)i,j). For normalized ∆-regular G, we have D(G) = 2

nI where I is the identity
matrix.

We will use the notation A •B := tr(ATB) when A and B are matrices of the same dimension.
For a real-valued matrix A = (aij), we denote the total variation norm of A by ‖A‖TV :=

∑
ij |aij |.

We write A � 0 to express that A is (symmetric) positive semidefinite, i.e., A is symmetric and
〈x,Ax〉 > 0 for all x ∈ Rn. Likewise, the notation A � B and A � B is short for A − B � 0 and
B −A � 0, respectively. (Most matrices we consider will be symmetric.)

Subgraphs and principal submatrices. For a graph G as above and a vertex subset U ⊆ V ,
let G[U ] denote the induced subgraph on U . To preserve our normalization, we scale the weights of
the edges of G[U ] such that the total edge weight in G[U ] remains 1. We denote by Vδ a random
subset of a δ fraction of the vertices in V , and hence G[Vδ] denotes a random induced subgraph of
G of size δ|V |. With our normalization, the typical weight of an edge in G[Vδ] is 2/δ2∆n.

If B is an n × n matrix (thought of as a Laplacian of a graph), and U ⊆ [n], then we define
(BU ) to be an n× n matrix such that (BU )ij = 0 if i 6∈ U or j 6∈ U , (BU )i,i = (n/|U |)Bi,i for every
i ∈ U , and (BU )i,j = (n/|U |)2Bi,j for every i 6= j ∈ U . Thus if B is the Laplacian of G then BU
roughly corresponds to the Laplacian of G[U ] as described above.
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Max Cut and its Semidefinite Programming Relaxation. The value of the maximum cut
of a graph G is given by opt(G) := maxx∈{−1,1}n〈x, 1/4L(G)x〉. The Goemans-Williamson [GW94]
relaxation for Max Cut is

sdp(G) = max
{

1/4L(G) •X | X � 0, ∀i : Xii = 1
}
. (2)

Note that opt(G) and sdp(G) range between 0 and 1, the total edge weight of a normalized graph.
We will consider relaxations obtained by adding valid constraints to the above program. If M

is a convex subset of the set of n × n positive semidefinite matrices, we let sdpM(G) denote the
value obtained when taking the maximum in Equation (2) only over matrices in M. We say that
sdpM(G) is an SDP relaxation of Max Cut, if M contains all contains all matrices of the form
xxT with x ∈ {±1}n. A specific set of constraints we’ll be interested in are the triangle inequalities
that assert that for all vertices i, j, k ∈ V ,

Xij +Xjk −Xik 6 1 and −Xij −Xjk +Xji > −1 . (3)

The relaxation including triangle inequalities will be denoted sdp3(G).

Reducing Max Cut to Min UnCut. It will be notationally convenient for us to reduce Max
Cut to an equivalent minimization problem. This can be done easily by considering Min UnCut
which asks to find a cut that minimizes the number of uncut edges. More formally, the integral
value is defined as minx∈{−1,1}n〈x, 1/4(D(G) +A(G))x〉. We will henceforth denote

L+(G) = D(G) +A(G) ,

A normalized graph G has max-cut value opt(G) = 1 − γ if and only if its min uncut value is
γ (since for a normalized regular graph, 1/4L(G) = 1/nI − 1/4L+(G) ). In the following, we will
ignore the factor 1/4 and think of Min UnCut as the problem of minimizing 〈x, L+(G)x〉 over
x ∈ [−1, 1]n. The Goemans–Williamson SDP relaxation for Max Cut corresponds to the following
SDP relaxation for Min UnCut,

sdp(G) def= minL+(G) •X , (4)

where the minimum is over all matrices X � 0 with Xii = 1 for all i ∈ V . Similarly, sdp3(G)
is defined by restricting the minimum in (4) to matrices X that satisfy in addition the triangle
inequalities (3). We have deliberately overloaded notation for the program sdp(G) (sdp3(G)) and
we will refer to it as the Goemans-Williamson SDP (with triangle inequalities) from here on.

5 Proof of the Main Theorem

In this section, we prove our main theorem, which asserts that the value of “reasonable” SDP
relaxations for Max Cut is preserved under vertex-subsampling. This section can also be seen as
a formal overview over the remainder of the paper.

Let us first formalize the notion of a “reasonable” SDP relaxation. (We are not aware of
any Max Cut relaxation in the literature that is not reasonable according to our definition. In
particular, Max Cut relaxations obtained by Lasserre’s hierarchy are reasonable.)
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Definition 5.1 (Reasonable SDP relaxation for Max Cut). Let V be a set of vertices and letM
be a convex subset of the set

M2
def=
{
X ∈ RV×V | X � 0, ∀i ∈ V. Xii = 1

}
.

For a graph G with vertex set V , we define sdpM(G) by

sdpM(G) def= min
X∈M

L+(G) •X .

We say that sdpM is a reasonable relaxation for Max Cut (or rather Min UnCut) ifM is closed
under renaming of coordinates in the sense that

∀F : V → V. ∀X ∈M. (XF (i),F (j))i,j∈V ∈M .

Here, the function F is not required to be bijective. We also say thatM is reasonable if it satisfies
the condition above.

Theorem 5.2 (Reformulation of Theorem 2.1). Let ε > 0 and let G be normalized ∆-regular graph
with vertex set V . Then, for δ = ∆−1 · poly(1/ε),

1
3sdpM(G)− ε 6 E sdpM(G[Vδ]) 6 sdpM(G) + ε ,

where sdpM is any reasonable relaxation. (Recall that the graphs G and G[Vδ] are normalized so
that both have total edge weight 1.)

5.1 First step — proxy graph theorem

Our first step is summarized in the following theorem.

Theorem 5.3 (Proxy Graph Theorem). Let G and H be two normalized regular graphs with vertex
set V and degrees at least ∆ such that for a constant c > 0 (say c = 1/3),

L+(G) � cL+(H) . (5)

Then, for δ = ∆−1poly (1/ε) and any reasonable relaxation sdpM ,

E sdpM(G[Vδ]) > c · E sdpM(H[Vδ])− ε .

To carry out the proof of this theorem, we need the following general technical results (proven
in Section 6 and Section 7).

Lemma 5.4 (Reformulation of Lemma 6.1). Let ε > 0 and let A ∈ RV×V be such that
maxx∈[−1,1]V 〈x,Ax〉 6 ε‖A‖TV . Then,

maxA •X 6 O (ε log (1/ε)) ‖A‖TV ,

where the maximum is over all matrices X ∈ RV×V with X � 0 and Xii 6 1 for all i ∈ V .

11



Lemma 5.5 (Reformulation of Theorem 7.1). Let ε > 0 and let B ∈ RV×V be a matrix with
diagonal entries and row and column sums bounded by a constant (say 10). Then for δ > ‖B −
diag(B)‖∞ · poly (1/ε) (here diag(B) denotes matrix B restricted to its diagonal),

E max
x∈[−1,1]V

〈x,BVδx〉 = max
x∈[−1,1]V

〈x,Bx〉 ± εn .

Assuming these two results we conclude our first step with the proof of the proxy graph theorem.

Proof of Theorem 5.3. Every vertex has weighted degree 2/n in both G and H. Hence, the diagonal
entries and the row and column sums of B := cL+(H) − L+(G) are bounded by O(1/n). Since
the graphs have degrees at least ∆, we also have ‖B − diag(B)‖∞ 6 O(1/∆n). Thus, by Lemma 5.5
(applied to n ·B),

E max
x∈[−1,1]V

〈x,BVδx〉 6 max
x∈[−1,1]V

〈x,Bx〉+ ε 6 ε . (6)

For the last inequality, we used that B is negative semidefinite (by assumption (5)).
On the other hand, Lemma 5.4 implies for A := cL+(H[Vδ])− L+(G[Vδ]),

max
X∈M

A •X 6 O
(
εVδ log

(
1
εVδ

))
, (7)

where εVδ is defined as εVδ := maxx∈[−1,1]V 〈x,Ax〉 (notice that A depends on Vδ). Here, we also
used that H[Vδ] and G[Vδ] are normalized so that their total edge weight is 1.

Let us estimate the expectation of εVδ ,

E εVδ = E max
x∈[−1,1]V

〈x,Ax〉

6 E max
x∈[−1,1]V

〈x,BVδx〉+ E‖A−BVδ‖TV

6 ε+ E‖L(G[Vδ])− L(G)Vδ‖TV + E‖L(H[Vδ])− L(H)Vδ‖TV

(using (6) and triangle inequality)

6 3ε . (8)

In the last inequality, we used if G is normalized and regular with degree at least ∆, then the
expectation of E‖L(G[Vδ])−L(G)Vδ‖TV is bounded by ε (same for H). See Lemma A.2 for a proof.

We can now conclude the proof of the theorem

c · E sdpM(H[Vδ])− E sdpM(G[Vδ])
6 E max

X∈M
(cL+(H[Vδ])− L+(G[Vδ])) •X (by definition of sdpM)

6 O (E f(εVδ)) (using (7), where f(x) = x log(1/x))
6 O (f(3ε)) (using (8) and concavity of f)
= O (ε log(1/ε)) .

�
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5.2 Second and third step – subsampling the third power

In this section, we show that taking H = G3 in Lemma 5.3 allows us to prove our main theorem
(Theorem 5.2. (The graph G3 corresponds to the uniform distribution over walks of length 3 in
G.) We need the following properties of G3.

Lemma 5.6 (Special case of Lemma 8.1). Let G be normalized regular graph Then,

L+(G) � 1
3L+(G3) .

Proof Sketch. Let A be the adjacency matrix of G scaled up by a factor of n/2 so that each degree
in G is 1 and A is a stochastic matrix. Note that L+(G) = 2/n(I + A) and L+(G3) = 2/n(I + A3).
The matrices I + A and I + A3 have the same eigenvectors. Therefore, to prove the lemma it is
enough to verify that 1 + λ > 1/3(1 + λ3) for every eigenvalue λ of A. Since A is stochastic, all its
eigenvalues lie in the interval [−1, 1]. It is easy to verify that 1 + x > 1/3(1 + x3) for all x ∈ [−1, 1].
(See Lemma 8.1 for details.) �

Lemma 5.7 (See Section 8.1). Let G be a normalized ∆-regular graph with vertex set V and let
G′ be the (weighted) graph on Vδ defined by the following edge distribution:

– sample a random edge (i, j) from G,

– choose u and v to be random neighbors of i and j in Vδ (if i or j have no neighbor in Vδ,
choose a random vertex in Vδ),

– output (u, v) as an edge in G′.

Then for δ > ∆−1poly(1/ε),
E‖L+(G3[Vδ])− L+(G′)‖TV 6 ε .

Proof Sketch. If every vertex of G has the same number of neighbors in Vδ, then the two graphs
G3[Vδ] and G′ are identical. For δ > ∆−1poly(1/ε), the following event happens with probability
1 − ε: Most vertices of G (all but an ε fraction) have up to a multiplicative (1 ± ε) error the
same number of neighbors in Vδ. Conditioned on this event, it is possible to bound ‖L+(G3[Vδ])−
L+(G′)‖TV by O(ε). Assuming this fact, the lemma follows. �

Lemma 5.8. Let G be a normalized ∆-regular graph. Then for δ > ∆−1 · poly(1/ε) and for any
reasonable relaxation sdpM,

E sdpM(G3[Vδ]) > sdpM(G)− ε .

Proof. Let G′ be as in Lemma 5.7 and let X ′ be an optimal solution for sdpM(G′) so that L+(G′)•
X ′ = sdpM(G′). For a mapping F : V → Vδ, let AF (X ′) denote the matrix (X ′F (i),F (j))i,j∈V ∈
RV×V . (Here, AF can be thought of a linear (super-)operator, that maps matrices in RVδ×Vδ to
matrices in RV×V .) Since M is reasonable (see Definition 5.1), we have AF (X ′) ∈ M for any
mapping F : V → Vδ. Let F(Vδ) denote the distribution over mappings F : V → Vδ, where for
every vertex i ∈ V , we choose F (i) to be a random neighbor of i in Vδ (and if i has no neighbor
in Vδ, we choose F (i) to be a random vertex in Vδ). For convenience, we introduce the notation
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N(i, Vδ) for the set of neighbors of i in Vδ (if i has no neighbor in Vδ, we put N(i, Vδ) = Vδ). We
define AF(Vδ)

:= EF∼F(Vδ)AF . Since M is convex, we also have

AF(Vδ)(X
′) = E

F∼F(Vδ)
AF (X ′) =

(
E

F∼F(Vδ)
X ′F (i),F (j)

)
i,j∈V

∈M .

Let A = (aij) be the adjacency matrix of G and let A′ = (a′uv) be the adjacency matrix of G′.
Recall that ‖A‖TV = ‖A′‖TV = 2. Hence, aij is the probability that a random edge of G connects
i to j and a′uv is the probability that a random edge of G′ connects u to v (see Lemma 5.7 for the
edge distribution of G′). We write ij ∼ G and uv ∼ G′ to denote a random edge in G and G′,
respectively. We claim that A • AF(Vδ)(X

′) = A′ •X ′,

A • AF(Vδ)(X
′) = 2 E

ij∼G
AF(Vδ)(X

′)ij

= 2 E
ij∼G

E
F∼F(Vδ)

X ′F (i),F (j)

= 2 E
ij∼G

E
u∈N(i,Vδ)

E
v∈N(j,Vδ)

X ′uv

= 2 E
uv∼G′

X ′uv = X ′ •A′ . (9)

Note that the diagonal entries of both X ′ and AF(Vδ)(X
′) are all ones. Thus, we also have L+(G) •

AF(Vδ)(X
′) = L+(G′) •X ′. It follows that

sdpM(G) 6 L+(G) • AF(Vδ)(X
′) (using AF(Vδ)(X

′) ∈M)

= L+(G′) •X ′ (using (9))
= sdpM(G′) . (10)

We can now finish the proof of the lemma,

E sdpM(G3[Vδ]) > E sdpM(G′)− E‖LG3[Vδ] − LG′‖TV

> sdpM(G)− ε (using (10) and Lemma 5.7) .

�

5.3 Putting things together

By combining the lemmas in this section, we can prove Theorem 5.2.

Proof of Theorem 5.2. We need to show that

1
3sdpM(G)−O(ε) 6 E sdpM(G[Vδ]) 6 sdpM(G) +O(ε) .

The upper bound on E sdpM(G[Vδ]) is easy to show. We consider an optimal solution X ∈ M for
G, so that L+(G) • X = sdpM(G). Then, we need to show that the value of X is preserved for
G[Vδ] in expectation, i.e.,

EL+(G[Vδ]) •X 6 L+(G) •X + ε .

This follows from Lemma A.1. We leave the details to the reader.
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We combine the lemmas in this section to prove the lower bound. Notice that by Lemma 5.6,
we can choose H = G3 (for c = 1/3) in Lemma 5.3. With this choice of H, we can finish the proof
of the theorem,

E sdpM(G[Vδ]) > 1
3 · E sdpM(G3[Vδ])− ε (using Lemma 5.3)

> 1
3 · sdpM(G)− 4

3ε (using Lemma 5.8) .

�

6 Reduction to Quadratic Program over the `∞-Ball

Previously, we reduced the problem of arguing about the value of some strong SDP relaxation to a
much simpler quadratic form. The key ingredient in this step is the rounding algorithm by Charikar
and Wirth [CW04]. The details are given next.

We consider the problem to optimize the quadratic form given by A ∈ Rn×n over the `∞-
ball Bn

∞ = [−1, 1]n,
q(A) def= max

x1,...,xn∈[−1,1]

∑
ij

aijxixj = max
x∈Bn∞

〈x,Ax〉 . (11)

A natural semidefinite relaxation replaces every xi by a vector of norm at most 1,

q̃(A) def= max
v1,...,vn∈Rd
‖vi‖261

∑
ij

aij〈vi, vj〉 = max
X�0,∀i : Xii61

A •X . (12)

It is clear that q̃(A) > q(A). The next lemma shows that q̃(A) cannot be much larger than q(A).
The lemma essentially appears in the paper of Charikar and Wirth [CW04]. We will include a proof
for completeness.

Lemma 6.1. Let A ∈ Rn×n. Suppose q̃(A) = ε‖A‖TV > 0. Then,

q(A) > Ω
(

ε
log(1/ε)

)
· ‖A‖TV .

Proof. We rescale A such that ‖A‖TV = 1. Let v1, . . . , vn be vectors that achieve the maximum
in (12). Let ξ1, . . . , ξn be jointly distributed (symmetric) Gaussian variables such that E ξiξj =
〈vi, vj〉/t. Here t > 1 is a parameter that we choose later. Let xi be the truncation of ξi to the
interval [−1, 1], that is,

xi =


1 if ξi > 1,
ξi if ξi ∈ [−1, 1],
−1 if ξi < −1.

By construction, the variance of ξ is at most 1/t. Hence, the event xi = ξi has probability at least
1− 2−Ω(t) (using standard tail bounds for Gaussian variables). Similarly, the covariances of the ξi
and xi variables match up to an error of 2−Ω(t). Specifically, for all i, j ∈ [n],

E ξiξj = Exixj + E(ξi − xi)xj + E ξi(ξj − xj)

= Exixj ±O
(
E(ξi − xi)2

)1/2 (by Cauchy–Schwartz and Ex2
i 6 1, E ξ2

i 6 1)

= Exixj ± 2−Ω(t) (by Fact A.3)
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Now we can relate ε to the expected value of the quadratic form A evaluated at the random vector x,

ε =
∑
ij

aij〈vi, vj〉 = tE
∑
ij

aijξiξj = tE
∑
ij

aijxixj ± t2−Ω(t) .

Hence, q(M) > E〈x,Ax〉 > ε/t− 2−Ω(t). If we choose t logarithmic in 1/ε, we get the desired lower
bound on q(M). �

7 Subsampling theorem for quadratic forms

We now turn to our main technical tool for the proxy graph theorem—a subsampling theorem for
quadratic forms. Our theorem will apply to any n × n matrix B = (bij) which is β-dense in the
sense that it is the Laplacian of a β-dense graph (i.e., a graph with minimum degree at least 1/β
whose adjacency matrix is normalized to have every row sum to 1). We will actually need a need
a slight relaxation of this notion, and hence say B is (c, β)-dense if:

1. for all i ∈ [n], |bii| 6 c, and
∑

j 6=i |bij | ∈ [1/c, c],

2. for all i, j ∈ [n], i 6= j, |bij | 6 β.

Matrices of this kind are similar to the Laplacian of a regular graph G of total edge weight n. This
is a factor n larger than our usual normalization. It will later in the proof be convenient to work
with matrices whose rows sum up to 1 rather than 1/n.

Theorem 7.1. Let B denote a (c, β)-dense symmetric n× n matrix for some β > 0 and constant
c > 0. Pick U ⊆ [n] at random with |U | = δn, where δ > Cε−8 log(1/ε)2β for sufficiently large
constant C. Then, ∣∣∣∣E [max

x∈Bn∞
〈x,BUx〉

]
− max
x∈Bn∞

〈x,Bx〉
∣∣∣∣ 6 εn . (13)

The theorem will follow from the next two main lemmas. The first lemma shows that the
subsampling step is random enough to give a concentration bound for large subsets of Bn

∞.

Lemma 7.2 (Concentration). Let X ⊆ Bn
∞ of size |X| 6 exp(ε2δn/20). Then,

E
[
max
x∈X
〈x,BUx〉

]
6 max

x∈X
〈x,Bx〉+ εn (14)

The second main lemma shows that the maximum of the subsample has some structure in the
sense that it is characterized by few vectors in Bn

∞.

Lemma 7.3 (Structure). There is a set X ⊆ Bn
∞ of size |X| 6 exp(ε2δn/40) such that

E
[

max
x∈Bn∞

〈x,BUx〉
]
6 E

[
max
x∈X
〈x,BUx〉

]
+ εn . (15)
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Proof of Theorem 7.1. In one direction,

E
[

max
x∈Bn∞

〈x,BUx〉
]
6 E

[
max
x∈X
〈x,BUx〉

]
+ εn (by Lemma 7.3)

6 E
[
max
x∈X
〈x,Bx〉

]
+ 2εn (by Lemma 7.2)

6 E
[

max
x∈Bn∞

〈x,Bx〉
]

+ 2εn .

In the other direction, notice that

max
x∈Bn∞

〈x,Bx〉 6 E
[

max
x∈Bn∞

〈x,BUx〉
]

+ εn ,

simply by considering a maximizing assignment x ∈ Bn
∞ to the LHS and arguing that 〈x,BUx〉

is concentrated around its expectation 〈x,Bx〉. (More formally, this will be done in the proof of
Lemma 7.2.) �

Remark 7.4. Feige and Schechtman showed a similar theorem for the max-cut value in graphs
when subsampled to logarithmic degree. Their proof as well as ours are modifications of the
original property testing bound of Goldreich, Goldwasser and Ron [GGR98]. There are a few
differences between their setting that might be worth pointing out. First, our maximization problem
is defined over the (continuous) `∞-ball rather than the Boolean hypercube. This results in some
discretization issues. Secondly, we consider matrices that could be different from the Laplacian of
a graph. In particular, we allow negative diagonal entries. This is the reason the maximum in our
case need not be attained at a vertex. Finally, even in the case of maximizing the Laplacian of a
graph over cut vectors, we are interested in constant degree graphs where several parameters are
no longer concentrated (such as the maximum degree of the graph).

7.1 Proof of Concentration Lemma

The proof starts as follows: We fix a vector x ∈ Bn
∞ and sample sets U, V ⊆ [n] independently

at random each of size |U | = |V | = δn. We then argue about concentration of 〈x,AU×V x〉. The
argument is broken up into two steps.

Remark 7.5. To ease notation we will assume that B is (c, β)-dense for c = 1. Going from c = 1
to a larger constant c > 1 is a straightforward modification of the proofs and affects our bounds
only by constant factors.

Lemma 7.6. Let x ∈ [−1, 1]n and ε > 0. Sample U ⊆ [n] uniformly at random of size |U | = δn.
Then,

Pr
(
〈x,AU×[n]x〉 > δ〈x,Ax〉+ εδn

)
6 exp(−ε2δn/4). (16)

Proof. The proof follows from Azuma’s inequality (see Lemma A.4). We define the mapping f(U) =∑
i∈U,j∈[n] aijxixj , where we think of U as a tuple (i1, . . . , iδn) each coordinate being an index in [n].

By the normalization of the rows of A, the function has Lipschitz constant at most 2 in the sense
that replacing any coordinate i by a i′ ∈ [n] can change the function value by at most 2. Hence,
Azuma’s inequality implies that Pr(f > E f + t) 6 exp(−t2/4δn). Setting t = εδn thus finishes the
proof. �
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Let U ⊆ [n] be a set of cardinality δn. Denote by Atrunc
U×[n] the matrix in which we replace aij by

0 whenever
∑

i′∈U,i′<i |aij | > 2δ. In other words, we truncate the columns of the matrix AU,[n] at
weight 2δ. With some abuse of notation let Atrunc

U×V denote the matrix Atrunc
U×[n] in which we restricted

the columns to the set V.
In the following lemma we do need the fact that δ > poly(1/ε)β.

Lemma 7.7. Pick U, V ⊆ [n] at random with |U | = |V | = δn with δ > Cε−2 log(1/ε)β. Then, we
have

E ‖AU×V −Atrunc
U×V ‖TV 6 εδ

2n . (17)

Proof. In order to prove the first claim, we will prove that for every column j ∈ [n] the expected
truncation in column j is bounded by εδ. The claim will then follow by linearity of expectation and
the fact that |V | = δn. (We will actually derive a somewhat stronger bound in terms of ε.)

So let us fix a column j ∈ [n] and consider the random variable X =
∑

i∈U |aij | . We can express
X as a sum of independent variables X =

∑|U |
i=1Xi, , where Xi are identically distributed so that

Xi assumes each value |akj | with probability 1/n. We note that EXi = 1
n

∑
i |aij | = 1

n . Let us
compute the fourth moment of X − EX. First observe that E(Xi − EXi)4 6 O(E |Xi|4) and

E |Xi|4 6
1
n

|U |∑
i=1

|aij |4 6
1
n
β3 ,

where we used the fact that
∑

i |aij |4 is maximized when there are exactly 1/β terms each of
magnitude β. In this case

∑
i |aij | 6 β3. Similarly,

E(Xi − EXi)2(Xk − EXk)2 6
O(1)
n2

|U |∑
i=1

a2
ija

2
kj 6

O(β2)
n2

.

By independence and the fact that E(Xi − EXi) = 0, we therefore have

E(X − EX)4 =
∑
i

E(Xi − EXi)4 +
∑
i,k

E(Xi − EXi)2 E(Xk − EXk)2

6 δn · O(β3)
n

+ (δn)2 · O(β2)
n2

= O(δβ3) . (using β < δ)

Thus, by Markov’s inequality,

Pr(|X − EX| > t) 6
E(X − EX)4

t4
6
O(1)δβ3

t4
6
O(1)δ4ε8

t4
, (18)

since β 6 ε2δ.
Notice that if X − EX 6 tδ, then we truncate at most weight tδ. Therefore we can bound the

expected truncation by integrating (18) over t > 1,∫
t>1

tδ Pr(X − EX > tδ)dt 6
∫
t>1

tδ
O(1)ε8δ3

t3δ3
dt 6 O(ε8δ)

∫
t>1

1
t2

dt 6 O(ε8δ) . (19)

The claim follows. �
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Lemma 7.8. Let x ∈ [−1, 1]n and ε > 0. Let U ⊆ [n] be of a fixed set of cardinality δn. Sample
V ⊆ [n] uniformly at random where |V | = δn. Then,

Pr
(
〈x,Atrunc

U,V x〉 > δ〈x,Atrunc
U,[n] x〉+ εδn

)
6 exp(−ε2δn/16). (20)

Proof. The proof is analogous to that of Lemma 7.6. We consider f(V ) =
∑

i∈U,j∈V aijxixj and
observe that by the normalization of Atrunc

U,[n] (every column has weight at most 2δ) the function has
Lipschitz constant at most 4δ. Hence, by Azuma’s inequality, Pr(f > E [f ] + t) 6 exp(−t2/16δ3n).
Setting t = εδ2n finishes the proof. �

We also need a concentration bound for diagonal matrices given in the following.

Lemma 7.9. Let x ∈ Bn
∞ and suppose D = diag(d1, . . . , dn). Then,

Pr(|δ−1〈x,DUx〉 − 〈x,Dx〉| > εn) 6 2 exp(−ε2δn/4) . (21)

Proof. The function f(U) = δ−1xDUx = δ−1
∑

i∈U dix
2
i has Lipschitz constant 2δ−1. The claim

then follows from Azuma’s inequality. �

The next corollary summarizes what we have shown so far.

Corollary 7.10. Let X ⊆ Bn
∞ of size 2−εδn/20. Pick U, V ⊆ [n] at random with |U | = |V | = δn

where δ > ε−2β. Then,

E
[
max
x∈X
〈x, δ−2AU,V x〉

]
6 max

x∈X
〈x,Ax〉+ εn. (22)

Proof. Combining Lemma 7.6 with Lemma 7.8 and the union bound over x ∈ X, we obtain that

E
[
max
x∈X
〈x,Atrunc

U,V x〉
]
6 max

x∈X
E
[
〈x,Atrunc

U,V x〉
]

+ εδ2n. (23)

On the other hand, by Lemma 7.7,

E
[
‖AU,V −Atrunc

U,V ‖
]
6 εδ2n

which immediately implies that |〈x,AU,V x〉 − 〈x,Atrunc
U,V x〉| 6 εδ2n for all x ∈ Bn

∞. In particular
together with Equation 23,

E
[
max
x∈X
〈x,AU,V x〉

]
6 max

x∈X
E [〈x,AU,V x〉] +O(εδ2n) .

Noting that E〈x,AU,V x〉 = δ−2〈x,Ax〉 and scaling up the previous bound by δ−2 finishes the
claim. �

We are now ready to prove the first main lemma.

Proof of Lemma 7.2. First of all, we can get rid of the matrix D by noting that

E
∣∣∣∣max
x∈X

δ−1〈x,DU×Ux〉 − 〈x,Dx〉
∣∣∣∣ 6 εn (24)
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by Lemma 7.9.
It remains to show concentration for maxx∈X AU×Ux. The proof is by reduction to the case

where we sampled U, V independently of each other. Partition [n] = S1 ∪ S2 ∪ · · · ∪ Sk such that
‖Aij‖TV 6 ε2n for all r ∈ [k]. Notice that k 6 O(1/ε) is sufficient. Furthermore, let Ur = U ∩ Sr.
One can show that with probability 1− o(1), for all r ∈ [k] we have |Ur| ∈ [ 1

2k |U |,
2
k |U |].

Notice that ∑
r∈[k]

‖AUr×Ur‖TV 6 ε‖AU×U‖TV

and hence the LHS negligible in the sense that for any x ∈ X, the contribution to 〈x,AU,Ux〉 coming
from diagonal matrices is at most O(εδ2n).

On the other hand, whenever i > j, we are in the case where we sample sets Ui and Uj
independently of each other. Thus we can apply and can apply Corollary 7.10 with error parameter
ε′ = ε2 (forcing us to take δ/k > ε−4 log(1/ε)2). This allows us to sum the expected error over all
i > j and thus conclude the theorem. �

7.2 Proof of Structure Lemma

In this section we will restrict our attention to coordinates in U. Coordinates in [n]\U will play no
important role in this part of the argument. Since |U | = δn, we will think of the entries (aij)j∈U
as rescaled by a factor δ−1. Hence, |aij | 6 β/δ (rather than β).

Lemma 7.11. Fix x ∈ Bn
∞ and i ∈ U. Suppose S ⊆ U is chosen uniformly at random such that

|S| = α|U |. Then,

E
S

∣∣∣∣∣∣ 1α
∑
j∈S

aijxj −
∑
j∈U

aijxj

∣∣∣∣∣∣ 6 1
α

√∑
j∈U
|aij |2 . (25)

Proof. We can write 1
α

∑
j∈S aijxj as a sum X =

∑
j∈U Xj so that the Xj ’s are independent

random variables satisfying |Xj | 6 1
α |aij |. Moreover, µ = E [X] =

∑
j∈U aijxj . We will use the

fact E |X − µ| 6
√

E(X − µ)2. By independence, E(X − µ)2 =
∑

j∈U E(Xj − µj)2 . Notice that
|Xj − µj | 6 |Xj | = 1

α |aij | and therefore E(Xj − µj)2 6 1
α |aij |. Hence,

E |X − µ| 6
√

E(X − µ)2 6
1
α

√∑
j∈U
|aij |2

which is what we claimed. �

From here on, let
Zi =

∑
j∈U
|aij |2.

We will bound the expectation of
√
Zi taken over the random choice of U.

Lemma 7.12. For all i ∈ U,

E
U

√
Zi 6 O

(√
β

δ

)
.
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Proof. Notice that Zi is a sum of independent with expectation µ = δ
∑

j∈[n] |aij |2. It is easy to see
that µ is maximized when there are exactly 1/β nonzero entries in A each of magnitude β/δ (recall

our rescaling by δ−1). Hence, µ 6 δ
β ·
(
β
δ

)2
= β

δ .

On the other hand, E
√
X 6

√
EX by the Cauchy-Schwarz inequality. Hence, E

√
Zi 6 O(β/δ).

�

Remark 7.13 (How to think about the parameters). Consider the bound we obtained in (25), i.e.,√
Zi/α. This bound will be important for us throughout the remainder of the proof. The reader

should think of α as a small polynomial in ε, say, ε3. The exact choice will be clear later. However,
at this point it is important to note that we have the freedom to choose β/δ � α2 thus making the
bound nontrivial by choosing δ some poly(1/ε) factor larger than β. This will later determine the
sample complexity of our theorem. Let us therefore denote

p = β/δ

and think of it as some polynomial in ε.

Greedy Assignments. In what follows we consider sets S ⊆ U and T ⊆ U where S is chosen
uniformly at random from U\T of size |S| = α|U |. We will describe a natural way of extending an
assignment for S, i.e., x ∈ [−1, 1]S to an assignment x̃ ∈ [−1, 1]S∪T so as to maximize a specific
quadratic form we are interested in. For this purpose we define the greedy assignment x̃ ∈ [−1, 1]T

(with respect to the coordinates in S) by putting

x̃i = arg max
y∈[−1,1]

1
α

∑
j∈S

aijxjy − diy2 , (26)

for all i ∈ T and x̃i = xi for all i 6∈ T.
Let us point out the following simple observation showing that a small change in the linear term

of Equation 26 does not change the maximum by much:

|a− a′| 6 ε =⇒
∣∣∣∣ max
y∈[−1,1]

ay − dy2 − max
y∈[−1,1]

a′y − dy2

∣∣∣∣ 6 O(ε) . (27)

In particular, the maximizer of a′y − dy2 has the same value under ay − dy2 as the maximizer of
ay − dy2 up to additive O(ε) (for any fixed y the difference is at most (a′ − a)y and use this for
both maxima). The next lemma is a simple consequence of this observation.

Lemma 7.14. Let x ∈ [−1, 1]U and let x̃ ∈ [−1, 1]T denote the greedy assignment obtained from
the coordinates in S via (26). Then,

E
S⊆U\T

∣∣∣∣∣∣ max
y∈[−1,1]T

∑
i∈T

∑
j∈U\T

aijyixj − diy2
i −

∑
i∈T

∑
j∈U\T

aij x̃ixj − dix̃2
i

∣∣∣∣∣∣ 6
∑
i∈Ul

O

(
1
α

√
Zi

)
. (28)

Proof. From Lemma 7.11 (applied to S and U\T ) it follows that for all i ∈ T,

E

∣∣∣∣∣∣
∑
j∈U\T

aijxj −
∑
j∈S

aijxj

∣∣∣∣∣∣ 6 O
(

1
α

√
Zi

)
.

Hence, the claim follows from the remark after Equation 27. �

21



Later, we may also put T = U in which case we extend an assignment x ∈ [−1, 1]S to all
coordinates in U , i.e, x̃ ∈ [−1, 1]U . In this case, we let φ(S) be the set of all greedy assignments
which are obtained as follows: partition U and S into r parts U1 ∪ · · · ∪ Ur and S1 ∪ · · · ∪ Sr, then
assign coordinates in Uk greedily according to coordinates in Sk.

Since our error bound above only works for coordinates in U\T, we cannot use the previous
lemma directly to argue about φ(S). Nevertheless the proof of the next lemma is essentially a
reduction to Lemma 7.11 using a partitioning argument similar to the one we saw in the proof of
the randomness lemma.

Lemma 7.15. For every positive integer r > 0, we have

max
x∈Bn∞

〈x,BUx〉 6 E
S

[
max
x∈φ(S)

〈x,BUx〉
]

+
1
δ

∑
i∈U

O
( r
α

√
Zi

)
+

1
r
‖BU‖tv . (29)

Proof. Let x ∈ [−1, 1]n be any vector that maximizes 〈x,ATx〉. We will exhibit an assignment
x̃ ∈ φ(S) which demonstrates the claim. To this end we randomly partition U into r pairwise
disjoint sets U = U1 ∪ · · · ∪Ur of equal size. That is, |Ul| = 1

r |U |. We will also pick Sl uniformly at
random from U\Ul of size |Sl| = α

r |U |. Let us define a sequence of vectors x0 = x, x1, . . . , xr and
show that

E〈xl, BUxl〉 > E〈xl−1, BUx
l−1〉 − 1

δ

∑
i∈Ul

O
( r
α

√
Zi

)
− 1
r2
‖BU‖tv , (30)

for all 0 < l 6 r. Inductively, let xl be equal to xl−1 in all coordinates except Ul. The coordinates
Ul are induced from Sl via equation (26), i.e.,

∀i ∈ Ul : xli = arg max
y∈[−1,1]

1
α

∑
j∈Sl

aijx
l−1
j y − diy2 (31)

We observe that xr ∈ φ(S) as desired.
The plan is to apply, at each step l, Lemma 7.14 to the sets Sl, Ul and U.
In order to compare xlAUxl with xl−1AUx

l−1, notice that the critical terms are indexed by
i ∈ Ul, j ∈ U (and by symmetry i ∈ U, j ∈ Ul). The remaining terms where neither i ∈ Ul or j ∈ Ul
have not changed. Note that for the moment we ignore all entries aij of the matrix where both
i ∈ Ul, j ∈ Ul and i 6= j for some l ∈ [r]. Later we will bound the contribution of such terms.

By Lemma 7.14, in expectation taken over Sl,∑
i∈Ul

∑
j∈U\Ul

aijx
l
ix
l
j −

∑
i∈Ul

di(xli)
2 =

∑
i∈Ul

∑
j∈U\Ul

aijx
l
ix
l−1
j −

∑
i∈Ul

di(xli)
2

> max
x∈[−1,1]Ul

∑
i∈Ul

∑
j∈U\Ul

aijxix
l−1
j −

∑
i∈Ul

dix
2
i −

∑
i∈Ul

O
( r
α

√
Zi

)
>
∑
i∈Ul

∑
j∈U\Ul

aijx
l−1
i xl−1

j −
∑
i∈Ul

di(xl−1
i )2 −

∑
i∈Ul

O
( r
α

√
Zi

)
.

On the other hand, ∑
i,j∈Ul

|aij | 6
1
r2

∑
i,j∈U

|aij | 6
1
r2
δ‖BU‖tv .
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Recall BU = δ−2AU×U − δ−1dI, but take into account that we already rescaled aij by δ−1 at the
beginning of the section. Therefore we only need to rescale aij and di both by δ−1 and we get

E〈xl, BUxl〉 > E〈xl−1, BUx
l−1〉 − 1

δ

∑
i∈Ul

O
( r
α

√
Zi

)
− 1
r2
‖BU‖tv ,

and thus by iterating over l ∈ [r],

E
[

max
x∈φ(S)

〈x,BUx〉
]
> E〈xr, BUxr〉 > E〈x0, BUx

0〉 − 1
δ

∑
i∈U

O
( r
α

√
Zi

)
− 1
r
‖BU‖TV .

But x0 does not depend on S and hence

E〈x0, BUx
0〉 = max

x∈Bn∞
〈x,BUx〉

proving the claim. �

Fixing the parameters. Let us fix some of the parameters in the previous lemma and bound
the error in expectation taken over U ⊆ [n]. This is done next.

Lemma 7.16. Let α > 0. Fix r = C/ε and
√
p = αε2/C for sufficiently large constant C > 0.

Then,

E

[
1
δ

∑
i∈U

O
( r
α

√
Zi

)
+

1
r
‖BU‖tv

]
6 εn .

Proof. Clearly, E [|U |] = δn and E
[√
Zi
]

= O(
√
p), by Lemma 7.12. Also E [‖BU‖TV] = O(n).

Hence, we want

O

(
r
√
p

α
+

1
r

)
6 ε.

The bound follows by rearrangement. �

Discretized greedy assignments. We consider a discretized variant of φ(S), defined as

ψ(S) = {x̃ | x ∈ ([−1, 1] ∩ εmZ)S}

for some constant m. Notice that |ψ(S)| 6 exp(O(|S| log(1/ε))) where |S| = αδn. We will thus set

α = ε2/C log(1/ε)

for C large enough so that αδn log(1/ε) 6 ε2δn/40. Given Lemma 7.16 this will result in

p 6 (αε2/C)2 = ε8/C ′ log(1/ε)2

which gives the sample complexity promised in Theorem 7.1. This means we are done if we can
show the following lemma.

Lemma 7.17.

E
[

max
x∈Bn∞

〈x,BUx〉
]
6 E

[
max
x∈ψ(S)

〈x,BUx〉
]

+ εn. (32)
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Proof. Assume the same setup as in Lemma 7.15 and specifically consider the sequence of assign-
ments x0, x1, . . . , xr which was used to demonstrate the claim. We will define a new sequence
x0, x̄0, x1, x̄1, . . . , x̄r−1, xr, x̄r. Here, x̄l is obtained from xl by rounding each coordinate in S to the
nearest integer multiple of ε/r in the interval [−1,−1] and inducing the others as previously (but
from the new values).

Therefore we are done if we can argue that x̄lBU x̄l > xlBUxl − ε
rn. However, this is clear since

at every step l,

1
ε′

∑
j∈Sl

aij x̄
l−1
j =

1
ε′

∑
j∈Sl

aij

(
xl−1
j ± ε

r

)
=

1
ε′

∑
j∈Sl

aijx
l−1
j ± ε

rε′

∑
j∈Sl

|aij | .

By observation (27) this bound translates to an additional error of ε
r

∑
r∈Sl |aij | at step l. Summing

up over all l and i this amounts to a total error of ε
∑

i,j∈U |aij | = O(εδ2n) in expectation. �

Choosing S independently of U. The reader may have noticed that so far we are choosing S
randomly as a subset of U. Hence, the set ψ(S) that we constructed above depends on the choice
of U. To finish the proof of the Structure Lemma we need a single set X ⊆ Bn

∞ that is independent of
the choice of U. This is easy to accomplish from what we have. Simply pick S and U independently
and consider U ′ = U ∪ S. Since |S| 6 ε2|U |, the difference ‖BU − BU ′‖TV is negligible. Therefore,
we may exchange U ′ for U in Lemma 7.17 so that the choice of S and U is independent. Since the
lemma is true in expectation taken over S and U, there must exist a fixed choice of S for which the
lemma is true in expectation taken over U. But then we may take X = ψ(S) in order to conclude
the proof of the Structure Lemma.

Remark 7.18 (Simplifications in the bipartite case). We briefly remark that our proof is somewhat
simpler when considering quadratic forms maxx,y∈Bn∞〈x,Ay〉. In this case, we can get around the
partition argument in the proof of Lemma 7.2. Likewise in the proof of Lemma 7.15 we no longer
need a partition of size r ≈ 1/ε but instead we can find near optimal greedy assignments x̃, ỹ in two
steps. These simplifications result in polynomial (in 1/ε) improvements in the sample complexity
of the theorem. The details are left to the reader.

7.3 Property testing PSD matrices

We will illustrate one application of the previous theorem.

Definition 7.19. We say that a matrix B is ε-far from positive semidefinite definite if there exists
a vector x ∈ Bn

∞ such that 〈x,−Bx〉 > ε.

Recall that B is positive semidefinite if and only if x(−B)x 6 0 for all x ∈ Bn
∞. Notice we could

have defined distance in terms of the operator norm which is to say that there exists an x ∈ Bn
2

such that 〈x,−Bx〉 > −ε. However, since Bn
2 ⊆ Bn

∞ this would be a stronger notion of “ε-far” thus
applying to fewer matrices.

Theorem 7.20. Let B by a symmetric (O(1), D/n)-dense matrix. Then there is a property testing
algorithm A such that:

“No” case If B is ε-far from being positive semidefinite, then A rejects B with probability greater
than 2/3.
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“Yes” case If B is positive semidefinite, then A rejects B with probability less than 1/3.

Complexity A reads only poly(D, ε−1) many entries of B and runs in time poly(D, ε−1)

Proof. Let k = poly(D, ε−1). The algorithm will sample a random k × k minor from B, call it
B′. To get an efficient test, i.e., runtime poly(D, ε−1), we will use the rounding algorithm from
Section 6. Specifically, we check if

max
X�0,∀i : Xii61

B′ •X 6 ε/2 . (33)

“Yes” case IfB was positive semidefinite, then maxx∈Bn∞〈x,−B, x〉 6 0 and hence by Theorem 7.1
we know that with high probability maxx∈Bn∞〈x,−B

′x〉 6 ε2 (for large enough k). But then,
by Lemma 6.1, we know that the LHS in (33) is less than O(ε2 log(1/ε)) 6 ε/2. Hence, our
algorithm passes.

“No” case Here we know that there is an x ∈ Bn
∞ such that 〈x,−Bx〉 > ε. It is not hard to show

that with high probability 〈x,−B′x〉 > ε/2. This follows, for instance, from Lemma A.1 (an
application of Chebyshev’s inequality). Since the semidefinite program in (33) is a relaxation
of the quadratic form and can therefore only be larger, it follows that the test will fail.

�

8 Proxy graphs from graph powers

In this section, we go back to the construction of proxy graphs from graph powers as was need in
the proof of our main theorem. Here, we will fill in the details that were omitted from the proofs
of Lemma 5.6 Lemma 5.7.

Our proxy graphs will be a weighted graph power of the original graph. Graph powers are
a natural candidates for proxy graphs because they satisfy the assumption of the proxy graph
theorem as shown in the next lemma.

Lemma 8.1. Let G be a normalized ∆-regular graph. Let k > 0 be an odd number. Then,
1
2L+(G) � L+(Gk) � kL+(G) , (34)

where Gk is the (normalized) graph corresponding to the uniform distribution over walks of length
k in G. (The same claim is true when replacing L+ by L.)

Proof. For the purpose of this proof, we scale the graphs G and Gk so that every vertex has
(weighted) degree 1. The eigenvalues of L+(G) are given by 1 + λi(A) for i ∈ [n], whereas the
eigenvalues of L+(Gk) are given by 1 + λi(A)k, where A is the adjacency matrix of G (a stochastic
matrix by our scaling). Further, L+(G) = I +A and L+(G3) = I +A3 have a common eigenbasis.
Hence, it suffices to verify the bound in Equation (34) for each of the eigenvalues. More precisely,
it suffices to show

1
2 −

1
2x 6 1− xk 6 k(1− x).

for x ∈ [−1, 1], since λi(A) ∈ [−1, 1].
To see why the first inequality holds, consider x < 0. In this case 2(1 − xk) > 2 (for odd k),

but 1− x 6 2. When x > 0, then x > xk and hence 1− x 6 1− xk. The second inequality follows
from the fact that

1− xk = (1− x)(1 + x+ x2 + · · ·+ xk−1) 6 (1− x)k . �
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8.1 Subsampling the third power

In the following let G = (V,E) be a ∆-regular graph and δ > poly(ε−1)∆−1. Further denote
W = Vδ. The following claim implies Lemma 5.7 which was needed in the proof of our main
theorem.

Lemma 8.2. Let D1 denote the uniform distribution over edges in G3[W ]. Let D2 denote the
distribution obtained as follows:

1. Pick a random edge (v, v′) ∈ E.

2. Choose uniformly at random w ∈ NW (v) and w′ ∈ NW (v′).

3. Output (w,w′).

Then,
E
W

[TV(D1, D2)] 6 ε .

Here and in the following TV(D1, D2) denote the total variation distance between the two distribu-
tions D1 and D2.

Proof. Let us compare the following two distributions:

P1 : Pick a uniformly random path p = (w, v, v′, w′) from the set of all paths of length 3 in G which
have w,w′ ∈W.

P2 : Pick a random edge v, v′ ∈ E and random neighbors w ∈ NW (v), w′ ∈ NW (v′) and consider
the path (w, v, v′, w′).

Notice that it suffices to bound the statistical distance between P1 and P2. This is because D1

is just the marginal distribution of P1 on the endpoints of the path (w,w′). Likewise D2 is the
marginal distribution of P2 on (w,w′).

Now, let p = (w, v, v′, w′) denote any path of length 3 in G so that w,w′ ∈ W. Let N denote
the number of such paths. Note that EN = δ2∆3n. Let us now compare the probability of this
path under the two distributions. For P1 we get

P1(p) =
1
N
.

On the other hand, under P2,

P2(p) =
1

|NW (v)|
· 1

∆n
· 1
|NW (v′)|

.

Note that for every v ∈ V, we have E |NW (v)| = δ∆. It now suffices to argue the bound

E [TV(P1, P2)] = E
1
2

∑
p

∣∣∣∣ 1
N
− 1
|NW (v)||NW (v′)|∆n

∣∣∣∣ 6 ε. (35)

Let us call a path p = (w, v, v′, w′) good if

1
|NW (v)| · |NW (v′)|

=
1± ε′

δ2∆2
.

Later we will choose ε′ = Ω(ε) to be sufficiently small, say, ε′ = ε/100. We need the following
simple concentration bounds.
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Claim 8.3. With probability 1− ε′ over the choice of W, we have

1. N−1 = (1± ε′)/(δ2∆3n) .

2. The fraction of bad paths is less than 1/O(ε′5(δ∆)3) .

Proof. The first claim follows from Lemma A.1. Regarding the second claim, it is not hard to show
for every v, v′ that

Pr
{

1
|NW (v)||NW (v′)|

6∈ 1± ε′

δ2∆2

}
6

1
O(ε′4(δ∆)3)

.

This can be shown by computing the fourth moment E(|NW (v)|−δ∆)4 and bounding the probability
of a factor 1 + α deviation of |NW (v)| from its mean for small enough α = Ω(ε′). (The calculation
is similar to the proof of Lemma 7.7 and is left to the reader.)

This argument shows that the expected number of bad paths is at most 1/O(ε′4(δ∆)3) and the
claim is completed by applying Markov’s inequality. �

Given this claim, we can finish the proof of the lemma. Indeed letting Q denote the set of good
paths, we have with probability 1− ε′,∑

p

∣∣∣∣ 1
N
− 1
|NW (v)||NW (v′)|∆n

∣∣∣∣ 6∑
p∈Q

2ε′

δ2∆3n
+
∑
p 6∈Q

1
∆n

6 2ε′ +
N

O(ε′5(δ∆)3)
· 1

∆n

= 2ε′ +
1

O(ε′5δ∆)
· N

δ2∆3n

6 O(ε′) .

In the first inequality we used the fact that |NW (v)| > 1 for any existing path and hence the term
1/|NW (v)||NW (v′)|∆n is never larger than 1/∆n. In the last step we used that we may choose
δ∆ > Cε′−5 for sufficiently large constant C > 0, and that N 6 (1 + ε′)δ2∆3n. Hence,

E TV(P1, P2) 6 (1− ε′)O(ε′) + ε′ 6 ε . �

9 Feige-Schechtman graphs and triangle inequalities

In this section we discuss the application of our theorem to solving Max Cut in sphere graphs (aka
Feige-Schechtman graphs). In the following we will argue directly about Max Cut rather than
Min UnCut. Let us first recall some known facts about continuous sphere graphs and then look
at dense discretizations of these graphs. We denote by Gγ the graph on the vertex set V = Sd−1

with edge set
E = {(u, v) ∈ V 2 | 1

4‖u− v‖
2 > 1− γ} . (36)

The integral value of Gγ , denoted opt(Gγ), is defined as the maximum of µ(A, Ā) def= µ2({(x, y) ∈
E : x ∈ A, y 6∈ A}) taken over all measurable subsets A ⊆ Sd−1 Here, µ denotes the uniform surface
measure of the sphere Sd−1 and µ2 = µ × µ. A theorem of Feige and Schechtman shows that the
maximum is attained for any hemisphere.

27



Theorem 9.1 (Feige-Schechtman [FS02]). Fix γ ∈ [0, 1] and consider the graph Gγ . Then, the
maximum of µ(A, Ā) over all measurable subsets A ⊆ Sd−1 is attained for any hemisphere H ⊆ Sd−1.

Recall, if A is a hemisphere, µ(A, Ā) = 1−Θ(
√
γ). Hence opt(Gγ) = 1−Θ(

√
γ). At this point

we mention that the SDP relaxation for Max Cut is well-defined on infinite graphs though we
omit the formal details. In this case it is easiest to think of E as a distribution over edges so that
the SDP maximizes the quantity E(u,v)∼E

1
4‖f(u)−f(v)‖2 over all embeddings f : V → B satisfying

the usual additional constraints. Here B can be taken to be the unit ball of the infinite dimensional
Euclidean space.

The sphere graph itself can then be interpreted as an SDP solution, hence the following fact.

Fact 9.2 (Basic SDP value). sdp(Gγ) > 1− γ.

Proof. The graph itself gives an embedding (the identity embedding) such that for each edge
(u, v) ∈ E, 1

4‖u − v‖
2 > 1 − γ. Since the SDP averages this quantity over all edges in the graph,

the claim follows. �

We will show next that triangle inequalities change the value of the SDP from 1−γ to 1−Ω(
√
γ)

thus capturing the integral value up to constant factors in front of γ.

Lemma 9.3 (SDP with triangle inequalities). sdp3(Gγ) 6 1− Ω(
√
γ) .

We believe this lemma is somewhat folklore, but we will give a proof for lack of a reference. The
proof works as follows. First, triangle inequalities are known to imply the odd cycle constraints
which means that an SDP with triangle inequalities on an odd cycle of length k has value at most
(and, in fact, equal to) 1− 1/k.

Lemma 9.4. Let C be an odd cycle of length k. Then, sdp3(C) 6 1− 1/k.

Second, it follows that if a graph G can be covered uniformly by odd cycles of length k, then
its sdp3-value can be at most 1− 1/k.

Lemma 9.5. Let G = (V,E) be a (possibly infinite) graph. Suppose there exists a distribution C
over odd cycles of length k for some fixed number k such that the marginal distribution on each
edge of a random cycle from C has statistical distance ε to the uniform distribution over edges in
G. Then, sdp3(G) 6 1− 1/k + ε.

Proof. By our assumption we have that for every embedding f : V → B,

E
(u,v)∼E

1
4‖f(u)− f(v)‖2 6 E

C∼C
E

(u,v)∼C
1
4‖f(u)− f(v)‖2 + ε .

But we know, by Lemma 9.4, that for every f : V → B, satisfying the triangle inequalities,

E
(u,v)∼C

1
4
‖f(u)− f(v)‖2 6 1− 1

k .

Hence,

E
(u,v)∼E

1
4
‖f(u)− f(v)‖2 6 1− 1

k + ε .

�
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We will next see that the sphere graph can by uniformly covered by odd cycles of length
O(1/

√
γ). We begin with the following simple observation.

Lemma 9.6. For every l ∈ [1− γ, 1− γ/2], there exists an odd cycle, denoted Cl = (v1, . . . , vk), in
Gγ of length k = O(

√
γ) such that 1

4‖vi − vi+1‖2 = l for all i ∈ {1, . . . , k − 1}.

Proof sketch. Pick an arbitrary great circle around the sphere and place the vertices v1, . . . , vk
equally spaced along this circle. For k = O(

√
γ) vertices, we can accomplish the Euclidean distance

between two consecutive vertices is less than, say,
√
γ/10. Now connect each vertex v on the circle

to the unique vertex w which maximized ‖v−w‖2. This creates an odd cycle and, by our previous
observation, it follows that 1

4‖v − w‖
2 > 1− γ. Now we can make 1

4‖v − w‖
2 = l be walking along

the cycle and moving vertices in a direction orthogonal to the plane defined by the circle until all
edges have length l. �

Lemma 9.7. Let γ > 0 and let Sd−1 be the sphere. There exists a distribution C over odd cycles C =
(v1, . . . , vk) for some k 6 10π√

γ such that for all i, the marginal distribution of (vi, vi+1) has statistical
distance o(1) to the uniform distribution over edges in Gγ (as d→∞).

Proof. We will describe the distribution C as follows:

1. Pick a random edge e = (u, v) ∈ E from Gγ .

2. Let l = 1
4‖u − v‖

2. If l 6 1 − γ/2, let Cl = (v1, v2, . . . , vk) denote the odd cycle given by
Lemma 9.6. If l > 1− γ/2, declare “failure”.

3. If the previous step succeeded, pick a random rotation R and output RC =
(Rv1, Rv2, . . . , Rvk).

We claim that if the second step succeeds, then indeed every marginal (Rvi, Rvi+1) is distributed
like a uniformly random edge. This is (1) because (u, v) was chosen to be a uniformly random edge
and (2) (Rvi, Rvi+1) is a random rotation of (u, v) and hence, by spherical symmetry, is equally
likely to be any edge in E that has the same length as (u, v).

On the other hand, by measure concentration, with probability 1 − exp(−Ω(d)), we have that
1
4‖u−v‖

2 ∈ [1−γ, 1−γ/2]. This completes the claim since the probability of failure only introduces
o(1) statistical distance. �

Using standard discretization arguments all previous lemmas can be transferred to a sufficiently
dense discretization of the continuous sphere. Similarly, it is not difficult to show that sufficiently
many random points from the sphere will give a good discretization.

Lemma 9.8. Fix γ ∈ [0, 1], d ∈ N. Then, there exists an n0(d, γ) ∈ N so that if we pick V ⊆ Sd−1

uniformly at random with |V | > n0, then the induced subgraph Gγ [V ] satisfies

1. opt(Gγ [V ]) = 1−Θ(
√
γ),

2. sdp3(Gγ [V ]) = 1−Θ(
√
γ).

Proof sketch. The first claim is shown in [FS02]. For the second claim, let us decompose Sd−1 into
equal volume cells of diameter at most ε. Here, ε is a parameter that we will later take to be very
small, say, ε 6 d/100. Now pick enough vectors V ⊆ Sd−1 uniformly at random such that with
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probability at least 1− ε every two cells have the same number of vectors up to a factor of 1± ε in
it.

We need to show that sdp3(Gγ [V ]) 6 1− Ω(
√
γ). To this end we first consider a related graph

G′, which has the same vertex set as G but different edges. A random edge in G′ is defined by the
following process: Pick first a random edge on the continuous sphere, then for each endpoint pick a
random vertex in the equal volume cell containing the endpoint. Finally, normalize the edges such
that the total edge weight is the same as in G.

We can use the distribution over odd cycles given by Lemma 9.7 in order to get a distribution
for the graph G′ as follows: Pick the cycle and map each point to a vertex in the corresponding
cell. The resulting marginal distributions will be uniform in G′. Thus, sdp3(G′) = 1−Θ(

√
γ).

Finally, we will show that E‖L(G′) − L(Gγ [V ])‖TV tends to zero with ε. That is, the two
distributions have statistical distance tending to zero. This also shows that for sufficiently small ε,
the semidefinite programs also have approximately the same value. Now to argue the above point,
consider the process of picking a random edge. Consider first the case that in G′, the two cells
containing the chosen points have exactly the expected number of vectors in them, and furthermore,
suppose that the two cells are good in the sense that either none of the vertices in them share an
edge or all pairs of vertices between the two cells share an edge in G. In this case, the edges in G
going between these two cells have exactly the same probability as under G′.

The first assumption is close enough to the truth, since the number of vertices in different cells
differ by at most a factor of 1± ε, For the second assumption it suffices to pick ε small enough so
that a cap of radius r has the same volume as a cap of radius r± ε up to a factor of 1± o(1). This
happens for, say, ε� 1/d. This will guarantee that the number of bad pairs of cells is small. This
argument can be found in [FS02]. �

It is worth noting that the proof of the previous lemma gives a very weak bound on the number
of vertices that we are required to subsample. In particular, it is not difficult to see that the
average degree of the graph will be n1−o(1). A priori, it could therefore be the case that the SDP
value changes when considering a subsample of the sphere with average degree log(n) or even O(1).
Indeed, [FS02] show that for some fixed γ, a random subsample of the sphere of expected degree
O(log n) will satisfy most triangle inequality constraints with high probability thus exhibiting some
integrality gap for sdp3.

7 However, our main theorem implies that asymptotically sdp3 behaves like√
γ rather than γ.

Theorem 9.9. Fix γ ∈ [0, 1] and let ∆ > poly(1/γ). Fix d and choose n such that for n uniformly
random points V ⊆ Sd−1 the induced graph Gγ [V ] has expected degree ∆. Then,

sdp3(Gγ [V ]) = 1−Θ(
√
γ).

Proof. We think of Gγ [V ] as a uniform vertex subsample of a random dense discretization Gγ [W ]
in d dimension. We then apply Lemma 9.8 and Theorem 2.1 to the graph Gγ [W ] and conclude the
desired claim for Gγ [V ]. �

7In their example the angle between two neighboring vertices is chosen to be more than 60 degrees corresponding
to very large γ to which our theorem does not apply due to the constant factor loss in γ.
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10 Subsampling edges

In this section, we will prove the analogue of our main theorem in the edge subsampling model.
Here, G = (V,E) will always denote a ∆-regular graph on n vertices. Our proof in the case of edge
subsampling is much simpler. As it turns out it suffices to bound the cut norm between the original
graph and its subsample and to argue that the SDP value is a Lipschitz function of the cut norm.
The latter fact is a consequence of Grothendieck’s inequality.

We let Eδ ⊆ E denote a random subset of E of size δ|E|. We’ll overload notation slightly by
using G[Eδ] for the graph G restricted to the edge set Eδ.

Definition 10.1. The cut norm of a real valued n× n matrix A is defined as

‖A‖C = max
U,V⊆[n]

∣∣∣∣∣∣
∑

i∈U,j∈V
aij

∣∣∣∣∣∣ . (37)

It is known that the cut norm is within constant factors of the norm

‖A‖∞7→1 = max
xi,yj∈{−1,1}

∑
i,j∈[n]

aijxiyj . (38)

A natural semidefinite relaxation of (38) replaces every pair xi, yj by two unit vectors ui, vj , i.e.,

sdpC(A) = max
‖ui‖=‖vi‖=1

aij〈ui, vj〉. (39)

A theorem of Grothendieck bounds the gap between the cut norm and its relaxation by a multi-
plicative constant (the Grothendieck constant).

Theorem 10.2. There is a constant KG (known to be less than 1.8) such that sdpC(A) 6
KG‖A‖∞7→1.

The next lemma shows that the cut norm between a graph and its subsample is small.

Lemma 10.3. Let δ > cε−2∆−1. Then,

E
∥∥A(G)− δ−1A(G[Eδ])

∥∥
∞7→1

6 ε.

Proof. We can show that with probability 1 − eΩ(n), |〈x,Ay〉 − δ−1〈x,A′y〉| 6 ε simultaneously
for all x, y ∈ {−1, 1}n. The proof follows from Hoeffding’s bound as in Lemma A.5 and the union
bound. The details are straightforward and therefore omitted from this paper. �

Similarly the following lemma can be shown.

Lemma 10.4. Let δ > cε−2∆−1. Then,

E
∥∥D(G)− δ−1D(G[Eδ])

∥∥
∞→1

6 ε . (40)

The previous two lemmas showed that the expected difference in cut norm between the graph
G and its edge subsample G[Eδ] is small.
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Corollary 10.5. For δ > cε−2∆−1, we have

E ‖L(G)− δ−1L(G[Eδ])‖C 6 ε . (41)

It turns out that bounding the difference in cut norm is sufficient for bounding the difference
in SDP values.

Lemma 10.6. Let G and G′ be any two graphs on n vertices. Let M ⊆M2 (see Definition 5.1)
be any set of positive semidefinite n× n matrices. Suppose ‖L(G)− L(G′)‖C 6 t. Then,

|sdpM(G)− sdpM(G′)| 6 O(t) .

Proof. ∣∣sdpM(G)− sdpM(G′)
∣∣ 6 ∣∣∣∣ max

X∈M2

(L(G)− L(G′)) •X
∣∣∣∣

6 O(1) · ‖L(G)− L(G′)‖C (by Theorem 10.2)
6 O(t) .

�

Corollary 10.7. Let G denote a ∆-regular graph and let δ > poly(1/ε)∆−1. Then,

E |sdpM(G)− sdpM(G[Eδ])| 6 ε (42)

for any M⊆M2.

11 Sparse subgraphs and Sherali-Adams Lower Bounds

We will first show our Sherali-Adams lower bounds in the case of edge subsampling, since here
the proof is more transparent and general. For convenience, we sample edges independently from
a ∆-regular graph each with probability p. This won’t make a difference compared to sampling
a fixed number of edges. The proof strategy is to show that a constant degree subsample of any
∆-regular graph G has sufficient small set expansion so that the Sherali-Adams hierarchy on G will
have value close to 1 regardless of the integral value of G. If the integral value of G is bounded
away from 1, this will result in a gap instance.

We point out that in order to rule out a subsampling theorem for linear programs it would be
sufficient to exhibit one graph with this behavior. Our proof is more general in this regard.

Lemma 11.1. Let G be a ∆-regular graph for ∆ > ω(1) and let G′ be obtained from G by keeping
every edge independently with probability λ/∆. Then, in expectation we need to remove at most
o(n) vertices (or edges) from G′ such that the girth of G′ is at least r > log ∆/3 log λ.

Proof. Pick a random sequence of k + 1 vertices v1, . . . , vk+1 in G. For this sequence to form a
cycle in G′ we first need that it forms a cycle in G which means that each vi is incident to vi−1 in
G. This happens with probability ∆/n in each of the k steps. Furthermore, we need that all k + 1
edges are selected into G′. Hence, the probability that they form a cycle in G′ is at most(

∆
n

)k ( λ
∆

)k+1

=
λk+1

∆nk
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Therefore we expect at most(
n

k + 1

)
(k + 1)! · λ

k+1

∆nk
6

(en)k+1(k + 1)!
(k + 1)k

· λ
k+1

∆nk
6 n

(eλ)k+1

∆

cycles of length k + 1. Summing over all lengths up to r = log ∆/3 log λ gives us

r∑
k=3

n
(eλ)k+1

∆
6 n · log ∆

2 log λ
∆1/2

∆
6

n

∆1/3
= o(n)

cycles over all. �

Lemma 11.2. Let λ > 1, η > 0, θ > 0. Suppose G is a ∆-regular graph for ∆ > nθ Let G′ the
graph obtained by sampling edges with probability λ

∆ .
Then, with probability high probability, we can remove o(n) vertices such that all sets of size at

most β∆ are (1 + η)-sparse as long as β 6 (cλ)−1/η−1/θ for sufficiently large constant c.

Proof. With every subgraph of size k having (1+η)k edges we will associate a fixed spanning tree of
k−1 edges. As in the proof of Lemma 11.1 each of these edges has a probability of ∆/n ·λ/∆ = λ/n
of appearing in G′, since these are edges in a tree. The remaining ηk edges appear with probability
at most λ/∆. Hence, the expected number of k-subgraphs spanning (1 + η)k edges is at most(

n

k

)(
k2

(1 + η)k

)(
λ

n

)k−1( λ
∆

)ηk
6
(en
k

)k
(ek)(1+η)k

(
λ

n

)k−1( λ
∆

)ηk
6 n · e3kλ2k

(
k

∆

)ηk
= n ·

(
e3/ηλ2/η k

∆

)ηk
= n · (f(λ, η)β)k , (43)

where f(λ, η) ∼ (cλ)1/η.
At this point we will apply Lemma 11.1 to remove all cycles of length up to r = log ∆/2 log λ =

θ
2 log λ log n. Hence we may assume w.l.o.g. that k > r in (43). It remains to choose β small enough
so that (43) simplifies to o(1). This happens for

β < 1/f(λ, η)2(2 log λ)/θ = (c′λ)−1/η−1/θ.

�

Remark 11.3. In the previous two lemmas, we assumed that edges were sampled independently
from G with probability p. However, both Lemma 11.1 and Lemma 11.2 are true in the case where
we sample pm edges independently from G. The reason is simply that the probability of seeing a
fixed subgraph H on k edges in the second model is bounded by pk. Conditioned on picking one
edge of the subgraph, the second edge has probability (pm− 1)/m < p and so forth.

Definition 11.4. We say a graph G is l-path decomposable if every 2-connected subgraph H of G
contains a path of length l such that every vertex of the path has degree 2 in H.
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The following lemma appears implicitly in [ABLT06] and gives a way of proving that a graph
is l-path decomposable.

Lemma 11.5. Let l > 1 be an integer and 0 < η < 1
3l−1 , and let G be a (1 + η)-sparse graph which

is not a cycle. Then, G is l-path decomposable.

Combining the above lemma with our previous lemmas, we get the following theorem.

Theorem 11.6. Let λ > 1, θ > 0. Suppose G is a ∆-regular graph with ∆ > nθ. Let G′ = G[Eλ/∆].
Then with high probability we can remove o(n) vertices such that in the remaining graph every set
of k vertices induces an Ωθ,λ(log(n/k))-path decomposable subgraph.

Proof. By Lemma 11.2, w.h.p we can remove o(n) vertices such that all induced subgraphs of size
β∆ are (1 + η)-sparse for η = 1/Ωθ,λ(log(1/β)).

By Lemma 11.5, it follows that all these subgraphs are Ω(log(1/β))-path decomposable. The
probability that any of these subgraphs is a cycle is negligible.

The claim follows by putting β = k/∆. �

The previous estimates can be used to derive Sherali-Adams lower bounds for Max-Cut. The
Sherali-Adams LP relaxation for Max-Cut is

lpr(G) = max
∑

(u,v)∈E

xuv

s.t. the vector (xuv)u,v∈V lies in the Sherali-Adams relaxation of the cut polytope

The Sherali-Adams relaxation of the cut polytope is obtained by applying r rounds of lift-
and-project operations to the base set of linear inequalities that define the metric polytope, i.e.,
{xij + xjk > xik, xij + xjk + xik 6 2, xij = xji, 1 > xij > 0}. For a formal introduction see, for
instance, [CMM09]. This notion can be used to define Sherali-Adams relaxations for various other
cut problems, analogously.

The next theorem is then a direct consequence of [CMM09].

Theorem 11.7. Let ε, λ > 0. Suppose G is a ∆-regular graph with ∆ > nθ. Then with high
probability over G′ = G[Eλ/∆], after removing o(n) vertices,

lpr(G
′) > 1− ε

for r = nα where α(1/ε, 1/θ, λ) tends to zero as any of its arguments grows.

Proof. After removing o(n) vertices, we get from Theorem 11.6 that every set of size k in G is
Ωθ,λ(log(n/k)) path decomposable. Let α = Ωθ,λ(ε2) and r = nα.

The main theorem of [CMM09] shows that we have a solution {xuv}u,v∈V to the r-th round of
the Sherali-Adams relaxation for Max-Cut such that for two adjacent vertices u, v we have

xuv > 1− ε .

�

As shown in [CMM09], the above approach extends to various other problem via reductions
such as Unique Games, Vertex Cover and Balanced Separator.
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11.1 Lower bounds for vertex subsampling linear programs

Similar results can be shown in the vertex subsampling model with the same proof strategy. We
were unable to show Lemma 11.2 in its general form for any ∆-regular graph. However, it is not
difficult to get lower bounds for specific graphs. Notice this is sufficient to rule out a subsampling
theorem for linear programs. We will next sketch the proof of Theorem 2.2.

Theorem 2.2 (Restated). For every function ε = ε(n) that tends to 0 with n, there exists a
function r = r(n) that tends to ∞ with n and family of graphs {Gn} of degree D = D(n) such that

1. For every n, lp3(Gn) 6 0.8

2. If G′ is a random subgraph of G of size (n/D)1+ε(n) then E[lpr(n)(G′)] > 1− 1
r(n) .

where lpk(H) denotes the value of k levels of the Sherali-Adams linear program for Max-Cut [SA90,
dlVKM07] on the graph H.

Proof sketch. Let Gn = Gn,p for some p 6 1
2 . It is easy to see that three rounds of Sherali-Adams

have value at most 0.7 on G = Gn with high probability over Gn itself. This follows by considering
triangles in G and arguing that every edge in G occurs in the same number of triangles up to
negligible deviation. But 3 rounds of Sherali-Adams have value at most 2/3 on a triangle. Hence,
lp3(G) 6 2/3 + o(1).

On the other hand let δ = nε

D where D = pn is the expected degree of G. We observe that
G′ = G[Vδ] is exactly distributed like G′ = Gm,λ/m for m = (n/D)1+ε and λ = mε. Using standard
calculations as in Lemma 11.1 and Lemma 11.2, one can check that such graphs have girth going
to infinity, and for some M ∈ ω(1), all subsets size M are (1 + η)-sparse, where η ∈ o(1). Hence,
we can follow the proof as above and use [CMM09] to argue that G[Vδ] has Sherali-Adams value
larger than 1 − o(1) for ω(1) rounds, and therefore picking r(n) sufficiently small concludes the
proof sketch. �

Remark 11.8. 1. In the above proof we can also consider k-cliques which would give us a
statement about k rounds of SA with the conclusion that lpk(G) 6 1/2 + c(k) where c(k)
tends to 0 as k grows.

2. We could also choose a subgraph of size O(n/D) in which case we would get polynomial round
lower bounds by repeating Lemma 11.1 and Lemma 11.2.

3. It is also easy to see that Lemma 11.1 is true in the vertex subsample model in general for
any ∆-regular graph. With this lemma itself one can use the results of [dlVKM07] to show a
O(log n)-round lower bound.
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A Deviation bounds

A.1 Deviation bounds for submatrices

The following general lemma is useful in bounding the deviation of expressions like 〈x,AS×Sx〉 or∑
i,j∈S |aij | when S denotes a random subset of [n] and A is a n× n matrix.

Lemma A.1. Let A denote a symmetric n × n matrix such that aii = 0 for all i ∈ [n]. Suppose
there is some β > 0 such that |aij | 6 β for all i, j ∈ [n] and

∑
j |aij | 6 1 for all i. Now, let S ⊆ [n]

denote a random subset of [n] of size δn for some δ > β. Then, for all ε > 0,

Pr

∣∣∣∣∣∣δ−2
∑
i,j∈S

aij −
∑
i,j∈[n]

aij

∣∣∣∣∣∣ > εn

 6 O(1)
ε2δn

. (44)

Proof. Denote by Xij the random variable which is equal to aij when both i ∈ S and j ∈ S and is
zero otherwise. Let µij = EXij = δ2aij . Putting X =

∑
i,j∈[n]Xij and µ = EX we will compute

the variance of X. The key fact that we will use is that the selection of i, j and k, l is independent
unless either i = k or j = l. Pairs where neither is the case will not contribute to the variance.
More precisely,

E (X − µ)2 = E

∑
ij

Xij − µij

2

= E

∑
i,j,k,l

(Xij − µij)(Xkl − µkl)


=
∑
ij

E (Xij − µij)2 +
∑
ijk

E (Xij − µij) (Xkj − µkj)

=
∑
ij

O(δ2)a2
ij +

∑
ijk

O(δ3)aijakj .

At this point notice that
∑

ij a
2
ij is maximized when in every row we have 1/β entries of magnitude

β in which case the expression evaluates to 1
ββ

2n = βn. Likewise the second expression
∑

ijk aijakj
is maximized when in every column j ∈ [n] we have 1/β nonzero entries of magnitude β. In this
case the expression is (1/β)2β2n = n. Hence,

σ2 = E (X − µ)2 6 O(δ2βn) +O(δ3n) 6 O(δ3n) , (45)

where we used that δ > β. Hence by Chebyshev’s inequality,

Pr(|X − µ| > εδ2n) 6
σ2

ε2δ4n2
=
O(1)
ε2δn

.

This is what we claimed up to scaling. �
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In the proof of the proxy graph theorem we used the following simple observation relating
the Laplacian of a subsample L(G[Vδ]) to the corresponding principal submatrix of the Lapla-
cian L(G)Vδ .

Lemma A.2. Let G be a ∆-regular graph and let H be a graph of degree at least ∆. Let δ >
poly(1/ε)∆−1. Then,

E‖L(G[Vδ])− L(G)Vδ‖TV 6 ε .

Proof. By inspection of the two matrices we see that the difference in the entries of the matrix is due
to irregularities in the degrees of G[Vδ]. Specifically, the matrix L(G)Vδ has diagonal entries equal
to 1/δn. On the other hand, the i-th diagonal entry of L(G[Vδ]), call it di, is equal to δ−1

∑
j∈Vδ aij .

We have that E di = 1
δn and we claim, ∑

i∈Vδ

E
∣∣∣∣di − 1

δn

∣∣∣∣ 6 ε .
This can be derived from Lemma A.1. �

A.2 A Gaussian tail bound

The following Gaussian tail bound was used in Section 6.

Fact A.3. Let ξ be a standard Gaussian variable. Then,

E max{ξ − t, 0}2 = 2−Ω(t2) .

Proof. The expectation is proportional to the integral∫
u>0

u2e−(u+t)2/2 du 6 e−t
2/2

∫
u>0

u2e−u
2/2 du = O

(
e−t

2/2
)
.

�

A.3 Chernoff-like tail inequalities

We also needed McDiarmid’s large deviation bound (sometimes called Azuma’s inequality).

Lemma A.4. Let X1, . . . , Xm be independent random variables all taking values in the set X .
Further, let f : Xm → R be a function of X1, . . . , Xm that satisfies for all i, x1, x2, . . . , xm, x

′
i ∈ X ,

|f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)| 6 ci.

Then, for all t > 0,

Pr{|f − E [f ] | > t} 6 2 exp
(
−2t2∑m
i=1 c

2
i

)
.

When we have independent variables in [0, 1] with small expectation we can use the following
version of Hoeffding’s bound.

Lemma A.5. Let X1, . . . , Xm be independent random variables all taking values in the set [0, 1]
and let µ = E

[∑
i∈[m]Xi

]
. Then, for every ε ∈ (0, 1),

Pr
{∣∣∣∑i∈[m]Xi − µ

∣∣∣ > εµ} 6 2 exp(−ε2µ/3).
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