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Abstract. We study the complexity of multiplication in noncommuta-
tive group algebras which is closely related to the complexity of matrix
multiplication. We characterize such semisimple group algebras of the
minimal bilinear complexity and show nontrivial lower bounds for the
rest of the group algebras. These lower bounds are built on the top of
Bläser’s results for semisimple algebras and algebras with large radical
and the lower bound for arbitrary associative algebras due to Alder and
Strassen. We also show subquadratic upper bounds for all group algebras
turning into “almost linear” provided the exponent of matrix multipli-
cation equals 2.

1 Introduction

We study noncommutative group algebras and the problem of computing
the product of two elements of an algebra. We restrict ourselves on the
so-called rank or bilinear complexity of multiplication, which, roughly
speaking, counts only the bilinear multiplications used by an algorithm,
i.e. multiplications where each of the operands depends on one of the
input vectors. A quadratic (in terms of dimension of an algebra) upper
bound is straightforward, while all currently known general lower bounds
are linear.
This research is motivated by the recent group-theoretic approach for ma-
trix multiplication by Cohn and Umans [9] and following group-theoretic
algorithms for matrix multiplication [10]. It was shown that finite groups
possessing some special properties can be used to design effective matrix
multiplication algorithms. Our goal is to explore the structure of group
algebras and investigate structural and complexity relation between non-
commutative group algebras and the matrix algebra. We investigate this
approach and put it into a different light. In fact, we show that the group
algebras for the most promising groups for the group-theoretic approach
have essentially the same complexity as the matrix multiplication itself.
On the other hand, for a wide class of group algebras a lower bound
holds which depends on the exponent of matrix multiplication (denoted
in literature by ω, see Sect. 3 for definition). If one finds a more effective
algorithm of multiplication in these group algebras, it would give a better
upper bound for ω (but without necessary proving ω = 2, which is the
general conjecture [6]). We also study general bilinear complexity of non-
commutative group algebras and this paper extends the research in [22,
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23, 7] where the problem for commutative group algebras over arbitrary
fields was solved entirely. Our results also improve the Atkinson’s upper
bound for the total complexity of multiplication in group algebras [2].

Using Bläser’s theorem on classification of all algebras of the minimal
rank (see Sect. 5) we formulate a criterion for a semisimple group al-
gebra to be an algebra of the minimal bilinear complexity. For some
special cases we also show a 5

2
·dimension-lower bounds for the rank of

group algebras. For other special cases we show an up to 3·dimension
of an algebra lower bound. For one special class of groups having not
“too many” different irreducible representations we show a lower bound
which depends on the exponent of matrix multiplications and turns to
be superlinear if the exponent of matrix multiplication does not equal
to 2. This employs Schönhage’s τ -theorem (see Sect. 5). We show that
this class is not empty, for instance group algebras of symmetric groups
of order n! and general linear groups over finite fields have such a lower
bound.

Another motivation for this work was the search for algebras of high
bilinear complexity. It is known, that over algebraically closed fields
there exist families of algebras of arbitrarily high dimensions with bi-
linear complexity of each algebra from the family strictly greater than
(dimension of the algebra)2

27
[6, Exercise 17.20]. However, no concrete exam-

ples are known. This is in some sense similar to the situation in logical
synthesis theory, where it is known that the circuit complexity (in a full
basis) of almost all boolean functions of n variables is asymptotically
c 2n

n
[21] where the constant c depends solely on the basis, e.g. for the

classical circuit basis {∨, &, ¬}, c = 1.1 But there is no explicit con-
struction of a function of n variables with a superlinear lower bound
on the number of gates in a full finite functional basis. We show that a
broad class of group algebras has superlinear bilinear complexity if the
exponent of matrix multiplication does not equal to 2.

We then turn to upper bounds and show by a simple technique a general
upper bound for the total complexity of multiplication in group algebras
that depends on the total complexity of matrix multiplication. In fact, if
the exponent of matrix multiplication equals 2, then the total complexity
of the multiplication in group algebras is always “almost linear”. We
indicate some special cases, when this upper bound can be improved
provided a maximal irreducible representation of the group has not too
high dimension.

For lower bounds we distinguish between the semisimple and the mod-
ular case. If the characteristic of the ground field is either zero or does
not divide the order of the group then the group algebra is known to
be semisimple. In the other case, if the characteristic p divides the order
of the group, then the algebra has nontrivial radical. In some cases its
structure inside the group algebra can be described exactly. But in gen-
eral this introduces additional significant difficulties. If the radical has
relatively small nilpotence index then it is possible to obtain relatively

1 In fact, for a full circuit basis B = {f1, . . . , fn} where each fν is ofmν variables (with
no fictitious dependenies) and has weight wν , the constant c = min16ν6n

mν>2

wν
mν−1

.
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high lower bounds for the bilinear complexity of multiplication in group
algebra.
Finally, we show direct relations between complexity of noncommutative
group algebras and complexity of matrix multiplication and pose several
open questions.
The paper is organized as follows: in Sect. 2 we bring all necessary def-
initions and notions from algebra and representation theory. In Sect. 3
we introduce the model of computation we will be working with and for-
mulate related computational problems. We discuss briefly tight relation
between different algebraic notions and computational complexity. We
introduce an important quantitative measure estimate for complexity of
multiplication in families of algebras of growing dimensions which gen-
eralizes the well-known notion of the exponent of matrix multiplication.
Classical structural results from the theory of finite-dimensional algebras
and representation theory will be presented in Sect. 4. Section 5 contains
all necessary results from the algebraic complexity theory to be employed
for obtaining lower and upper bounds for the complexity of multiplication
in group algebras. In Sect. 6 we prove the first part of our main result. We
show, that for any “complicated enough” group its corresponding group
algebra is not of the minimal rank. We also prove two different kinds of
lower bounds for families of group algebras depending on the representa-
tions of their groups. We also show the general relation between the lower
bound for the complexity of group algebra multiplication and the com-
plexity of matrix multiplication. We show, that the bilinear complexity
of multiplication in group algebras of symmetric groups is superlinear in
their dimension if the exponent of matrix multiplication does not equal
2. In Sect. 7 we turn to effective algorithms for multiplication in group
algebras. We show the general upper bound for multiplication in any
group algebra depending on the exponent of matrix multiplication and
some improvements based on particular properties of the group.

2 Basic Definitions

In what follows we always use the term algebra for an associative al-
gebra with unity. For example, n × n-matrices over some field form an
algebra, and so do univariate polynomials over some field modulo some
fixed polynomial or multivariate polynomials modulo some system of
polynomials.
A basis of an algebra is any basis of the underlying vector space. The
dimension (dimA) of an algebra A is the dimension of the underlying
vector space. The multiplication in an algebra is completely defined if it
is defined for the vectors of any of its bases: let A be an algebra over k,
n = dimA, and e1, . . . , en be some basis of A, then

ei · ej =

nX
ν=1

ανijeν , 1 6 i, j 6 n,

where ανij are the structural constants from the field k. We call a basis
{ei}ni=1 of A a group basis if the vectors ei form a multiplicative group
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with respect to the multiplication in algebra. In this case A is called a
group algebra. On the other hand, given a finite group G = {g1, . . . , gn}
and a field k we can define a group algebra k[G] as a n-dimensional vector
space over k with basis {gi}ni=1 and multiplication in k[G] defined as 

nX
i=1

αigi

!
·

 
nX
j=1

βjgj

!
=

nX
`=1

gigj=g`

αiβjg`.

We call the direct product of the algebras A and B over one and the
same field k the algebra A × B over k which consists of pairs of vec-
tors (a, b), a ∈ A, b ∈ B and all operations in A × B are performed
component-wise: (a1, b1) ◦ (a2, b2) = (a1 ◦ a2, b1 ◦ b2), ◦ ∈ {+, −, ·} and
λ · (a, b) = (λa, λb), where ai ∈ A, bi ∈ B, i = 1, 2, λ ∈ k.
We call B ⊆ A a subalgebra of A, if B is a linear subspace of A and the
product (in A) of any two vectors of B lies in B. A subalgebra I of A is
called left (right) ideal of A if for all a ∈ A, x ∈ I the product ax ∈ I
(xa ∈ I resp.) A left ideal that is at the same time a right ideal is called
a two-sided ideal. A (left, right, two-sided) ideal is called maximal if it
is not contained in any other proper (left, right, two-sided) ideal of the
algebra. An ideal I is called nilpotent if Im = {0} for some m > 0.2 The
smallest m with this property is called the nilpotence index of I. The
sum of all nilpotent left ideals of an algebra A is called the radical of A
and is denoted by radA. The intersection of all the maximal left ideals
of the algebra A is called the Jacobson radical of A and is denoted by
J(A).

Proposition 1. Let A be an algebra over field k. Then radA = J(A).

Proof. This follows from the fact, that the descending chain condition for
left ideals in A implies radA = J(A), see [26]. It ensures that any family
of left ideals in A contains at least one minimal ideal, i.e. an ideal that
does not contain any other ideal of the family. In a finite-dimensional
algebra this always holds since we can map any family of ideals to the
subset of integers in [0, dimA] mapping each ideal to its dimension as
a linear subspace. The resulting image will contain the minimal element
which will correspond to the set of ideals from the family having the
minimal dimension. Obviously, any of these is minimal. ut

The nilpotence index of radA will be denoted by N(A). The set of all
x ∈ radA such that x · radA = {0} is called the left annihilator of radA
and is denoted by LA. The right annihilator RA is introduced in the
similar manner.
Algebra A is called a division algebra if every element of A has an in-
verse in A with respect to the multiplication in A. A is called local if
A/ radA is a division algebra, and A is called basic if A/ radA is a direct
product of division algebras. Following Bläser [5] we call A superbasic if
A/ radA ∼= kt for some t > 1.

2 For a set S with multiplication and a positive integer r Sr denotes the set of all
possible products of r elements of S: {s1 · · · sr : sρ ∈ S, 1 6 ρ 6 r}.
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Algebra A is called semisimple if radA = 0 and simple if it does not con-
tain any proper twosided ideals except for the {0}. Structure of semisim-
ple and simple algebras is described in Wedderburn’s theorem which can
be found in [26].

Theorem 1. Every finite dimensional semisimple algebra over some
field k is isomorphic to a finite direct product of simple algebras. Every
finite dimensional simple k-algebra A is isomorphic to an algebra Dn×n

for an integer n > 1 and a k-division algebra D. The integer n and the
algebra D are uniquely determined by A (the latter up to isomorphism).

3 Computational Model

Let U, V , and W be finite dimensional vector spaces over a field k. Let
ϕ : U × V →W be a bilinear map. A bilinear algorithm for ϕ is a se-
quence

(u1, v1, w1; . . . ; ur, vr, wr)

where uρ ∈ U∗, vρ ∈ V ∗, wρ ∈W such that for all x ∈ U, y ∈ V

ϕ(x, y) =

rX
ρ=1

uρ(x)vρ(y)wρ.

r is called the length of the bilinear algorithm and the minimal length over
all bilinear algorithms for ϕ is called the rank or the bilinear complexity
of ϕ and is denoted by rkϕ.
A sequence

(u1, v1, w1, . . . , u`, v`, w`)

where uλ, vλ ∈ (U × V )∗, wλ ∈W such that for all x ∈ U, y ∈ V

ϕ(x, y) =
X̀
λ=1

uλ(x, y)vλ(x, y)wλ

is called a quadratic algorithm for ϕ. ` is called the length of the quadratic
algorithm and the minimal length over all quadratic algorithms for ϕ
is called the multiplicative complexity of ϕ and is denoted by C(ϕ).
Obviously C(ϕ) 6 rkϕ. A straightforward argument implies also that
rkϕ 6 2C(ϕ) and except for trivial cases, rkϕ < 2C(ϕ) [15].
Multiplication in algebra A is a bilinear map. Rank and multiplicative
complexity of multiplication in A are called rank and multiplicative com-
plexity of A and are denoted by rkA and C(A) respectively.
Obviously, rkA × B 6 rkA + rkB (also C(A × B) 6 C(A) + C(B)).
However, it is not known if the converse also holds which is known as
the famous Strassen’s Direct Sum Conjecture [6, p. 360].
Obviously, rank (and therefore, multiplicative complexity) of any algebra
A is at most (dimA)2.
Let A = {A1, A2, . . . } be a family of algebras over a field k. We define
ωA, the rank-exponent of multiplication in A as

ωA = inf{τ : rkAn = O((dimAn)τ ) for all n > 1}.
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Obviously, 0 6 ωA 6 2. Note that this definition makes only sense if A
contains algebras of arbitrarily big dimensions. In this case ωA > 1 since
multiplication in algebra is always faithful. This notion is very similar to
the well-known exponent of matrix multiplication which will be denoted
just by ω when the ground field will be clear. The only technical difference
is that the exponent of matrix multiplication is defined relative to the
square root of the respective algebra dimension. In fact, it can be easily
seen that the regular exponent of matrix multiplication equals double
the rank-exponent of matrix multiplication.
We acknowledge that the introduced rank-exponent provides quite a
crude estimate, since it even does not indicate the growth order of the
bilinear complexity as a function of algebra dimension. For example, if
rkAn = O(dimAn), then ωA = 1, but the opposite statement must
not hold: if ωA = 1 then the rank may potentially be superlinear, e.g.
(dimAn) ·polylog(dimAn). On the other hand, there are no known gen-
eral upper bounds that are tight enough for the rank-exponent to be
too rough. One of the most famous open problems in computational lin-
ear algebra and algebraic complexity theory is matrix multiplication, for
which its exponent (and the rank exponent) is only known to be within
2 6 ω 6 2.376 [11].

4 Structure of Group Algebras

Here we introduce some basic concepts from the representation theory.
For the extensive treatment we refer to [27].
Let G be a finite group and k be a field. Then k[G] is semisimple if and
only if char k - ]G.
Let G be a finite group and k be an algebraically closed field either of
characteristic 0 or p - ]G. Then k[G] decomposes into a direct product
of matrix algebras:

k[G] ∼= kn1×n1 × · · · × knt×nt , (1)

where each matrix algebra is called irreducible representation of G over
k, and

tX
τ=1

n2
τ = ]G.

The numbers n1, . . . , nt are called the character degrees of G in k.
If k is not algebraically closed but again of characteristic either 0 or
p - ]G, then

k[G] ∼= Dn1×n1
1 × · · · ×Dnt×nt

t , (2)

where Dτ are all division algebras over k of dimensions dτ for 1 6 τ 6 t
and

tX
τ=1

n2
τdτ = ]G.

Let k be a field of characteristic p and let G be a finite group of order nps,
p - n. Suppose that a Sylow p-subgroup P ⊆ G is normal. Then J(k[G])
is generated by J(k[P ]) (under the natural inclusion k[P ] ⊆ k[G]) and

dim J(k[G]) = n(ps − 1).
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According to the proposition 1, J(k[G]) = rad k[G] and k[G]/ rad k[G] is
semisimple (see [26]). This implies

k[G]/J(k[G]) ∼= Dn1×n1
1 × · · · ×Dnt×nt

t , (3)

where Dτ again are all division algebras over k of dimension dτ for
1 6 τ 6 t and

tX
τ=1

n2
τdτ + dim J(k[G]) = ]G. (4)

In case when Sylow p-subgroups of G are not normal the situation be-
comes more obscure. However, it is known that J(k[G]) contains all ideals
generated by J(k[H]) where H is any normal p-subgroup of G. In partic-
ular, this holds when H is the intersection of all the p-Sylow subgroups
of G.

5 Bounds for the Rank of Associative Algebras
and Complexity of Matrix Multiplication

One general lower bound for the multiplicative (and therefore the bilin-
ear) complexity of associative algebras is due to Alder and Strassen.

Theorem 2 ([1]). Let A and B be associative algebras over a field k
and let t(A) be the number of maximal twosided ideals of A. Then

C(A×B) > 2 dimA− t(A) + C(B), (5)

Algebras for which the Alder-Strassen bound is tight (put B = {0} in (5))
are called algebras of minimal rank. All such algebras over arbitrary fields
were characterized by Bläser.

Theorem 3 ([5]). An algebra A over an arbitrary field k is an algebra
of minimal rank iff

A ∼= C1 × · · · × Cs × k2×2 × · · · × k2×2| {z }
u times

×B, (6)

where C1, . . . , Cs are local algebras of minimal rank with

dim(Cσ/ radCσ) > 2,

i.e., Cσ ∼= k[X]/(pσ(X)dσ ) for some irreducible polynomial pσ(X) with
deg pσ > 2, dσ > 1, and ]k > 2 dimCσ − 2 and B is a superbasic algebra
of minimal rank; that is, there exist w1, . . . , wm ∈ radB with w2

i 6= 0
and wiwj = 0 for i 6= j such that

radB = LB +Bw1B + · · ·+BwmB = RB +Bw1B + · · ·+BwmB

and ]k > 2N(B) − 2. Any of the integers s, u, or m may be zero, and
the factor B in (6) is optional.

The next two lower bounds are due to Bläser.
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Theorem 4 ([3]). Let A be a finite dimensional algebra over a field k,
A/ radA ∼= A1 × · · · × At with Aτ = Dnτ×nτ

τ for all τ , where Dτ is a
k-division algebra. Assume that each factor Aτ is noncommutative, that
is, nτ > 2 or Dτ is noncommutative. Let n = n1 + · · ·+ nt. Then

rkA >
5

2
dimA− 3n.

We will show later how this can be combined with Theorem 2 for group
algebras to obtain high lower bounds in cases when some Aτ are com-
mutative. The next theorem gives a particularly good lower bound for
algebras with big radical and small nilpotence index.

Theorem 5 ([3]). Let k be a field and A be a finite dimensional k-
algebra. For all m, n > 1, the rank of A is bounded by

rkA > dimA− dim((radA)n+m−1)

+ dim((radA)m) + dim((radA)n). (7)

The following fact is a simplified version of Schönhage’s τ -theorem.

Theorem 6 ([24]). Let

A = kn1×n1 × · · · × knt×nt ,

where nτ > 1 for at least one τ and rkA 6 r. Let ω0 be a root of the
equation

nx1 + · · ·+ nxt = r.

Then the exponent of matrix multiplication over k does not exceed ω0.

6 Lower Bounds

Let G = {G1, G2, . . . } be a family of finite groups of unbounded orders
and let k be a field. We will distinguish between two different cases:
1. char k = 0 or char k = p and for any i > 1 p - ]Gi and
2. char k = p and for some i > 1 p | ]Gi.

We will call G in the first case a semisimple family of groups and in the
second a modular family of groups. We will start with the semisimple
case.

6.1 Semisimple Case

We will start with the case of algebraically closed k since all simple
algebras over k are simply matrix algebras.

Lemma 1. Let n1, . . . , nt > 0 and δ > 1. Then

tX
τ=1

nτ 6 t1−
1
δ

 
tX

τ=1

nδτ

! 1
δ

. (8)
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Proof. Let x1, . . . , xt, y1, . . . , yt be complex numbers and a, b > 1 be
such that 1

a
+ 1

b
= 1. Then, by Hölder’s inequality

tX
τ=1

|xτ | |yτ | 6

 
tX

τ=1

|xτ |a
! 1
a
 

tX
τ=1

|yτ |b
! 1
b

.

Choosing xτ = nτ and yτ = 1 for all τ , a = δ, and 1
b

= 1− 1
δ

completes
the proof. ut

Let G be a finite group and k be a field. We introduce following notation:
let ti(G) be the number of irreducible character degrees of G over k equal
to i. Let Ti(G) =

P∞
j=i tj(G) be the number of irreducible character

degrees of G over k not less than i. Obviously,

Ti(G) > Tj(G), if i < j;

ti(G) = Ti(G)− Ti+1(G);

]G =

∞X
i=1

i2ti(G);

ti(G) = 0, if i >
p
]G− 1.

The last follows from the fact, that every group has at least two different
irreducible representations. Note, that the number of maximal twosided
ideals of k[G] is exactly T1(G) = t, where t is the number of multiplicands
in (1).

Theorem 7. Let G be a finite group and k be an algebraically closed
field of characteristic either 0 or p - ]G. Let t be as in (1).

1. If T3(G) = 0 then k[G] is of minimal rank and

rk k[G] = 2]G− t = t1(G) + 7t2(G).

2. If T3(G) > 0 then k[G] is not of minimal rank then

rk k[G] > 2]G− t+ max

„
5

2
T7(G), 1

«
.

3. Let G = {G1, G2, . . .} be a family of finite groups, ]Gn < ]Gn+1 for
all n > 1. Assume that the number of irreducible character degrees
of G ∈ G over k is o(]G).3 Then the following lower bound holds:

rk k[G] >
5

2
]G− o(]G).

Proof. Consider the decomposition (1) for k[G]. Note, that the number
t is exactly the number of maximal twosided ideals of k[G]. Assume
w.l.o.g. that n1 6 · · · 6 nt and let A be the direct product of all the

3 By using this notation we mean that for any constant c > 0 there exists such N > 0
that if G ∈ G and ]G > N then the number of irreducible character degrees of G
over k is smaller than c · ]G.
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matrix algebras from (1) of order 1 or 2 and let B be the remaining
product: k[G] = A×B. Note, that

dimA = t1(G) + 4t2(G) = T1(G) + 3T2(G)− 4T3(G), (9)

rkA = t1(G) + 7t2(G) = 2 dimA− (t1(G) + t2(G)). (10)

(10) and the fact that A is of minimal rank follow from Theorem 3. The
number of maximal twosided ideals in A is t1(G) + t2(G).
1. Let k[G] = A. Then T3(G) = 0, t = t1(G) + t2(G) and theorem

follows from (10).
2. Let B be nonempty. By Theorem 3, k[G] is not of minimal rank,

therefore rk k[G] > 2]G − t + 1. By (5) and the fact that A is of
minimal rank

rk k[G] = rkA×B = 2 dimA− (T1(G)− T3(G)) + rkB.

The lower bound follows from (5) and the upper from the trivial
inequality rkA × B 6 rkA + rkB. Let B = B1 × B2 where B1

contains all matrix algebras of (1) of order 6 6. The number of
maximal twosided ideals in B1 is t3(G)+· · ·+t6(G) = T3(G)−T7(G).
Then, using (5) once again

rkB > 2 dimB1 − (T3(G)− T7(G)) + rkB2.

Assume that B2 is not empty. Recall, that n1 6 · · · 6 nt and there-
fore nt−T7(G)+1 > 7. For B2 we can use Theorem 4:

rkB2 >
5

2

tX
τ=t−T7(G)+1

n2
τ − 3

tX
τ=t−T7(G)+1

nτ

= 2 dimB2 +

tX
τ=t−T7(G)+1

“
nτ
“nτ

2
− 3
””

> 2 dimB2 +
7

2
T7(G).

Gathering it all together, we get

rk k[G] > 2 dimA+ 2 dimB1 + 2 dimB2 − T1(G) +
5

2
T7(G)

= 2]G− t+
5

2
T7(G),

which proves the second statement of the theorem.
3. Let t = o (]G). Let k[G] = kt1(G)×C, C is obviously not empty, and

dimC = n2
t−T2(G)+1 + · · ·+ n2

t . By Alder-Strassen theorem

rk k[G] = rk kt1(G) + rkC > t1(G) +
5

2
dimC − 3

tX
τ=t−T2(G)+1

nτ .

By using Lemma 1 for dimensions of factors of C and setting δ = 1
2

we obtain

tX
τ=t−T2(G)+1

nτ 6
p
T2(G) dimC 6

p
t]G = o(]G).
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On the other hand, the number t1(G) of different irreducible rep-
resentations of G of dimension 1 does not exceed t and therefore is
also o(]G), therefore, dimC = ]G− t1(G) = ]G− o(]G). Therefore,
rk k[G] > 5

2
]G− o(]G) ut

Remark 1. The lower bound in case 2 can be improved further by em-
ploying the lower bound due to Bläser rk kn×n > 2n2+n−2 for n > 3 [4].
However, the best we can achieve by now is to employ Alder-Strassen
lower bounds for all multiplicands in (1) except for one (of the biggest
dimension) and use 2n2 + n− 2 for the last: if n1 6 · · · 6 nt and nt > 3
then

rk kn1×n1 × · · · × knt×nt > 2]G+ nt − t− 1.

Corollary 1. Let k be an algebraically closed field of characteristic 0.
1. Let Sn be the symmetric group of order n!. Then

rk k[Sn] >
5

2
n!− o(n!).

2. Let GL(2, q) be the general linear group of nonsingular 2×2-matrices
over GF (q). Then

rk k[GL(2, q)] >
5

2
]GL(2, q)− o(]GL(2, q)).

3. Let SL(2, q) be the special linear group of 2×2-matrices over GF (q)
with determinant 1. Then

rk k[SL(2, q)] >
5

2
]SL(2, q)− o(]SL(2, q)).

4. Let pn be the nth prime number. Let Fpn, pn−1 be a Frobenius group
of order pn(pn− 1) defined by {a, b : apn = bpn−1 = 1, b−1ab = au},
where u is an element of order pn − 1 in Z∗pn [17]. Then

rk k[Fpn, pn−1] >
5

2
p2
n − o(p2

n).

5. Let pn be the nth prime number and let Gn be a non-abelian pn-group
with an abelian subgroup of index pn. Then

rk k[Gn] >
5

2
]G− o(]G).

Proof. 1. The statement follows from the fact that the number of dif-
ferent irreducible representations of Sn over k equals the number

of partitions of n [16] which asymptotically is e
π
√

2n
3

4n
√

3
= o(n!) [14],

the latter can be observed easily from the well-known asymptotic of
factorial: n! ∼

√
2πn

`
n
e

´n
.

2. [17] The number of elements inGL(2, q) equals q4−q3−q2+q > 3
8
q4,

The number of different irreducible representations of GL(2, q) is
q2 − 1 = o(q4).

3. [9] The number of elements in SL(2, q) equals q3 − q > 3
4
q3. The

number of different irreducible representations of SL(2, q) is q− 4 if
q is odd and q − 1 if q is a power of 2; both are o(q3).
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4. [17] The number of different irreducible representations of Fpn, pn−1

is pn = o(p2
n).

5. [17] Let ]Gn = pmn . The number of different irreducible representa-

tions of G is pm−1
n + pm−2

n − pm−3
n = pmn

“
1
pn

+ 1
p2n
− 1

p3n

”
= o(pmn ).

ut

Note, that if the Direct Sum Conjecture were true, then from (1) for the
rank of multiplication in the group algebra k[G] for algebraically closed
k would immediately follow

rk k[G] = rk kn1×n1 + · · ·+ rk knt×nt .

It turns out that an insignificantly weaker version of the corresponding
lower bound can be proved independently of the validity of the Direct
Sum Conjecture.

Theorem 8. Let G = {G1, G2, . . .} be a family of finite groups and k be
an algebraically closed field whose characteristic does not divide any of
the orders of groups from G. Let f(N) be a function that for each G ∈ G
the dimension of the largest irreducible representation of G is at least
f(]G). Then

rk k[G] > f(]G)ω,

where ω is the exponent of matrix multiplication over k. Let t(N) be a
function such that for each G ∈ G the number of different irreducible
representations of G does not exceed t(]G). Then

rk k[G] >
(]G)

ω
2

t(]G)
ω2
4 −

ω
2

Proof. The first statement trivially follows from the observation that for
any algebras A, B over one field rkA×B > max{rkA, rkB}.
Let k[G] have decomposition according to (1). Consider the following
equation

nx1 + · · ·+ nxt = rk k[G].

Let ω0 be a root of this equation. Then by Schönhage’s τ -theorem ω 6 ω0.
In other words, using the fact that all nτ > 1

nω1 + · · ·+ nωt 6 rk k[G].

On the other hand, by employing Lemma 1

rk k[G] >
tX

τ=1

nωτ =

tX
τ=1

(n2
τ )

ω
2 >

 
t1−

ω
2 ·

tX
τ=1

n2
τ

!ω
2

>
(]G)

ω
2

t(]G)
ω2
4 −

ω
2

.

which proves the theorem. ut

Corollary 2. 1. If the number of different irreducible representations
of groups in the family does not grow “too fast” then the exponent of
matrix multiplication is at most twice the rank exponent of the cor-
responding family of group algebras. More precisely, if t(N) = o(Nε)
for any ε > 0 then ωk[G] > ω

2
.

12



2. In the same setting, if ω > 2, then the rank of group algebras from
the family described above is superlinear on their dimensions.

3. If ω > 2 and f(N) � N
1
ω then the group algebras from the corre-

sponding family of groups have superlinear bilinear complexity. One
promising family of finite groups which could help to achieve ω = 2

in [9] has f(N) = N
1
2−ε for some fixed ε > 0. It follows, that in

general one should look for ε > 1
2
− 1

ω
> 0.079 since otherwise the

lower bound depends on ω and is not superlinear iff ω = 2.

4. If t(N) � N
2
ω then the bilinear complexity of the corresponding

group algebras is superlinear provided ω > 2. In particular, this holds
if t(N) 6 N0.841.

Corollary 3. Let k be an algebraically closed field of characteristic 0.
1. Let {Sn}n>1 be the family of symmetric groups, Sn to be of order n!.

Then ωk[Sn] = ω
2

.
2. Let {GL(n, q)}n>1, q fixed, be the family of general linear groups of

nonsingular n× n-matrices over GF (q). Then ωk[GL(n, q)] = ω
2

.

Proof. 1. For the proof refer to Corollary 1.
2. The order of GL(n, q) is

N =

n−1Y
i=1

“
qn − qi

”
= qn

2
n−1Y
i=1

„
1− 1

qi

«
| {z }

=:Q

.

Note that
“

1− 1
q

”n−1

6 Q 6 1. GL(n, q) has an analytical irre-

ducible representation of order

d =

n−1Y
i=1

“
qi − 1

”
=

n−1Y
i=1

qi
„

1− 1

qi

«
= q

n(n−1)
2 Q,

[13]. It follows, that at least one irreducible representation of has the
same order. Now the corresponding matrix algebra has dimension

d2 = qn
2−nQ2 = N

Q

qn
.

We will show now that qn

Q
= o(Nε) for any ε > 0. This will complete

the proof since

rk k[GL(n, q)] > dω =
`
d2´ω2 > N (1−ε)ω2

for all groups of size N > N0 and ε > 0 where N0 depends on the
choice of ε.

qn

Q
6

qn“
1− 1

q

”n−1 6 q2n−1.

Nε > qεn
2
„

1− 1

q

«ε(n−1)

> qεn
2−εn.

So Nε > qn

Q
if n > 2

ε
+ 1. ut
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6.2 Modular Case

Let k be now an algebraically closed field of characteristic p and letG be a
finite group of order N = npd, where p - n. We will assume that G has the
normal Sylow p-subgroup H of order pd. In this case rad k[G] is generated
by the augmentation ideal4 of k[H] and dim rad k[G] = pd(n− 1).
We will further be concerned with the case of abelian H, which is then
a direct product of cyclic p-groups:

H = Zpt1 × · · · × Zpts , t1 > · · · > ts, d = t1 + · · ·+ ts. (11)

We will denote elements of H by hi1, ..., is , 0 6 iσ < ptσ for all 1 6 σ 6 s
assuming

hi1, ..., is · hj1, ..., js = h(i1+j1) mod pt1 , ..., (is+js) mod pts .

Let

r1 = h1, 0, 0, ..., 0 − h0, 0, 0, ..., 0,

r2 = h0, 1, 0, ..., 0 − h0, 0, 0, ..., 0,

. . .

rs = h0, 0, 0, ..., 1 − h0, 0, 0, ..., 0.

The augmentation ideal of k[H] (and R = rad k[G]) is generated by

r1, . . . , rs. It is easy to see that rp
tσ

σ = 0 and the system of vectorsn
ri11 · · · r

is
s | i1 + · · ·+ is > 1, 0 6 iσ < ptσ

o
is linearly independent. The systemn

ri11 · · · r
ts
s | i1 + · · ·+ is > m, 0 6 iσ < ptσ

o
is also linearly independent and generates Rm, so dimRm = n(pd−am−1)
where

am−1 = ]
˘

(i1, . . . , is) | i1 + · · ·+ is 6 m− 1, 0 6 iσ < ptσ
¯
.

Let ξ be a discrete random variable. We denote by Eξ the expectation
of ξ, i.e. if ξ takes value ai ∈ R with probability pi > 0 for 1 6 i 6 n,Pn
i=1 pi = 1, then Eξ =

Pn
i=1 aipi. We also denote by Dξ = E(ξ − Eξ)2

the dispersion of ξ.

Theorem 9. Let G = {G1, G2, . . . } be a family of groups and k be a
field of characteristic p. Let G ∈ G and ]G = N = npd, where p - n.
Assume that P = Z(G)5 is the Sylow p-subgroup of G and the parameter
d is unbounded for groups in G. Let pT be the order of biggest cyclic
factor of P and pt be the smallest order, and let s be the total number of

4 The augmentation ideal of a group algebra A with a group basis {e1, . . . , en} is the
ideal generated by all vectors

P
xiei with

P
xi = 0.

5 Z(G) is the center of G, i.e. the set of elements of G that commute with all the
elements of G.
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factors. Assume that for any ε > 0 the difference T − t < 1
2

logp εs for
all G ∈ G with ]G > N0 = N0(ε). Then

C(k[G]) >

„
2 +

1

n

«
]G− o(]G).

Proof. Following proof is based on ideas by Chokayev and generalizes
similar result proven in [7] for one special case of commutative group
algebras.
We note, that since P is abelian, it is a finite product of cyclic p-groups:

P = Zpt1 × · · · × Zpts

where t1 6 · · · 6 ts and the exponent of P is pts . Since it is o(]P ), the
parameter s is unbounded among all groups from G.
According to (7)

C(k[G]) > ]G+ n(pd − am−1) + n(pd − am−1)− n(pd − a2m−1)

=

„
2 +

a2m−1 − 2am−1

npd

«
]G.

We will show now that we may choose m in such a way that a2m
pd
→ 1,

am
pd
→ 0 when s→∞. Consider indices {iσ}sσ=1 as independent random

variables with iσ taking value in [0, ptσ − 1] with probability 1
ptσ

for
1 6 σ 6 s. Then

Eiσ =
ptσ − 1

2
, Diσ =

p2tσ − 1

12
,

and denoting ξs = i1 + · · ·+ is

Eξs =
1

2

sX
σ=1

ptσ − s

2
, Dξs =

1

12

sX
σ=1

p2tσ − s

12
,

while ξs takes each value in [0,
Ps
σ=1 p

tσ −s] with probability
am−am−1

pd
.

Now let m = 2
3
Eξs be a function of s. Then by Chebyshov’s inequality

am−1

pd
= P(ξs 6 m− 1) 6 P(|ξs − Eξs| > Eξs −m+ 1)

6
Dξs

(Eξs −m+ 1)2
6

3sp2T

4s2p2t
=

3p2T−2t

4s
−−−→
s→∞

0,

a2m−1

pd
= P(ξs 6 2m− 1) > P(|ξs − Eξs| 6 2m− 1− Eξs)

> 1− Dξs
(2m− 1− Eξs)2

> 1− 3p2T−2t

4s
−−−→
s→∞

1

which proves the theorem. ut

Corollary 4. For any field k of characteristic p and any family of groups
{G1, G2, . . . } of growing dimensions there exists a constant N such that
the generated family of group algebras {k[G1], k[G2], . . . } does not con-
tain algebras of minimal rank of dimensions greater than N if their Sylow
p-subgroups coincide with their centers and contain growing number of
cyclic factors of close order.
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7 Upper Bounds

As (1) and (2) indicate, complexity of multiplication in group algebras
is closely related to complexity of matrix multiplication. In particular,
provided an effective algorithm for multiplication of square matrices, we
immediately obtain an effective algorithm for multiplication in group
algebras.

Proposition 2. Let n1, . . . , nt > 0 and alpha > 1. Then

tX
τ=1

nατ 6

 
tX

τ=1

nτ

!α
.

Proof. The statement follows from the fact that xα is convex for x > 0
and α > 1.

For any pair of monotonically growing functions f(n) and g(n) we will
write f(n) / g(n) if for every δ > 1 f(n) 6 O

`
(g(n))δ

´
.

Let G be a finite group and k be an algebraically closed field whose
characteristic is either 0 or does not divide ]G. Now we are ready to
introduce the general upper bound for the rank of k[G].

Theorem 10. Let G be a group and k be an algebraically closed field of
characteristic either 0 or coprime with ]G. Then

rk k[G] / (]G)
ω
2 , (12)

where ω is the exponent of matrix multiplication.

Proof. Consider decomposition (1) of k[G] into a direct product of matrix
algebras. It follows that

rk k[G] 6
tX

τ=1

rk knτ×nτ .

By definition of the exponent of matrix multiplication

rk knτ×nτ 6 L(knτ×nτ ) / nωτ .

Thus by Proposition 2

rk k[G] /
tX

τ=1

nωτ =

tX
τ=1

(n2
τ )

ω
2 6

 
tX

τ=1

n2
τ

!ω
2

= (]G)
ω
2

which completes the proof. ut

Lemma 2. Let G = {G1, G2, . . . } be a family of finite groups and k
be an algebraically closed field of characteristic either 0 or coprime with
each ]Gi. Let f(N) be a function which satisfies following property: for
every G ∈ G all character degrees of G over k are less or equal than
f(]G). Then for any G ∈ G

rk k[G] / ]G · min
h(N)

„
h(]G)ω +

f(]G)ω

h(]G)2

«
, (13)

where ω is the exponent of matrix multiplication and the minimum is
taken over all functions h(N) such that at least one irreducible character
degree of G is less or equal than h(]G).
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Proof. Let n1 > · · · > nt be the irreducible character degrees of G over
k. Let h(N) be as defined. Let j(N) be the number of nτ greater than
h(N). Note that

]G =

tX
τ=1

n2
τ > j(]G)h(]G)2,

thus j(N) 6 N
h(N)2

. It follows that

rk k[G] /

0@j(]G)f(]G)ω +

tX
τ=j(]G)+1

nωτ

1A 6 ]G
f(]G)ω

h(]G)2
+ ]Gh(]G)ω.

The last equation holds for any h(N) so it holds also for the one mini-
mizing the right side. ut

Theorem 11. Let G = {G1, G2, . . . } be a family of finite groups and
k be an algebraically closed field of characteristic either 0 or coprime
with order of each Gi. Let f(N) be a function which satisfies following
property: for each G ∈ G all character degrees of G over k are less or
equal than f(]G). Then for any G ∈ G

rk k[G] / ]Gf(]G)ω−2+ 4
ω+2 6 ]Gf(]G)ω−1, (14)

where ω is the exponent of matrix multiplication.

Proof. It is a well-known fact that every group has at least one (trivial)
one-dimensional representation. So we can choose for h(N) in Lemma 2
any function which is less than f(N). The result of the theorem follows

by choosing h(N) = f(N)1−
2

ω+2 . ut

Corollary 5. 1. If f(N) = O(1) then rk k[Gi] = O(N).
2. If for any ε > 0 f(N) = o(Nε) then ωk[G] = 1.

Remark 2. 1. Note, that h(N) =
`

2
ω

´ 1
ω+2 f(N)1−

ω
ω+2 minimizes the

right side of (13).
2. The upper bound given by (14) is better than the one given by (12)

if f(N) = o
“
N

1
2−

2
ω2
”

. According to the best known upper bound

ω < 2.376 [11], currently (14) beats (12) if f(N) = o(N0.1457).

Let k now be an arbitrary field of characteristic 0 and G be a finite group.
By definition of prime field, Q ⊆ k is the prime subfield of k. LetK ⊇ k be
an algebraically closed extension of k. It is known (see [18, Theorem 11.4,
Chapter XVIII]) that every representation of G over K is definable over
Q(ζm) where m is exponent of G and ζm is a primitive m-th root of unity.
Therefore, it is definable over k(ζm) (if k does not already contain ζm).
Now consider any irreducible representation of G over k. It is a simple
k[G]-module by Maschke’s Theorem [18, Theorem 1.2, Chapter XVIII].
Therefore, it is isomorphic to Dn×n where D is a k-division algebra. ζm
is algebraic over D since it is algebraic over k ⊆ D and D ∼= D′ ⊆ k(ζm).
The latter holds since there are no simple irreducible representations of
G over k(ζm) other than those isomorphic to matrix algebras over k(ζm).
Thus, D is a subalgebra of k(ζm), or D ∼= k(ζ`) for some ` | m.
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Theorem 12. Let G = {G1, G2, . . . } be a family of finite groups and k
be an arbitrary field of characteristic 0. Then for any G ∈ G

rk k[G] / (]G)
ω
2 ,

where ω is again the exponent of matrix multiplication.

Proof. Since k[G] is semisimple, (2) holds. As mentioned above, Dτ is
actually an extension field of k, thus for all τ rkDτ 6 2dτ −1 since it can
be implemented via polynomial multiplication over k and k is infinite.
We have

rk k[G] /
tX

τ=1

nωτ (2dτ − 1) < 2

tX
τ=1

nωτ dτ = 2

tX
τ=1

„
n2
τd

2
ω
τ

«ω
2

6 2

 
tX

τ=1

n2
τd

2
ω
τ

!ω
2

6 2

 
tX

τ=1

n2
τdτ

!ω
2

= 2(]G)
ω
2

since ω > 2. ut

Remark 3. Statement of theorem 12 remains true whenever the division
algebras appear inside simple irreducible representations of groups have
linear rank. Thus,

1. Theorem 12 holds also when k is finite. It is known that any finite
division algebra is an extension field of k, by Wedderburn’s Lit-
tle Theorem [19, Theorem 2.55], therefore its rank is linear due to
Chudnovskys’ algorithm, cf. [8] or [25].

2. It also holds for real closed fields since all division algebras over such
fields have bounded dimension (in fact, it can be only 1, 2, 4, or
8) [12].

8 Conclusion

Noncommutative group algebras appear to be closely connected with the
matrix algebra. Studying the problem of complexity of multiplication
in group algebras may give us new algebraic insight into this classical
problem of computer algebra and algebraic complexity theory. There are
numerous open problems related to group algebras. We mention here
only some of them.

1. It could be possible to obtain a general upper bound not depending
on the matrix representations for the rank of group algebras based
on the group structure that will be better than upper bounds given
by Theorems 10, 11, and 12. In this case it could improve the upper
bound for matrix multiplication.

2. We would like to extend Theorem 12 for fields of arbitrary charac-
teristic that does not divide any of the group orders from the family
under consideration.
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3. The radical of a group algebra in the modular case is tightly re-
lated to Sylow p-groups. These groups are well-studied, although
their structure may vary very strongly. It is known that the rank
of commutative group algebras with nontrivial radical is still lin-
ear, so it does not affect the order of the complexity. On the other
hand, a commutative group algebra over algebraically closed field
of characteristic p is of minimal rank iff its Sylow p-group is cyclic.
An open question is if similar effects also hold for noncommutative
group algebras.
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