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Abstract

Statistical query (SQ) learning model of Kearns is a natural restriction of the PAC learning
model in which a learning algorithm is allowed to obtain estimates of statistical properties of
the examples but cannot see the examples themselves [23]. We describe a new and simple char-
acterization of the query complexity of learning in the SQ learning model. Unlike the previously
known bounds on SQ learning [8, 10, 36, 3, 32] our characterization preserves the accuracy and
the efficiency of learning. The preservation of accuracy implies that that our characterization
gives the first characterization of SQ learning in the agnostic learning framework of Haussler
and Kearns, Schapire and Sellie [19, 25]. The preservation of efficiency is achieved using a
new boosting technique and allows us to derive a new approach to the design of evolutionary
algorithms in Valiant’s model of evolvability [35]. We use this approach to demonstrate the
existence of a large class of monotone evolutionary learning algorithms based on square loss
fitness estimation. These results differ significantly from the few known evolutionary algorithms
and give evidence that evolvability in Valiant’s model is a more versatile phenomenon than there
had been previous reason to suspect.

1 Introduction

We study the complexity of learning in Kearns’ well-known statistical query (SQ) learning model
[23]. Statistical query learning is a natural restriction of the PAC learning model in which
a learning algorithm is allowed to obtain estimates of statistical properties of the examples
but cannot see the examples themselves. Formally, the learning algorithm is given access to
STAT(f, D) – a statistical query oracle for the unknown target function f and distribution D over
some domain X. A query to this oracle is a function of an example φ : X × {−1, 1} → {−1, 1}.
The oracle may respond to the query with any value v satisfying |Ex∼D[φ(x, f(x))] − v| ≤ τ
where τ ∈ [0, 1] is the tolerance of the query.

Kearns demonstrated that any learning algorithm that is based on statistical queries can be
automatically converted to a learning algorithm robust to random classification noise of arbitrary
rate smaller than the information-theoretic barrier of 1/2. Most known learning algorithms can
be converted to statistical query algorithms and hence the SQ model proved to be a powerful
technique for the design of noise-tolerant learning algorithms (e.g. [23, 12, 7, 13]). In fact,

∗Earlier version appeared in the proccedings of FOCS 2009.
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since the introduction of the model virtually all1 known noise-tolerant learning algorithms were
obtained from SQ algorithms. The basic approach was also extended to deal with noise in
numerous other learning scenarios and has also found applications in other areas [30, 6, 22].
This makes the study of the complexity of SQ learning crucial for the understanding of noise-
tolerant learning and PAC learning in general.

Kearns has also demonstrated that there are information-theoretic impediments unique to
SQ learning: parity functions require an exponential number of SQs to be learned [23]. Fur-
ther, Blum et al. proved that the number of SQs required for weak learning (that is, one that
gives a non-negligible advantage over the random guessing) of a concept class C is character-
ized by a relatively simple combinatorial parameter of C called the statistical query dimension
SQ-DIM(C,D) [8]. SQ-DIM(C,D) measures the maximum number of “nearly uncorrelated”
(relative to distribution D) functions in C. Bshouty and Feldman gave an alternative way to
characterize weak learning by statistical query algorithms that is based on the number of func-
tions required to weakly approximate each function in C [10]. These bounds for weak learning
were strengthened and extended to other variants of statistical queries in several works [9, 36, 14].
Notable applications of these bounds are lower bounds on SQ-DIM of several concept classes by
Klivans and Sherstov [28] and an upper-bound on the SQ dimension of halfspaces by Sherstov
[31].

While the query complexity of weak SQ learning is fairly well-studied, few works have ad-
dressed the query complexity of strong SQ learning. It is easy to see that there exist classes of
functions for which strong SQ complexity is exponentially higher than the weak SQ complexity.
One such example is learning of monotone functions with respect to the uniform distribution.
The complexity of weak SQ learning and hence the statistical query dimension are polynomial
[24, 11]. However, strong PAC learning of monotone functions with respect to the uniform
distribution requires an exponential number of examples and hence an exponential number of
statistical queries [24, 5]. In addition, it is important to note that the statistical query dimension
and other known notions of statistical query complexity are distribution-specific and therefore
one cannot directly invoke the equivalence of weak and strong SQ learning in the distribution-
independent setting [1]. The first explicit2 characterization of strong SQ learning with respect
to a fixed distribution D was only recently derived by Simon [32].

1.1 Our Results

Our main result is a complete characterization of the query complexity of SQ learning in both
PAC and agnostic models. Informally, our characterization states that a concept class C is
SQ learnable over a distribution D if and only if for every real-valued function ψ, there exists
a small (i.e. polynomial-size) set of functions Gψ such that for every f ∈ C, if sign(ψ) is
not “close” to f then one of the functions in Gψ is “noticeably” correlated with f − ψ. More
formally, for a distribution D over X, we define the (semi-)inner product over the space of
real-valued functions on X as 〈φ, ψ〉D = Ex∼D[φ(x) ·ψ(x)]. Then C is SQ learnable to accuracy
ε if and only if for every ψ : X → [−1, 1], there exists a set of functions Gψ such that (1)
for every f ∈ C, if PrD[sign(ψ) 6= f ] ≥ ε then |〈g, f − ψ〉D| ≥ γ for some g ∈ Gψ; (2)
|Gψ| is polynomial and γ > 0 is inverse-polynomial in 1/ε and n (the size of the learning
problem). It is known [10] that the number of functions required to weakly approximate every

1A notable exception is the algorithm for learning parities of Blum et al. [9] which is tolerant to random noise,
albeit not in the same strong sense as the algorithms derived from SQs.

2An earlier work has also considered this question but the characterization that was obtained is in terms of
query-answering protocols that are essentially specifications of non-adaptive algorithms [3].
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function in a set of functions F is precisely the (weak) statistical query dimension of F (after
the appropriate generalization of the notion to any set of real-valued functions). Therefore,
our approximation-based characterization leads to a characterization based on the following,
orthogonality-based dimension: SQ-SDIM(C, D, ε) = supψ{SQ-DIM((C \ BD(sign(ψ), ε)) −
ψ, D)}, where BD(sign(ψ), ε) is the set of functions that differ from sign(ψ) on at most ε
fraction of X and F − ψ = {f − ψ | f ∈ F}.

An important property of both of these characterizations is that the accuracy parameter
in the dimension corresponds to the accuracy parameter ε of learning (up to the tolerance of
the SQ learning algorithm). The advantage of the approximation-based characterization is that
it preserves computational efficiency of learning. Namely, the set of approximating functions
for ε-accurate learning can be computed efficiently if and only if there exists an efficient SQ
learning algorithm achieving error of at most ε. The orthogonality-based characterization does
not preserve efficiency but is more easy to analyze when proving lower bounds. Neither of these
properties are possessed by the previous characterizations of strong SQ learning [3, 32, 33].

The preservation of accuracy implies that both of our characterizations can be naturally
extended to agnostic learning by replacing the concept class C with the set of all functions that
are ∆-close to at least one concept in C (see Th. 4.1). Learning in this model is notoriously hard
and this is readily confirmed by the SQ dimension we introduce. For example, in Theorem 4.6
we prove that the SQ dimension of agnostic learning of monotone disjunctions with respect to
the uniform distribution is super polynomial. This provides new evidence that agnostic learning
of conjunctions is a hard problem even when restricted to the monotone case over the uniform
distribution. The preservation of accuracy is critical for the generalization to agnostic learning
since, unlike in the PAC model, achieving, for example, twice the error (i.e. 2 ·∆) might be a
substantially easier task than learning to accuracy ∆ + ε.

We note that the characterization of (strong) SQ learning by Simon [32] has some similarity
to ours. It also examines weak statistical query dimension of F−ψ for F ⊆ C and some function
ψ. However, the maximization is over all sets of functions F satisfying several properties and
φ is fixed to be the average of functions in F . Simon’s SQ dimension and the characterization
were substantially simplified in a very recent and independent work of Szörényi [33]. As it was
shown by Szörényi, his dimension can be easily related to the dimension we use in our second
characterization (Th. 3.11). Szörényi’s result is based on a very different technique and does
not have preserve efficiency and accuracy.

1.2 Overview of the Proof

To prove the first direction of our characterization we simulate the SQ learning algorithm for C
while replying to its statistical queries using ψ in place of the unknown target function f . If ψ
is not close to f then one of the queries in this execution has to distinguish between f and ψ,
giving a function that weakly approximates f − ψ. Hence the polynomial number of queries in
this execution implies the existence of the set Gψ with the desired property.

For the second direction we use the fact that 〈g, f − ψ〉D ≥ γ means that g “points” in the
direction of f from ψ, that is, ψ+γ·g is closer to f than ψ by at least γ2 in the norm corresponding
to our inner product. Therefore one can “learn” the target function f by taking steps in the
direction of f until the hypothesis converges to f . This argument requires the hypothesis at each
step to have range in [−1, 1] and therefore we apply a projection step after each update. This
process is closely related to projected gradient descent – a well-known technique in a number of
areas. The closest analogues of this technique in learning are some boosting algorithms (e.g. [4]).
In particular, our algorithm is closely related to the hard-core set construction of Impagliazzo
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[20] adapted to boosting by Klivans and Servedio [27]. The proof of our result can also be seen
as a new type of boosting algorithm that instead of using a weak learning algorithm on different
distributions uses a weak learning algorithm on different target functions (namely f −ψ). This
connection is explored in [17].

1.3 Applications to Evolvability

The characterization and its efficiency-preserving proofs imply that if C is SQ learnable then for
every hypothesis function ψ, there exists a small and efficiently computable set of functions N(ψ)
such that if ψ is not “close” to f ∈ C then one of the functions in N(ψ) is “closer” to f than ψ
(Th. 5.4). This property implies that every SQ learnable C is learnable by a canonical learning
algorithm which learns C via a sequential process in which at every step the best hypothesis is
chosen from a small and fixed pool of hypotheses “adjacent” to the current hypothesis.

This type of learning has been recently proposed by Valiant as one that can explain the
acquisition of complex functionality by living organisms through the process of evolution guided
by natural selection [35]. One particular important issue addressed by the model is the ability
of an evolutionary algorithm to adjust to a change of the target function without sacrificing the
fitness of the current hypothesis (beyond the decrease caused by the change itself). Existence
of algorithms that are robust to such changes (we refer to them as monotone) could explain the
ability of some organisms to adapt to changes in environmental conditions without the need
for a “restart”. While the power of non-monotone evolvability was resolved in our recent work
[14, 16], very few examples of monotone evolutionary algorithms are known. Michael’s algorithm
for evolving decision lists with respect to the uniform distribution [29] and the distribution-
independent algorithm for evolving singletons (functions that are positive on a single point) in
[16] are the only examples we are aware of. Our canonical learning algorithms can be fairly easily
translated into evolutionary algorithms demonstrating that every concept class C SQ learnable
with respect to a distribution D, is evolvable monotonically over D (Th. 5.5).

While we do not know how to extend this general method to the more robust distribution-
independent evolvability, we show that the underlying ideas can be useful for this purpose as well.
Namely, we prove distribution-independent and monotone evolvability of Boolean disjunctions
(or conjunctions) using a simple and natural mutation algorithm (Th. 5.7). The mutation
algorithm is based on slight adjustments of the contribution of each of the Boolean variables
while bounding the total value of contributions (which corresponds to the projection step). Both
of these results are based on measuring fitness of a hypothesis using the quadratic loss function.
Formal definitions of the model and the results are given in Section 5.

1.4 Relation to the Earlier Version

Since the appearance of the earlier version of this work [15] we have found ways to strengthen
some of the parameters of the characterizations. As a result the dimensions used here differ
from the ones introduced in [15]. Also, unlike the dimension we use here, the SQDε dimension
in [15] preserves the output hypothesis space and hence is suitable for characterizing proper
learning. To emphasize the difference we use different notation for the dimensions defined in
the two versions of the work. In addition, the characterization of learning in the agnostic model
is now simplified using recent distribution-specific agnostic boosting algorithms [17, 21].
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2 Preliminaries

For a positive integer `, let [`] denote the set {1, 2, . . . , `}. We denote the domain of our learning
problems by X and let F∞1 denote the set of all functions from X to [−1, 1] (that is all the
functions with L∞ norm bounded by 1). It will be convenient to view a distribution D over X
as defining the product 〈φ, ψ〉D = Ex∼D[φ(x) · ψ(x)] over the space of real-valued functions on
X. It is easy to see that this is simply a non-negatively weighted version of the standard dot
product over RX and hence is a positive semi-inner product over RX . The corresponding norm
is defined as ‖φ‖D =

√
ED[φ2(x)] =

√
〈φ, φ〉D. We define an ε-ball around a Boolean function

h as BD(h, ε) = {g : X → {−1, 1} | PrD[f 6= g] ≤ ε}. For two real-valued functions φ and
ψ we let LD

1 (φ, ψ) = ED[|φ(x) − ψ(x)|]. For a set of real-valued functions F and a real-valued
function ψ we denote by F − ψ = {f − ψ | f ∈ F}.

2.1 PAC Learning

For a domain X, a concept class over X is a set of {−1, 1}-valued functions over X referred
to as concepts. A concept class together with a specific way to represent all the functions
in the concept class is referred to as a representation class. For brevity, we often refer to a
representation class as just a concept class with some implicit representation scheme.

There is often a complexity parameter n associated with the domain X and the concept
class C such as the number of Boolean variables describing an element in X or the number
of real dimensions. In such a case it is understood that X =

⋃
n≥1 Xn and C =

⋃
n≥1 Cn.

We drop the subscript n when it is clear from the context. In some cases it useful to consider
another complexity parameter associated with C: the minimum description length of f under
the representation scheme of C. Here, for brevity, we assume that n (or a fixed polynomial in
n) bounds the description length of all functions in Cn.

The models we consider are based on the well-known PAC learning model introduced by
Valiant [34]. Let C be a representation class over X. In the basic PAC model a learning
algorithm is given examples of an unknown function f from C on points randomly chosen from
some unknown distribution D over X and should produce a hypothesis h that approximates f .
Formally, an example oracle EX(f,D) is an oracle that upon being invoked returns an example
〈x, f(x)〉, where x is chosen randomly with respect to D, independently of any previous examples.

An algorithm is said to PAC learn C in time t if for every ε > 0, δ > 0, f ∈ C, and
distribution D over X, the algorithm given ε and access to EX(f, D) outputs, in time t and with
probability at least 2/3, a hypothesis h that is evaluatable in time t and satisfies PrD[f(x) 6=
h(x)] ≤ ε. For convenience we also allow real-valued hypotheses in F∞1 . Such a hypothesis
needs to satisfy 〈f(x), h(x)〉D ≥ 1 − 2ε. A real-valued hypothesis φ(x) can be also thought of
as a randomized Boolean hypothesis Φ(x), such that φ(x) equals the expected value of Φ(x).
Hence 〈f(x), φ(x)〉D ≥ 1− 2ε is equivalent to saying that the expected error of Φ(x) is at most
ε. We say that an algorithm efficiently learns C when t is upper bounded by a polynomial in n,
1/ε.

The basic PAC model is also referred to as distribution-independent learning to distinguish
it from distribution-specific PAC learning in which the learning algorithm is required to learn
only with respect to a single distribution D known in advance.

A weak learning algorithm [26] is a learning algorithm that produces a hypothesis whose
disagreement with the target concept is noticeably less than 1/2 (and not necessarily any
ε > 0). More precisely, a weak learning algorithm produces a hypothesis h ∈ F∞1 such that
〈f(x), h(x)〉D ≥ 1/p(n) for some fixed polynomial p.
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2.2 Agnostic Learning

The agnostic learning model was introduced by Haussler [19] and Kearns et al. [25] in order to
model situations in which the assumption that examples are labeled by some f ∈ C does not
hold. In the most general version of the model the examples are generated from some unknown
distribution A over X ×{−1, 1}. The goal of an agnostic learning algorithm for a concept class
C is to produce a hypothesis whose error on examples generated from A is close to the best
possible by a concept from C. Any distribution A over X × {−1, 1} can be described uniquely
by its marginal distribution D over X and the expectation of the label b given x. That is, we
refer to a distribution A over X × {−1, 1} by a pair (DA, φA) where DA(z) = Pr〈x,b〉∼A[x = z]
and

φA(z) = E〈x,b〉∼A[b | z = x].

Formally, for a function h ∈ F∞1 and a distribution A = (D,φ) over X × {−1, 1}, we define

∆(A, h) = LD
1 (φ, h)/2 .

Note that for a Boolean function h, ∆(A, h) is exactly the error of h in predicting an exam-
ple drawn randomly from A or Pr〈x,b〉∼A[h(x) 6= b]. For a concept class C, let ∆(A,C) =
infh∈C{∆(A, h)} .

Kearns et al. [25] define agnostic learning as follows.

Definition 2.1 An algorithm A agnostically learns a representation class C if for every ε >
0, δ > 0, distribution A over X × {−1, 1}, A given access to examples drawn randomly from A,
outputs, with probability at least 2/3, a hypothesis h ∈ F∞1 such that ∆(A, h) ≤ ∆(A,C) + ε.

As in the PAC learning, the learning algorithm is efficient if it runs in time polynomial 1/ε and
n.

More generally, for 0 < α ≤ β ≤ 1/2 an (α, β)-agnostic learning algorithm is the algorithm
that produces a hypothesis h such that ∆(A, h) ≤ β whenever ∆(A,C) ≤ α. In the distribution-
specific version of this model, learning is only required for every A = (D, φ), where D equals to
some fixed distribution known in advance.

2.3 The Statistical Query Learning Model

In the statistical query model of Kearns [23] the learning algorithm is given access to STAT(f, D)
– a statistical query oracle for target concept f with respect to distribution D instead of
EX(f, D). A query to this oracle is a function ψ : X × {−1, 1} → {−1, 1}. The oracle may
respond to the query with any value v satisfying |ED[ψ(x, f(x))] − v| ≤ τ where τ ∈ [0, 1] is
a real number called the tolerance of the query. For convenience, we allow the query functions
to be real-valued in the range [−1, 1]. As it has been observed by Aslam and Decatur [2], this
extension is equivalent to the original SQ model.

An algorithm A is said to learn C in time t from statistical queries of tolerance τ if A PAC
learns C using STAT(f, D) in place of the example oracle. In addition, each query ψ made by
A has tolerance τ and can be evaluated in time t. The statistical query learning complexity of C
over D is the minimum number of queries of tolerance τ required to learn C over D to accuracy
ε and is denoted by SLC(C, D, ε, τ).

The algorithm is said to (efficiently) SQ learn C if t is polynomial in n and 1/ε, and τ is
lower-bounded by the inverse of a polynomial in n and 1/ε.

The SQ learning model extends to the agnostic setting analogously. That is, random exam-
ples from A are replaced by queries to the SQ oracle STAT(A). For a query ψ as above, STAT(A)
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returns a value v satisfying |E〈x,b〉∼A[ψ(x, b)]− v| ≤ τ . We denote the agnostic statistical query
learning complexity of C over D by ASLC(C,D, ε, τ).

A correlational statistical query is a statistical query for a correlation of a function over X
with the target [10]. Namely the query function ψ(x, `) ≡ φ(x) · ` for a function φ ∈ F∞1 . We
say that a query is target-independent if ψ(x, `) ≡ φ(x) for a function φ ∈ F∞1 , that is, if ψ is a
function of the point x alone. We will need the following simple fact by Bshouty and Feldman
[10] to relate learning by statistical queries to learning by CSQs.

Lemma 2.2 ([10]) For any function ψ : X × {−1, 1} → [−1, 1], ψ(x, `) ≡ φ1(x) · ` + φ2(x),
for some φ1, φ2 ∈ F∞1 . In particular a statistical query (ψ, τ) with respect to any distribution D
can be answered using a statistical query that is target-independent and a correlational statistical
query, each of tolerance τ/2.

2.4 (Weak) SQ Dimension

Blum et al. showed that concept classes weakly SQ learnable using only a polynomial number
of statistical queries of inverse polynomial tolerance are exactly the concept classes that have
polynomial statistical query dimension or SQ-DIM [8]. The dimension is based on the largest
number of almost orthogonal (using the 〈·, ·〉D inner product) functions in the set.

Definition 2.3 ([8, 36]) For a concept class C we say that SQ-DIM(C, D) = d if d is the
largest value for which there exist d functions f1, f2, . . . , fd ∈ C such that for every i 6= j,
|〈fi, fj〉D| ≤ 1/d.

Bshouty and Feldman gave an alternative way to characterize weak learning by statistical query
algorithms that is based on the number of functions required to weakly approximate each func-
tion in the set [10].

Definition 2.4 For a concept class C and γ > 0 we say that SQD(C, D, γ) = d if there exists
a set of d functions G ⊂ F∞1 such that for every f ∈ C, |〈f, g〉D| ≥ γ for some g ∈ G. In
addition, no value smaller than d has this property.

Bshouty and Feldman show that a concept class C is weakly SQ learnable over D using a
polynomial number of queries if and only if SQD(C,D, 1/t(n)) = d(n) for some polynomials
d(·) and t(·) [10]. It is also possible to relate SQD and SQ-DIM more directly. It is well-known
that the maximal set of almost orthogonal functions in C is also the approximating set for C.
In other words, SQD(C,D, 1/d) ≤ d, where d = SQ-DIM(C, D). The connection in the other
direction is implicit in the work of Blum et al. [8]. Here we will use a stronger version given by
Yang [36].

Lemma 2.5 ([36]) Let C be a concept class and D be a distribution over X. Then SQD(C, D, d−1/3) ≥
d1/3/2, where d = SQ-DIM(C, D).

3 Strong SQ Dimension

In this section we give a generalization of the weak statistical query dimension to strong learning.
We first extend the approximation-based characterization of Bshouty and Feldman [10] and then
obtain an orthogonality-based characterization from it.
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3.1 Approximation-Based Characterization

In order to define our strong statistical query dimension we first need to generalize the approximation-
based characterization of Bshouty and Feldman [10] to sets of real-valued functions rather than
just concept classes. To achieve this we simply note that the definition of SQD(C, D, γ) does
not use the fact that functions in C are Boolean and hence we can define SQD(F, D, γ) for any
set of real-valued functions F in exactly the same way. We now define the strong statistical
query dimension of a class of functions C.

Definition 3.1 For a concept class C, distribution D and ε, γ > 0 we define

SQSD(C, D, ε, γ) = sup
ψ∈F∞1

{
SQD(C \BD(sign(ψ), ε)− ψ,D, γ)

}
,

In other words, we say that SQSD(C, D, ε, γ) = d if for every ψ ∈ F∞1 , there exists a set of d
functions Gψ ⊂ F∞1 such that for every f ∈ C, either

1. PrD[f(x) 6= sign(ψ(x))] ≤ ε or

2. there exists g ∈ Gψ such that |〈f − ψ, g〉D| ≥ γ.

In addition, no value smaller than d has this property.

We now give a simple proof that SQSD(C,D, ε, γ) characterizes (within a polynomial) the
number of statistical queries required to learn C over D with accuracy ε and query tolerance γ.

Theorem 3.2 For every concept class C, distribution D over X and ε, τ > 0, SLC(C, D, ε, τ) ≥
SQSD(C,D, ε + τ, τ)− 2.

Proof: Let A be a SQ algorithm that learns C over D using q = SLC(C, D, ε, τ) queries of
tolerance τ . According to Lemma 2.2 we can assume that A makes only correlational SQs of
tolerance τ since A can compute the values of the target-independent SQs exactly.

Now let ψ ∈ F∞1 be any function. The set Gψ is constructed as follows. Simulate algorithm
A and for every correlational query (φi · `, τ) add φi to Gψ and respond to the query with the
value 〈ψ, φi〉D = ED[φi(x) · ψ(x)]. Continue the simulation until A outputs a hypothesis hψ.
Add sign(ψ) and hψ to Gψ.

First, by the definition of Gψ, q ≥ |Gψ| − 2. Now, let f be any function in C. If there does
not exist g ∈ Gψ such that |〈f−ψ, g〉D| ≥ τ then for every correlational query function φi ∈ Gψ,
|〈ψ, φi〉D − 〈f, φi〉D| < τ . This means that in our simulation, 〈ψ, φi〉D is within τ of 〈f, φi〉D.
Therefore the answers provided by our simulator are valid for the execution of A when the target
function is f . That is they could have been returned by STAT(f, D) with tolerance τ . Therefore,
by the definition of A, the hypothesis hψ satisfies 〈f, hψ〉D ≥ 1− 2ε. Both sign(ψ) and hψ are
in Gψ and therefore we also know that |〈f − ψ, sign(ψ)〉D| ≤ τ and |〈f − ψ, hψ〉D| ≤ τ . These
conditions imply that 〈f, sign(ψ)〉D ≥ 〈ψ, sign(ψ)〉D − τ and 〈ψ, hψ〉D ≥ 〈f, hψ〉D − τ . In
addition for all ψ, hψ ∈ F∞1 , 〈ψ, sign(ψ)〉D ≥ 〈ψ, hψ〉D. By combining these inequalities we
conclude that

〈f, sign(ψ)〉D ≥ 〈ψ, sign(ψ)〉D − τ ≥ 〈ψ, hψ〉D − τ ≥ 〈f, hψ〉D − 2τ ≥ 1− 2ε− 2τ ,

which is equivalent to PrD[f(x) 6= sign(ψ(x))] ≤ ε + τ . In other words, if there does not
exist g ∈ Gψ such that |〈f − ψ, g〉D| ≥ τ then f ∈ BD(sign(ψ), ε + τ), giving us the claimed
inequality. ¤
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Remark 3.3 If A is randomized then it can be converted to a non-uniform deterministic al-
gorithm via a standard transformation (e.g. [10]). Therefore, Theorem 3.2 also applies to SQ
learning by randomized algorithms.

We now establish the other direction of our characterization.

Theorem 3.4 For every concept class C, distribution D over X and ε, τ > 0, SLC(C, D, ε, τ) ≤
SQSD(C,D, ε, 4 · τ)/(3τ2).

Proof: Let d = SQSD(C, D, ε, 4 · τ). Our learning algorithm for C builds an approximation
to the target function f in steps. In each step we have a current hypothesis ψi ∈ F∞1 . If
sign(ψi) is not ε-close to f then we find a function g ∈ Gψi

such that |〈f − ψi, g〉D| ≥ γ.
Such g can be viewed as a vector “pointing” in the direction of f from ψi. We therefore set
ψ′i+1 = ψi + 〈f − ψi, g〉D · g. As we will show ψ′i+1 is closer (in distance measured by ‖ · ‖D)
to f than ψi. However ψ′i+1 is not necessarily in F∞1 . We define ψi+1 to be the projection of
ψ′i+1 onto F∞1 . As we will show this projection step only decreases the distance to the target
function. We will now provide the details of the proof.

Let ψ0 ≡ 0. Given ψi we define ψi+1 as follows. Let Gψi be the set of size at most d that
correlates with every function in C \ BD(sign(ψi), ε) − ψi (as given by Definition 3.1). For
every g ∈ Gψi we make a query for 〈f, g〉D to STAT(f,D) with tolerance τ and denote the
answer by v(g). If there exists g ∈ Gψi such that |v(g) − 〈ψi, g〉D| ≥ 3τ then we set gi = g,
γi = v(gi)− 〈ψi, gi〉D, and ψ′i+1 = ψi + γi · gi. Otherwise the algorithm outputs sign(ψi). Note
that if sign(ψi) is not ε-close to f then there exists g ∈ Gψi such that |〈f − ψi, g〉D| ≥ 4τ and,
in particular, |v(g)− 〈ψi, g〉D| ≥ 3τ .

We then set ψi+1 to be the projection of ψ′i+1 onto F∞1 :

ψi+1(x) = P1(ψ′i+1) ,
{

ψ′i+1(x) |ψ′i+1(x)| ≤ 1
sign(ψ′i+1(x)) otherwise.

We then continue to the next iteration using ψi+1.
As we can see sign(ψi) is only output when sign(ψi) is ε-close to f . Therefore in order to

prove the desired bound on the number of queries it is sufficient to show that the algorithm will
output sign(ψi) after an appropriate number of iterations. This is established via the following
claim.

Claim 3.5 For every i, ‖f − ψi‖2D ≤ 1− 3 · i · τ2.

Proof: First, ‖f − ψ0‖2D = ‖f‖2D = 1. Next,

‖f − ψ′i+1‖2D = ‖(f − ψi)− γi · gi‖2D = ‖f − ψi‖2D + ‖γi · gi‖2D − 2〈f − ψi, γi · gi〉D.

Therefore,

‖f − ψi‖2D − ‖f − ψ′i+1‖2D = 2γi〈f − ψi, gi〉D − γ2
i ‖gi‖2D ≥ 2 · γi · 〈f − ψi, gi〉D − γ2

i

=(∗) 2 · |γi| · |〈f − ψi, gi〉D| − γ2
i ≥ 2 · |γi|(|γi| − τ)− γ2

i ≥ γ2
i /3 ≥ 3 · τ2.

To obtain (∗) we note that |γi| ≥ 3τ and |〈f − ψi, gi〉D − γi| = |〈f, gi〉D − v(gi)| ≤ τ . Therefore
the sign of γi is the same as the sign of 〈f − ψi, gi〉D and |〈f − ψi, gi〉D| ≥ |γi| − τ ≥ 2γi/3.

We now claim that ‖f − ψ′i+1‖2D ≥ ‖f − ψi+1‖2D. This follows easily from the definition
of ψi+1. If for a point x, ψi+1(x) = ψ′i+1(x) then clearly f(x) − ψ′i+1(x) = f(x) − ψi+1(x).

9



Otherwise, if |ψ′i+1(x)| > 1 then ψi+1(x) = sign(ψ′i+1(x)) and for any value f(x) ∈ {−1, 1},
|f(x)− ψ′i+1(x)| ≥ |f(x)− ψi+1(x)|. This implies that ED[(f − ψ′i+1)

2] ≥ ED[(f − ψi+1)2].
We therefore obtain that for every i, ‖f −ψi‖2D −‖f −ψi+1‖2D ≥ 3τ2 giving us the claim. ¤

(Cl. 3.5)
Claim 3.5 implies that the algorithm makes at most 1/(3τ2) iterations. In each iteration at

most d queries are made and therefore the algorithm uses at most d/(3τ2) queries of tolerance
τ . ¤ (Th. 3.4)

An important property of the proofs of Theorems 3.2 and 3.4 that they give a simple and
efficient way to convert a learning algorithm for C into an algorithm that given access to target-
independent statistical queries with respect to D builds an approximating set Gψ for every ψ
and vice versa. The access to target-independent statistical queries with respect to D can be
replaced by a circuit that provides random samples from D if D is efficiently samplable or a
fixed polynomial-size random (unlabeled) sample from D (in this case the resulting algorithm
is non-uniform). For convenience we refer to either of these options as access to D.

Theorem 3.6 Let C be a concept class and D be a distribution over X. C is efficiently SQ
learnable if and only if there exists an algorithm B that for every ε > 0, given ε, access to D
and a circuit for ψ ∈ F∞1 can produce a set of functions Gψ such that

1. Gψ satisfies the conditions of Definition 3.1 for some polynomial d and inverse-polynomial
γ (in n, 1/ε);

2. circuit size of every function in Gψ is polynomial in n and 1/ε;

3. the running time of B is polynomial in n, 1/ε and the circuit size of ψ.

Proof: The proof of Theorem 3.2 gives a way to construct the set Gψ by simulating A while
using ψ in place of the target function f . This construction of Gψ would be efficient provided the
exact values of ED[φi(x)·ψ(x)] and the exact values of target-independent SQs in the simulation
of algorithm A were available. However it is easy to see that the exact values are not necessary
and can be replaced by estimates within τ/2. Such estimates can be easily obtained given access
to D.

Similarly, in the proof of Theorem 3.4 the iterative procedure would yield an efficient SQ
learning algorithm for C provided the exact values of 〈ψi, g〉D were available. It is again easy to
see that in place of exact values estimates within τ/2 can be used if the accuracy of statistical
queries is also increased to τ/2. This implies that if there exists an efficient algorithm that given
a polynomial size circuit for ψ ∈ F∞1 and access to D generates Gψ then C is efficiently SQ
learnable over D. ¤

3.2 Orthogonality-Based Characterization

In order to simplify the application of our characterization we show that, with only a polynomial
loss in the bounds one can obtain an orthogonality-based version of SQSD. Specifically, we
convert the bound on the number of functions required to weakly approximate every function in
some set of functions F to a bound on the maximum number of almost uncorrelated functions
in F .

In Lemma 3.8 we generalize Yang’s conversion (Lemma 2.5) to sets of arbitrary real-valued
functions. But first we need to appropriately extend the definition of SQ-DIM to sets of arbitrary
real-valued functions. For this purpose we simply use Definition 2.3 applied to sets of real-valued
functions.
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Definition 3.7 For a set of real-valued functions F we say that SQ-DIM(F, D) = d if d is
the largest value for which there exist d functions f1, f2, . . . , fd ∈ F such that for every i 6= j,
|〈fi, fj〉D| ≤ 1/d.

Lemma 3.8 Let D be a distribution and F be set of functions such that every φ ∈ F , m ≤
‖φ‖D ≤ M for some M ≥ 1 ≥ m. Then SQD(F,D, M(dm2)−1/3) ≥ (dm2)1/3/2, where d =
SQ-DIM(F, D).

Proof: Yang shows that our claim is correct if for every φ ∈ F , ‖φ‖D = 1 [36, Cor. 1]. While
his claim (Lemma 2.5) is only for Boolean functions the only property of Boolean functions used
in his proof is their ‖ · ‖D-norm being equal to 1. We reduce our general case to this special case
by defining F ′ = {f/‖f‖D | f ∈ F}. We claim that SQ-DIM(F ′, D) ≥ d ·m2. It is easy to see
this since if for f1, f2 ∈ F , 〈f1, f2〉D ≤ 1/d then

〈
f1

‖f1‖D
,

f2

‖f2‖D

〉

D

≤ 1
dm2

.

This means that the existence of a set of d functions in F with correlations of at most 1/d would
imply the existence of d ≥ d ·m2 functions in F ′ with mutual correlations of at most 1/(dm2).

We apply Yang’s result to F ′ and obtain SQD(F ′, D, (dm2)−1/3) ≥ (dm2)1/3/2. This implies
that SQD(F, D, M(dm2)−1/3) ≥ (dm2)1/3/2. To see this assume for the sake of contradiction
that there exists a set G of size less than (dm2)1/3/2 such that for every f ∈ F , |〈f, g〉D| ≥
M(dm2)−1/3 for some g ∈ G. Then for every f ′ = f/‖f‖D ∈ F ′, |〈f ′, g〉D| = |〈f, g〉D|/‖f‖D ≥
M(dm2)−1/3/‖f‖D ≥ (dm2)−1/3. This would violate the bound on SQD(F ′, D, (dm2)−1/3) that
we have obtained. ¤

We define SQ-SDIM(C,D, ε) to be the generalization of SQ-DIM to ε-accurate learning as
follows.

Definition 3.9 SQ-SDIM(C,D, ε) = supψ∈F∞1 SQ-DIM(C \BD(sign(ψ), ε)− ψ), D).

We now ready to relate SQSD and SQ-SDIM.

Theorem 3.10 Let C be a concept class D be a distribution over X, ε > 0 and d = SQ-SDIM(C, D, ε).
Then SQSD(C, D, ε, 1/(2d)) ≤ d and SQSD(C,D, ε, 2(εd)−1/3) ≥ (εd)1/3/2.

Proof: Let ψ ∈ F∞1 be any function, let Fψ = C\BD(sign(ψ), ε)−ψ and let d′ = SQ-DIM(Fψ, D) ≤
SQ-SDIM(C, D, ε) = d.

For the first part of the claim we use a minor modification of the standard relation between
SQD and SQ-SDIM (see Section 2.4). Let F1 = {f1, f2, . . . , fd′} ⊆ Fψ be the largest set of
functions such that for every i 6= j, |〈fi, fj〉D| ≤ 1/d′. The maximality of d′ implies that for every
f ∈ Fψ, there exists fi ∈ F1 such that |〈fi, f〉D| > 1/d′. Thus F1 is an approximating set for Fψ.
The only minor problem is that we need an approximating set of functions in F∞1 . The domain
of each function in Fψ is [−2, 2] and therefore to obtain an approximating set in F∞1 we simply
scale F1 by 1/2. By taking Gψ = {f/2 | f ∈ F1} we obtain that SQD(Fψ, D, 1/(2d′)) ≤ d′.
This holds for every ψ ∈ F∞1 and therefore SQSD(C,D, ε, 1/(2d)) ≤ d.

For the second part of the claim we first observe that that for every f ∈ Fψ, f = c−ψ for c ∈ C
and PrD[c 6= sign(ψ)] > ε. This implies that PrD[|f | ≥ 1] ≥ ε and hence 2 ≥ ‖f‖D ≥ √

ε.
We now use Lemma 3.8 to obtain SQD(Fψ, D, 2(εd′)−1/3) ≥ (εd′)1/3/2. This implies that
SQSD(C, D, ε, 2(εd)−1/3) ≥ (εd)1/3/2. ¤

We can combine Theorem 3.10 with the approximation-based characterization (Th. 3.2 and
3.4) to obtain a characterization of strong SQ learnability based on SQ-SDIM.
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Theorem 3.11 Let C be a concept class, D be a distribution over X and ε > 0. If there
exists a polynomial p(·, ·) such that C is SQ learnable to accuracy ε from p(n, 1/ε) queries of
tolerance 1/p(n, 1/ε) then SQ-SDIM(C, D, ε + 1/p(n, 1/ε)) ≤ p′(n, 1/ε) for some polynomial
p′(·, ·). Further, if SQ-SDIM(C, D, ε) ≤ p(n, 1/ε) then C is SQ learnable to accuracy ε from
p′(n, 1/ε) queries of tolerance 1/p′(n, 1/ε) for some polynomial p′(·, ·).

4 SQ Dimension for Agnostic Learning

In this section we extend the statistical query dimension characterization to agnostic learning.
Our characterization is based on the well-known observation that agnostic learning of a concept
class C requires (a weak form of) learning of the set of functions F in which every function
is weakly approximated by some function in C [25]. For example agnostic learning of Boolean
conjunctions implies weak learning of DNF expressions. We formalize this by defining an LD

1

ε-ball around a real-valued function φ over X as BD
1 (φ, ε) = {ψ ∈ F∞1 | LD

1 (ψ, φ) ≤ ε} and
around a set of functions C as LD

1 (C, ε) = ∪f∈CBD
1 (φ, ε). In (α, β)-agnostic learning of a

function class C over the marginal distribution D, the learning algorithm only needs to learn
when the distribution over examples A = (D,φ) satisfies ∆(A,C) ≤ α. In other words, for
any A = (D, φ) such that there exists c ∈ C, for which ∆(A, c) = LD

1 (φ, c)/2 ≤ α. Therefore
(α, β)-agnostic learning with respect to distribution D can be seen as learning of the set of
distributions D = {(D,φ) | φ ∈ BD

1 (C, 2α)} with error of at most β. This observation allows us
to apply the characterizations from Section 3 after the straightforward generalization of SQSD
and SQ-SDIM to general sets of real-valued functions. Namely, for a set of real-valued functions
F , we define

SQSD(F, D, ε, γ) = sup
ψ∈F∞1

{
SQD(F \BD

1 (sign(ψ), 2ε)− ψ,D, γ)
}

.

The SQ-SDIM(F,D, ε) is defined analogously. It is easy to see that when F contains only {−1, 1}
functions these generalized definitions are identical to Definitions 3.1 and 3.9.

We can now characterize the query complexity of (α, β)-agnostic SQ learning using SQSD(BD
1 (C, 2·

α), D, β, γ) in exactly the same way as SLC is characterized using SQSD(C,D, ε, γ). Formally,
we obtain the following theorem.

Theorem 4.1 Let C be a concept class, D be a distribution D over X and 0 < α ≤ β ≤ 1/2.
Let d be the smallest number of SQs of tolerance τ sufficient to (α, β)-agnostically learn C. Then

1. d ≥ SQSD(BD
1 (C, 2 · α), D, β + τ, τ)− 2,

2. d ≤ SQSD(BD
1 (C, 2 · α), D, β, 4 · τ)/(3τ2).

To prove Theorem 4.1 we only need to observe that the proofs of Theorems 3.2 and 3.4 do
not assume that the concept class C contains only Boolean functions and hold for any class of
functions contained in F∞1 . To obtain a characterization of (α, β)-agnostic SQ learning using
SQ-SDIM we would also need to extend Theorem 3.10 to general sets of functions in F∞1 .

Theorem 4.2 Let F ⊆ F∞1 be a set of functions, D be a distribution over X, ε > 0 and d =
SQ-SDIM(F, D, ε). Then SQSD(F, D, ε, 1/(2d)) ≤ d and SQSD(F, D, ε, 2d−1/5) ≥ (εd)1/3/2.

Proof: We first observe that the first part of the proof of Theorem 3.10 can be used verbatim
for more general sets of functions. However the proof of the second part relies on a lower bound
of
√

ε on the ‖·‖D-norm of every function in Fψ = F \BD(sign(ψ), ε)−ψ. In place of this lower
bound we observe that if there exists a function f ∈ Fψ such that ‖f‖D ≤ 2d−1/5 then there does
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not exist g ∈ F∞1 such that 〈f, g〉D ≥ 2d−1/5) and, in particular, SQD(Fψ, D, ε, 2d−1/5) = ∞.
This would imply the claim. Otherwise (when ‖f‖D ≥ 2d−1/5 for all f ∈ Fψ), we can apply
Lemma 3.8 (with m = 2d−1/5) to obtain SQD(Fψ, D, 21/3d−1/5) ≥ (εd)1/3/2. In either case we
obtain that SQSD(F, D, ε, 2d−1/5) ≥ (εd)1/3/2 ¤

While we can now use SQSD or SQ-SDIM to characterize SQ learnability in the basic agnostic
model a simpler approach to characterization is suggested by recent distribution-specific agnostic
boosting algorithms [17, 21]. Formally, a weak agnostic learning algorithm is an algorithm that
can recover at least a polynomial fraction of the advantage over the random guessing of the best
approximating function in C. Specifically, on a distribution A = (D, φ) it produces a hypothesis
h such that 〈h, φ〉D ≥ p(1/n, 1 − 2∆(A,C)) for some polynomial p(·, ·). Distribution-specific
agnostic boosting algorithms of Kalai and Kanade [21] and Feldman [17] imply the equivalence
of weak and strong distribution-specific agnostic learning.

Theorem 4.3 ([17, 21]) Let C be a concept class and D be a distribution over X. If C is
efficiently weakly agnostically learnable over D then C is agnostically learnable over D.

This result is proved only for the example-based agnostic learning but, as with other boosting
algorithms, it can be easily translated to the SQ model (cf. [1]). Given Theorem 4.3, we
can use the known characterizations of weak learning together with our simple observation to
characterize the (strong) agnostic SQ learning using either SQD or SQ-DIM.

Theorem 4.4 Let C be a concept class and D be a distribution over X. There exists a poly-
nomial p(·, ·) such that ASLC(C, D, ε, 1/p(n, 1/ε)) ≤ p(n, 1/ε) if and only if there exists a poly-
nomial polynomial p′(·, ·) such that for every 1 > Γ > 0, SQD(BD

1 (C, 1− Γ), D, 1/p′(n, 1/Γ)) ≤
p′(n, 1/Γ).

Proof: The proof is essentially the same as the characterization of weak learning by Bshouty
and Feldman [10]. We review it briefly for completeness. Given Γ > 0 and an agnostic learning
algorithm A for C, we simulate A with ε = Γ/4 as in the proof of Theorem 3.2 for ψ ≡ 0.
Let G be the set containing the correlational queries obtained from A and the final hypothesis.
By the same analysis as in the proof of Theorem 3.2, the size of G is upper-bounded by a
polynomial in n and 1/ε = 4/Γ. Further, for every φ ∈ BD

1 (C, 1 − Γ), there exists g ∈ G such
that |〈g, φ〉D| ≥ min{τ, Γ− 2ε} = min{τ, Γ/2}. The tolerance of the learning algorithm is lower
bounded by the inverse of a polynomial (in n and 1/Γ) and therefore we obtain the first direction
of the claim.

If for every Γ > 0, SQD(BD
1 (C, 1 − Γ), D, 1/p′(n, 1/Γ)) ≤ p′(n, 1/Γ) then C can be weakly

agnostically SQ learned by the following algorithm. First, ask the query g · ` with tolerance
1/(3p′(n, 1/Γ) for each function g in the approximating set G. Let v(g) denote the answer
to the query for g. For a distribution A = (D, φ), EA[g(x) · b] = 〈g, φ〉D and therefore
|v(g) − 〈g, φ〉D| ≤ 1/(3p′(n, 1/Γ). By choosing g′ = argmaxg∈G{|v(g)|} we are guaranteed
that |〈g′, φ〉D| ≥ 1/(3p′(n, 1/Γ)). Therefore sign(v(g′)) · g′ is a weak hypothesis for f . Finally,
we can appeal to Theorem 4.3 to convert this weak agnostic learning algorithm to a strong
agnostic learning algorithm for C over D. ¤

As before, we can now obtain an SQ-DIM–based characterization from the SQD–based one.

Theorem 4.5 Let C be a concept class and D be a distribution over X. There exists a polyno-
mial p(·, ·) such that ASLC(C, D, ε, 1/p(n, 1/ε)) ≤ p(n, 1/ε) if and only if there exists a polyno-
mial polynomial p′(·, ·) such that for every 1 > Γ > 0, SQ-DIM(BD

1 (C, 1− Γ), D) ≤ p′(n, 1/Γ).

Proof: Let d = SQ-DIM(BD
1 (C, 1− Γ), D). Every function f ∈ BD

1 (C, 1− Γ) satisfies ‖f‖D ≥
ED[|f |] ≥ Γ. Therefore, Lemma 3.8 implies that SQD(BD

1 (C, 1−Γ), D, (Γ2d)−1/3) ≥ (Γ2d)1/3/2.
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This implies that d ≤ p1(SQD(BD
1 (C, 1−Γ), D, 1/p2(n, 1/Γ)), 1/Γ) for some polynomials p1(·, ·)

and p2(·, ·). As in the case of concept classes, it follows immediately from the definition that
d ≥ SQD(BD

1 (C, 1− Γ), D, 1/d). These bounds together with Theorem 4.4 imply the claim. ¤
We now give a simple example of the use of this characterization. For X = {0, 1}n, let

U denote the uniform distribution over {0, 1}n and let Cn,k denote the concept class of all
monotone conjunctions of at most k Boolean variables.

Theorem 4.6 For every k = ω(1), the concept class Cn,k is not efficiently agnostically SQ
learnable over the uniform distribution U .

Proof: Let χT denote the parity function of the variables with indices in T ⊆ [n]. Let cT denote
the monotone conjunction of the same set of variables. PrU [χT (x) 6= cT (x)] = 1/2 − 2−|T |

and therefore LU
1 (χT , cT ) = 1 − 2−|T |+1. In particular, for Pn,k = {χT | |T | ≤ k}, we get

Pn,k ⊆ BU
1 (Cn,k, 1− 2−k+1)). For any two distinct parity functions χS and χT , 〈χS , χT 〉U = 0

and therefore SQ-DIM(BU
1 (Cn,k, 1 − 2−k+1), U) ≥ |Pk| =

∑
i≤k

(
n
i

)
. By choosing Γ = 1/n we

obtain that SQ-DIM(BU
1 (Cn,k, 1− Γ), U) = nω(1). Theorem 4.5 now implies the claim. ¤

5 Applications to Evolvability

In this section we use the characterization of SQ learnability and the analysis in the proof
of Theorem 3.4 to derive a new type of evolutionary algorithms in Valiant’s framework of
evolvability [35].

5.1 Overview of the Model

We start by presenting a brief overview of the model. For detailed description and intuition
behind the various choices made in model the reader is referred to [35, 16]. The goal of the
model is to specify how organisms can acquire complex mechanisms via a resource-efficient
process based on random mutations and guided by fitness-based selection. The mechanisms
are described in terms of the multi argument functions they implement. The fitness of such
a mechanism is measured by evaluating the correlation of the mechanism with some “ideal”
behavior function. The value of the “ideal” function on some input describes the most beneficial
behavior for the condition represented by the input. The evaluation of the correlation with the
“ideal” function is derived by evaluating the function on a moderate number of inputs drawn
from a probability distribution over the conditions that arise. These evaluations correspond
to the experiences of one or more organisms that embody the mechanism. A specific “ideal”
function and a distribution over the domain of inputs effectively define a fitness landscape over
all functions.

Random variation is modeled by the existence of an explicit algorithm that acts on some
fixed representation of mechanisms and for each representation of a mechanism produces rep-
resentations of mutated versions of the mechanism. The model essentially does not place any
restrictions on the mutation algorithm other than it being efficiently implementable. Selection is
modeled by an explicit rule that determines the probabilities with which each of the mutations
of a mechanism will be chosen to “survive” based on the fitness of all the mutations of the
mechanism and the probabilities with which each of the mutations is produced by the mutation
algorithm.

As can be seen from the above description, a fitness landscape (given by a specific “ideal”
function and a distribution over the domain), a mutation algorithm, and a selection rule jointly
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determine how each step of an evolutionary process is performed. A class of functions C is
considered evolvable in selection rule Sel with respect to a distribution D over the domain
if there exist a representation of mechanisms R and a mutation algorithm M such that for
every “ideal” function f ∈ C, a sequence of evolutionary steps starting from any representation
in R and performed according to f, D,M and selection rule Sel converges in a polynomial
number of steps to f . The convergence is defined as achieving fitness (which is the correlation
with f over D) of at least 1 − ε for some ε > 0 referred to as the accuracy parameter. This
process is essentially PAC learning of C over distribution D with the selection rule (rather than
explicit examples) providing the only target-specific feedback. An evolvable class of functions
C represents the complexity of structures that can evolve in a single phase of evolution driven
by a single “ideal” function. We now define the model formally using the notation from [16].

5.2 Definition of Evolvability

The description of a mutation algorithm A consists of the definition of the representation class
R of possibly randomized hypotheses in F∞1 and the description of polynomial time algorithm
that for every r ∈ R and ε > 0 outputs a random mutation of r

Definition 5.1 A mutation algorithm A is defined by a pair (R,M) where

• R is a representation class of functions over X with range in [−1, 1].

• M is a randomized polynomial time Turing machine that, given r ∈ R and 1/ε as input,
outputs a representation r1 ∈ R with probability PrA(r, r1). The set of representations
that can be output by M(r, ε) is referred to as the neighborhood of r for ε and denoted by
NeighA(r, ε).

A loss function L is a non-negative mapping L : Y ×Y → R+. L(y, y′) measures the “distance”
between the desired value y and the predicted value y′. We will discuss linear loss L1(y, y′) =
|y′− y| and the quadratic loss LQ(y, y′) = (y′− y)2 functions. For a function φ ∈ F∞1 its fitness
(also referred to as performance in earlier work) relative to loss function L, distribution D over
the domain and target function f is defined as

LPerff (φ,D) = 1− 2 ·ED[L(f(x), φ(x))]/L(−1, 1) .

For an integer s, functions φ, f ∈ F∞1 over X, distribution D over X and loss function L, the em-
pirical fitness LPerff (φ,D, s) of φ is a random variable that equals 1− 1

s
2

L(−1,1)

∑
i∈[s] L(f(zi), φ(zi))

for z1, z2, . . . , zs ∈ X chosen randomly and independently according to D.
A number of natural ways of modeling selection were discussed in prior work [35, 16]. For

concreteness here we use the selection rule used in Valiant’s main definition in a slightly gen-
eralized version from [16]. In selection rule SelNB[L, t, p, s] p candidate mutations are sampled
using the mutation algorithm. Then beneficial and neutral mutations are defined on the basis
of their empirical fitness LPerf in s experiments (or examples) using tolerance t. If some ben-
eficial mutations are available one is chosen randomly according to their relative frequencies in
the candidate pool. If none is available then one of the neutral mutations is output randomly
according to their relative frequencies. If neither neutral or beneficial mutations are available,
⊥ is output to mean that no mutation “survived”.

Definition 5.2 For a loss function L, tolerance t, candidate pool size p, sample size s, selection
rule SelNB[L, t, p, s] is an algorithm that for any function f , distribution D, mutation algorithm
A = (R,M), a representation r ∈ R, accuracy ε, SelNB[L, t, p, s](f, D,A, r) outputs a random
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variable that takes a value r1 determined as follows. First run M(r, ε) p times and let Z be
the set of representations obtained. For r′ ∈ Z, let PrZ(r′) be the relative frequency with which
r′ was generated among the p observed representations. For each r′ ∈ Z ∪ {r}, compute an
empirical value of fitness v(r′) = LPerff (r′, D, s). Let Bene(Z) = {r′ | v(r′) ≥ v(r) + t} and
Neut(Z) = {r′ | |v(r′)− v(r)| < t}. Then

(i) if Bene(Z) 6= ∅ then output r1 ∈ Bene with probability PrZ(r1)/
∑

r′∈Bene(Z) PrZ(r′);

(ii) if Bene(Z) = ∅ and Neut(Z) 6= ∅ then output r1 ∈ Neut(Z) with probability PrZ(r1)/
∑

r′∈Neut(Z) PrZ(r′).

(iii) If Neut(Z) ∪ Bene(Z) = ∅ then output ⊥.

A concept class C is said to be evolvable by a mutation algorithm A guided by a selection
rule Sel over distribution D if for every target concept f ∈ C, mutation steps as defined by A
and guided by Sel will converge to f .

Definition 5.3 For concept class C over X, distribution D, mutation algorithm A, loss func-
tion L and a selection rule Sel based on LPerf we say that the class C is evolvable over D by
A in Sel if there exists a polynomial g(n, 1/ε) such that for every n, f ∈ C, ε > 0, and every
r0 ∈ R, with probability at least 1−ε, a sequence r0, r1, r2, . . ., where ri ← Sel(f, D,A, ri−1) will
have LPerff (rg(n,1/ε), D) > 1− ε. We refer to the algorithm obtained as evolutionary algorithm
(A, Sel).

We say that an evolutionary algorithm (A, Sel) evolves C over D monotonically if with prob-
ability at least 1 − ε, for every i ≤ g(n, 1/ε), LPerff (ri, D) ≥ LPerff (r0, D), where g(n, 1/ε)
and r0, r1, r2, . . . are defined as above.

As in PAC learning, we say that a concept class C is evolvable in Sel if it is evolvable over
all distributions by a single evolutionary algorithm (we emphasize this by saying distribution-
independently evolvable). A more relaxed notion of evolvability requires convergence only when
the evolution starts from a single fixed representation r0. Such evolvability is referred to as
evolvability with initialization.

5.3 Monotone Distribution-Specific Evolvability from SQ Learning
Algorithms

In our earlier work [16] it was shown that every SQ learnable concept class C is evolvable
in SelNB[LQ, t, p, s] (that is the basic selection rule with quadratic loss) for some polynomials
p(n, 1/ε) and s(n, 1/ε) and an inverse polynomial t(n, 1/ε). The mutation algorithms obtained
in this result do not require initialization but instead are based on a form of implicit initial-
ization that involves gradual reduction of fitness to 0 if the process of evolution is not started
in some fixed r0. Such “deliberate” gradual reduction in fitness appears to be somewhat un-
natural. Hence we consider the question of whether it is possible to evolve from any starting
representation without the need for such implicit initialization and fitness decreases in general
in other words, which concept classes are evolvable monotonically. In this section we show that
monotone evolutionary algorithms exist for every SQ learnable concept class when evolving with
respect to a fixed distribution D and using the quadratic loss function.

The key element of the proof of this result is essentially an observation that the SQ algorithm
that we designed in the proof Theorem 3.4 can be seen as repeatedly testing a small set of
candidate hypotheses, and choosing one that reduces the ‖ · ‖2D distance to the target function.
Converting such an algorithm to an evolutionary algorithm is a rather straightforward process.
First we show that Theorem 3.2 gives a way to compute a neighborhood of every function ψ
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that always contains a function with fitness higher than ψ (unless the fitness of ψ is close to the
optimum).

Theorem 5.4 Let C be a concept class over X and D be a distribution. If C is efficiently SQ
learnable over D then there exists an algorithm N that for every ε > 0, given ε, access to D and
a circuit for ψ ∈ F∞1 can produce a set of functions N(ψ, ε) such that

1. For every f ∈ C, there exists φ ∈ N(ψ, ε) such that

‖f − φ‖2D ≤ min{ε, ‖f − ψ‖2D − θ(n, 1/ε)},
for an inverse-polynomial θ(·, ·);

2. the size of N(ψ, ε) is polynomial in n and 1/ε;

3. the circuit size of every function in N(ψ, ε) is (additively) larger than the circuit size of ψ
by at most a polynomial in n and 1/ε;

4. the running time of N is polynomial in n, 1/ε and the circuit size of ψ.

Proof: We use Theorem 3.6 to obtain an algorithm B that given a circuit for ψ and access to
D, efficiently constructs set Gψ of polynomial size for some inverse polynomial γ(n, 1/ε). Let
Gψ(ε/4) be the output of B with its accuracy parameter set to ε/4. Now let

N(ψ, ε) = {P1(ψ + γ · g) | g ∈ Gψ(ε/4)}
⋃
{P1(ψ − γ · g) | g ∈ Gψ(ε/4)} ∪ {sign(ψ)} .

By the properties of Gψ(ε/4), for every f ∈ C, either there exists a function g ∈ Gψ(ε/4) such
that |〈f − ψ, g〉D| ≥ γ(n, 4/ε), or PrD[f 6= sign(ψ)] ≤ ε/4. In the first case, by the analysis in
the proof of Theorem 3.4, ψg = P1(ψ+b·γ(n, 4/ε)·g) satisfies ‖f−ψg‖2D ≤ ‖f−ψ‖2D−γ(n, 4/ε)2

for b = sign(〈f − ψ, g〉D). In the second case, ‖sign(ψ)− f‖2D ≤ 4 · ε/4 = ε. Theorem 3.6 also
implies that the algorithm that we have defined satisfies the bounds in conditions (2)-(4). ¤

An immediate corollary of this result is monotone evolvability of every SQ-learnable concept
class in SelNB[LQ, t, p, s] over any fixed distribution D.

Theorem 5.5 Let D be a distribution and C be a concept class efficiently SQ learnable over D.
There exist polynomials p(n, 1/ε) and s(n, 1/ε), an inverse polynomial t(n, 1/ε) and a mutation
algorithm A = (R, M) such that C is evolvable monotonically by A over D in SelNB[LQ, t(n, 1/ε), p(n, 1/ε), s(n, 1/ε)].
Here if D is not efficiently samplable then A is a non-uniform algorithm.

Proof: Let R be the representation class containing all circuits over X and let r be any
representation in R. Given r and 1/ε the algorithm M uses the algorithm N from Theorem 5.4
with parameters r and ε to obtain N(r, ε). The algorithm N requires access to distribution D
and can be simulated efficiently if D is efficiently samplable or simulated using a fixed random
sample of points from D otherwise (as it is done for example in [14]). The algorithm M outputs
a randomly and uniformly chosen representation in N(r, ε).

In order for this evolutionary algorithm to work we need to make sure that a representation
with the highest fitness in N(r, ε) is present in the candidate pool and that the fitness of each
candidate mutation is estimated sufficiently accurately. We denote a representation with the
highest fitness by r∗. The bound on the number of generations that we are going to prove is
g(n, 1/ε) = 8/θ. To ensure that r∗ is with probability at least 1− ε/4 in the candidate pool in
every generation we set p(n, 1/ε) = |N(r, ε)| · ln 4·g(n,1/ε)

ε . To ensure that with probability at
least 1− ε/4 in every generation the fitness of each mutation is estimated within θ(n, 1/ε)/8 we
set s(n, 1/ε) = c · θ(n, 1/ε)−2 · log 8·p(n,1/ε)·g(n,1/ε)

ε for a constant c (obtained via the Hoeffding’s
bound). We set the tolerance of the selection rule to t(n, 1/ε) = 3 · θ(n, 1/ε)/8.

17



By the properties of N , LQPerff (r∗, D) ≥ min{LQPerff (r,D) + θ(n, 1/ε)/2, 1 − ε/2}. If
LQPerff (r,D) ≤ 1 − ε then LQPerff (r∗, D) ≥ LQPerff (r,D) + θ(n, 1/ε)/2 (without loss of
generality θ(n, 1/ε) ≤ ε). In this case if r∗ is in the pool of candidates Z and the empirical fitness
of every mutation in Z is within θ(n, 1/ε)/8 of the true fitness then BeneZ(r) is non-empty and for
every r′ ∈ BeneZ(r), LQPerff (r′, D) ≥ LQPerff (r,D) + θ(n, 1/ε)/4. In particular, the output
of SelNB[LQ, t(n, 1/ε), p(n, 1/ε), s(n, 1/ε)] will have fitness at least LQPerff (r,D)+ θ(n, 1/ε)/4.
The lowest initial fitness is −1 and therefore, with probability at least 1 − ε/2, after at most
g(n, 1/ε) = 8/θ(n, 1/ε) steps a representation with fitness at least 1− ε will be reached.

We also need to establish that once the fitness of at least 1− ε is reached it does not decrease
within g(n, 1/ε) steps and also prove that the evolution algorithm is monotone. To ensure this
we modify slightly the mutation algorithm M . The algorithm M ′ outputs a randomly and
uniformly chosen representation in N(r, ε) with probability ∆ = ε/(2 · g(n, 1/ε)) and outputs
r with probability 1 − ∆. We also increase p(n, 1/ε) accordingly to ensure that r∗ is still in
the pool of candidates with sufficiently high probability. This change does not influence the
analysis when BeneZ(r) is non-empty. If BeneZ(r) is empty then, by the definition of M ′,
SelNB[LQ, t(n, 1/ε), p(n, 1/ε), s(n, 1/ε)] will output r with probability at least 1−∆. That is in
every step, either the fitness improves or it does not change with probability at least 1−∆. In
particular, with probability at least 1− ε/2 the fitness will not decrease during any of the first
g(n, 1/ε) generations. ¤

5.4 Distribution-Independent Evolvability of Disjunctions

A substantial limitation of the general transformation given in the previous section is that the
mutation algorithm given there requires access to D and hence only implies evolvability for
a fixed distribution. In this section we show that for the concept class of disjunctions (and
conjunctions) the ideas of the transformation in Section 5.3 can be used to derive a simple
algorithm for distribution-independent monotone evolvability of disjunctions.

As usual in distribution-independent learning, we can assume that the disjunction is mono-
tone. We represent a monotone disjunction by a subset T ⊂ [n] containing the indices of the
variables in the disjunction and refer to it as tT . In addition, we define θT = (tT + 1)/2 and for
every i ∈ [n], let θi(x) = (1+xi)/2 (θT and θi are simply the {0, 1} versions of tT and xi). Given
a current hypothesis computing function φ ∈ F∞1 we try to modify it in two ways. The first one
is to add γ ·θi(x) and project using P1 for some i ∈ [n] and γ > 0. The other one is to subtract γ
and project using P1. The purpose of the first type of modification is to increase fitness on points
where the target disjunction equals to 1. It is easy to see that such steps can make the fitness
on such points as close to 1 as desired. The problem with such steps is that they might also add
γ ·θi such that xi is not in the target disjunction and thereby decrease the fitness on points where
the target equals −1. We fix this by using the second type of modification. This modification
increases the fitness on points where the target equals −1 but may decrease the fitness on points
where the target equals 1. The reason why this combination of modifications will converge to
a good hypothesis is that for the quadratic loss function the change in loss due to an update is
larger on points where the loss is larger. Namely, LQ(y, y′+∆) = LQ(y, y′)+2 ·∆ · (y−y′)+∆2.
This means that if the first type of modification can no longer improve fitness then the second
type will. We formalize this argument in the lemma below.

Lemma 5.6 For φ(x) ∈ F∞1 , let Nγ(φ) = {P1(φ + γ · θi) | i ∈ [n]} ∪ {φ, P1(φ − γ)}. There
exist inverse polynomial τ(·, ·) and γ(·, ·) such that for every distribution D over {0, 1}n, every
target monotone disjunction f , every ε > 0 and every φ(x) ∈ F∞1 there exists φ′ ∈ Nγ(n,1/ε)(φ)
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for which
LQPerff (φ′, D) ≥ min{LQPerff (φ,D) + τ(n, 1/ε), 1− ε} .

Proof: Let f = tT denote the target monotone disjunction. By the definition ‖f − φ|2D =
2(1 − LQPerff (φ,D)). We denote the loss of φ when f restricted to 1 and −1 by ∆1 =
ED[(f − φ)2 · (f + 1)/2] and ∆−1 = ED[(f − φ)2 · (f − 1)/2] respectively. Let γ = ε3/2/21 and
τ = γ4/(8n). We split the analysis into several cases.

1. If LQPerff (φ,D) ≥ 1− ε then φ′ = φ satisfies the condition.
2. LQPerff (φ,D) ≤ 1− ε and ∆1 ≥ 2γ2. In this case,

∆1 ≤ PrD[f(x) = 1, φ(x) ≥ 1− γ] · γ2 + PrD[f(x) = 1, φ(x) < 1− γ] · 4 .

Therefore
PrD[f(x) = 1, φ(x) < 1− γ] ≥ (∆1 − γ2)/4 ≥ γ2/4 .

The target function is a disjunction of at most n variables therefore there exists i ∈ T such
that PrD[xi = 1, φ(x) < 1− γ] ≥ γ2/(4n). For such i, let φ′ = P1(φ + γ · θi). Note that
for every point x, the loss of φ′(x) is at most the loss of φ(x) while for every point where
xi = 1 and φ(x) < 1 − γ the loss of φ′(x) is smaller than the loss of φ(x) by at least γ2.
Therefore,

‖f − φ′‖2D ≤ ‖f − φ‖2D − γ2 ·PrD[xi = 1, φ(x) < 1− γ] ≤ ‖f − φ‖2D − γ4

(4n)
.

This implies that
LQPerff (φ′, D) ≥ LQPerff (φ,D) + τ(n, 1/ε)

for τ defined as above.
3. LQPerff (φ,D) ≤ 1 − ε and ∆1 < 2γ2. In this case ∆−1 ≥ 2ε − ∆1 > 3 · ε/2. Let

φ′ = P1(φ − γ). We now upper bound the increase in error on points where f = 1 and
lower bound the decrease in error on points where f = −1. For the upper bound we have

ED[(f − φ− γ)2] ≤ 2 ·ED[(f − φ)2] + 2 · γ2,

and therefore the increase in error when f = 1 is at most ∆1 + 2 · γ2 ≤ 4 · γ2. For the
lower bound similarly to the previous case we get the inequality

∆−1 ≤ PrD[f(x) = −1, φ(x) ≤ −1+
√

ε/2] · ε/2+PrD[f(x) = −1, φ(x) > −1+
√

ε/2] ·4 .

Therefore

PrD[f(x) = −1, φ(x) > −1 +
√

ε/2] ≥ (∆−1 − ε/2)/4 ≥ ε/4 . (1)

On every point x where f(x) = −1 and φ(x) > −1 +
√

ε/2,

|f(x)−φ′(x)|2 ≤ |f(x)−φ(x)|2− (2γ(φ(x)− f(x))− γ2) ≤ |f(x)−φ(x)|2− 2γ
√

ε/2 + γ2 .

By combining this with equation (1) and our choice of γ = ε3/2/21 we get

‖f − φ′‖2D ≤ ‖f − φ‖2D − ε

4
· (γ√ε− γ2) ≤ ‖f − φ‖2D − 5 · γ2 .

Therefore in this case

LQPerff (φ′, D) ≥ LQPerff (φ,D) + (5 · γ2 − 4 · γ2)/2 ≥ LQPerff (φ,D) + τ(n, 1/ε) .
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The neighborhood Nγ(φ) can be computed efficiently and therefore Lemma 5.6 can be con-

verted to an evolutionary algorithm in exactly the same way as it was done in Theorem 5.5. This
implies monotone and distribution-independent evolvability of disjunctions in SelNB[LQ, t, p, s].

Theorem 5.7 There exist polynomials p(n, 1/ε) and s(n, 1/ε), an inverse polynomial t(n, 1/ε)
and a mutation algorithm A = (R,M) such that for every distribution D disjunctions are
evolvable monotonically by A over D in SelNB[LQ, t(n, 1/ε), p(n, 1/ε), s(n, 1/ε)].

6 Discussion and Further Work

One natural question not covered in this work is whether and how our characterization can be
applied to understanding of the SQ complexity of learning specific concept classes for which the
previously known characterizations are not sufficient. As we explained in the introduction, one
such example is learning of monotone functions. This question is addressed in a recent work [18],
where the first lower bounds for SQ learning of depth-3 monotone formulas over the uniform
distribution are derived using SQ-SDIM. The main open problem in this direction is evaluating
the SQ-SDIM of monotone DNF over the uniform distribution.

As we have mentioned, another way to see our proof of Theorem 3.4 is as a boosting algorithm
that instead of using a weak learning algorithm on different distributions uses a weak learning
algorithm on different target functions (specifically on f − ψi at iteration i). This perspective
turned out to be useful for understanding of boosting in the agnostic learning framework. In
particular, it has lead to the distribution-specific boosting algorithm given in Theorem 4.3 and
to a new connection between agnostic and PAC learning.

We also believe that the insights into the structure of SQ learning given in this work will
be useful in further exploration of Valiant’s model of evolvability. For example, Theorem 5.4
can also be used to obtain distribution-specific evolvability of every SQ-learnable concept class
with only very weak assumptions on the selection rule (such as (t, γ)-distinguishing defined in
[16]). In addition, we believe that our results are not restricted to the quadratic loss func-
tion and can applied to evolvability with other loss functions. Perhaps, the most interesting
question in this direction is whether results analogous to Theorem 5.5 can also be obtained
for distribution-independent evolvablity. The distribution-indepedent evolvability of disjunc-
tions given in Theorem 5.7 suggests that the answer might be “yes” for many other interesting
concept classes. We hope that these questions will be investigated in subsequent work.
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