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Abstract

In 1994, Y. Mansour conjectured that for every DNF formula onn variables witht terms there exists
a polynomialp with tO(log(1/ǫ)) non-zero coefficients such thatEx∈{0,1}n [(p(x) − f(x))2] ≤ ǫ. We
make the first progress on this conjecture and show that it is true for randomly chosen DNF formulas
and read-once DNF formulas.

Our result yields the first polynomial-time query algorithmfor agnostically learning these subclasses
of DNF formulas with respect to the uniform distribution on{0, 1}n (for any constant error parameter).

Applying recent work on sandwiching polynomials, our results imply that at−O(log 1/ǫ)-biased dis-
tribution fools the above subclasses of DNF formulas. This gives pseudorandom generators for randomly
chosen DNF with shorter seed length than all previous work.

1 Introduction

Let f : {0, 1}n → {0, 1} be a DNF formula,i.e., a function of the formT1 ∨ · · · ∨ Tt where eachTi

is a conjunction of at mostn literals. In this paper we are concerned with the following question: how
well can a real-valued polynomialp approximate the Boolean functionf? This is an important problem
in computational learning theory, as real-valued polynomials play a critical role in developing learning
algorithms for DNF formulas.

Over the last twenty years, considerable work has gone into finding polynomialsp with certain properties
(e.g.,low-degree, sparse) such that

E
x∈{0,1}n

[(p(x) − f(x))2] ≤ ǫ.

In 1989, Linialet al. [LMN93] were the first to prove that for anyt-term DNF formulaf , there exists a
polynomialp : {0, 1}n → R of degreeO(log(t/ǫ)2) such thatEx∈{0,1}n [(p(x)−f(x))2] ≤ ǫ. They showed
that this type of approximation implies a quasipolynomial-time algorithm for PAC learning DNF formulas
with respect to the uniform distribution. Kalaiet al. [KKMS08] observed that this fact actually implies
something stronger, namely a quasipolynomial-time agnostic learning algorithm for learning DNF formulas
(with respect to the uniform distribution). Additionally,the above approximation was used in recent work
due to Bazzi [Baz07] and Razborov [Raz08] to show that bounded independence fools DNF formulas.

Three years later, building on the work of Linialet al. Mansour [Man95] proved that for any DNF
formula witht terms, there exists a polynomialp defined over{0, 1}n with sparsitytO(log log t log(1/ǫ)) such
thatEx∈{0,1}n [(p(x) − f(x))2] ≤ ǫ. By sparsity we mean the number of non-zero Fourier coefficients ofp.
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This result implied a nearly polynomial-timequeryalgorithm for PAC learning DNF formulas with respect
to the uniform distribution.

Mansour conjectured [Man94] that the bound above could improved totO(log 1/ǫ). Such an improvement
would imply a polynomial-time query algorithm for learningDNF formulas with respect to the uniform
distribution (to within any constant accuracy), and learning DNF formulas in this model was a major open
problem at that time.

In a celebrated work from 1994, Jeff Jackson proved that DNF formulas were learnable in polyno-
mial time (with queries, with respect to the uniform distribution) withoutproving the Mansour conjecture.
His “Harmonic Sieve” algorithm [Jac97] used boosting in combination with some weak approximation
properties of polynomials. As such, for several years, Mansour’s conjecture remained open and attracted
considerable interest, but its resolution did not imply anynew results in learning theory.

In 2008, Gopalanet al. [GKK08b] proved that a positive resolution to the Mansour conjecture also
implies an efficient query algorithm foragnosticallylearning DNF formulas (to within any constant error
parameter). The agnostic model of learning is a challenginglearning scenario that requires the learner to
succeed in the presence of adversarial noise. Roughly, Gopalanet al.showed that if a class of Boolean func-
tionsC can beǫ-approximated by polynomials of sparsitys, then there is a query algorithm for agnostically
learningC in timepoly(s, 1/ǫ) (since decision trees are approximated by sparse polynomials, they obtained
the first query algorithm for agnostically learning decision trees with respect to the uniform distribution on
{0, 1}n). Whether DNF formulas can be agnostically learned (with queries, with respect to the uniform
distribution) still remains a difficult open problem [GKK08a].

1.1 Our Results

We prove that the Mansour conjecture is true for read-once and randomly chosen DNF formulas. As far as
we know, prior to this work, the Mansour conjecture was not known to be true for any interesting class of
DNF formulas.

Theorem 1. Let f : {0, 1}n → {0, 1} be a DNF formula witht terms where each literal appears at most
once. Then there exists a polynomialp with sparsitytO(log 1/ǫ) such thatE[(p(x) − f(x))2] ≤ ǫ.

Mansour [Man95] proves that any polynomial that approximates read-once DNF formulas toǫ accuracy
must havedegreeat leastΩ(log t log(1/ǫ)/ log log(1/ǫ)). He further shows that a “low-degree” strategy of
selecting all of a DNF’s Fourier coefficients of monomials upto degreed results in a polynomialp with
sparsitytO(log log t log 1/ǫ). It is not clear, however, how to improve this to the desiredtO(log 1/ǫ) bound.

Our next result shows that the Mansour conjecture is true forthe class of randomly chosen DNF formu-
las:

Theorem 2. Let f : {0, 1}n → {0, 1} be a DNF formula witht terms where each term is chosen indepen-
dently from the set of all terms of lengthlog t. Then with probability1 − nΩ(log t) (over the choice of the
DNF formula), there exists a polynomialp with sparsitytO(log 1/ǫ) such thatE[(p(x) − f(x))2] ≤ ǫ.

As mentioned earlier, by applying the result of Gopalanet al.[GKK08b], we obtain the first polynomial-
time query algorithms for agnostically learning the above classes of DNF formulas to within any constant
accuracy parameter. We consider this an important step towards agnostically learning all DNF formulas.

Corollary 3. LetC be the class of DNF formulas witht terms where each term is randomly chosen from the
set of all terms of lengthlog t. Then there is a query-algorithm for agnostically learningC with respect to
the uniform distribution on{0, 1}n to accuracyǫ in timepoly(n) · tO(log 1/ǫ) with probability1 − nΩ(log t)

(over the choice of the DNF formula).
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We define the notion of agnostic learning with respect to randomly chosen concept classes in Section2.
We also obtain a corresponding agnostic learning algorithmfor read-once DNF formulas:

Corollary 4. Let C be the class of read-once DNF formulas witht terms. Then there is a query-algorithm
for agnostically learningC with respect to the uniform distribution on{0, 1}n to accuracyǫ in timepoly(n)·
tO(log 1/ǫ).

Our sparse polynomial approximators can also be used in conjunction with recent work due to De.et al.
to show that for any randomly chosen DNFf , a1/tO(log 1/ǫ)-biased distribution foolsf :

Theorem 5. Let f be a randomly chosen DNF formula. Then there exists a pseudorandom generatorG
such that

∣

∣

∣

∣

Pr
x∈{0,1}s

[f(G(x)) = 1] − Pr
z∈{0,1}n

[f(z) = 1]

∣

∣

∣

∣

≤ ǫ

with s = O(log n + log t · log(1/ǫ)).

Previously it was only known that these types of biased distributions fool read-once DNF formulas
[DETT09].

1.2 Related Work

As mentioned earlier, Mansour, using the random restriction machinery of Håstad and Linialet al. [Hås86,
LMN93] had shown that for any DNF formulaf , there exists ap of sparsitytO(log log t log 1/ǫ) that approxi-
matesf .

The subclasses of DNF formulas that we show are agnosticallylearnable have been well-studied in
the PAC model of learning. Read-once DNF formulas were shownto be PAC-learnable with respect to
the uniform distribution by Kearnset al. [KLPV87] and random DNF formulas were recently shown to
be learnable on average with respect to the uniform distribution in the following sequence of work [JS05,
JLSW08, Sel08, Sel09].

Recently (and independently) Deet al. proved that for any read-once DNF formulaf , there exists an
approximating polynomialp of sparsitytO(log 1/ǫ). More specifically, Deet al.showed that for any class of
functionsC fooled byδ-biased sets, there exist sparse, sandwiching polynomialsfor C where the sparsity
depends onδ. Since they show that1/tO(log 1/ǫ)-biased sets fool read-once DNF formulas, the existence of
a sparse approximator for the read-once case is implicit in their work.

1.3 Our Approach

As stated above, our proof does not analyze the Fourier coefficients of DNF formulas, and our approach is
considerably simpler than the random-restriction method taken by Mansour (we consider the lack of Fourier
analysis a feature of the proof, given that all previous workon this problem has been Fourier-based). Instead,
we use interpolation to construct an approximating polynomial directly.

Consider a DNF formulaf = T1 ∨ · · · ∨ Tt where eachTi is on a disjoint set of exactlylog t variables.
The probability that each term is satisfied is1/t, and the expected number of satisfied terms is one. Further,
since the terms are disjoint, with high probability over thechoice of random input, only a few—sayd—
terms will be satisfied. As such, we construct a univariate polynomial p with p(0) = 0 andp(i) = 1 for
1 ≤ i ≤ d. Thenp(T1 + · · · + Tt) will be exactly equal tof as long as at mostd terms are satisfied. A
careful calculation shows that the inputs wherep is incorrect will not contribute too much toE[(f − p)2],
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as there are few of them. Setting parameters appropriately yields a polynomialp that is both sparse and an
ǫ-approximator off .

More generally, we adopt the following strategy: given a DNFformula f (randomly chosen or read-
once) either (1) with sufficiently high probability a randominput does not satisfy too many terms off or (2)
f is highly biased. In the former case we can use polynomial interpolation to construct a sparse approximator
and in the latter case we can simply use the constant0 or 1 function.

The probability calculations are a bit delicate, as we must ensure that the probability of many terms
being satisfied decays faster than the growth rate of our polynomial approximators. For the case of random
DNF formulas, we make use of some recent work due to Jacksonet al.on learning random monotone DNF
formulas [JLSW08].

2 Preliminaries

In this paper, we will primarily be concerned with Boolean functionsf : {0, 1}n → {0, 1}. Let x1, . . . ,xn

be Boolean variables. Aliteral is either a variablexi of its negationx̄i, and aterm is a conjunction of
literals. Any Boolean function can be expressed as a disjunction of terms, and such a formula is said to be
a disjunctive normal form(or DNF) formula. A read-once DNF formula is a DNF formula in which each
variable occurs at most once.

2.1 Sparse Polynomials

Every functionf : {0, 1}n → R can be expressed by its Fourier expansion:f(x) =
∑

S f̂(S)χS(x) where
χS(x) =

∏

i∈S(−1)xi for S ⊆ [n], andf̂(S) = E[f · χS ]. The Fourier expansion off can be thought of as
the unique polynomial representation off over{+1,−1}n under the mapxi 7→ 1 − 2xi.

Mansour conjectured that polynomial-size DNF formulas could be approximated bysparsepolynomials
over {+1,−1}n. We say a polynomialp : {+1,−1}n→R has sparsitys if it has at mosts non-zero
coefficients. We state Mansour’s conjecture as originally posed in [Man94], which uses the convention of
representingFALSE by +1 andTRUE by −1.

Conjecture 6 ([Man94]). Let f : {+1,−1}n → {+1,−1} be any function computable by at-term DNF
formula. Then there exists a polynomialp : {+1,−1}n → R with tO(log 1/ǫ) terms such thatE[(f−p)2] ≤ ǫ.

We will prove the conjecture to be true for various subclasses of polynomial-size DNF formulas. In our
setting, Boolean functions will output0 for FALSE and1 for TRUE. However, we can easily change the range
by settingf± := 1 − 2 · f . Changing the range to{+1,−1} changes the accuracy of the approximation by
at most a factor of4: E[((1 − 2f)− (1− 2p))2] = 4E[(f − p)2], and it increases the sparsity by at most 1.

Given a Boolean functionf , we construct a sparse approximating polynomial over{+1,−1}n by giving
an approximating polynomialp : {0, 1}n→R with real coefficients that has small spectral norm. The rest
of the section gives us some tools to construct such polynomials and explains why doing so yields sparse
approximators.

Definition 7. TheFourierℓ1-norm(also called thespectral norm) of a functionp : {0, 1}n→R is defined to
be‖p‖1 :=

∑

S |p̂(S)|. We will also use the following minor variant,‖p‖6=∅
1 :=

∑

S 6=∅|p̂(S)|.

The following two facts about the spectral norm of functionswill allow us to construct polynomials over
{0, 1}n naturally from DNF formulas.
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Fact 8. Let p : {0, 1}m→R be a polynomial with coefficientspS ∈ R for S ⊆ [m], and q1, . . . , qm :
{0, 1}n→{0, 1} be arbitrary Boolean functions. Thenp(q1, . . . , qm) =

∑

S pS
∏

i∈S qi is a polynomial
over{0, 1}n with spectral norm at most

∑

S⊆[m]

|pS |
∏

i∈S

||qi||1.

Proof. The fact follows by observing that for anyp, q : {0, 1}n→R, we have||p + q||1 ≤ ||p||1 + ||q||1 and
||pq||1 ≤ ||p||1||q||1. �

Fact 9. LetT : {0, 1}n→{0, 1} be an AND of a subset of its literals. Then||T ||1 = 1.

Finally, using the fact below, we show why approximating polynomials with small spectral norm give
sparse approximating polynomials.

Fact 10 ([KM93]). Given any functionf : {0, 1}n→R andǫ > 0, let S = {S ⊆ [n] : |f̂(S)| ≥ ǫ/‖f‖1},
andg(x) =

∑

S∈S f̂(S)χs(x). ThenE[(f − g)2] ≤ ǫ, and|S| ≤ ‖f‖2
1/ǫ.

Now, given functionsf, p : {0, 1}n→R such thatE[(f − p)2] ≤ ǫ, we may construct a4ǫ-approximator
for f with sparsity||p||21/ǫ by definingp′(x) =

∑

S∈S p̂(S)χS(x) as in Fact10. Clearly p′ has sparsity
||p||21/ǫ, and

E[(f − p′)2] = E[(f − p + p − p′)2] ≤ E[2((f − p)2 + (p − p′)2)] ≤ 4ǫ,

where the first inequality follows from the inequality(a + b)2 ≤ 2(a2 + b2) for any realsa andb.

2.2 Agnostic learning

We first describe the traditional framework for agnostically learning concept classes with respect to the
uniform distribution and then give a slightly modified definition for an “average-case” version of agnostic
learning where the unknown concept (in this case a DNF formula) is randomly chosen.

Definition 11 (Standard agnostic model). Let D be the uniform distribution on{+1,−1}n, and letf :
{+1,−1}n → {+1,−1} be an arbitrary function. Define

opt = min
c∈C

Pr
x∼D

[c(x) 6= f(x)].

That is,opt is the error of the best fitting concept inC with respect toD. We say that an algorithmA
agnostically learnsC with respect toD if the following holds for anyf : if A is given black-box access tof
then with high probabilityA outputs a hypothesish such thatPrx∼D[h(x) 6= f(x)] ≤ opt + ǫ.

The intuition behind the above definition is that a learner—given access to a conceptc ∈ C where an
η fraction ofc’s inputs have been adversarially corrupted—should still be able to output a hypothesis with
accuracyη+ǫ (achieving error better thanη may not be possible, as the adversary could embed a completely
random function on anη fraction ofc’s inputs). Hereη plays the role ofopt.

This motivates the following definition for agnostically learning a randomly chosen concept from some
classC:
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Definition 12 (Agnostically learning random concepts). Let C be a concept class and choosec randomly
from C. We say that an algorithmA agnostically learns random concepts fromC if with probability at
least 1 − δ over the choice ofc the following holds: if the learner is given black-box access to c′ and
Prx∈{+1,−1}n [c(x) 6= c′(x)] ≤ η, thenA outputs a hypothesish such thatPrx∈{+1,−1}n [h(x) 6= c′(x)] ≤
η + ǫ.

We are unaware of any prior work defining an agnostic framework for learning randomly chosen con-
cepts.

The main result we use to connect the approximation of DNF formulas by sparse polynomials with
agnostic learning is due to Gopalanet al. [GKK08b]:

Theorem 13([GKK08b]). Let C be a concept class such that for everyc ∈ C there exists a polynomialp
such that‖p‖1 ≤ s andEx∈{+1,−1}n [|p(x) − c(x)|2] ≤ ǫ2/2. Then there exists an algorithmB such that
the following holds: given black-box access to any Boolean functionf : {+1,−1}n→{+1,−1}, B runs in
timepoly(n, s, 1/ǫ) and outputs a hypothesish : {+1,−1}n→{+1,−1} with

Pr
x∈{+1,−1}n

[h(x) 6= f(x)] ≤ opt + ǫ.

3 Approximating DNFs using univariate polynomial interpolation

Let f = T1 ∨ T2 ∨ · · · ∨ Tt be any DNF formula. We sayTi(x) = 1 if x satisfies the termTi, and 0
otherwise. Letyf : {0, 1}n → {0, . . . ,t} be the function that outputs the number of terms off satisfied by
x, i.e.,yf (x) = T1(x) + T2(x) + · · · + Tt(x).

Our constructions will use the following univariate polynomial Pd to interpolate the values off on inputs
{x : yf (x) ≤ d}.

Fact 14. Let

Pd(y) := (−1)d+1 (y − 1)(y − 2) · · · (y − d)

d!
+ 1. (1)

Then, (1) the polynomialPd is a degree-d polynomial iny; (2) Pd(0) = 0, Pd(y) = 1 for y ∈ [d], and for
y ∈ [t] \ [d], Pd(y) = −

(

y−1
d

)

+ 1 ≤ 0 if d is even andPd(y) =
(

y−1
d

)

+ 1 > 1 if d is odd; and (3) the sum
of the magnitudes ofPd’s coefficients isd.

Proof. Properties (1) and (2) can be easily verified by inspection. Expanding the falling factorial, we get
that (y − 1)(y − 2) · · · (y − d) =

∑d
j=0(−1)d−j

[d+1
j+1

]

yj, where
[a
b

]

denotes a Stirling number of the first
kind. The Stirling numbers of the first kind count the number of permutations ofa elements withb disjoint
cycles. Therefore,

∑d
j=0

[d+1
j+1

]

= (d + 1)! [GKP94]. The constant coefficient ofPd is 0 by Property (2),
thus the sum of the absolute values of the other coefficients is ((d + 1)! − d!)/d! = d. �

For anyt-term DNF formulaf , we can construct a polynomialpf,d : {0, 1}n→R defined aspf,d :=
Pd◦yf . A simple calculation, given below, shows that theℓ1-norm ofpf,d is polynomial int and exponential
in d.

Lemma 15. Letf be at-term DNF formula, then‖pf,d‖1 ≤ tO(d).

Proof. By Fact14, Pd is a degree-d univariate polynomial withd non-zero coefficients of magnitude at most
d. We can view the polynomialpf,d as the polynomialP ′

d(T1, . . . , Tt) := Pd(T1 + · · · + Tt) over variables
Ti ∈ {0, 1}. Expanding outP ′

d gives us at mostdtd monomials with coefficients of magnitude at mostd.
Now each monomial ofP ′

d is a product ofTi’s, so applying Facts9 and8 we have that‖pf,d‖1 ≤ tO(d). �
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The next section will show that the polynomialpf,d (for d = Θ(log 1/ǫ)) is in fact a good approximation
for random DNF formulas. As a warm-up, we will show the simplecase of read-once DNF formulas.

3.1 A Simple Case: Read-Once DNF Formulas

For read-once DNF formulas, the probability that a term is satisfied is independent of whether or not any of
the other terms are satisfied, and thusf is unlikely to have many terms satisfied simultaneously.

Lemma 16. Let f = T1∨, · · · ,∨Tt be a read-once DNF formula of sizet such thatPr[f ] < 1 − ǫ. Then
the probability over the uniform distribution on{0, 1}n that some set ofj > e ln 1/ǫ terms is satisfied is at

most
(

e ln 1/ǫ
j

)j
.

Proof. For any assignmentx to the variables off , let yf (x) be the number terms satisfied inf . By linearity
of expectation, we have thatEx[yf (x)] =

∑t
i=1 Pr[Ti = 1]. Note thatPr[¬f ] =

∏t
i=1(1 − Pr[Ti]), which

is maximized when eachPr[Ti] = E[yf ]/t, hencePr[¬f ] ≤ (1 − E[yf ]/t)t ≤ e−E[yf ]. Thus we may
assume thatE[yf ] ≤ ln 1/ǫ, otherwisePr[f ] ≥ 1 − ǫ.

AssumingE[yf ] ≤ ln 1/ǫ, we now bound the probability that some set ofj > e ln 1/ǫ terms off is
satisfied. Since all the terms are disjoint, this probability is

∑

S⊆[t],|S|=j

∏

i∈S Pr[Ti], and the arithmetic-
geometric mean inequality gives that this is maximized wheneveryPr[Ti] = E[yf ]/t. Then the probability
of satisfying some set ofj terms is at most:

(

t

j

)(

ln 1/ǫ

t

)j

≤
(

et

j

)j ( ln 1/ǫ

t

)j

=

(

e ln 1/ǫ

j

)j

,

which concludes the proof of the lemma. �

The following lemma shows that we can setd to be fairly small,Θ(log 1/ǫ), and the polynomialpf,d

will be a good approximation for any DNF formulaf , as long asf is unlikely to have many terms satisfied
simultaneously.

Lemma 17. Letf be anyt-term DNF formula, and letd = 4e3 ln 1/ǫ. If

Pr[yf (x) = j] ≤
(

e ln 1/ǫ

j

)j

,

for everyd ≤ j ≤ t, then the polynomialpf,d satisfiesE[(f − pf,d)
2] ≤ ǫ.

Proof. We condition on the values ofyf (x), controlling the magnitude ofpf,d by the unlikelihood ofyf

being large. By Fact14, pf,d(x) will output 0 if x does not satisfyf , pf,d(x) will output 1 if yf (x) ∈ [d],
and|pf,d(x)| <

(yf

d

)

for yf (x) ∈ [t] \ [d]. Hence:

‖f − pf,d‖2 <

t
∑

j=d+1

(

j

d

)2(e ln 1/ǫ

j

)j

<

t
∑

j=d+1

22j

(

e ln 1/ǫ

4e3 ln 1/ǫ

)j

< ǫ

t
∑

j=d+1

1

ej
< ǫ.

�
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Combining Lemmas15, 16, and17gives us Mansour’s conjecture for read-once DNF formulas.

Theorem 18. Let f be any read-once DNF formula witht terms. Then there is a polynomialpf,d with
‖pf,d‖1 ≤ tO(log 1/ǫ) andE[(f − pf,d)

2] ≤ ǫ for all ǫ > 0.

4 Mansour’s Conjecture for Random DNF Formulas

In this section, we establish various properties of random DNF formulas and use these properties to show
that for almost allf , Mansour’s conjecture holds. Roughly speaking, we will show that a random DNF
formula behaves like a read-once DNF formula, in that any “large” set of terms is unlikely to be satisfied
by a random assignment. This notion is formalized in Lemma21. For such DNF formulas, we may use
the construction from Section3 to obtain a good approximating polynomial forf with small spectral norm
(Theorem23).

Throughout the rest of this section we assume thatna ≤ t(n) ≤ nb for any constantsa, b > 0. For
brevity we writet for t(n). Let Dt

n be the probability distribution overt-term DNF formulas induced by
the following process: each term is independently and uniformly chosen at random from allt

( n
log t

)

possible
terms of size exactlylog t over{x1, . . . ,xn}.

If t grows very slowly relative ton, sayt = O(n1/4), then with high probability a randomf drawn from
Dt

n will be a read-once DNF formula, in which case the results of Section3.1 hold. If the terms are not of
sizeΘ(log n), then the DNF will be biased, and thus be easy to learn. We refer the reader to [JS05] for a
full discussion of the model.

To prove Lemma21, we require two Lemmas, which are inspired by the results of [JS05] and [JLSW08].
Lemma19 shows that with high probability the terms of a random DNF formula are close to being disjoint,
and thus cover close toj log t variables.

Lemma 19. With probability at least1 − tjej log t(j log t)log t/nlog t over the random draw off from Dt
n,

at leastj log t − (log t)/4 variables occur in every set ofj distinct terms off . The failure probability is at
most1/nΩ(log t) for anyj < c log n, for some constantc.

Proof. Let k := log t. Fix a set ofj terms, and letv ≤ jk be the number of distinct variables (negated
or not) that occur in these terms. We will bound the probability that v > w := jk − k/4. Consider any
particular fixed set ofw variables. The probability that none of thej terms include any variable outside of
thew variables is precisely

((w
k

)

/
(n

k

))j
. Thus, the probability thatv ≤ w is by the union bound:

(

n

w

)

(

(

w
k

)

(n
k

)

)j

<
(en

w

)w (w

n

)jk
=

ejk−k/4(jk − k/4)k/4

nk/4
<

ejk(jk)k/4

nk/4
.

Taking a union bound over all (at mosttj) sets, we have that with the correct probability every set ofj terms
contains at leastw distinct variables. �

We will use the method of bounded differences (a.k.a., McDiarmid’s inequality) to prove Lemma21.

Proposition 20(McDiarmid’s inequality). LetX1, . . . ,Xm be independent random variables taking values
in a setX , and letf : Xm → R be such that for alli ∈ [m], |f(a) − f(a′)| ≤ di, whenevera, a′ ∈ Xm

differ in just theith coordinate. Then for allτ > 0,

Pr [f > E f + τ ] ≤ exp

(

− 2τ2

∑

i d
2
i

)

and Pr [f < E f − τ ] ≤ exp

(

− 2τ2

∑

i d
2
i

)

.
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The following lemma shows that with high probability over the choice of random DNF formula, the
probability that exactlyj terms are satisfied is close to that for the “tribes” function:

(t
j

)

t−j(1 − 1/t)t−j .

Lemma 21. There exists a constantc such that for anyj < c log n, with probability at least1− 1/nΩ(log t)

over the random draw off fromDt
n, the probability over the uniform distribution on{0, 1}n that an input

satisfies exactlyj distinct terms off is at most2
(t
j

)

t−j(1 − 1/t)t−j .

Proof. Let f = T1 ∨ · · · ∨ Tt, and letβ := t−j(1 − 1/t)t−j . Fix anyJ ⊂ [t] of sizej, and letUJ be the
probability overx ∈ {0, 1}n that the termsTi for i ∈ J are satisfied and no other terms are satisfied. We
will show thatUJ < 2β with high probability; a union bound over all possible setsJ of sizej in [t] gives
thatUJ ≤ 2β for everyJ with high probability. Finally, a union bound over all

(

t
j

)

possible sets ofj terms
(where the probability is taken overx) proves the lemma.

Without loss of generality, we may assume thatJ = [j]. For any fixedx, we have:

Pr
f∈Dt

n

[x satisfies exactly the terms inJ ] = β,

and thus by linearity of expectation, we haveEf∈Dt
n

[UJ ] = β. Now we show that with high probability
that the deviation ofUJ from its expected value is low.

Applying Lemma19, we may assume that the termsT1, · · · , Tj contain at leastj log t− (log t)/4 many
variables, and thatJ ∪ Ti for all i = j + 1, · · · , t includes at least(j + 1) log t − (log t)/4 many unique
variables, while increasing the failure probability by only 1/nΩ(log t). Note that conditioning on this event
can change the value ofUJ by at most1/nΩ(log t) < 1

2β, so under this conditioning we haveE[Pj ] ≥ 1
2β.

Conditioning on this event, fix the termsT1, · · · , Tj . Then the termsTj+1, · · · , Tt are chosen uniformly
and independently from the set of all termsT of lengthlog t such that the union of the variables inJ andT
includes at least(j + 1) log t − (log t)/4 unique variables. Call this setX .

We now use McDiarmid’s inequality where the random variables are the termsTj+1, . . . , Tt randomly
selected fromX , letting g(Tj+1, · · · , Tt) = UJ and g(Tj+1, · · · , Ti−1, T

′
i , Ti+1, · · · , Tt) = U ′

J for all
i = j + 1, . . . ,t. We claim that:

∣

∣UJ − U ′
J

∣

∣ ≤ di :=
t1/4

tj+1
.

This is becauseU ′
J can only be larger thanUJ by assignments which satisfyT1, · · · , TJ andTi. Similarly,

U ′
J can only be smaller thanUJ by assignments which satisfyT1, · · · , TJ andT ′

i . SinceTi andT ′
i come

from X , we know that at least(j + 1)t − (log t)/4 variables must be satisfied.
Thus we may apply McDiarmid’s inequality withτ = 3

2β, which gives thatPrf [UJ > 2β] is at most

exp

(

−29
4β2

t3/2/t2j+2

)

≤ exp

(

−9
√

t(1 − 1/t)2(t−j)

2

)

.

Combining the failure probabilities over all the
(t
j

)

possible sets, we get that with probability at least

(

t

j

)(

1

nΩ(log t)
+ e−9

√
t(1−1/t)2(t−j)/2

)

=
1

nΩ(log t)
,

over the random draw off from Dt
n, UJ for all J ⊆ [t] of sizej is at most2β. Thus, the probability that a

random input satisfies exactly somej distinct terms off is at most2
(t
j

)

β. �
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Using these properties of random DNF formulas we can now showa lemma analgous to Lemma17 for
random DNF formulas.

Lemma 22. Let f be any DNF formula witht = nO(1) terms, and letǫ > 0 which satisfies1/ǫ =
o(log log n). Then setd = 4e3 ln 1/ǫ andℓ = c log n, for any constantc. Lemma21. If

Pr[yf (x) = j] ≤
(

e ln 1/ǫ

j

)j

,

for everyd ≤ j ≤ ℓ, then the polynomialpf,d satisfiesE[(f − pf,d)
2] ≤ ǫ.

Proof. We condition on the values ofyf (x), controlling the magnitude ofpf,d by the unlikelihood ofyf

being large. By Fact14, pf,d(x) will output 0 if x does not satisfyf , pf,d(x) will output 1 if yf (x) ∈ [d],
and|pf,d(x)| <

(yf

d

)

for yf (x) ∈ [t] \ [d]. Hence:

‖f − pf,d‖2 <

ℓ−1
∑

j=d+1

(

j

d

)2(e ln 1/ǫ

j

)j

+

(

t

d

)2

· Pr[yf ≥ ℓ]

<

ℓ−1
∑

j=d+1

22j

(

e ln 1/ǫ

4e3 ln 1/ǫ

)j

+ n−Ω(log log n)

< ǫ
ℓ−1
∑

j=d+1

1

ej
+ n−Ω(log log n) < ǫ.

�

We can now show that Mansour’s conjecture [Man94] is true with high probability over the choice off
from Dt

n.

Theorem 23. Let f : {0, 1}n → {0, 1} be a t = nO(1)-term DNF formula where each term is chosen
independently from the set of all terms of lengthlog t. Then with probability at least1 − n−Ω(log t) over the
choice off , there exists a polynomialp with ‖p‖1 ≤ tO(log 1/ǫ) such thatE[(p(x) − f(x))2] ≤ ǫ.

Proof. Recall that ift = O(n1/4), f is a read-once DNF formula with high probability and thus Theorem18
holds.

Let d := 4e3 ln(1/ǫ) andpf,d be as defined in Section3. Lemma15 tells us that‖pf,d‖1 ≤ tO(log 1/ǫ).
We show that with probability at least1 − n−ω(1) over the random draw off from Dt

n, pf,d will be a good
approximator forf . This follows by Lemma21; with probability at least1− (c log(n)− d− 1)/nΩ(log t) =
1 − n−Ω(log t), we havePr[y = j] for all d < j ≤ c log(n). Thus for suchf Lemma17 tells us that
E[(f − pf,d)

2] ≤ ǫ. �

5 Pseudorandomness

Deet al. [DETT09] recently improved long-standing pseudorandom generators against DNF formulas.

Definition 24. A probability distributionX over{0, 1}n ǫ-fools a real functionf : {0, 1}n → R if

|E[f(X)] − E[f(Un)]| ≤ ǫ.

10



If C is a class of functions, then we say thatX ǫ-foolsC if X ǫ-fools every functionf ∈ C.
We say a probability distributionX over{0, 1}n is ǫ-biasedif it ǫ-fools the character functionχS for

everyS ⊆ [n].

De et al. observed that the result of Bazzi [Baz07] implied a pseudorandom generator thatǫ-fools t-
term DNF formulas overn variables with seed lengthO(log n · log2(t/β)), which already improves the
long-standing upper bound ofO(log4(tn/ǫ)) of Luby et al. [LVW93]. They go on to show a pseudorandom
generator with seed lengthO(log n + log2(t/ǫ) log log(t/ǫ)).

They prove that a sufficient condition for a functionf to beǫ-fooled by anǫ-biased distribution is that the
function be “sandwiched” between two bounded real-valued functions whose Fourier transform has small
ℓ1 norm:

Lemma 25 (Sandwich Bound [DETT09]). Supposef, fℓ, fu : {0, 1}n → R are three functions such that
for everyx ∈ {0, 1}n, fℓ(x) ≤ f(x) ≤ fu(x), E[fu(Un)]−E[f(Un)] ≤ ǫ, andE[f(Un)]−E[fℓ(Un)] ≤ ǫ.
LetL = max(‖fℓ‖6=∅

1 , ‖fu‖6=∅
1 ). Then anyβ-biased probability distribution(ǫ + βL)-foolsf .

Naor and Naor [NN93] prove that anǫ-biased distribution overn bits can be sampled using a seed of
O(log(n/ǫ)) bits. Using our construction from Section4, we show that random DNF formulas areǫ-fooled
by a pseudorandom generator with seed lengthO(log n + log(t) log(1/ǫ)):

Theorem 26. Let f = T1 ∨ · · · ∨ Tt be a random DNF formula chosen fromDt
n. For 1 ≤ d ≤ t, with

probability1−1/nΩ(log t) over the choice off , β-biased distributionsO(2−Ω(d)+βtd)-fool f . In particular,
we canǫ-fool mostf ∈ Dt

n by at−O(log(1/ǫ)-biased distribution.

Proof. Let d+ be the first odd integer greater thand, and letd− be the first even integer greater thand. Let
fu = pf,d+ andfℓ = pf,d− (wherepf,d is defined as in Section3). By Lemma15, theℓ1-norms offu and
fℓ are tO(d). By Fact14, we know thatPd+(y) =

(

y−1
d

)

+ 1 > 1 andPd−(y) = −
(

y−1
d

)

+ 1 ≤ 0 for
y ∈ [t] \ [d], hence:

E[fu(Un)] − E[f(Un)] =

t
∑

j=d+1

((

j − 1

d

)

+ 1 − 1

)

Pr[yf = j],

which with probability1 − 1/nΩ(log t) over the choice off is at most2−Ω(d) by the analysis in Lemma17.
The same analysis applies forfℓ, thus applying Lemma25gives us the theorem. �

De et al. match our bound for random DNF formulas for the special case of read-once DNF formulas.
We remark that our construction from Section3.1 can be used to recover the bound for read-once DNF
formulas as well.

6 Discussion

On the relationship between Mansour’s Conjecture and the Entropy-Influence Conjecture. As a final
note, we would like to make a remark on the relationship between Mansour’s conjecture and the entropy-
influence conjecture. Thespectral entropyof a function is defined to beE(f) :=

∑

S −f̂(S)2 log(f̂(S)2)

and thetotal influenceto be I(f) :=
∑

S |S|f̂(S)2. The entropy-influenceconjecture is thatE(f) =

11



O(I(f)) [FK96].1 Boppana showed that the total influence oft-term DNF formulas isO(log t) [Bop97].
From this it follows that Mansour’s conjecture is implied bythe entropy-influence conjecture.

It can be shown that fornO(1)-size DNF formulas Mansour’s conjecture implies an upper bound on the
spectral entropy ofO(log n). Thus, for the class of DNF formulas we consider in Section4 (which have
total influenceΩ(log n)), our results imply that the entropy-influence conjecture is true.

Acknowledgments. Thanks to Sasha Sherstov for important contributions at an early stage of this work,
and Omid Etesami for pointing out an error in an earlier version of this paper.
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