
BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED

CONNECTIVITY

AARON POTECHIN

Abstract. We prove that any monotone switching network solving directed connectivity on N

vertices must have size N
Ω(log N)

1. Introduction

L versus NL, the problem of whether non-determinism helps in logarithmic space bounded compu-
tation, is a longstanding open question in computational complexity. At present, only a few results
are known. It is known that the problem is equivalent to the question of whether there is a log-
space algorithm for the directed connectivity problem, namely given an N vertex directed graph G
and pair of vertices s, t, find out if there is a directed path from s to t in G. In 1970, Savitch [7]
gave an O(log2 N)-space deterministic algorithm for directed connectivity, thus proving that that
NSPACE(g(n)) ⊆ DSPACE((g(n)2)) for every space constructable function g. In 1987 and 1988,
Immerman [3] and Szelepcsenyi [8] independently gave an O(log N)-space non-deterministic algo-
rithm for directed non-connectivity, thus proving that NL = co-NL. For the problem of undirected
connectivity (i.e. where the input graph G is undirected), a probabalistic algorithm was shown in
1979 using random walks by Aleliunas, Karp, Lipton, Lovász, and Rackoff [1], and in 2005, Reingold
[6] gave a deterministic O(log N)-space algorithm for the same problem, showing that undirected
connectivity is in L.

So far, most of the work trying to show that L 6= NL has been done using branching programs
or the JAG model, these models were introduced in [4] and [2], respectively. Instead, we explore
trying to prove L 6= NL using the switching network model, described in [5]. In this paper, we
consider switching networks solving directed connectivity. The best way to describe what such a
switching network is is through an example, see Figure 1 and the accompanying explanation. A
formal definition is given below:

Definition 1.1. A switching network solving directed connectivity on a graph G is a tuple <
G′, s′, t′, µ′ > where G′ is an undirected graph with distinguished vertices s′, t′ and µ′ is a label-
ing function that associates with each edge e′ ∈ E(G′) a label of the form a → b or ¬(a → b) for
some vertices a and b in V (G), and there is a path in G′ from s′ to t′ such that the labels on all of
the edges are consistent with G if and only if there is a path from s to t in G. Here, we specify a
directed graph G by its vertices and allow its edges to vary.
We take the size of a switching network solving directed connectivity to be |V (G′)|.
A switching network solving directed connectivity is monotone if and only if it has no labels of the
form ¬(a → b).

Notation: In this paper, we use lower case letters (i.e. a, e, f) to denote vertices, edges, and functions,
and we use upper case letters (i.e. G,V,E) to denote graphs and sets of vertices and edges. We

Key words and phrases. L,NL,computational complexity, switching networks.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 142 (2009)

2 AARON POTECHIN

s → a

s
′

s → b
a → t

a → b

s → b

b → t

b → a

s → a

a → t

b → t

t
′

s → t

Figure 1. A switching network solving directed connectivity is an undirected graph
G′ that takes a directed graph G and tells us if there is a path from s to t in G as
follows: If an edge in G′ has a label a → b for some vertices a and b in G, then we
can take it if and only if the edge a → b is in G. Similarly, if an edge in G′ has a
label ¬(a → b), we can take it if and only if the edge a → b is not in G. Under these
conditions, there is a path from s′ to t′ in G′ if and only if there is a path from s
to t in G.
In this figure, we have a switching network that solves directed connectivity when
G has four vertices, s, t, a, and b. As needed, there is a path from s′ to t′ in G′

if and only if there is a path from s to t in G. For example, if we have the edges
s → a, a → b, and b → t in G, so there is a path from s to t in G, then in G′,
starting from s′, we can take the edge labeled s → a, then the edge labeled a → b,
then the edge labeled s → a, and finally the edge labeled b → t, and we will reach
t′. If in G we have the edges s → a, a → b, b → a, and s → b and no other edges,
so there is no path from s to t, then in G′ there is no edge that we can take to t′,
so there is no path from s′ to t′.

use unprimed symbols to denote vertices, edges, etc. in the directed graph G, and we use primed
symbols to denote vertices, edges, etc. in the switching network G′ solving directed connectivity on
G.

1.1. Our Results. In Section 2, we give a proof that if there is no polynomial-sized switching
network solving directed connectivity, then L 6= NL. Thus, our goal is to prove a superpolynomial
lower size bound on switching networks solving directed connectivity. In this paper, we focus on
showing lower size bounds for monotone switching networks solving directed connectivity.

We can view the vertices of a switching network solving directed connectivity as encoding how
much we know about the directed graph G, where at s′ we know nothing about G and at t′ we
know there is a path from s to t in G. When we move from one vertex in the switching network
to another, it represents a change in our knowledge, which is allowed because the fact that we can
make this move gives us information about G.
The key property of moving in switching networks is that everything is reversible. Thus, it is natural
to start by restricting ourselves to simple states of knowledge and some basic reversible operations
for getting from one state of knowledge to another.
In Section 3, we implement these ideas by defining a subclass of monotone switching networks solv-
ing directed connectivity, which we call certain knowledge switching networks. We first show that
certain knowledge switching networks can capture a variant of Savitch’s algorithm, which implies
that there is a certain knowledge switching network of size NO(log N) solving directed connectivity.
We then show that this is tight with the following theorem:

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 3

Theorem 1.2. Any certain knowledge switching network solving directed connectivity on N vertices
has size at least NΩ(log N).

In Section 4, we analyze general monotone switching networks solving directed connectivity. We
give a useful simplification of monotone switching networks that can be accomplished by increasing
the size of the switching network by a factor of at most N , and we show a theorem that in a weak
sense reduces monotone switching networks to certain knowledge switching networks.
In Section 5, we introduce a Fourier transformation technique. We then use this technique to prove
an Ω(N2) lower size bound on monotone switching networks solving directed connectivity, and we
give a condition that is sufficient to prove a superpolynomial bound.
In Section 6, we give Fourier analogues of results in Sections 3 and 4 and use these to prove the
above condition, thus proving a superpolynomial bound on monotone switching networks solving
directed connectivity.
Finally, in Section 7, we modify and expand our techniques slightly to prove the main result:

Theorem 1.3. Any monotone swtiching network solving directed connectivity on N vertices has
size at least NΩ(log N)

1.2. Proof Overview. We now give a high level informal overview of the proof, ignoring details
and subtleties.
The main idea involved in proving lower size bounds for monotone switching networks solving di-
rected connectivity is as follows. Since G′ solves directed connectivity, for every path P in G from
s to t, there is a path P ′ in G′ from s′ to t′ that uses only the edges of P . We show that this P ′

must include a vertex a′
P that gives ’significant’ information about P , i.e. there cannot be too many

paths P1, P2, · · · in G such that each pair of paths Pi, Pj has very few vertices in common and all of
these share the same vertex a′ in G′. Then if we can find a large collection of paths such that each
pair of paths has very few vertices in common, this will give a good lower bound on the number of
vertices in G′.
In Section 3, we apply this approach to prove Theorem 1.2, that any certain knowledge switching
network solving directed connectivity on N vertices has size at least NΩ(log N). Lemma 3.8 shows
that a′

P ’contains’ at least log k vertices of P and no vertices not in P , where k is the length of P .
Thus, if two paths P1 and P2 of length k in G have less than log k vertices in common, then a′

P1

cannot be the same as a′
P2

. It is not hard to find a large collection of paths in G of length k such
that each pair of paths has less than log k vertices in common, and this completes the proof.
However, the way that a′

P gives information about P in certain knowledge switching networks is
somewhat artificial and cannot be extended to general monotone switching networks solving directed
connectivity. In Section 5, we introduce a fourier transformation technique. For this technique, we
look at each vertex a′ in G′ as a function over the possible cuts of G.
In Section 6, we prove Theorem 6.1, showing that for each directed path P in G we can find a
function gP such that if P ′ is a path from s′ to t′ using only the edges of P , then

∑

a′∈V (P ′) |a′ · gP |
is relatively large. Moreover, if P1 and P2 have very few vertices in common, then gP1

and gP2

are orthogonal. In this way, the vertices of P ′ give ’significant’ information about P . As shown in
Theorem 5.23, this is sufficient to show a superpolynomial lower size bound.
Finally, in Section 7, we refine the above arguments to prove Theorem 1.3, that any monotone
switching networks solving directed connectivity on N vertices has size at least NΩ(log N).

2. Switching-and-rectifier Networks and Switching Networks

In this section, we give a proof that if there is no polynomial-sized switching network solving directed
connectivity, then L 6= NL. Although the results in this section are not new, we include them for
the sake of completeness.

4 AARON POTECHIN

To see how switching networks capture logspace computation, it is necessary to first look at how
a related model, switching-and-rectifier networks, captures non-deterministic logspace computation.
Accordingly, we give the following definitions from [5]:

Definition 2.1. A switching-and-rectifier network is a tuple < G, s, t, µ > where G is a directed
graph with distinguished vertices s, t and µ is a labeling function that associates with some edges
e ∈ E(G) a label µ(e) of the form xi = 1 or xi = 0 for some i between 1 and n. We say that this
network computes the function f : {0, 1}n → 0, 1, where f(x) = 1 if and only if there is a path from
s to t such that each edge of this path either has no label or has a label that is consistent with x.
We take the size of a switching-and-rectifier network to be |V (G)|, and for a function f : {0, 1}n →
0, 1, we define RS(f)(n) to be size of the smallest switching-and-rectifier network computing f .

Proposition 2.2. If f ∈ NSPACE(g(n)) where g(n) is at least logarithmic in n, then RS(f)(n)
is at most 2O(g(n))

Proof. Let T be a non-deterministic Turing maching computing f using g(n) space. To create this
switching-and-rectifier network, we can create a vertex vj for each possible configuration cj of t.
Now at each cj , we are looking at at most one bit xij

of the input to determine where to go next
(if we are not looking at any bits, we can take any ij). If we can go from cj to cj′ regardless of the
value of xij

, create an edge from vj to vj′ with no label. If we can go from cj to cj′ if and only if
xij

= 1, create an edge from vj to vj′ with label xij
= 1. If we can go from cj to cj′ if and only

if xij
= 0, create an edge from vj to vj′ with label xij

= 0. Finally, if we cannot go from cj to cj′

regardless of the value of xij
, do not create an edge from vj to vj′ . After we do this, take s to be

the vertex corresponding to the starting configuration. Merge all of the vertices corresponding to
accepting configurations together and call the result t.

Now note that for a given input x, there is a one-to-one correspondence between paths in this
switching network and computation paths in T , where a path in this switching network is a path
from s to t if and only if the corresponding computation path in T goes from the starting config-
uration to an accepting configuration. Thus, this network successfully computes f . Also, since a
Turing machine using at most g(n) space has at most 2O(g(n)) possible configurations, this network
has size 2O(g(n)), as needed.

�

We give the general definition of switching networks below.

Definition 2.3. A switching network is a tuple < G′, s′, t′, µ′ > where G′ is an undirected graph
with distinguished vertices s, t and µ is a labeling function that associates with each edge e′ ∈ E(G′)
a label µ(e′) of the form xi = 1 or xi = 0 for some i between 1 and n. We say that this network
computes the function f : {0, 1}n → 0, 1, where f(x) = 1 if and only if there is a path from s′ to t′

such that each edge of this path has a label that is consistent with x.
We take the size of a switching-and-rectifier network to be |V (G)|, and for a function f : {0, 1}n →
0, 1, we define S(f)(n) to be size of the smallest switching-and-rectifier network computing f .

Remark 2.4. Note that switching networks are the same as switching-and-rectifier networks except
that all edges are now undirected and we cannot have edges with no label. However, allowing edges
with no label does not increase the power of switching networks, as we can immediately contract all
such edges to obtain an equivalent switching network where each edge is labeled. Also, note that
switching networks solving directed connectivity are just switching networks where the input is taken
to be the adjacency matrix of a directed graph G.

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 5

Theorem 2.5. If f ∈ DSPACE(g(n)) where g(n) is at least logarithmic in n, then S(f)(n) is at
most 2O(g(n)).

Proof. We can start by treating the Turing machine as non-deterministic and taking the switching-
and-rectifier network as in Proposition 2.2. Now note that for a given input x, since the Turing
machine is deterministic, each vertex has at most one edge going out from it. This means that G
has the structure of a forest where the root of each tree is either t, a vertex corresponding to a
rejecting configuration, or a directed cycle. But then whether or not there is a path from s to t is
unaffected by making all of the edges undirected. Thus, we can obtain a switching network that
computes f simply by making all of the edges of this switching-and-rectifier network undirected.
The result follows immediately. �

Corollary 2.6. If there is no switching network of polynomial size solving directed connectivity,
then L 6= NL.

3. Certain Knowledge Switching Networks

In this section, we consider a subclass of monotone switching networks solving directed connectivity,
which we call certain knowledge switching networks, where we can assign each vertex a′ ∈ V (G′)
a simple state of knowledge and there are simple reversible rules for moving from one state of
knowledge to another. We show that certain knowledge switching networks can capture a variant
of Savitch’s algorithm, so there is a certain knowledge switching network of size at most N O(log N)

solving directed connectivity on N vertices. We then prove Theorem 1.2, showing that any certain
knowledge switching network solving directed connectivity on N vertices has size at least NΩ(log N)

We make the following definitions:

Definition 3.1. A knowledge set K is a set of paths in G, e.g. {s → a, a → b}. We say that we
can get from K1 to K2 with the edge c → d if and only if we can obtain K2 from K1 using only the
following operations:
Operation 1: Add or remove c → d.
Operation 2: If e → f, f → g are both in K, add or remove e → g from K.
Operation 3: If s → t is in K, add or remove any path except s → t from K

Remark 3.2. We need every operation to come with both an add and a remove, as otherwise our
operations would not be reversible.

Definition 3.3. We define K1 and K2 to be equivalent if it is possible to go from K1 to K2 using
only operations of type 2 and 3. If K1 and K2 are equivalent, we say that K1 = K2.

Definition 3.4. If K1 and K2 are states of knowledge, we say that K1 ⊆ K2 if there is a K such
that K2 = K and if we look at the states of knowledge as sets of paths, K1 ⊆ K.

Proposition 3.5. We have the following:
a. If K1 ⊆ K2, K3 = K1, and K4 = K2, then K3 ⊆ K4.
b. If K1 ⊆ K2 and K2 ⊆ K3, then K1 ⊆ K3.
c. K1 = K2 if and only if K1 ⊆ K2 and K2 ⊆ K1.
d. If e is an edge of G, we can get from K1 to K2 with the edge e if and only if K1 ⊆ K2 ∪ e and
K2 ⊆ K1 ∪ e.

Definition 3.6. We say a monotone switching network solving directed connectivity is a certain
knowledge switching network if we can assign a Ka′ to each vertex a′ ∈ V (G′) such that the following
conditions hold:

6 AARON POTECHIN

s
′

s → a

s → b

s → c

a → t

a → t

b → t

b → t

c → t

c → t

a → b

a → c

b → a

c → a
b → c

c → b

s → t

s → c

b → t

s → a

a → t

s → b

s → c

t
′

s → a

c → t

s → b

s → a

s → b

s → c

s → a, s → b

s → a, s → c

s → b, s → c

Figure 2. A certain knowledge switching network that solves directed connectivity
with five vertices, s, t, a, b, and c. The label inside each vertex represents the K
for that vertex.

1. Ks′ = {} and Kt′ = {s → t}.
2. If there is an edge with label c → d between vertices a′ and b′, then we can get from Ka′ to Kb′

with the edge c → d.

3.1. Certain Knowledge switching networks and Savitch’s Theorem. While this model is
restricted, it is not trivial. In particular, it is capable of capturing the following variant of Savitch’s
algorithm:

Savitch’s algorithm works as follows. To check if there is a path of length at most k between
vertices s and t, we go through all of the possible midpoints m and recursively check whether there
is a path of length at most k

2 from s to m and whether there is a path of length at most k+1
2 from

m to t. If k = 1, then we check the adjacency matrix of the graph directly. There is a path from s
to t if and only if both subpaths are there for some m.

This algorithm reaches depth at most log N and stores one vertex at each level, so it requires
O((log N)2) space.

We can modify Savitch’s algorithm as follows. At all times, keep track of a state of knowledge
describing what paths we know are in G. Whenever we find a path, add this path to our knowledge
set. Whenever a path from a to b is added, it is either a path of length 1, in which case it can be
added using the edge a → b, or there is an m such that a → m and m → b are already in K, in
which case we can use operation 2.

However, the problem is that as given, after checking for the paths a → m and m → b, the al-
gorthim forgets about the paths a → m and/or m → b if they have been found. This is not a
reversible operation. To fix this, we can do the following:

After the algorithm checks for the paths a → m and m → b and adding a → b to K if both
subpaths are there, have the algorithm check for the paths a → m and m → b again before moving

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 7

on. This time, if these paths are found, instead of adding them to K, remove them from K. Again,
when a path c → d is removed from K, it is either of length 1, in which case it can be removed using
the edge a → b, or there is an m such that a → m and m → b are already in K, in which case we
can use operation 2.

After we do this, the algorithm still takes O((log N)2) space, but there are no longer any steps
where it forgets information irreversibly.

We can create a switching network from this by creating one vertex a′
K for each K that could

be reached using this algorithm and adding all allowable edges. It is easy to see that such a switch-
ing network solves directed connectivity. Also, at each level, the algorithm stores at most 3 edges.
Thus, we only have K that have less than 3(log N + 2) edges. It is clear that we have at most
N (O(log N)) such K, which immediately gives the following thoerem:

Theorem 3.7. There is a certain knowledge switching network of size N O(log N) that solves directed
connectivity on N vertices.

3.2. Lower size bound on certain knowledge switching networks. We now prove Theorem
1.2, showing that this bound is tight.

Theorem 1.2. Any certain knowledge switching network that solves directed graph connectivity on
N vertices has size at least NΩ(log N).
We will first show that the result follows from the following lemma. We will then prove the lemma.

Lemma 3.8. If the input consists of a path P in the directed graph s → v1, v1 → v2, · · · , v2k → T
and no other edges, then any path P ′ in G′ from s′ to t′ must pass through at least one vertex a′

such that the union of the endpoints of the edges in Ka′ contains at least k +1 of v1, v2, · · · , v2k and
contains no other vertices except s and t.

Proof of Theorem 1.2 using Lemma 3.8. For any prime p, if k < p, if we take all of the polynomi-
als in Zp[x] of degree at most k, then any two distinct polynomials will have at most k values in
common. Thus, if p > 2k, given a polynomial f(x) of degree at most k, if we take vi to be vertex
p · (i − 1) + f(i) of G for i = 1 to 2k, then the corresponding paths will share at most k vertices in
common.

However, by Lemma 3.8, we can associate a vertex in G′ to each such path, and no two such
paths can share the same vertex. Hence, there are at least pk+1 vertices in G′, and we can do this
as long as N ≥ p2 + 2 and k < log p. The result follows immediately. �

Proof of Lemma 3.8.

Definition 3.9. Call the vertices L = {v1, · · · , v2k−1} the left half of P and the vertices R =
{v2k−1+1, · · · , v2k} the right half of P .

Definition 3.10. K satisfies the lemma for the left half if the union of the endpoints of the edges
in K contains at least k of the vertices in L.
We define satisfying the lemma for the right half in a similar way.

We begin by giving an informal version of the proof. We prove this lemma by induction. To obtain
a path from s to t using only the edges of P , it is necessary (but not sufficient) to obtain a path from
s to a vertex r ∈ R ∪ {t} and a path from a vertex l ∈ L∪ {s} to t. By the inductive hypothesis, to
obtain a path from s to a vertex r ∈ R∪{t}, we must go through a vertex a′ in G′ such that Ka′ has
at least k of the vertices in L. If Ka′ contains even one vertex in R, Ka′ will satisfy the lemma. If not,

8 AARON POTECHIN

then either Ka′ already has a path from a vertex l ∈ L∪{s} to t or there is no progress at all towards
obtaining this path. A similar argument holds if we try to obtain a path from a vertex l ∈ L∪{s} to t.

If when we reach such a Ka′ , we always have no progress towards obtaining the other subpath,
then we will never obtain the path s → t. Thus, we can only obtain a path from s to t if we
reach such a Ka′ and the other subpath has already been obtained. But this means that we have
reached a vertex b′ such that either Kb′ contains a path from s to a vertex r ∈ R and does not contain
any vertex in L or Kb′ contains a path from a vertex l ∈ L to t and does not contain any vertex in R.

If we could reach such a Kb′ , we would indeed be close to obtaining the path s → t. However,
reaching such a Kb′ without going through a vertex a′ satisfying the lemma is impossible for the
following reason:
When we first obtain a path from s to a vertex r ∈ R, we must have the paths s → l and l → r for
some l ∈ L. Removing these subpaths is just as difficult as obtaining them, which means that to
remove them, we must pass through an a′ such that Ka′ satisfies the lemma for the left half. But if
we also hold on to the path s → r, then Ka′ also contains a vertex in R, so a′ satisfies the lemma.
A similar argument holds if we try to obtain a path from a vertex l ∈ L to t.

We now make this argument rigorous:

First note that the only way to introduce vertices besides s, t, and v1, · · · , v2k is through oper-
ation 3. But if we are at a point where we can use operation 3, then we can immediately go to t′ and
we have a path that does not use operation 3. Thus, we do not need to worry about any vertices in
G except s, t, and v1, · · · , v2k .

We now introduce several useful definitions:

Definition 3.11. Define looking at the left half as follows:
1. Remove t′ and all vertices with K = {s → t} from G′.
2. For all vertices v′ ∈ V (G′), if it is possible to get from Kv′ to K = {s → t} using an edge c → d,
then remove all edges with label c → d that are incident with v′.
3. Make all vertices in the right half of P equal to t. This applies to the K of all vertices in G′.
4. For each K, remove the path {s → t} if it is there.
We define looking at the right half in a similar way.

Proposition 3.12. If we look at either half, property 2 of G′ is preserved.

Definition 3.13. Define reducing to the left half as follows:
1. Make all vertices in the right half of G equal to t. This applies to the K of all vertices in G′.
We define reducing to the right half in a similar way.

Proposition 3.14. If we reduce to either half, properties 1 and 2 of G′ are preserved.

We prove Lemma 3.8 by induction. The base case k = 0 is trivial. Assume the lemma is true for
k−1. We will show that it is impossible to have a path P ′ in G′ from s′ to a vertex whose K satisfies
any of the following three properties without passing through a vertex a′ such that Ka′ satisfies the
lemma:

1. K = {s → t}.
2. K has an edge from s to a vertex in the right half, and it has no edges with an endpoint in the
left half. K 6= {s → t}.

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 9

3. K has an edge from a vertex in the left half to t, and it has no edges with an endpoint in the
right half. K 6= {s → t}.

Assume there is a path P ′ in G′ from s′ to a vertex v′
g such that Kv′

g
is of type 1 and P ′ does

not pass through a vertex that satisfies the lemma or has a K of type 1, 2, or 3.

Let b′ be the last vertex on P ′ before v′
g is reached such that for one of the left half or the right half,

if we reduce to that half, then Kb′ satisfies the lemma for that half.

We may assume without loss of generality that it is the right half. If Kb′ does not satisfy the
lemma, then there are no edges in Kb′ with an endpoint in the left half. Now reduce to the left half.
Kb′ = {s → t} or Kb′ = {}. If Kb′ = {s → t}, then Kb′ was originally of type 1 or 2. Contradiction.
Kb′ = {}. But Kt′ = {s → t}. By the inductive hypothesis, there must be a vertex a′ on the path
from b′ to v′

g such that Ka′ satisfies the lemma for the left half. But this contradicts the definition
of b′. Contradiction.

The only case remaining is if b′ does not exist. However, reducing to either half it is clear that
this is impossible.

Thus, it is impossible to reach a vertex whose K is of type 1 without first going through a ver-
tex that satisfies the lemma or has a K of type 1, 2, or 3.

Assume there is a path P ′ from s′ to a vertex v′
g in G′ with a K of type 2 that does not pass

through a vertex that satisfies the lemma or has a K of type 1, 2, or 3.

If we look at the left half and a vertex in P ′ is removed, this vertex had a K of type one. Contra-
diction. If an edge from v′

1 to v′
2 in this path is deleted, then we could have instead gone directly

from v′
1 to t′, so we could have a path from s′ to t′ that does not pass through a vertex that satisfies

the lemma or has a K of type 1, 2, or 3. From the above, this is impossible. Thus, the entire path
is preserved when looking at the left half. This also implies that we are only using operations 1 and 2.

Call an edge from s to a vertex in the right half (this vertex cannot be t) a left-jumping edge.

Let us look at the first time a left-jumping edge is created. Note that the only way to form a
left-jumping edge is to use operation 2, so at this point we must have edges s → vi and vi → vj ,
where j > 2k−1. s → vi cannot be a left-jumping edge, or this would not be the first time such an
edge was formed, so i ≤ 2k−1. At this point, if we look at the left half, we have a K that includes
s → t. This occurs in the middle of a transition between some vertices v′

1 and v′
2 using some edge

vl → vl+1, which implies that if we look at the left half, we can go from Kv′

1
or Kv′

2
to K = {s → t}

using the edge vl → vl+1.

Thus, at some point in P ′, there must be a vertex v′ such that if we look at the left half, we can
get from Kv′ to K = {s → t} with some edge vl → vl+1. Let b′ be the last such vertex in P ′. b′ 6= v′

g.

Looking at the left half, Kv′

g
= {} and Kb′ is one edge away from K = {s → t}. By the in-

ductive hypothesis, there must be a vertex a′ (which may be equal to b′ but cannot equal v′
g) on P ′

from v′
g to b′ such that Ka′ satisfies the lemma for the left half.

10 AARON POTECHIN

s′

s → a

t′

s → a, s → b s → c, s → ds → c

b′

v′g

s → a, s → b, s → c s → a, s → c

s → a

a → b

a → b

b → c s → a

c → d d → t

Figure 3. An example of a possible path P ′ in G′ from s′ to t′ corresponding to
an input which only has the edges s → a, a → b, b → c, c → d, and d → t. The
K for each vertex is given above or below that vertex. In this example, if we look
at the left half, Kv′

g
= {} and Kb′ = {s → a, s → b}, and we can get from Kb′ to

K = {s → t} with the edge b → c (as c = t). Also note that in this example, a′ = b′

and for every v′ in the path between b′ and v′
g, Kv′ includes the left-jumping edge

s → c.

Assume that at some point after we reach b′ a left-jumping edge is added or removed. Again,
this implies that at this point we must have edges s → vi and vi → vj , where i < j and j > 2k−1. If
i ≤ 2k−1, then if we look at the left half, we have K = {s → t}. But this implies that b′ is not the
last vertex v′ in P ′ such that if we look at the left half, we can get from Kv′ to K = {s → t} with
some edge vl → vl+1. Contradiction. Thus, i > 2k−1. But then s → vi is a shorter left-jumping
edge which is not added or removed.

Thus, after we reach b′, we can never remove the shortest left-jumping edge that we have or add a
shorter one. Since Kv′

g
has a left-jumping edge, all vertices from b′ onwards also have at least one

left-jumping edge. Thus, a′ satisfies the lemma.

Thus, it is impossible to reach a vertex whose K is of type 2 without first reaching a vertex that
satisfies the lemma or has a K of type 1, 2, or 3. Similar logic applies if we want to get to a K of
type 3, and this completes the proof. �

4. Preliminary Results on Monotone Switching Networks

In this section, we begin our analysis of general monotone switching networks solving directed con-
nectivity. We give a definition for monotone switching networks solving directed connectivity that
generalizes the definition of certain knowledge switching networks. We then give a useful simplifi-
cation of monotone switching networks solving directed connectivity that can be accomplished by
increasing the size of the switching network by a factor of at most N . Finally, we prove Theorem
4.5, showing that in some sense, monotone switching networks solving directed connectivity can be
reduced to certain knowledge switching networks.

Just like we did for certain knowledge switching networks, we want to assign each vertex in G′

a state of knowledge and define rules for going from one state of knowledge to another. Accord-
ingly, we give the following definition, which we will then show is sufficient to describe all monotone
switching networks solving directed connectivity.

Definition 4.1. A state of knowledge J is a set {K1, · · · ,Km} of knowledge sets. We say that
we can get from J1 to J2 with the edge c → d if and only if for every i there exists a j such that

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 11

s
′

s → a

s → b

s → c

a → t

b → t

c → t

t
′

s → a

s → c

a → t

c → t
a → b

a → c

b → a

b → c

c → a

c → b

a → t

b → t

c → t

a → b

s → b

c → b

b → a

s → a

c → a

a → c

s → c

b → c

s → t

s → a

s → b, s → c

s → b, s → c

s → b, s → c

s → b, s → c

s → a, s → b

s → a, s → b
s → a, s → b

s → a, s → b

s → a, s → c

s → a, s → c

s → a, s → c

s → a, s → c
s → b

s → c

Figure 4. A monotone switching network that solves directed connectivity with
five vertices, s, t, a, b, and c. The label inside each vertex gives the J for that
vertex, with each line corresponding to one of its K.

K2j ⊆ K1i ∪ {c → d} and for every j there exists an i such that K1i ⊆ K2j ∪ {c → d}. We say that
J1 = J2 if and only if it is possible to get from J1 to J2 without using any edges.

Remark 4.2. The state of knowledge J = {K1, · · · ,Km} represents knowing that all of the paths
in K1 are in G or all of the paths in K2 are in G or all of the paths in K3 are in G, etc.

The statement that for every i there exists a j such that K2j ⊆ K1i ∪ {c → d} says that if we
have the state of knowledge J1, so that we know that all of the paths in K1i are in G for some i,
then no matter which i this is, when we add the knowledge that we have the edge c → d, we know
that all of the paths in the corresponding K2j are in G. Thus, if we start with the state of knowledge
J1 and add the knowledge that we have the edge c → d, then we have the state of knowledge J2 (and
possibly some additional knowledge). By symmetry, the statement that for every j there exists a i
such that K1i ⊆ K2j ∪ {c → d} says that if we start with the state of knowledge J2 and add the
knowledge that we have the edge c → d, then we have the state of knowledge J1 (and possibly some
additional knowledge). Thus, if we know that we have the edge c → d, these states of knowledge are
equivalent, as needed.

Proposition 4.3. For any monotone switching network solving directed connectivity, we can assign
a Ja′ to each a′ ∈ V (G′) so that the following conditions hold:
1. Js′ = {{}} and Jt′ = {{s → t}}.
2. If there is an edge with label c → d between a′ and b′, then it is possible to get from Ja′ to Jb′

with the edge c → d.

Proof. For each vertex a′ ∈ V (G′), take Ja′ to be the set of all sets K of edges such that using
the edges of K, it is possible to reach a′ from s′ in G′. It is easy to check that both of the above
properties are satisfied. �

We will now describe a useful simplification for monotone switching networks that can be accom-
plished with an increase of at most a factor of N in the size of the network.

Theorem 4.4. If there is a monotone switching network (G′, s′, t′, µ′) solving directed connectivity
on N vertices, then there is a monotone switching network (G′′, s′′, t′′, µ′′) with |V (G′′)| ≤ N |V (G′)|

12 AARON POTECHIN

such that for any vertex a′′ of G′′, for any K in Ja′′ , K consists only of edges of the form s → v for
some v ∈ V (G).

Proof. We construct G′′ by taking N copies of G′ and making the s′ of each copy equal to the t′ of
the previous copy. We take s′′ to be the s′ of the first copy and t′′ to be the t′ of the last copy.

Now for a vertex a′′ we construct Ja′′ as follows. For a given path from s′′ to a′′ in G′′, create
a K for that path as follows:

1. Let ei be the ith edge in G that this path uses. Edges can be repeated.
2. Start with a set X0 = {S} of vertices in G.
3. If ei is the edge from v to w, let Xi = Xi−1 if v /∈ Xi−1 and let Xi = Xi−1 ∪ w if v ∈ Xi−1. Let
X be the set obtained after taking the final edge in the path.
4. Set K = ∪v∈X{s → v}.

Now take Ja′′ to be the set of all such K.

It is easy to check that G′′ satisfies property 2. To see that G′′ satisfies property 1, note that
for each time a path goes through a copy of G′, at least one new vertex must be added to X.
Thus, for any path from s′′ go t′′, we must have that X contains every vertex including t. Thus,
Jt′′ = {{s → t}}, as needed. �

Finally, we prove a theorem that shows that in some sense, monotone switching networks can be
reduced to certain knowledge switching networks. Although this theorem is not strong enough to
prove any lower size bounds, the reduction used in this theorem is very deep and will play a crucial
role in Section 6.

Theorem 4.5. For any monotone switching network, if there is a path in G′ from s′ to t′ using
only edges that have a label in a subset E of E(G), then there is a sequence of Ki, 0 ≤ i ≤ m with
the following properties:
1. K0 = {}. Km = {s → t}.
2. For all i, there exists an edge ei ∈ E such that it is possible to go from Ki to Ki+1 using the edge
ei and the three given operations.
3. For all i, there exists a vertex a′

i on this path such that Ki is the union of some subset of {Ka′

i
j}.

Proof. For each edge e′ in this path, do the following:

Let e be the label of e′, and let a′ and b′ be the endpoints of e′. For each Ka′i, there is a Kb′j

such that Kb′j ⊆ Ka′i ∪ e. Similarly, for each Kb′i, there is a Ka′j such that Ka′j ⊆ Kb′i ∪ e.
Draw an orange arrow from each Ka′i to one such Kb′j and an orange arrow from every Kb′i to one
such Ka′j . We now have a set of directed cycles with tails. Take one representative Ka′i and one
representative Kb′j from each directed cycle.

Now draw a black arrow from each Ka′i to the unique Kb′j such that there is a path of orange
arrows from Ka′i to Kb′j and Kb′j is a representative of a cycle. Similarly, draw a black arrow from
each Kb′i to the unique Ka′j such that there is a path of orange arrows from Kb′i to Ka′j and Ka′j

is a representative of a cycle.

Looking only at the black arrows, the following properties hold:
1. If there is an arrow going from Ka′i to Kb′j , then Kb′j ⊆ Ka′i ∪ e.
2. If there is an arrow going from Kb′i to Ka′j , then Ka′j ⊆ Kb′i ∪ e.

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 13

s → a s → ts → c, s → d

s → b s → b

s → c

s → c

s → c

s → a a → b b → c c → d d → t

∅

s
′

s → c, s → ds → c
s → b s → c
s → c

s → bs → a

t
′s → a a → b b → c c → d d → t

a
′

b
′

c
′

d
′

s
′

a
′

b
′ c

′ d
′ t

′

Figure 5. This is an illustration of the ideas used in the proof of Theorem 4.5.
Above, we have the original path from s′ to t′, where the J for each vertex is given
below that vertex. Below, we have the relations between all of the K, where each
box has one K. To get from s′ to t′ we have the following sequence of Ki: K0 = {}
at s′, K1 = {s → a} at a′, K2 = {s → a, s → b} at a′, K3 = {s → b} at a′,
K4 = {s → b} at b′, K5 = {s → b, s → c} at b′, K6 = {s → b, s → c} at a′,
K7 = {s → a, s → b, s → c} at a′, K8 = {s → a, s → c} at a′, K9 = {s → c}
at a′, K10 = {s → c} at b′, K11 = {s → c} at c′, K12 = {s → c, s → d} at d′,
K13 = {s → t} at t′

3. If we there are arrows going both ways between Ka′i and Kb′j , we can get from Ka′i to Kb′j with e.

Finally, for each vertex a′, order the Ka′ .

Now we will try to travel from s′ to t′ on this path while always keeping a subset of the K of
the vertex we are on. When attempting to go from a vertex a′ to a vertex b′, we will allow only the
following operation:

If every Ka′i we have is the representative of a cycle as described above, then travel to b′ and
replace each Ka′i with the corresponding Kb′j . If not, then do the following:
1. For each Ka′i we have that is the representative of a cycle, replace it by the corresponding Kb′j .
2. Take the earliest Ka′i that is not the representative of a cycle. Take the Kb′j that the arrow
going from this Ka′i is pointing to. Remove this Kb′j if it is in our set and add it if it is not.
3. For each Kb′j we have, replace it by the corresponding Ka′i.

Note that for each of these steps, we can get from the union of the K before that step to the
union of the K afterwards with some edge e ∈ E. Thus, if we use only this operation, the resulting
sequence of Ki will obey the given rules.

Also note that each such operation is reversible and if we are at a vertex in the middle of the
path, we have exactly two choices for where to go next regardless of which subset we have. However,
if we are at s′ or t′, our subset is fixed and we only have one choice for where to go next. Thus, we
must be able to get from s′ to t′ using only the given operation, and this completes the proof. �

14 AARON POTECHIN

5. Fourier Analysis on Monotone Switiching Networks

Unfortunately, the above results are insufficient to prove a superpolynomial lower size bound on
monotone switching networks solving directed connectivity. To prove a good lower size bound, more
sophisticated techniques are needed. In this section, we introduce a fourier transformation technique
for monotone switching networks solving directed connectivity. We then use this technique to prove
an Ω(N2) lower size bound. Finally, we give a condition which is sufficient to prove a superpolyno-
mial lower size bound.

An alternate way of solving directed connectivity is to look at cuts of G. There is a path from
s to t if and only if there is no cut C = (V1, V2) such that s ∈ V1, t ∈ V2, and there is no edge from
a vertex in V1 to a vertex in V2. Thus, instead of describing each state of knowledge J in terms of
paths in G, we can describe each J in terms of which cuts C must have been crossed in order to
reach J . We do this below.

5.1. Definitions and Basic Properties.

Definition 5.1. We define an s-t cut (below we use cut for short) of G to be a subset C of V (G)
such that s ∈ C and t /∈ C. Let C denote the set of all cuts C. |C| = 2N−2.

Definition 5.2. Given a cut C and a set of edges E, define E(C) to be 1 if there is an edge in E
going from C to C̄ and −1 otherwise.

Definition 5.3. Given a cut C and a state of knowledge J = {K1, · · · ,Km}, define J(C) to be 1 if
for all i, Ki(C) = 1 and −1 otherwise.

It can be verified that for every knowledge set K and state of knowledge J , K(C) and J(C) are well-
defined in the sense that if K and K ′ (respectively J and J ′) are equivalent in the sense that we can
get from one to the other without using any edge, then K(C) = K ′(C) (respectively J(C) = J ′(C)).

Now if we have a monotone switching network solving directed connectivity on N vertices, for
each of its vertices, for each of the 2N−2 possible cuts C, we can assign a value as follows:

Definition 5.4. Given a cut c and a vertex a′ of a monotone switching network G′, define a′(C) to
be Ja′(C).

Note that for all C, s′(C) = −1 and t′(C) = 1.
We define basis functions as follows:

Definition 5.5. Given a set of vertices V that does not include s or t, define eV (C) = (−1)|V ∩C|.

We define the dot product as follows:

Definition 5.6. Given two functions f, g : C → R, f · g = 22−N
∑

C∈C f(C)g(C)

Note that eV (C)eV ′(C) = (−1)(V ∆V ′)∩C for every cut C, where ∆ denotes the symmetric difference
of two sets, and hence the functions {eV } form an orthonormal basis for the vector space R

C with
the standard dot product f · g = 22−N

∑

C∈C f(C)g(C).
We define Fourier coefficients as follows:

Definition 5.7. f̂V = f · eV

Proposition 5.8. For any function f , f =
∑

V f̂V eV and f · f =
∑

V f̂V

2
.

Proposition 5.9. Given a monotone switching network G′, if there an edge with label u → v between
vertices a′ and b′, then for any cut c, if u /∈ C or v /∈ C̄, then a′(C) = b′(C).

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 15

s
′

s → c, s → ds → c
s → b s → c
s → c

s → bs → a

t
′s → a a → b b → c c → d d → t

a
′

b
′

c
′ d

′

Figure 6. This is a possible path in G′ from s′ to t′. Below, we express the six
functions s′, a′, b′, c′, d′, and t′ in terms of the basis functions:
s′ = −e{}.

a′ = − 3
4e{} + 1

4e{a} + 1
4e{b} + 1

4e{a,b} + 1
4e{c} + 1

4e{a,c} + 1
4e{b,c} + 1

4e{a,b,c}.

b′ = − 1
2e{} + 1

2e{a} + 1
2e{b} + 1

2e{a,b}.
c′ = e{c}.

d′ = 1
2e{} + 1

2e{a} + 1
2e{b} − 1

2e{a,b}.
t′ = e{}.

5.2. Warm-up: linear and quadratic lower size bounds. We will now use the Fourier trans-
formation technique to show an Ω(N 2) lower size bound on monotone switching networks solving
directed connectivity.

To do this, we will consider linear combinations of the v′ functions.

Proposition 5.10. If the vector space of linear combinations of v′ has rank at least m, then G′ has
at least m + 1 vertices.

Proof. The vector space of linear combinations of s′ and t′ has rank 1. Each new vertex can add at
most 1 to the rank of the vector space, and this completes the proof. �

Definition 5.11. Given a directed path P ′ in G′ from s′ to t′ and a label e, define d(P ′, e) ∈ R
C to

be 1
2 (

∑

v′∈Vsink
v′ − ∑

v′∈Vsource
v′), where Vsink is the set of vertices in G′ with an edge in P ′ with

label e going into it and Vsource is the set of vertices in G′ with an edge in P ′ with label e going out
from it.

Clearly, for any P ′ and e, d(P ′, e) is in the span of the v′ functions.

Theorem 5.12. G′ has at least N vertices.

Proof. We obtain this lower size bound by combining several simple statements.

Proposition 5.13. If P ′ is a directed path in G′ from s′ to t′ using only edges with labels s → a
and a → t, then for a cut C, d(P ′, s → a)(C) is 1 if a ∈ C̄ and 0 otherwise.

Proof of Proposition 5.13. For a cut C, if a ∈ C then using Proposition 5.9, d(P ′, s → a)(C) = 0.
If a ∈ C̄, then using Proposition 5.9, d(P ′, a → t)(C) = 0. Since
d(P ′, s → a)(C) + d(P ′, a → t)(C) = 1

2 (t′(C) − s′(C)) = 1, d(P ′, s → a)(C) = 1.
�

Proposition 5.14. If P ′ is a directed path in G′ from s′ to t′ using only edges with labels s → a
and a → t, then for a cut C, d(P ′, a → t)(C) is 1 if a ∈ C and 0 otherwise.

Proof of Proposition 5.14. For a cut C, if a ∈ C̄ then using Proposition 5.9, d(P ′, a → t)(C) = 0. If
a ∈ C, then using Proposition 5.9, d(P ′, s → a)(c) = 0. Since
d(P ′, s → a)(C) + d(P ′, a → t)(C) = 1

2 (t′(C) − s′(C)) = 1, d(P ′, a → t)(C) = 1.
�

16 AARON POTECHIN

Corollary 5.15. Let f = d(P ′, s → a) − d(P ′, a → t). Then f̂{a} = 1, and all other Fourier
coefficients are zero.

Proof of Theorem 5.12 using Corollary 5.15. For each of the N − 2 vertices v that are not equal to
s or t, we can create a linear combination of v′ such that the resulting function f has all Fourier

coefficients 0 except for f̂{v}, which is nonzero. Also, if f = 1
2 (t′ − s′), f̂{} = 1 and all other fourier

coefficients are zero. Thus, these N − 1 functions are linearly independent, and the result follows
from Proposition 5.10. �

�

Theorem 5.16. G′ has at least (N−2)(N−3)
2 + N vertices.

Proof. Again, we obtain this lower size bound by combining several simple statements.

Proposition 5.17. If P ′ is a directed path in G′ from s′ to t′ using only edges with labels s → a,
a → b, and b → t, then for a cut C, d(P ′, a → b)(C) is 1 if a ∈ C and b ∈ C̄ and 0 otherwise.

Proof of Proposition 5.17. For a cut C, if a /∈ C or b /∈ C̄ then using Proposition 5.9, d(P ′, a →
b)(c) = 0. If a ∈ C and b ∈ C̄, then using Proposition 5.9, d(P ′, s → a)(C) + d(P ′, b → t)(C) = 0.
Since
d(P ′, s → a)(C) + d(P ′, a → b)(C) + d(P ′, b → t)(C) = 1

2 (t′(C) − s′(C)) = 1, d(P ′, a → b)(C) = 1.
�

Proposition 5.18. If P ′ is a directed path in G′ from s′ to t′ using only edges with labels labels
s → a, a → b, and b → t, then for a cut C, d(P ′, s → a) + d(P ′, b → t)(C) is 0 if a ∈ C and b ∈ C̄
and 1 otherwise.

Proof of Proposition 5.18. For a cut C, if a ∈ C and b ∈ C̄ then using Proposition 5.9, d(P ′, a →
t)(C) + d(P ′, b → t)(C) = 0. If not, then using Proposition 5.9, d(P ′, a → b)(C) = 0. Since
d(P ′, s → a)(C) + d(P ′, a → b)(C) + d(P ′, b → t)(C) = 1

2 (t′(C) − s′(C)) = 1, d(P ′, a → t)(C) +
d(P ′, b → t)(C) = 1.

�

Corollary 5.19. Let f = d(P ′, s → a) − d(P ′, a → b) + d(P ′, b → t). Then f̂{} = 1
2 , f̂{a} = 1

2 ,

f̂{b} = − 1
2 , f̂{a,b} = 1

2 , and all other Fourier coefficients are zero.

Proof of Theorem 5.16 using Corollary 5.19. For each pair of vertices {v1, v2} not equal to s or t,

as shown above, we can create a function where f̂{v1,v2} 6= 0. As long as each pair of vertices is used

only once, this will be the only function for which this is true. In this way, we can obtain (N−2)(N−3)
2

linearly independent functions. After this, we can still use the same N − 1 functions from before, so

this gives us a total of (N−2)(N−3)
2 + N − 1 linearly independent functions. Again, the result follows

from Proposition 5.10.
�

�

5.3. General techniques for obtaining lower size bounds. In this subsection, we show how
more general lower size bounds can be obtained.

Definition 5.20. Given a directed path P ′ in G′ from s′ to t′ using only the edges of some directed
path P in G from s to t and a partition of the edges of P into two sets, E1 and E2, let fP ′,P,E1,E2

=
∑

e∈E1
d(P ′, e) − ∑

e∈E2
d(P ′, e).

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 17

Definition 5.21. We say a cut C is (P,E1, E2)-invariant if all edges e in P that cross C are in E1

or all edges e in P that cross C are in E2. We say a function g : C → R is (P,E1, E2)-invariant if
fP ′,P,E1,E2

· g is independent of G′ and P ′.

Proposition 5.22. A function g : C → R is (P,E1, E2)-invariant if and only if g(C) = 0 for every
C that is not (P,E1, E2)-invariant.

Proof. For any cut C that is not (P,E1, E2)-invariant, we can change the value of fP ′,P,E1,E2
(C)

without changing fP ′,P,E1,E2
(C ′) for any other cut C ′. To see this, given a G′, create a new G′ by

creating a new s′. Let a′ be the old s′ and for each edge e such that e crosses C, create an edge
with label e between s′ and a′. This is still a valid monotone switching network solving directed
connectivity and for all vertices v′ except s′, v′(C) = 1. Also, a′(C ′) = 1 if C ′ = C and −1 otherwise.
Thus, we can change fP ′,P,E1,E2

(C) without changing fP ′,P,E1,E2
(C ′) for any other C ′ by choosing

whether to use an edge with label in E1 or E2 to go from s′ to a′. Thus, if g(C) 6= 0, then g cannot
be (P,E1, E2)-invariant.
If C cannot be crossed by any edge in E1, then

∑

e∈E1
d(P ′, e)(C) = 0. Again,

∑

e∈E1
d(P ′, e)(C)+

∑

e∈E2
d(P ′, e)(C) = 1

2 (t′(C) − s′(C)) = 1, so
∑

e∈E2
d(P ′, e)(C) = 1, and fP ′,P,E1,E2

(C) = −1.

Similarly, if C cannot be crossed by any edge in E2, then fP ′,P,E1,E2
(C) = 1. In either case,

fP ′,P,E1,E2
(C) is independent of G′ and P ′, so if g(C) = 0 for every C that is not (P,E1, E2)-

invariant, then fP ′,P,E1,E2
· g is independent of G′ and P ′, as needed. �

For paths P of length 2 and 3, we were able to choose E1 and E2 so that fP ′,P,E1,E2
(C) is independent

of G′ and P ′ for all cuts C. Unfortunately, for longer paths, this is no longer possible. This makes
proving linear independence much harder. With paths of length 5, using a linear independence
argument is still possible, see the Appendix, but extending such a technique further is probably
impossible.
To end this section, we show that a lower size bound can be obtained from these techniques even
without using linear independence.

Theorem 5.23. If there exists a path P in G from s to t of length k1, a partition of its edges
into two groups E1 and E2, and a function gP,E1,E2

such that gP,E1,E2
is (P,E1, E2)-invariant,

fP ′,P,E1,E2
· gP,E1,E2

is nonzero, and ĝP,E1,E2V
= 0 for any set of vertices V such that V contains a

vertex not in P or |V | < k2, then G′ has size at least Ω(N
k2

2).

Proof. Let N ′ be the number of vertices of G′. We wish to bound N ′ from below. First note that
given any set of orthonormal functions {gi},

N ′ ≥
∑

i

(
∑

a′∈V (G′)

|a′ · gi|2) (1)

Using Cauchy-Schwarz (specifically
∑N ′

j=1 |cj |2 ≥ 1
N ′

(
∑N ′

j=1 |cj |)2 for any c1, · · · , cN ′),

N ′ ≥
∑

i

(
∑

a′∈V (G′)

|a′ · gi|2) ≥
1

N ′

∑

i

(
∑

a′∈V (G′)

|a′ · gi|)2 (2)

N ′ ≥
√

∑

i

(
∑

a′∈V (G′)

|a′ · gi|)2 (3)

We can assume without loss of generality that gP,E1,E2
·gP,E1,E2

= 1. Let M = |fP ′,P,E1,E2
·gP,E1,E2

|.
By the definition of fP ′,P,E1,E2

,

M = |fP ′,P,E1,E2
· gP,E1,E2

| ≤
∑

a′∈V (P ′)

|a′ · gP,E1,E2
| (4)

18 AARON POTECHIN

Also, we clearly have that
∑

a′∈V (P ′)

|a′ · gP,E1,E2
| ≤

∑

a′∈V (G′)

|a′ · gP,E1,E2
| (5)

Combining 4 and 5, we get that
∑

a′∈V (G′)

|a′ · gP,E1,E2
| ≥ M (6)

(
∑

a′∈V (G′)

|a′ · gP,E1,E2
|)2 ≥ M2 (7)

Now note that if we are given another path P2 of length k1 in G from s to t, by symmetry, for some
partition (E3, E4) of the edges of P2, we can take another function gP2,E3,E4

and we will have that
gP2,E3,E4

· gP2,E3,E4
= 1 and (

∑

a′∈V (G′) |a′ · gP2,E3,E4
|)2 ≥ M2. Also, since ĝP,E1,E2V

= 0 for any

set of vertices V such that V contains a vertex not in P or |V | < k2, if P1 and P2 have less than
k2 vertices in common, then gP,E1,E2

and gP2,E3,E4
are orthogonal. If we have K such paths, where

each pair of paths has less than k2 vertices in common, then plugging 7 into 3,

N ′ ≥
√

KM2 = M
√

K (8)

Finally, note that even if we add more vertices to G, we can still take the same P , E1, E2, and
gP,E1,E2

, and we will get the same M . Thus, we can take M to be independent of N . Following
similar logic as in the proof of Theorem 1.2, we can easily obtain Ω(N k2) such paths, so N ′ is at

least Ω(N
k2

2), as needed. �

6. Fourier Analogues of Earlier Results

In this section, we use Fourier analogues of earlier results to prove the following theorem:

Theorem 6.1. For any path P in G from s to t of length 2k + 1, there exists a partition of its
edges into two groups E1 and E2 and a function gP,E1,E2

: C → R such that gP,E1,E2
is (P,E1, E2)-

invariant, fP ′,P,E1,E2
·gP,E1,E2

is nonzero, and ĝV = 0 for any set of vertices V such that V contains
a vertex not in P or |V | ≤ k.

By Theorem 5.23, this is sufficient to prove a superpolynomial lower size bound on monotone switch-
ing networks solving directed connectivity.

6.1. Proof Overview. We now give an informal overview of the proof of Theorem 6.1.

It is instructive to first note how this function gP,E1,E2
relates to certain knowledge switching net-

works and Lemma 3.8. If we let W be the set of all a′ such that Ka′ contains at least k + 1 vertices,
then Lemma 3.8 says that any path P ′ in G′ from s to t using only the edges of P must pass through
at least one vertex w′ ∈ W . We can think of W as a barrier preventing us from easily going from
s′ to t′. The function gP,E1,E2

describes this barrier more precisely, as if we let W ′ be the set of all
vertices a′such that a′ · gP,E1,E2

6= 0, then P ′ must pass through at least one vertex w′ ∈ W ′. Also,
W ′ ⊆ W .
Thus, the existence of such a gP,E1,E2

implies Lemma 3.8. Roughly speaking, we want to show the
converse, that the existence of such a barrier for certain knowledge switching networks implies the
existence of such a gP,E1,E2

.
To show that a function g : C → R is (P,E1, E2)-invariant, we either need to show that g(C) = 0 for
all cuts C that are not (P,E1, E2)-invariant, or we need to show that fP ′,P,E1,E2

· g is independent
of G′ and P ′. If we had an explicit formula for g(C), it would be easiest to use the first approach.
However, since we do not have such a general formula, we use the second approach.

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 19

Lemma 6.6, the Fourier analogue of Theorem 4.4, shows that it is sufficient to consider only G′ where
all of the knowledge sets contain only edges of the form s → v. Theorem 6.8, the Fourier analogue
of Theorem 4.5, shows that if we add the condition that fL′,P,E1,E2

· gP,E1,E2
= 0 for all directed

cycles L′ of G′ using only the edges of P , then it is sufficient to consider only certain knowledge
switching networks. Combining these results, we have Theorem 6.5, which says that with the added
condition, we only need to consider certain knowledge switching networks such that all knowledge
sets contain only edges of the form s → v.
Since there are now at most 2N−2 +1 knowledge sets and we must have t′ = −s′, as noted in Lemma
6.15, we can arbitrarily choose the values g · a′ for all a′ ∈ V (G′) except t′. Lemma 6.16 shows that
if we can split the vertices of G′ into 4 groups with specific properties, then using this freedom, we
can create a g with the needed properties. Lemma 6.18 shows that if we have a barrier W similar
to the one provided by Lemma 3.8 with one additional property, then we can split the vertices of
G′ into 4 groups as required by Lemma 6.16. Finally, Lemma 6.20 modifies Lemma 3.8 so that it
provides the barrier W with the needed additional property. Putting everything together, we can
create a function gP,E1,E2

with all of the needed properties.

6.2. Reduction to Certain Knowledge Switching Networks. In this subsection, we prove
Theorem 6.5, showing that to prove a function g : C → R is (P,E1, E2)-invariant, it is sufficient
to look at the behavior of g on certain knowledge switching networks G′ where all knowledge sets
contain only paths of the form s → v.

Definition 6.2. Given a directed cycle L′ in G′ and a label e, define d(L′, e) to be
1
2 (

∑

v′∈Vsink
v′−∑

v′∈Vsource
v′), where Vsink is the set of vertices in G′ with an edge in L′ with label

e going into it and Vsource is the set of vertices in G′ with an edge in L′ with label e going out from
it.

Definition 6.3. Given a directed path P in G from s to t, a partition of the edges of P into two
sets, E1 and E2, and a directed cycle L′ in G′ using only the edges of P , define
fL′,P,E1,E2

=
∑

e∈E1
d(L′, e) − ∑

e∈E2
d(L′, e).

Remark 6.4. Throughout this subsection, we will always assume that we have a directed path P in
G from s to t and a partition (E1, E2) of the edges of P , and we will not consider any directed paths
or cycles in G′ that use an edge not in P .

Theorem 6.5. If for a function g : C → R, for any certain knowledge G′ such that all knowledge
sets contain only edges of the form s → v, fP ′,P,E1,E2

· g is independent of P ′ and fL′,P,E1,E2
· g = 0

for all directed cycles L′ in G′, then g is (P,E1, E2)-invariant.

Proof. We begin with the following analogue of Theorem 4.4:

Lemma 6.6. If for a function g : C → R, for all G′ such that all paths in the knowledge sets have
the form s → v, fP ′,P,E1,E2

· g is independent of P ′, then g is (P,E1, E2)-invariant.

Proof of Lemma 6.6. g is (P,E1, E2)-invariant if and only if g(C) = 0 for all C that are not
(P,E1, E2)-invariant.
Assume there is a cut C such that C is not (P,E1, E2)-invariant and g(C) 6= 0. Let v1, · · · , vm be
the vertices in C and let w1, · · · , wk−1 be the vertices in C̄. Take wk = t. Create a G′ with the
following two vertices:
1. A vertex a′ with state of knowledge equivalent to
{s → v1} ∧ {s → v2} ∧ · · · ∧ {s → vm}.
2. A vertex b′ with state of knowledge equivalent to

20 AARON POTECHIN

{s → v1} ∧ {s → v2} ∧ · · · ∧ {s → vm} ∧ ({S → w1} ∨ {S → w2} ∨ · · · ∨ {S → wk}).

Proposition 6.7. It is possible to get from Ja′ to Jb′ with the edge e if and only if e crosses C, and
b′(C ′) − a′(C ′) is 2 if C ′ = C and 0 otherwise.

Proof of Lemma 6.6 from Proposition 6.7. Take P ′ so that P ′ goes from s′ to a′, takes an edge from
a′ to b′ and then goes from b′ to t′. We are free to choose whether the edge from a′ to b′ has a
label in E1 or E2. Thus, we can change fP ′,P,E1,E2

(C) without affecting f(C ′) for any C ′ 6= C.
But g(C) 6= 0, so fP ′,P,E1,E2

· g is not fixed for some G′ where all edges in the knowledge sets
have the form s → v. Thus, if fP ′,P,E1,E2

· g is fixed for all G′ where all edges in the knowledge
sets have the form s → v, then g(C) = 0 for any cut C that is not (P,E1, E2)-invariant, so g is
(P,E1, E2)-invariant, as needed. �

�

We now give the following analogue of Theorem 4.5:

Theorem 6.8. If for a function g : C → R, for any certain knowledge G′, fP ′,P,E1,E2
· g is indepen-

dent of P ′ and fL′,P,E1,E2
· g = 0 for all directed cycles L′ in G′, then g is (P,E1, E2)-invariant.

Proof of Theorem 6.8.

Proposition 6.9. If J = {K1,K2, · · · ,Km} where m 6= 0, then
J(C)−Js′(C) =

∑

I (−1)|I|+1((∪i∈IKi)(C) − Js′(C)) where I ranges over all of the possible subsets
of {1, 2, · · ·m}.
Proof of Proposition 6.9. J(C) − Js′(C) = 2 if Ki(C) = 1 for every i and 0 otherwise.

If Ki(C) = −1 for some i, then we can add or remove i from I without affecting (∪i∈IKi)(C)−Js′(C).
But then the sum on the right is automatically 0.
If Ki(C) = 1 for all i, then unless I is empty, (∪i∈IKi)(C)− Js′(C) = 2. From this, it is easy to see
that the right hand side is 2, as needed. This completes the proof. �

Lemma 6.10. Jb′ −Ja′ =
∑

moves Kend − Kstart, where both Kstart and Kend are unions of subsets
of {Ka′i} or unions of subsets of {Kb′j} and the moves are as described in Theorem 4.5. We give
each move a direction by requiring that Kstart is either the union of an odd number of Ka′i or the
union of an even number of Kb′j and Kend is either the union of an even number of Ka′i or the
union of an odd number of Kb′j.

Proof of Lemma 6.10. Recall that the moves in Theorem 4.5 are as follows: If we are at a vertex a′

with a subset of the {Ka′i} and we want to move to the vertex b′, do the following:

If every Ka′i we have is the representative of a cycle, then travel to b′ and replace each Ka′i with
the corresponding Kb′j . If not, then do the following:
1. For each Ka′i we have that is the representative of a cycle, replace it by the corresponding Kb′j .
2. Take the earliest Ka′i that is not the representative of a cylce. Take the Kb′j that the arrow
going from this Ka′i is pointing to. Remove this Kb′j if it is in our set and add it if it is not.
3. For each Kb′j we have, replace it by the corresponding Ka′i.

Note that every move either changes where we are or changes the number of knowledge sets by
1. Thus, if we look at the pairs of K that are connected by a move, then one of them will be in
Kstart and the other will be in Kend. Thus, we can give each move a direction as described. Also,
note that for each possible Kstart, there is exactly one move from it and for each possible Kend,

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 21

there is exactly one possible move to it. Thus, each possible Kstart or Kend is counted exactly once.
The result now follows immediately from Proposition 6.9. �

Proof of Theorem 6.8 from Lemma 6.10. Now for each vertex a′ in P ′ not equal to s′ or t′, for each
possible nonempty subset of the {Ka′i}, create a vertex. This corresponds to being at a′ and having
that subset. Create a vertex s′′ corresponding to being at s′ and having K = {} and create one
vertex t′′ corresponding to being at t′ and having K = {s → t}. For each move, create an edge
between the corresponding vertices. Call the resulting graph H ′.
After we are done, every vertex excluding s′′ and t′′ has degree 2. Thus, this graph consists of a
path between s′′ and t′′ and cycles. Note that for each move, we are starting at one vertex in P ′ and
attempting to move to an adjacent vertex in P ′. Thus, we can give each move a direction according
to Lemma 6.10. For a given vertex a′ in P ′ not equal to s′ or t′ and subset of the knowledge sets in
Ja′ , one move from it attempts to go to the next vertex in P ′ and the other move attempts to go to
the previous vertex in P ′. Thus, after we make the edges directed, each vertex in H ′ except s′′ and
t′′ has indegree 1 and outdegree 1. H ′ consists of a directed path P ′

H′ from s′′ to t′′ and directed
cycles.

Definition 6.11. Given an edge e′ in G′ and a direction for this edge, define dG′(e′) to be v′
sink −

v′
source, where v′

sink is the vertex in G′ that e′ goes to and v′
source is the vertex in G′ that e′ comes

from.

Corollary 6.12. For any edge e′ in P ′,
dG′(e′) =

∑

e′∈Ee′
dH′(e′), where Ee′ is the set of all edges in H ′ that correspond to e′.

Proof. This follows immediately from Lemma 6.10 and the definition of H ′. �

Corollary 6.13. d(P ′, e) = d(P ′
H′ , e) +

∑

L′∈H′ d(L′, e)

Proof. This follows immediately from Corollary 6.12 and the definitions. �

Theorem 6.8 follows directly from Corollary 6.13, and this completes the proof. �

�

Proof of Theorem 6.5 from Lemma 6.6 and Theorem 6.8. To prove Theorem 6.5, first use Lemma
6.6 and then use the exact same argument as in Theorem 6.8. Since we now start with a G′ such
that all paths in the knowledge sets have the form s → v, when we create H ′, all of the knowledge
sets in H ′ will only contain paths of the form s → v, and this completes the proof. �

�

6.3. Construction of gP,E1,E2
. In this subsection, we complete the proof of Theorem 6.1 by con-

structing a function gP,E1,E2
: C → R with the given properties.

Looking at certain knowledge G′ where each knowledge set only has paths of the form s → v,
there are only 2N−2 + 1 possible knowledge sets: s → t and anything of the form ∪v∈V {s → v} for
some set of vertices V . Denote each such K by KV .

Proposition 6.14. If V ′ 6⊂ V , then eV ′ · KV = 0 and eV · KV 6= 0.

Lemma 6.15. For any set of values {aV }, there is a function g : C → R such that for all V ,
g · KV = aV . Furthermore, if there is a k such that if |V | ≤ k, then g · KV = 0, then writing
g =

∑

V ′ cV ′eV ′ , if |V ′| ≤ k then cV ′ = 0.

22 AARON POTECHIN

s′ t′

s → a
s → b, s → c

s → b, s → a
s → b, s → c

b′a′

s → a a → b b → t

s′ t′

s → a s → b, s → a

b′a′s → a a → b b → t

s → b, s → cs → b, s → c

s → a, s → b, s → cs → a, s → b, s → c

s → a

a → b

a → b

b → t

a′

a′ b′

b′e1 e2 e3

e4 e5 e6

e7

e8

e9

e10

Figure 7. This figure illustrates the ideas used in the proof of Theorem 6.8. P ′

is shown above, and H ′ is shown below. The labels inside the vertices of H ′ show
which vertex in P ′ we are on at that point, and the labels next to the vertices of
H ′ show which K we have at that point. Take
K1 = {s → a}, K2 = {s → a, s → b}, K3 = {s → b, s → c}, and
K4 = K1 ∪ K3 = K2 ∪ K3 = {s → a, s → b, s → c}.
e4 and e10 correspond to e1, and
dG′(e1) = a′ − s′ = (K1 − Js′) + (K3 − K4) = dH′(e4) + dH′(e10).
e5, e7, and e9 correspond to e2, and
dG′(e2) = b′ − a′ = (K2 + K3 −K4)− (K1 + K3 −K4) = (K2 −K1) + (K3 −K3) +
(K4 − K4) = dH′(e5) + dH′(e7) + dH′(e9).
e6 and e8 correspond to e3, and
dG′(e3) = t′ − b′ = (Jt′ − K2) + (K4 − K3) = dH′(e6) + dH′(e8).

Proof of Lemma 6.15. To see the first part of the lemma, pick an ordering of the V such that no V
is a subset of an earlier V . Now pick each cV in that order. Since if V ′ 6⊂ V , then eV ′ ·KV = 0 and
eV ·KV 6= 0, this means that when we pick each cV , we can change the value of aV without affecting
any earlier aV . Thus, we can freely choose each aV .
To see the second part of the lemma, let V be a set such that cV 6= 0 and for all proper subsets V ′

of V , cV ′ = 0. Then by the above proposition, aV 6= 0, as needed. This completes the proof. �

Lemma 6.16. If we have a directed path P in G, a partition of the edges of P into two sets E1 and
E2, and a mapping b : V (G′) → {0, 1} × {0, 1} such that if we write b(v′) = (b1(v

′), b2(v
′)), then:

1. b1(s
′) = b2(s

′) = 0.
2. b1(t

′) = b2(t
′) = 1.

3. If bi(v
′
1) 6= bi(v

′
2), i ∈ {1, 2}, then there is no edge with label in Ei between v′

1 and v′
2.

Then if we also have a g : C → R such that g · v′ = b2(v
′) − b1(v

′) for all v′ ∈ V (G′), then for any
directed cycle L′ in G′ using only the edges of P , fL′,P,E1,E2

· g = 0 and for any path P ′ in G′ from
s′ to t′ using only the edges of P , fP ′,P,E1,E2

· g = 1.

Proof of Lemma 6.16. This follows immediately from the following proposition:

Proposition 6.17. With the above conditions, if P ′′ is a path in G′ from s′ to a′, then
1
2 (

∑

e∈E1
d(P ′′, e) − ∑

e∈E2
d(P ′′, e)) · g = 1

2 (b2(a
′) + b1(a

′))

Proof of Proposition 6.17. We prove this by induction. It is clearly true for paths of length 0. As-
sume we have a path P ′′ from s′ to some vertex v′

1 ∈ V (G′) for which the proposition is true and

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 23

a, b, c, d

a, b, d

a, c, d

c c, d

d a, d

b, d

a, c

a, b, c

b, c, d

a

b a, b

b, c

s′ t′

b = (0, 0)

b = (1, 1)

b = (0, 1)

b = (1, 0)

Figure 8. This is a partition of the vertices in G′ into 4 groups as described
in Lemma 6.16, where G′ is a certain knowledge switching network such that all
knowledge sets contain only edges of the form s → v, P = s → a → b → c → d → t,
E1 = {s → a, b → c, d → t}, and E2 = {a → b, c → d}. In this diagram,
each vertex has knowledge set KV , where V is the set of vertices inside of the
vertex. Edges with label in E1 are blue and edges with label in E2 are red. Taking
g = 4e{a,b,c} − 4e{b,c,d}, g · a′ = b2(a

′) − b1(a
′).

an additional edge e′ from v′
1 to some vertex v′

2 ∈ V (G′). Let P ′′′ be P ′′ with the edge e′ added.
If e′ has a label in E1, then b1(v

′
2) = b1(v

′
1), so

1
2 (

∑

e∈E1
d(P ′′′, e)−∑

e∈E2
d(P ′′′, e))·g = 1

2 (
∑

e∈E1
d(P ′′, e)−∑

e∈E2
d(P ′′, e))·g+ 1

2 (g ·v′
2)− 1

2 (g ·v′
1)

= 1
2 (b2(v

′
1) + b1(v

′
1)) + 1

2 (b2(v
′
2) − b1(v

′
2)) − 1

2 (b2(v
′
1) − b1(v

′
1))

= 1
2 (b2(v

′
2) + b1(v

′
2)), as needed.

Similarly, if e′ has a label in E2, then b2(v
′
2) = b2(v

′
1), so

1
2 (

∑

e∈E1
d(P ′′′, e)−∑

e∈E2
d(P ′′′, e))·g = 1

2 (
∑

e∈E1
d(P ′′, e)−∑

e∈E2
d(P ′′, e))·g− 1

2 (g ·v′
2)+

1
2 (g ·v′

1)

= 1
2 (b2(v

′
1) + b1(v

′
1)) + 1

2 (−b2(v
′
2) + b1(v

′
2)) − 1

2 (−b2(v
′
1) + b1(v

′
1))

= 1
2 (b2(v

′
2) + b1(v

′
2)), as needed.

This completes the proof. �

�

24 AARON POTECHIN

Lemma 6.18. If there is a set of vertices W in G′ such that any path P ′ from s′ to t′ using only
edges with labels in P contains a vertex w′ ∈ W incident with both an edge in P ′ with label in E1

and an edge in P ′with label in E2, then it is possible to find a mapping b : V (G′) → {0, 1} × {0, 1}
as described in Lemma 6.16 so that all vertices v′ such that b1(v

′) 6= b2(v
′) are in W .

Proof of Lemma 6.18. Delete all edges in G′ whose labels are not in P . Treat all edges in E1 as
equivalent and treat all edges in E2 as equivalent.
Let W ′ be a subset of W for which the same condition holds and if we remove any vertex from W ′,
this condition no longer holds.
If for some a′, b′, c′, and i ∈ {1, 2} there is an edge between vertex a′ and b′ with label in Ei and an
edge between vertex b′ and c′ with label in Ei, then add an edge with label in Ei between a′ and c′.
Keep on doing this until doing so does not add any new edges.

Remark 6.19. Such a step cannot affect the given condition. To see this, assume this creates a
new path P ′ violating the condition. P ′ must contain this new edge. But then we can replace this
new edge by the two old edges to obtain a path we already had that still violates the condition

If a′ and b′ are two adjacent vertices in V (G′) that are not in W ′, then we require that b(a′) = b(b′).
This partitions the vertices of G′ that are not in W ′ into connected components. Since any path
from s′ to t′ contains a vertex in W ′, s′ and t′ are in different componenets. Set b(s′) = (0, 0) and
b(t′) = (1, 1). Call the component with s′ the starting component and call the component with t′

the ending component. For all vertices v′ in the starting component, b(v′) = (0, 0). For all vertices
v′ in the ending component, b(v′) = (1, 1).

For each vertex w′ ∈ W ′, there is a path P ′
W ′ in G′ from s′ to t′ containing w′ where w′ is incident

with both an edge in P ′
w′ with label in E1 and an edge in P ′

w′ with label in E2 and this is true for
no other vertex in W ′. Otherwise, we could have removed w′ from W ′ and the condition would still
hold. Now note that if P ′

w′ contains any other vertices in W ′, they can be bypassed using the added
edges. Thus, we can obtain a P ′

w′ containing w′ and no other vertices in W ′. Thus, each w′ ∈ W ′

is adjacent to at least one vertex in the starting component and one vertex in the ending component.

Given a vertex v′
1 in the starting component that is adjacent to w′ and a vertex v′

2 in the end-
ing component that is adjacent to w′, we can create a path P ′

w′ by taking the path from s′ to v′
1,

taking the edge e′1 from v′
1 to w′, taking the edge e′2 from w′ to v′

2, and taking the path from v′
2 to

t′. e′1 and e′2 must have different labels, or else we could bypass w′ entirely.

Note that the label of e′1 cannot depend on the choice of v′
1, or else we could choose it to have

the same label as e′2. Similarly, the label of e′2 cannot depend on the choice of v′
2. If e′1 has label in

E1 and e′2 has label in E2, then set b(w′) = (0, 1). If e′1 has label in E2 and e′2 has label in E1, then
set b(w′) = (1, 0). We have now chosen b(w′) for all w′ ∈ W ′.

If two vertices w′
1 and w′

2 in W ′ are adjacent, then with the added edges, there must be a ver-
tex v′ of G′ that is in the starting or ending component and is adjacent to both w′

1 and w′
2. From

the above, we must have that b(w′
1) = b(w′

2).

It is now easy to verify that at this point, all conditions of Lemma 6.16 are satisfied:
1. If v′ and w′ are adjacent, b(v′) = (0, 0), and b(w′) = (0, 1), then because of the way b(w′) was
chosen, the edge between them must have label in E1.
2. If v′ and w′ are adjacent, b(v′) = (0, 0), and b(w′) = (1, 0), then because of the way b(w′) was
chosen, the edge between them must have label in E2.

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 25

3. If v′ and w′ are adjacent, b(v′) = (1, 1), and b(w′) = (0, 1), then because of the way b(w′) was
chosen, the edge between them must have label in E2.
4. If v′ and w′ are adjacent, b(v′) = (1, 1), and b(w′) = (1, 0), then because of the way b(w′) was
chosen, the edge between them must have label in E1.
5. No vertex in the starting component is adjacent to a vertex in the ending component.
6. If w′

1, w
′
2 ∈ W ′ are adjacent, then b(w′

1) = b(w′
2).

If there is a vertex v′ such that b(v′) has not yet been determined, then v′ cannot be adjacent
to any vertices in the starting component or the ending component. Also, v′ cannot be adjacent
to any vertices in W ′, as otherwise with the added edges v′ would be adjacent to a vertex in the
starting component or a vertex in the ending component. We can set b(v′) = (0, 0) for all such v′,
and all of the conditions of Lemma 6.16 will still be satisifed. This completes the proof. �

The final Lemma we need is a slight modification of Lemma 3.8:

Lemma 6.20. If P is the path s → v1, v1 → v2, · · · , v2k → t, then setting s = v0, t = v2k+1, taking
E1 to be all edges of the form vi → vi+1 where i is even and taking E2 to be the remaining edges,
then if G′ is a certain knowledge switching network, any path in G′ from s′ to t′ using only the edges
in P must pass through at least one vertex a′ such that the union of the endpoints of the edges in Ka′

contains at least k + 1 of v1, v2, · · · , v2k and contains no other vertices except s and t. Furthermore,
a′ is incident with both an edge in P ′ with label in E1 and an edge in P ′ with label in E2.

Proof of Lemma 6.20. The proof is identical to the proof of Lemma 3.8, except that in the inductive
hypothesis we also require that a′ is incident with both an edge in P ′ with label in E1 and an edge
in P ′ with label in E2. �

Proof of Theorem 6.1. We put everything together as follows. Let G be a graph with vertices
s, v1, · · · , v2k , t and no other vertices and let P be the path s → v1, v1 → v2, · · · , v2k → t. Us-
ing Lemma 6.20, we obtain a W which we can use in Lemma 6.18. In turn, we can use these
groups in Lemma 6.16. By Lemma 6.15, we can obtain a function gP,E1,E2

: C → R that satisfies
all of the conditions of Lemma 6.16, so for any directed cycle L′ in G′ using only the edges of
P , fL′,P,E1,E2

· gP,E1,E2
= 0 and for any path P ′ in G′ from s′ to t′ using only the edges of P ,

fP ′,P,E1,E2
· gP,E1,E2

= 1. Also, by Lemma 6.15, if |V | ≤ k, ĝP,E1,E2V
= 0. Using Theorem 6.5,

gP,E1,E2
is (P,E1, E2)-invariant and fP ′,P,E1,E2

· gP,E1,E2
= 1, as needed.

If we now add more vertices to G, this will not affect the fact that gP,E1,E2
is (P,E1, E2)-invariant

and it will not change the value of fP ′,P,E1,E2
· gP,E1,E2

. Thus, we can use the same gP,E1,E2
re-

gardless of how many vertices G has, and if V contains a vertex not in P , then ĝP,E1,E2V
= 0. This

completes the proof. �

7. Proof of the Main Result

We will now modify the above ideas slightly to prove Theorem 1.3.

Throughout this section, we will take partitions (W1,W2) of the vertices of G, where s ∈ W1

and t ∈ W2. Also, in this section, unless we state that G′ solves directed connectivity on G, we do
not require that there is a path from s′ to t′ in G′ if and only if there is a path from s to t in G.
Instead, we only require that if there is a path from s′ to t′ in G′, then there must be a path from
s to t in G. It is easily verified that this is true if and only if we can assign states of knowledge as
before with Js′′ = {} and Jt′′ = {{s → t}}

26 AARON POTECHIN

Theorem 7.1. Given a switching network G′ solving directed connectivity on a graph G, we can
create a switching network G′′ such that:
1. |V (G′′)| ≤ N |V (G′)|.
2. All of the edges except s → t in the knowledge sets of G′′ have the form s → v for some v ∈ W1

or v → t for some v ∈ W2.
3. If P is a path in G from s to t that does not have any edges of the form a → b where a ∈ W2 and
b ∈ W1, then there is a path from s′′ to t′′ in G′′ using only the edges of P .

Proof. The proof is similar to the proof of Theorem 4.4. First, for each edge e′ with label of the
form a → b where a ∈ W2 and b ∈ W1 in G′, replace it with two edges, one with label s → b and
the other with label a → t. Clearly, condition 3 is still true after these replacements.

Again, construct G′′ by taking N copies of G′ and making the s′ for each copy equal to the t′

of the previous copy. Take s′′ to be the s′ of the first copy and take t′ to be the t′ of the last copy.
Now for each path in G′′, we keep track of a knowledge set K as follows:

1. If we use an edge of the form a → b where a, b ∈ W1, then for each knowledge set K in J
that includes the edge s → a, add the edge s → b.
2. If we use an edge of the form a → b where a ∈ W1 and b ∈ W2, then for each knowledge set K in
J that includes the edges s → a and b → t, add the edge s → t.
3. If we use an edge of the form a → b where a, b ∈ W2, then for each knowledge set K in J that
includes the edge b → t, add the edge a → t.
Take the J for each vertex to be the set of all of the K of the paths that can be used to reach that
vertex. Clearly, conditions 1 and 2 are satisfied.

For each time a path goes through a copy of G′, its state of knowledge must gain the path s → t
or at least one new path of the form s → v for some v ∈ W1 or v → t for some v ∈ W2. Thus,
Jt′′ = {{s → t}}, as needed. This completes the proof. �

Lemma 7.2. If for a function g : C → R, a directed path P in G from s to t that does not use any
edges of the form v → w where v ∈ W2 and w ∈ W1, and a partition (E1, E2) of the edges of P ,
fP ′,P,E1,E2

· g is independent of P ′ for all G′ such that for all of the states of knowledge, each of the
knowledge sets contains only edges of the form s → v for some v ∈ W1 or v → t for some v ∈ W2,
then g is (P,E1, E2)-invariant.

Proof. This can be proved in the same way as Lemma 6.6. �

Theorem 7.3. If for a function g : C → R, a directed path P in G that does not use any edges of
the form v → w where v ∈ W2 and w ∈ W1, and a partition (E1, E2) of the edges of P , for any
certain knowledge G′ such that all of the edges in the knowledge sets have the form s → v for some
v ∈ W1 or v → T for some v ∈ W2, fP ′,P,E1,E2

· g is the same for all P ′ and fL′,P,E1,E2
· g = 0for

all directed cycles L′ in G′ using only the edges of P , then for any G′, f · g is the same for all P ′.

Proof. First, use Lemma 7.2. Then apply the reasoning used in the proof of Theorem 6.8. This
completes the proof. �

Definition 7.4. For a set of vertices I that does not contain s or t, define KI to be the knowledge set
{s → v1, · · · , s → vk, w1 → t, · · · , wl → t}, where v1, · · · vk are the vertices in I ∩ W1 and w1, · · ·wl

are the vertices in I ∩ W2.

Definition 7.5. If I is nonempty, define gI(C) to be:
0 if there exists a vertex v such that v /∈ I and v ∈ W1 ∩ C or v ∈ W2 ∩ C̄

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 27

2N−3(−1)1+|I∩W1∩C̄|+|I∩W2∩C| otherwise
Define g{}(C) to be:

2N−3 if C is W1 or W2

0 otherwise

Lemma 7.6. gI is the unique function such that gI · KI′ = 1 if I = I ′ and 0 otherwise.

Proof. If I is nonempty,
gI ·KI′ = (gI · e{})− 23−N

∑

C∈CI′
gI(C), where CI′ is the set of all cuts C such that KI′(C) = −1.

gI · e{} = 0, so

gI · KI′ = −23−N
∑

C∈CI′
gI(C).

KI′(C) = −1 if and only if for all vertices v ∈ I ′, v ∈ W1 ∩ C or v ∈ W2 ∩ C̄. Thus, CI′ is
the set of all cuts such that for all vertices v ∈ I ′, v ∈ W1 ∩ C or v ∈ W2 ∩ C̄.

Let DI be the set of all cuts such that there no vertex v such that v /∈ I and v ∈ W1 ∩ C or
v ∈ W2 ∩ C̄. If C /∈ DI , then gI(C) = 0.

gI · KI′ =
∑

C∈(CI′∩DI) (−1)|I∩W1∩C̄|+|I∩W2∩C|.

If I ′ contains a vertex not in I, then CI′ ∩ DI is empty. If I ′ is a subset of I and I contains a
vertex v not in I ′, then v can either be in C or C̄, and these cuts cancel out, so gI ·KI′ = 0. Finally,
if I = I ′, then gI · KI′ = 1, as needed.

For any nonempty I ′, KI′(C) = −1 if C = W1 and KI′(C) = −1 if C = W2. Thus, we clearly
have that g{} · KI′ = 0, and it is easily checked that g{} · K{} = 1.

Assume these functions are not unique. Then there is a g such that g 6= 0 and g · KI = 0 for
all I. But the given gI must be linearly independent, so they form a basis for R

C , so if g · KI = 0
for all I, then g = 0. Contradiction. This completes the proof. �

Proof of Theorem 1.3. Take N = 2k + 2. Let m = 2k. Regardless of what W1 and W2 are, we can
find a path P in G from s to t of length 2k +1 that does not have any edge of the form a → b where
a ∈ W2 and b ∈ W1. By Lemma 6.20, taking the usual E1 and E2, if W is the set all KI such that
|I| > k, then any path P ′ from s′ to t′ in G′ must go through a vertex in W incident with both an
edge with label in E1 and an edge with label in E2.

Now note that we can remove all KI such that |I| > 2k + 1 from W and it will still be valid.
To see this, note that it is impossible to go from a KI where |I| ≤ k to a KI with |I| > 2k + 1
without either going through t′ or using an edge from both E1 and E2.

Combining Lemma 6.18 and Lemma 6.16, using Lemma 7.6 to find the corresponding g, we have
that g · g ≤ 2m(m6)m4k ≤ 2mm5k for large enough m. If C differs by more than 2k + 1 from the C
where C = W2, then g(C) = 0. Also,

∑

a′∈V (G′) |a′ · g| ≥ 1.

Let M2 = 1
g·g , and let g′ = Mg. Now

∑

a′∈V (G′) |a′ · g| ≥ M .

Since we can freely choose W1 and W2, from basic coding theory, we can create at least 2m

m5k mutually

orthonormal g′, where each M2 ≥ 1
2mm5k .

28 AARON POTECHIN

Now if we add more vertices to G, we can still use these same paths using these m vertices and
the corresponding g′. If m ≤ N

1

3 , then we can pick at least N
1

2
k distinct subsets of size m of

V (G)\s\t such that any two subsets have at most k vertices in common.

Thus, in total, we have K = N
1

2
k 2m

m5k orthonormal g′. If G′ solves directed connectivity on N

vertices, following the same reasoning as in the proof of Theorem 5.23, N ′ ≥
√

KM2 = N
1

4
k

m5k .

Taking m to be about N
1

40 , we have that
N ′ ≥ N

1

320
log N for large enough N . This completes the proof. �

Acknowledgement. The author wishes to thank Boaz Barak for his advice on this research and
for his help in editing the article.

References

[1] R. Aleliunas, R. M. Karp, R. J.Lipton, L. Lovász, and C. Rackoff. Random walks, universal traversal sequences,

and the complexity of maze problems. Proceedings of the 20th Annual Symposium on Foundations of Computer

Science, p.218-223, 1979

[2] S. A. Cook and C. W. Rackoff. Space lower bounds for maze threadability on restricted machines. SIAM Journal
on Cornputing, 9(3)636-652, Aug 1980

[3] N. Immerman. Nondeterministic Space is Closed Under Complementation, SIAM J. Comput. 17 1988, pp. 935-938

[4] W. Masek. A fast algorithm for the string editing problem and decision graph complexity. Master’s Thesis, De-
partment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1976.

[5] A. Razborov. Lower Bounds for Deterministic and Nondeterministic Branching Programs, Proceedings of the 8th
FCT, Lecture Notes in Computer Science, vol. 529, 1991, 47-60.

[6] O. Reingold. Undirected ST-connectivity in Log-Space, STOC 2005.
[7] W. J. Savitch. Relationship between nondeterministic and deterministic tape classes, J.CSS, 4, pp 177-192, 1970
[8] R. Szelepcsenyi. The method of forcing for nondeterministic automata, Bull. EATCS 33, 1987, pp. 96-100

Appendix A. Proof of Ω(N 3) lower size bound using linear indpendence

In this section, we use a linear independence argument to show an Ω(N 3) lower size bound on G′.

Lemma A.1. If P ′ is a directed path in G′ using only edges with the labels s → a, a → b, b → c,
c → d, and d → t, letting E1 = {s → a, b → c, d → t} and E2 = {a → b, c → d}, g = ea,b,c − eb,c,d is
(P,E1, E2)-invariant and fP ′,P,E1,E2

· g = 1
4

Proof. It is easy to check that for any C that can be crossed by at least one edge in both groups, a
and d are both in C or a and d are both in C̄. In either case, g(C) = 0, as needed.

Since g is (P,E1, E2)-invariant we can pick any P ′ and evaluate fP ′,P,E1,E2
·g = 1

4 . Picking the path

P ′ shown in Figure 6, we evaluate f̂A,B,C − f̂B,C,D to be 1
4 , and this completes the proof. �

While this guarantees that we can create a function f such that f̂A,B,C − f̂B,C,D is nonzero, we do
not know what the other Fourier coefficients of f are. If we use multiple paths of length 5, even
if they no two paths share more than two vertices, the functions we obtain may be linearly dependent.

To get around this, we will choose the paths in G of length 5 more carefully and modify the Fourier
coefficients we are looking at.

Pick 2m distinct vertices not equal to s or t in G. Label them a1, a2, · · · am, d1, · · · , dm.

We will look at paths Pj of the form s → ai → b → c → di → t where B and C are chosen

BOUNDS ON MONOTONE SWITCHING NETWORKS FOR DIRECTED CONNECTIVITY 29

freely from the remaining vertices and i is an integer between 1 and m.

For each such path Pj , let gj(C) = (
∏

k 6=i e0(C) − eak,dk
(C))(eai,b,c(c) − eb,c,di

(c))). Pick P ′
j to

be a path in G′ from s to t using only the edges in Pj .

Lemma A.2. For all j, fP ′

j
,Pj ,E1j,E2j · gj is nonzero. If j1 6= j2, then fP ′

j1
,Pj1

,E1j1,E2j1 · gj2 = 0.

Proof. First, note that for all j, gj(C) is nonzero if and only if for all i, ai ∈ C and di ∈ C̄ or
ai ∈ C̄ and di ∈ C. Thus, for any j1 and j2, gj2 is (Pj1 , E1j1, E2j1)-invariant. Thus, we can evaluate
fP ′

j1
,Pj1

,E1j1,E2j1 · gj2 by picking any P ′, and it is easy to show that fj1 · gj2 is nonzero if and only if

j1 = j2.
�

Corollary A.3. G′ has at least Ω(N3) vertices.

E-mail address: aaron@potechin.org

Cambridge University

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

