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Abstract

We present two new approximation algorithms for Unique Games. The first generalizes
the results of [2, 15] who give polynomial time approximation algorithms for graphs with high
conductance. We give a polynomial time algorithm assuming only good local conductance, i.e.
high conductance for small subgraphs. The second algorithm runs in mildly exponential time,
eαn, but makes no assumptions about the underlying constraint graph. As the completeness
approaches 1 (completeness 1 − ε), the constant α in the running time rapidly approaches 0
(α = exp(−Ω (1/ε)).) The value of the solutions returned by these algorithms depend only on
the completeness of the Unique Game and either the local conductance or the allowed running
time respectively. In particular, the performance of these algorithms does not depend on the
number of labels in the Unique Game.

Both algorithms are based on new methods for partitioning graphs by cutting small fractions
of edges when the graph can be embedded in a suitable metric space.
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1 Introduction

Khot’s unique game conjecture implies that for many optimization problems, the current best
approximation algorithms cannot be improved if P 6= NP ([12, 5, 13]). In addition to these
important implications, the conjecture has become even more intriguing in the last couple of years
because of its seeming close connection to semidefinite programming (and thus to high-dimensional
geometry): finite-sized problem instances that have high integrality gaps for the SDP relaxation are
used as gadgets in the reductions that show that the SDP relaxation is the best possible algorithm
(assuming UGC is true) [16, 14]. Very recently [17], another close connection has emerged between
UGC and detecting the local expansion of graphs (more specifically, the expansion profile of sets
of different sizes).

Needless to say, the best algorithms for solving unique games also involve SDPs [12, 6, 19, 4, 2,
15]. Several of these algorithms are the best possible with respect to some of the problem parameters
– improving upon them would refute UGC – and some algorithms refute stronger versions of the
conjecture that had been earlier mentioned as plausible hypotheses. These algorithmic results can
be viewed as a kind of stress test of the UGC, one which the original unique games conjecture
appears to have passed.

However, UGC has yet to pass another important stress test: nobody has yet identified plau-
sible families of unique games that are hard to solve. (The above-mentioned connection between
UGC and local expansion [17] does not help because of a circularity: plausible hard instances for
graph expansion problems are based upon unique games, and vice versa!) The general intuition
for constraint satisfaction problems is that hard instances should involve a constraint graph that is
strongly connected, so that a simple divide-and-conquer type algorithm fails. (Indeed, if the con-
straint graph is weakly connected, e.g. because it has low tree width, then constraint satisfaction
problems become easy.) In fact, for many CSPs such as 3SAT, random sparse instances – which
are of course highly connected – are believed to be quite hard. However, in case of unique games,
the paper [2] turns this general intuition on its head by giving an algorithm that solves unique
games whenever the constraint graph is a sufficiently strong expander (see also [15]). In particular,
this shows that random graphs do not give hard instances for unique games. Thus, both extremes
(e.g., graphs of low tree-width and strong expanders) are easy for unique games. Is there a middle
ground of hard instances?

In this paper, we give two algorithmic results that further restrict and clarify this middle ground
of hard instances. Our first algorithm implies that not only can hard instances not be random,
they cannot be modified random graphs (so-called semi-random graphs) or be composed of large
random-like sub-graphs. This algorithm is a generalization of the result of [2] from graphs with high
conductance to graphs with high local conductance. A graph has high conductance if every cut has
a number of cross edges at least a large proportion of the total degrees of the nodes in the smaller
side. A graph has high α-local conductance if this is true when the smaller total degree of a side is
at most an α fraction of all edges, i.e., unbalanced cuts have good conductance. A graph with large
local conductance could be a disconnected or loosely connected union of smaller highly connected
graphs, so large local conductance – though implied by large conductance – may be a significantly
weaker condition than large conductance. Our algorithm stops working in polynomial time when
the conductance falls below a certain threshold, and this threshold appears in two other recent
manuscripts. The above-mentioned paper [17] conjectures that the unique game conjecture holds
for graphs whose local conductance is “significant” but just a bit below our threshold. In addition,
[17] independently gives a different algorithm for unique game on graphs with local conductance
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at least the same threshold. Another recent paper [18] gives algorithms for approximating local
conductance, but it also stops working below our threshold. Mere coincidence?

While the exact trade-off in our algorithm is complicated, when a graph has constant α-local
expansion, and the true optimal solution satisfies all but an ε of constraints, we find a solution that
satisfies a constant fraction of constraints when ε ≤ O

(
1/ log 1

α

)
. We also show that this algorithm

is robust under adding or subtracting a small constant fraction of the edges from a locally expanding
graph. In particular, we show that semi-random graphs, where a random graph is modified by an
adversary who may add or remove a constant fraction of edges, are also easy instances of unique
games.

Our second algorithm solves an arbitrary unique game with optimal solution value 1 − ε, in
expected time 2αnpoly(n) where α = exp(−Ω (1/ε)). For the unique games conjecture to hold,
unique games should be hard for an arbitrarily small constant ε. This result shows that the
complexity starts becoming mildly exponential as ε approaches 0, and turns polynomial when
ε = O (1/ log n), essentially matching the threshold for easiness of Trevisan’s algorithm in [19]. Our
first algorithm has roughly the same threshold as well, since for α = 1/n, every regular graph has
conductance 1. So in some sense, we have independent confirmation that 1−O (1/ log n) might be
the critical threshold for completeness of hard unique games. (Since some NP-complete languages
like 3SAT are believed to require strict exponential time, our result also suggests lower bounds
on the efficiency of any putative reduction from 3SAT to UGC with completeness 1 − ε. Namely,
the reduction must increase instance size by at least a factor exp(Ω (1/ε)).) Very recently, and
subsequently to our work, [1] improve on our mildly exponential algorithm and give one that runs
in time exp(npoly(ε)).

Both of our algorithms are based on a divide-and-conquer strategy, utilized in conjunction with
the rounding method for SDPs from [2]. We first quickly summarize their algorithm.

As most other unique games algorithms do, we first find a solution to the SDP solution. This
maps each variable and value for that variable to a vector in Rnk. However, [2] show how to combine
the k vectors for a single variable into a single vector without losing much information. They give
a rounding method where the fraction of violated constraints is roughly a function of the average
distances between pairs of vectors. The quality of the SDP solution implies that average distances
of pairs connected by edges is small. They then use the well-known fact that every labeling of a
graph with good conductance by points in Euclidean space with small average distances on the
edges also has most pairs of nodes close together. They conclude that their rounding method works
well on graphs with good conductance.

However, if the graph is not globally an expander then the above analysis breaks down since
these graphs need not even be connected. Our modification of this approach is to essentially use
the fact that if the rounding method fails globally then the vectors must be clustered. Specifically,
we show how to partition the high-dimensional sphere into regions where either distances between
vectors in the region are small (call these regions with “low average radius”) or the number of
vectors is at most about the expected number ( call these small regions). The partitioning ensures
that only a small fraction of all constraints go between the regions, so we can ignore these. In
each of the low-radius regions, the rounding algorithm will give a good solution for the variables in
that region. We show that for local expanders, most variables must be in low-radius regions. For
arbitrary graphs, this is not the case. However, since each region has a relatively small fraction
of variables, we can use an exponential-time algorithm on each such region. (The existence of an
exponential-time algorithm is slightly non-trivial, since we need it to be O(2n) time, not O(kn); see
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Section 2.5.)

1.1 Definitions and results

Definition 1.1 (Unique Game). A unique game consists of an undirected graph G = (V,E), a
set [k] of k labels, and a set of bijective constraints πuv : [k] → [k], one for each edge {u, v}. The
goal of the game is to find a labeling L : V → [k] which maximizes the fraction of satisfied edges.
An edge {u, v} is satisfied by L when L(v) = πuv(L(u)). The value of a labeling L is the fraction
of edges satisfied by L, and the value of the unique game is the maximum value over all possible
labelings.

Conjecture 1.1 (Unique Games Conjecture [12]). For any arbitrarily small constants ε, δ > 0,
there exists a k > 0 such that it is NP -hard to distinguish a unique game with k labels and value
at least 1− ε from one with value at most δ.

Definition 1.2 (Volume). For any graph G = (V,E) and any set S ⊆ V , define the volume of the
set S as Vol (S) = 1

2|E|
∑

v∈S dv, where dv is the degree of vertex v.

Definition 1.3 (Local Conductance). The local conductance φα of G on sets up to volume α is
defined as

φα = min
S⊆V,Vol(S)≤α

|E(S, S)|
|E|Vol (S)

Any graph with local conductance φα on sets up to volume α is said to be an (α, φα)-locally
conducting graph.

On a d-regular constraint graph, Vol (S) = |S|/|V | and φα is the edge expansion sets of size at
most αn divided by d/2.

Theorem 1.1. There exist a constants 0 < c1, c2 < 1 such that given an (α, φα)-locally conducting
Unique Game with value at least 1 − ε, where ε/φ2

α < c1 and α > e−c2φ
2
α/ε, we can find a labeling

with value at least

1−O

(
3

√
R ln

1
R

)
where R =

ε

φ2
α

ln
φα
αε

in probabilistic polynomial time.

Corollary 1.1. Given an (α, φα)-locally conducting Unique Game with value at least 1− ε, we can

find a labeling of value at least 1/2 when φα ≥ Ω
√
ε ln 1

α .

Theorem 1.2. There exists a constant c such that given a Unique Game with value at least 1− ε
and parameter α > e−c/ε, in expected time 2αnpoly(n) we can find a labeling with value

1−O

(
3

√
R ln

1
R

)
where R = ε ln

1
αε

Corollary 1.2. Given a Unique Game with value at least 1− ε for all sufficiently small ε, we can
find a labeling of value at least 1/2 in expected time 22−Ω(1/ε)n.
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Definition 1.4 (Almost Local Conductance). A graph G = (V,E) is (α, φα, γ+, γ−)-almost locally
conducting if there exists an (α, φα)-locally conducting graph G0 = (V,E0) such that |E \ E0| ≤
γ+|E0| and |E0 \ E| ≤ γ−|E0|.

Models for semi-random graphs have been considered for maximum independent set [8, 9], k-
coloring [3, 9], and other similar problems [9, 7]. We consider the following model for semi-random
unique games and claim that the resulting graph is (α, φα, γ+, γ−)-almost locally conducting.

1. Allow an adversary to choose an (α, φα)-locally conducting graph G0 = (V,E0) (or begin with
a random graph: roughly (α, (1− α))-locally conducting)

2. Allow an adversary to add any γ+|E0| edges.

3. Allow an adversary to remove any γ−|E0| edges.

4. Allow an adversary to choose constraints for all of the edges such that the game has value
1− ε.

Theorem 1.3. There exist a constants 0 < c1, c2 < 1 such that given an (α, φα, γ+, γ−)-locally
conducting Unique Game with value at least 1 − ε, where ε/φα2 < c1 and α > e−c2φα2/ε, we can
find a labeling with value at least

1−O

(
3

√
R ln

1
R

)
−
(

γ−

1− γ−

)(
1 +

2
φα

)
−
(

γ+

1− γ−

)
where R =

ε

φα2
ln
φα
αε

in probabilistic polynomial time.

Since a random degree d graph has conductance φ1/2 ≥ 1/2 − O
(

1/
√
d
)

[10] with probability

1− n−Ω(
√
d), allowing an adversary to modify such a graph gives the following corollary.

Corollary 1.3. Given a random degree d ≥ 3 graph G0 = (V,E0), we allow an adversary to add
and remove γ+ ≤ 1/2 and γ− ≤ 1/2 fraction of edges respectively and then choose constraints for
all edges such that the resulting game has value at least 1− ε, then we can find a solution of value
at least

1−O

(
3

√
R ln

1
R

+ γ− + γ+

)
where R =

ε

1−
√
d

ln
1
ε

in probabilistic polynomial time for all but n−Ω(
√
d) probability in the choice of G0.

2 Algorithm

Consider a unique game on a graph G = (V,E) with constraints πuv : [k] → [k] for each edge
{u, v} ∈ E. We assume that the game has value at least 1− ε.

All of our algorithms for unique games follow the same general outline, given in Figure 1. We
start by using the SDP solution to define a certain distance function ρ on the graph vertices due
to Arora et al. [2], which can be viewed both as some kind of earth-mover distance, as well as a
geometric `22 distance up to small distortion. Our divide-and-conquer approach tries to partition
the graph into low-diameter regions with respect to ρ, and then apply the algorithm of Arora et
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1. Run the standard SDP to get vectors {vi}v∈V,i∈[k]. Use these to define a distance func-
tion, ρ, between vertices. (Section 2.1, due to [2])

2. Embed ρ into `22 to get a set of vectors {Vv}v∈V . (Section 2.2, due to [2])

3. Using {Vv}v∈V , partition V into: (Section 2.3, inspired by [6, 11])

• A small set of outliers

• “Low diameter” sets, where almost all pairs of vertices are close in terms of ρ

• “Small” sets, each of which only contains a few vertices

4. Use propagation rounding for each “low diameter” set. (Section 2.4, due to [2])

5. For each “small” set do one of the following:

• In the general case, run an exponential time essentially brute force algorithm (Sec-
tions 2.5, 3.5)

• When the graph has good local conductance, just ignore the “small” sets (Section
3.4)

Figure 1: High level algorithm overview.

al. [2] on each region. Such a low-diameter decomposition doesn’t exist in general metrics with the
kind of parameters we are in interested in, where the diameter of each region is only a constant
factor smaller than the overall diameter. However, since ρ has a geometric realization as `22 we
can construct an almost low-diameter decomposition, where the average diameter is small once we
throw away some outliers. This may be of independent interest.

Thus Steps 3 and 5 are the new contributions. Steps 1, 2, and 4 closely follow Arora et al. [2].
They argue that if the value of the SDP is at least 1− ε then the average distance ρ along edges is
at most ε. They then argue, using their embedding of ρ into `22, that if the underlying graph is an
expander (λ� 0) then the average ρ distance between arbitrary pairs of vertices is approximately
ε/λ. Finally they show that if the average distance between pairs of vertices is ∆, then they can
find a labeling of the graph of value 1−O (∆).

Since we do not assume that the graph is an expander, we cannot guaranteed that the average
distance between arbitrary pairs of vertices is small. Instead, we partition the graph into sets and
show that almost all vertices are in sets that are either “small” or have “low average radius” The
“low average radius” sets can be labeled using the same approach as Arora et al. When we allow
either mildly exponential time or assume the graph has good local conductance, we can handle the
“small” sets.

We will now formalize these notions and then give the details of the algorithm in Section 2.
Unless otherwise noted, throughout the paper random edges are chosen uniformly and random
vertices are chosen with probability proportional to their degree.

Definition 2.1 (Small Sets). We say that a set S is α-small if Vol (S) ≤ α.

Definition 2.2 (Low-radius Sets). We say that a set S has average radius at most ∆ if ∃v ∈ S
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Maximize E
{u,v}∈E

E
i∈[k]

[
〈ui,vπuv(i)〉

]
(2.1)

Subject to

∀u ∈ V E
i∈[k]

[
‖ui‖2

]
= 1 (2.2)

∀u ∈ V ∀i 6= j 〈ui,uj〉 = 0 (2.3)
∀u, v ∈ V ∀i, j 〈ui,vj〉 ≥ 0 (2.4)

Figure 2: The standard semidefinite program for unique games.

such that Eu∈S [ρ(u, v)] ≤ ∆.

2.1 SDP and ρ distance

We begin with the standard SDP relaxation given in Figure 2. For every vertex u ∈ V , we associate
a set of k vectors {u1, . . . ,uk}. Intuitively, assigning label i to vertex u could correspond to setting
ui =

√
k1 and uj = 0 for all j 6= i. Here 1 is an arbitrary unit vector, and 0 is the zero vector. If

this intuition is followed, the value of the SDP objective function corresponds exactly to the value
of the assignment for the unique game. However in general, the solution to the SDP will just be
some set of vectors with optimal value satisfying the constraints. Thus, since we assume the value
of the game is at least 1− ε, the value of the SDP objective function must be at least 1− ε.

Following [2], for every pair of vertices u, v, let σuv : [k] → [k] be a bijection that maximizes
Ei∈[k]

[
〈ui,vσuv(i)〉

]
. Define the distance ρ(u, v) between a pair of vertices as

ρ(u, v) =
1
2

E
i∈[k]

[
‖ui − vσuv(i)‖2

]
= 1− E

i∈[k]

[
〈ui,vσuv(i)〉

]
(2.5)

This is a form of earth-mover distance.
Let εuv = 1

2 Ei∈[k]

[
‖ui − vπuv(i)‖2

]
= 1−Ei∈[k]

[
〈ui,vπuv(i)〉

]
. From the SDP and the assumption

that the unique game has value 1− ε, we get E{u,v}∈E [εuv] ≤ ε.

2.2 Embedding ρ into `2
2

The following lemma of Arora at al. [2] gives us a vector for each vertex where the `22 distance
between each pair of vertices is approximately the ρ distance.

Lemma 2.1 ([2, Lemma 2.1]). For every positive even integer t and every SDP solution, there
exists a set of unit vectors {Vu}u∈V such that for every pair u, v of vertices

1
2t
‖Vu −Vv‖2 ≤ ρ(u, v) ≤ ‖Vu −Vv‖2 +O

(
2−t/2

)
Moreover, these vectors and be constructed in polynomial time from the SDP solution.
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2.3 Partitioning via cones

The geometric partitioning used involves origin-centered cones of a certain volume whose central
axis is uniformly distributed. A similar idea was used in the graph coloring algorithm of [11], and
also in the UG approximation algorithm of [6].

In other words, given a graph G = (V,E) and the set of vectors {Vv}v∈V from the previous
section, and parameter α, we will choose a threshold s approximately

√
log 1/α and define a

distribution D on subsets X = {v ∈ V | 〈Vv,g〉 ≥ s} of vertices where g is a Gaussian random
vector.

This distribution satisfies two properties, essentially proved in [6, 11]. There exists a constant
c independent of s such that for any pair of vertices u and v the following hold when X is chosen
according to the distribution:

Pr [u 6∈ X | v ∈ X] ≤ O (‖Vu −Vv‖s) (2.6)

Pr [u ∈ X | v ∈ X] ≤ e−c‖Vu−Vv‖2s2 (2.7)

We define the sets in our partition by repeatedly sampling Xi from D and creating a set Si
containing all of the vertices in Xi that are not contained in some previous Sj . We repeat this
process until all vertices of V are in some set Si.

We allow the partitioning to fail in some sense on a small set of vertices. We refer to these
vertices as outliers, and bound their total volume. For all vertices other than these outliers, we get
good quantitative bounds on their sets. The following lemma quantifies the relevant properties of
this partitioning.

Lemma 2.2. Given a parameters α and β, we can choose the threshold s and define a notion of
an “outlier” such that with probability at least 1/3 the following conditions hold:

1. The set Z of outliers satisfies Vol (Z) ≤ ∆.

2. For all i, Si \ Z is either α-small or has average radius ∆.

3. At most a ∆/β fraction of edges have endpoints in different sets.

Where ∆ = O
(

3

√
R ln 1

R

)
and R = β2ε ln 1

αβε .

In the general case, we will use Lemma 2.2 with β = 1. We prove Lemma 2.2 in Section 3.
In the special case where G is (α, φα)-locally conducting, we use the following stronger lemma:

Lemma 2.3. Given an (α, φα)-locally conducting graph, we can choose the threshold s and define
a notion of an outlier such that with probability at least 1/3 the resulting partitioning satisfies the
following conditions:

1. The set Z of outliers satisfies Vol (Z) ≤ ∆.

2. For all i, Si \ Z has average radius ∆.

3. At most a ∆ fraction of edges have endpoints in different sets.

Where ∆ = O
(

3

√
R ln 1

R

)
and R = ε

φ2
α

ln φα
αε .
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We prove Lemma 2.3 in Section 3.1.
If the graph G is (α, φα, γ+, γ−)-almost locally conducting, we use the following variant of the

locally conducting lemma:

Lemma 2.4. Given an (α, φα, γ+, γ−)-almost locally conducting graph, we can choose the threshold
s and define a notion of an “outlier” such that with probability at least 1/3 the resulting partitioning
satisfies the following conditions:

1. The set Z of outliers satisfies Vol (Z) ≤ O (∆) +
(

γ−

1−γ−

)(
1 + 2

φα

)
+
(

γ+

1−γ−

)
.

2. For all i, Si \ Z has average radius ∆.

3. At most a ∆ fraction of edges have endpoints in different sets.

Where ∆ = O
(

3

√
R ln 1

R

)
and R = ε

φ2
α

ln φα
αε .

We prove Lemma 2.4 in Section 3.2. Other than the additional outliers which are ignored, we
treat almost locally conducting unique games the same as locally conducting unique games.

2.4 Propagation Rounding

The following Lemma follows directly from Arora et al. [2]. Rather than applying this lemma to
the entire graph as [2] does, we apply it to each Si that has average radius ∆.

Lemma 2.5 ([2]). Given a unique game G = (V,E) with value 1 − ε, vertex v ∈ V and ∆ > 0
satisfying Eu∈V [ρ(u, v)] ≤ ∆, we can find a labeling for G with value at least 1−O (∆ + ε).

Since the statement of this Lemma differs slightly from the statement in [2, Lemma 2.1], we
give a brief proof in Section 3.3.

2.5 Exponential time algorithm with no dependence on number of labels

A unique game instance with n nodes and k labels appears at first glance to be a CSP that has
n log k “nondeterministic bits”, and therefore a trivial exhaustive search would require kn time. We
observe that one can do the exhaustive search more cleverly in exp(n) expected time. This does
not seem to have been noticed before.

This algorithm will be applied to each α-small set Si.

Lemma 2.6. Given a unique game G on n vertices and m edges with value 1 − ε and parameter
z > 0, we can find a labeling with value at least 1− (ε+ z) in expected time (1− ε

z )−npoly(n).

Proof. Consider an optimal labeling for G. At most εm edges are unsatisfied. We will call these
edges “bad” edges and all other edges “good” edges.

We will randomly construct a forest F in G. While there are more than zm edges between
connected components in F , choose one uniformly at random and add it to F . At each step, we
add a “bad” edge with probability at most ε/z. We add at most n−1 edges to F , so with probability
at least (1− ε/z)n we never add a “bad” edge.

If F consists of only “good” edges, we can easily find a labeling with value at least 1− (ε+ z):
There are zm edges between connected components, and at most all of these are unsatisfied. For
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each connected component, choose a vertex and then try all possible labels for that vertex. For
each label, label the rest of the component consistently with the edges in F . Keep the labeling that
satisfies the most edges. Since we have no “bad” edges in F , we have at most εm edges unsatisfied
within connected components.

We repeat this process until we find a labeling of value at least 1−(ε+z). The expected number
of times we need to repeat it is at most (1− ε

z )−n.

3 Partitioning Proofs

Proof of Lemma 2.2. Given a graph G = (V,E), vectors {Vv}v∈V , and parameter α > 0, let
η = E(u,v)∈E

[
‖Vu −Vv‖2

]
. Let ∆′ and s be parameters of ε and α to be determined. Let S(v)

refer to the set Si containing v.
We will use the distribution on vertices where each is chosen with probability proportional to

its degree, and we will use the uniform distribution on edges. Thus, choosing a random vertex and
then an random edge adjacent to it is equivalent to choosing a random edge, and for any set S ⊆ V ,
Prv [v ∈ S] = Vol (S).

Let i be the minimum index such that Xi contains u or v. Assume that it contains v (otherwise
rename u and v).

Pr [S(u) 6= S(v)] = Pr [u 6∈ Xi | v ∈ Xi] ≤ O (‖Vu −Vv‖s)

Pr [S(u) = S(v)] = Pr [u ∈ Xi | v ∈ Xi] ≤ e−c‖Vu−Vv‖2s2

Let F (v) = {u ∈ S(v) | ‖Vu −Vv‖2 > ∆′} denote the set of vertices that are in v’s set, but far
from v. E [Vol (F (v))] ≤ Pru

[
S(u) = S(v) | ‖Vu −Vv‖2 > ∆′

]
≤ e−c∆′s2

We define the set Z = {v ∈ V | Vol (F (v)) > 3e−c∆
′t2/∆′} of “outliers”, which are the vertices

that are far from many of the vertices in their set. By Markov’s inequality, Pr [Vol (Z) > ∆′] < 1/3.
For all v ∈ V \ Z, with Vol (S(v)) ≥ α, we bound the average distance from v:

Pru∈S(v)

[
‖Vu −Vv‖2 > ∆′

]
= Vol (F (v)) /Vol (S(v)) ≤ 3e−c∆

′s2

α∆′ .
Let γ = |{(u, v) ∈ E | S(u) 6= S(v)}|/|E| be the fraction of edges with endpoints in different sets.

E [γ] ≤ O
(
E{u,v}∈E ‖Vu −Vv‖s

)
≤ O

(√
ηs
)
. Thus, there exists c′ such that Pr

[
γ > c′

√
ηs
]
< 1/3.

We wish to choose s,∆′ to balance the fraction of outliers and the fraction of cut edges. Choosing
∆′ = O

(
3

√
η ln 1

αη

)
and s = ∆′/

√
η gives that with probability at least 1/3, both the total volume

of outliers Z and the total fraction of cut edges are at most ∆′.
Next, we will convert these bounds in terms of `22 distance to bounds in terms of ρ distance.

We choose t to be 2

⌈
log2

1
3
q
β2ε ln 1

αβε

⌉
for Lemma 2.1, giving

‖Vu −Vv‖2 ≤ O

(
ρ(u, v) ln

1
βε ln 1

αβε

)

ρ(u, v) ≤ ‖Vu −Vv‖2 +O

(
3

√
β2ε ln

1
αβε

)
≤ ‖Vu −Vv‖2 +O

(
∆′
)

Since we assume that the SDP has value at least 1−ε, we get that E(u,v)∈E ρ(u, v) ≤ ε. Combined

with the above bounds, we get η ≤ O
(
ε ln 1

βε

)
.
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If ‖Vu −Vv‖2 < ∆′ then ρ(u, v) < ∆, where ∆ = ∆′ +O
(

3
√
β2ε
)

= O (∆′). For any v where

Pru∈S(v) ‖Vu −Vv‖2 > ∆′ < ∆′, we get Pru∈S(v) ρ(u, v) > ∆ < ∆′ < ∆.

Combining everything, we get ∆ = O
(

3

√
R ln 1

R

)
where R = β2ε ln 1

αβε .

3.1 Locally Conducting Case

Proof of Lemma 2.3. From Lemma 2.2 with β = 2/φα we get sets Si and a set Z of outliers. In
addition, we get that at most rφα/2 fraction of edges go between sets.

From the local conductance of G, every α-small set S = Si \ Z has at least |E|φα Vol (S) edges
leaving it. Each edge crossing between partitions may be counted at most twice this way. Since the
total number of edges crossing between sets is at most |E|∆φα/2 the total volume in α-moderate
sets S is at most ∆. We add all such sets to Z, increasing its volume by at most ∆.

3.2 Partitioning Almost Locally Conducting Unique Games

Given a (α, φα, γ+, γ−)-almost locally conducting graph, G = (V,E), let G0 = (V,E0) denote the
underlying (α, φα)-locally conducting graph. Let E+ = E \ E0 and E− = E0 \ E denote the sets
of edges added and removed respectively when transforming G0 into G. We are guaranteed that
|E+| ≤ γ+|E0| and |E−| ≤ γ−|E0|.

Intuitively we would like to argue in much the same was as in the locally conducting case. We
would like to say that the total volume of “moderate” sets can be bounded in terms of φα and
the number of cut edges plus the number of edges that we must add back to G to make it locally
conducting. This is complicated by the fact that for any set of vertices, S, the volume of S in G
and the volume of S in G0 may be very different.

Proof of Lemma 2.4. We use Lemma 2.2 with β = 1/φα and α̂ = α
2+γ+ to produce sets S1, . . . , S`,

and a set of outliers Z. At most a ∆φα fraction of edges go between sets.
Let dX(v),VolX S, and EX(S, S) denote the degree of v, volume of S, and edges from S to S

when restricted to X, where X is a graph or a set of edges. When X is a set of edges, restrict to
the corresponding graph (V,X).

Claim: For all but a f volume of vertices v, VolG S(v) < α̂ =⇒ VolG0 S(v) ≤ α, where
f = |E−|

|E0|α/α̂−|E| .

Let D = {Si | VolG Si < α̂ ∧VolG0 Si > α}. The following holds for all Si ∈ D:∑
v∈Si

dE(v) < 2|E|α̂
∑
v∈Si

dE0(v) > 2|E0|α

dE(v) = dE0(v) + dE+(v)− dE−(v)∑
v∈Si

dE−(v) >
∑
v∈Si

dE−(v)− dE+(v) > 2|E0|α− 2|E|α̂

11



Now considering all of D

|D|
(
2|E0|α− 2|E|α̂

)
<
∑
Si∈D

∑
v∈Si

dE−(v) ≤ 2|E−|

|D| < |E−|
|E0|α− |E|α̂

Vol ( ∪ Si∈DSi) < |D|α̂ <
|E−|

|E0|α/α̂− |E|

We can then bound the total volume of vertices in small sets

1
E0

∑
Si,VolG0

Si≤α
|EG0(Si, Si)| ≥ φα

∑
Si,VolG0

Si≤α
VolG0 Si

(1 + γ+)|E0| ≥ |E| ≥ (1− γ−)|E0|
#cut edges in G ≤ |E|∆φα/2

#cut edges in G0 ≤ #cut edges in G+ |E−| ≤ |E−|+ |E|∆φα
2(|E−|+ ∆φα|E|)

φα|E0|
≥

∑
Si,VolG0

Si≤α
VolG0 Si

Combining this with our claim above

∑
Si,VolG Si<α̂

VolG0 Si ≤
|E−|

|E0|α/α̂− |E|
+

∑
Si,VolG0

Si≤α
VolG0 Si

≤ |E−|
|E0|α/α̂− |E|

+
2(|E−|+ ∆φα|E|)

φα|E0|
Let Z = ∪ Si,VolG Si≤α̂Si

VolG0 Z ≤
|E−|

|E0|α/α̂− |E|
+

2(|E−|+ ∆φα|E|)
φα|E0|

VolG Z ≤
|E0|VolE0 Z + |E+|

|E|

≤
|E−|

α/α̂−|E|/|E0| + 2|E−|/φα + ∆|E|+ |E+|
|E|

=
|E−|/|E|

α/α̂− |E|/|E0|
+

2|E−|
|E|φα

+ ∆ + |E+|/|E|

≤ ∆ +
γ−/(1− γ−)
α/α̂− (1 + γ+)

+
2γ−

(1− γ−)φα
+

γ+

1− γ−

= ∆ +
γ−

1− γ−

(
1 +

2
φα

)
+

γ+

1− γ−
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3.3 Propagation Rounding

Proof of Lemma 2.5. Label vertex v with label i with probability 1
k‖vi‖2. For every other vertex

u ∈ V , assign u label σvu(i).
Each edge {u,w} is satisfied when πuw◦σvu(i) = σvw(i), or equivalently when σwv◦πuw◦σvu(i) =

i. Let π̂ = σwv ◦πuw ◦σvu. The probability that the edge is not satisfied is Ei∈[k] ‖vi‖21i 6=π̂(i), where
1E is the indicator random variable for the event E. Since the vectors vi and vj are orthogonal
when i 6= j, we get

E
i∈[k]
‖vi‖21i 6=π̂(i) =

1
2

E
i∈[k]

(‖vi‖2 + ‖vπ̂(i)‖2)1i 6=π̂(i)

=
1
2

E
i∈[k]
‖vi − vπ̂(i)‖2

≤ 1
2

E
i∈[k]

[(
‖vi − uσvu(i)‖

+‖uσvu(i) −wπuw◦σvu(i)‖

+‖wπuw◦σvu(i) − vσwv◦πuw◦σvu(i)‖
)2]

≤ 1
2

E
i∈[k]

[
3
(
‖vi − uσvu(i)‖2

+‖uσvu(i) −wπuw◦σvu(i)‖2

+‖wπuw◦σvu(i) − vσwv◦πuw◦σvu(i)‖2
)]

= 3(ρ(v, u) + εuw + ρ(w, v))

Thus, {u,w} is satisfied with probability 1−O (ρ(v, u) + εuw + ρ(w, v)). Averaging over all edges,
we get a value 1−O (Eu∈V ρ(u, v) + ε) = 1−O (∆ + ε).

3.4 Details of algorithm for locally conducting graphs

Proof of Theorem 1.1. Given an (α, φα)-locally conducting unique games instance G, begin by solv-
ing the SDP (Figure 2) and computing distance functions ρ(u, v) (2.5). Partitioning G using Lemma
2.3 a set Z of outliers and sets Si such that for all i, Si \ Z has average radius ∆.

Since the SDP has value at least 1− ε, E{u,v} εuv < ε. Thus, at most a total volume
√
ε of sets

S have εS >
√
ε where we define εS = E{u,v}∈E,u,v∈S εuv. We may assume that we do not satisfy

the at most
√
ε fraction of edges in such partitions.

For each S = Si \ Z that has average radius ∆ set where εS ≤
√
ε, we use Lemma 2.5 to label

S. This gives a labeling of value at least 1−O (∆ +
√
ε) = 1−O (∆) for S.

There is at most a ∆ +
√
ε = O (∆) total volume of partitions that do not get labelled. Thus

we get a labeling for G of value at least 1−O (∆).

3.5 Details of Mildly Exponential Time Algorithm

Proof of Theorem 1.2. Begin by solving the SDP for G and computing distance functions ρ(u, v).
Use Lemma 2.2 with β = 1 to construct sets Si and a set of outliers Z.
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Since the SDP has value at least 1− ε, E{u,v} εuv < ε. Thus, at most a total volume 3
√
ε of sets

S have εS > ε2/3 where we define εS = E{u,v}∈E,u,v∈S εuv. We may assume that we do not satisfy
the at most 3

√
ε fraction of edges in such sets.

For each set S = Si\Z with εS ≤ ε2/3, the following holds. If εS < ε2/3, we still do the following,
but make no guarantees on the value of the solution produced.

• If S is α-small:

We begin by removing all vertices of degree less than 3
√
εd, where d = 2m/n is the average

degree in G. Each vertex removed causes fewer than 3
√
εd edges to be removed. A total of

at most n vertices are removed from all sets, so at most a total of 3
√
εdn = 2 3

√
εm edges are

removed. Let S′ denote S with these edges removed. Since each vertex in S′ has degree at
least 3

√
εd, and S′ has volume at most α in G, there are at most αn/ 3

√
ε vertices in S′.

We will use Lemma 2.6 with z = 3
√
ε to label S as if S had value 1 − ε2/3. This will take

expected time (1− ε2/3
3√ε )−αn/

3√εpoly(n) ≤ eαnpoly(n).

• If S has average radius ∆ and εS ≤ ε2/3:

We use Lemma 2.5 to label S. This gives a labeling of value at least 1−O (∆ + 3
√
ε) = 1−O (∆)

• Otherwise, we leave S unlabeled, but there is at most a total volume O (∆ + 3
√
ε) of such sets.

At most a O ( 3
√
ε+ ∆) total fraction of vertices and edges are ignored or unlabeled. We assume

that all of these edges are unsatisfied. Thus, we get a labeling of value 1−O (∆).

4 Conclusions

All algorithms for unique games so far can be viewed as end-results of failed attempts to disprove
UGC. Arguably, each failure brings us closer to understanding the UGC. This paper points to
the need to understand unique game instances that have low but nontrivial local expansion. The
recent paper [17] reminds us that understanding local expansion may also be difficult and in turn
be related to UGC itself.

Our algorithm also gives an intuition about what SDP solutions of hard instances must look
like. Since the rounding works well whenever we find a region with many more vectors than
expected, the hard instances are those where the vectors are more or less uniformly spread around
the sphere. (This will be made precise in the final version, since making it very precise actually
involves changing the SDP relaxation.) Somewhat surprisingly, this “randomness” of distribution of
vectors implies that the instance is highly structured, in that the uniformity gives a way to partition
the graph into roughly equal sized components with few cut edges.
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