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Abstract
This paper shows that the use of “local symmetry breaking” can dramatically reduce the length

of propositional refutations. For each of the three propositional proof systems known as (i) treelike
resolution, (ii) resolution, and (iii) k-DNF resolution, we describe families of unsatisfiable formulas in
conjunctive normal form (CNF) that are “hard-to-refute”, i.e., require exponentially long refutations, but
when a polynomial-time procedure for detecting and adding clauses arising from “local” symmetries
— that permute only a constant number of variables — is applied to a formula in this family, it is
transformed into an “easy-to-refute” CNF whose refutation length is polynomially bounded.

One of the most successful paradigms for solving instances of the satisfiability problem is the branch-
and-bound strategy set forth by Davis, Putnam, Loveland and Logemann (DPLL). The three proof sys-
tems we discuss in this paper correspond respectively to (i) “standard” DPLL, (ii) DPLL augmented
with clause learning, and (iii) multi-valued logic DPLL. Viewed with this correspondence in mind, our
results suggest that the running time of SAT solvers from the above mentioned family of algorithms can
be dramatically reduced when making use of information about the symmetries of a formula. This is
true even when restricting our attention to the set of efficiently detectable symmetries that involve only
a constant number of variables.

1 Introduction

The role of symmetries in mathematical proofs Consider how we (humans) prove the pigeonhole prin-
ciple. Recall that this principle states that whenever n + 1 pigeons are placed in n pigeonholes there must
exist a hole occupied by more than one pigeon. A typical proof starts by saying
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“Pigeon number n+ 1 sits in some pigeonhole. Without loss of generality let it be the last (nth)
one.”

We will not complete the inductive argument of this theorem and rather pause to contemplate the phrase with-
out loss of generality. It means that all pigeons and all holes are the same, at least as far as the pigeonhole
principle is concerned. So if pigeon n+1 actually sits in the first pigeonhole we can simply switch the labels
of these two holes and nothing would change. Lets state this phenomena again in a formal way using propo-
sitional calculus. Define a propositional variable X(i,j) to indicate the truth value of the proposition “pigeon
number i sits in pigeonhole number j”. This variable takes value 1 if the statement is true and otherwise is
0. Consider the set of constraints over propositional variables

{
X(i,j)

∣∣ i ∈ {1, . . . , n+ 1}, j ∈ {1, . . . , n}
}

that says (i) for every i ∈ {1, . . . , n+ 1} pigeon i sits in some pigeonhole (formally,
∨n
j=1X(i,j)), and (ii)

for every j ∈ {1, . . . , n} pigeonhole j is occupied by at most 1 pigeon (formally,
∧
i 6=i′(X̄(i,j)∨X̄(i′,j))). The

standard notation in the literature for this unsatisfiable set of constraints capturing the pigeonhole principle
is PHPn. When we say that pigeonhole 1 and n are the same we mean that if, for every i ∈ {1, . . . , n+ 1},
we replace variableX(i,1) byX(i,n) and vice versa replace variableX(i,n) byX(i,1) then the set of constraints
obtained from this transposition is identical to the original set of constraints we started with — PHPn. In
other words, the permutation that switches X(i,1) and X(i,n) for all i ∈ {1, . . . , n+ 1} simultaneously and
leaves all other variable labels unchanged is an automorphism of the formula PHPn, i.e., PHPn is invariant
under the action of this permutation (cf. Definition 3.2).

Once we have identified an automorphism of PHPn we can go one step further and use this information
to add constraints to PHPn that can potentially simplify the problem of refuting PHPn, i.e., of proving that
it is unsatisfiable. For instance, there are four possible assignments to the pair of variables X(i,1), X(i,n),
namely (0, 0), (0, 1), (1, 0), (1, 1). But since these two variables are interchangeable we need to consider
only three assignments out of the four. Any assignment α that sets X(i,1), X(i,n) to (1, 0) satisfies PHPn if
and only if the assignment α′ that sets X(i,1), X(i,n) to (0, 1) and otherwise agrees with α satisfies PHPn.
Consequently, we may safely add the constraint X̄(i,1) ∨X(i,n) to PHPn — this constraint rules out setting
(0, 1) to variables X(i,1), X(i,n) — and possibly make the task of refuting PHPn easier.

In the case of the pigeonhole principle, humans are capable of seeing the symmetries inherent in the
statement and mentally using these symmetries to quickly prove the statement. However, when it comes to
automated proofs the situation changes dramatically. Many propositional proof systems used in practice to
deal with general constraint satisfaction problems, like treelike resolution and resolution, are not designed to
use symmetries such as those appearing in the pigeonhole principle. For these proof systems, pigeon n+ 1
sitting in the last hole is a completely different situation than that of pigeon n + 1 sitting in the first hole.
Consequently, the pigeonhole principle is known to require a propositional proof of length exponential in
n in these ubiquitous systems [Hak85]. This is really a pity because many man-made and industry-based
constraint satisfaction problems naturally contain a rich structure of symmetries. For example, think of a
statement coming from the field of formal verification which concerns a circuit with many registers and all
registers are equivalent.

This unfortunate weakness of propositional proof systems was first addressed by [Kri85] who suggested
a way to incorporate symmetry breaking into resolution to provide shorter proofs of statements such as
the pigeonhole principle. As pointed out in [CGLR96], there are several formidable challenges needed to
be overcome in order to use the symmetries of a formula in a proof. The first is that of finding, via an
efficient algorithm, the set of automorphisms of a CNF formula z and a succinct representation of this set
(case in point — the pigeonhole principle, cf. [Kri85]). The set of automorphisms forms a group under
composition and a succinct representation for this group is given by a set of generators. Finding a set
of generators for a formula is as hard as solving the graph isomorphism problem [Cra92]. The second
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problem with using the symmetries to simplify refutations is that, even if a set of generators is known for the
group of automorphisms, encoding this information in a way that will make proofs shorter is quite difficult
[CGLR96]. Assuming z involves n variables, it is known that the group of symmetries partitions the 2n

possible assignments into equivalence classes, and all assignments in a given class evaluate z to the same
value. Thus, it is sufficient to examine only one representative from each class. Alas, the structure of the
equivalence classes may be too complex, and the number of classes too large, to be useful for getting shorter
proofs.

Given the obstacles we face in our attempt to use the symmetries of a formula to obtain shorter proofs
for it, one question that naturally arises is whether it is worth the effort? Can information about the group of
automorphisms of a formula drastically decrease the length of proofs of a formula z? Maybe the compu-
tational effort needed to utilize symmetry breaking predicates is greater than required to solve the formula
without using such predicates. To quote from [ARMS02]:

“In principle, the overhead due to symmetry detection and usage may outweigh the benefits,
and it remains to be seen that useful CNF formulae have many symmetries.”

The question of the effectiveness of symmetry breaking on decreasing proof length has been addressed in the
empirical setting in a number of works [BS94, CGLR96, BFP96, BGS99, ARMS02, ASM06, Zha01, Shl07].
From a theoretical point of view [Urq99] has shown that information about the symmetries in a formula can
lead to exponential savings in proof length.

Main results An automorphism of a formula — a permutation of its variables that leaves the formula
unchanged — is said to have support size k if all but k variables are unchanged by it. (For instance, an
automorphism that flips only two variables has support size 2.) Our main results show that symmetry
breaking, even when applied to automorphisms of support size 2, can have a dramatic effect on proof length,
bringing it down from exponential to polynomial. Our results apply to the three ubiquitous proof systems
known as (i) treelike resolution, (ii) resolution and (iii) k-DNF resolution. For each of these systems we
show that there exists a family of formulas that are “hard to refute” in the system, meaning any refutation of
the formula is of exponential length in the size of the formula, but once all symmetry breaking constraints
pertaining to symmetries of small support size are added to the formula (there is a small number of such
constraints and they can be found efficiently via exhaustive search) its refutation length drops to polynomial.
We now informally present our main theorems (formal statements appear in Section 5). We start with the
weakest proof system known as treelike resolution (see Definition 2.2). In what follows we say that a
sequence of polynomial-size formulas {zn | n ∈ Z}, |zn| = nθ(1) is efficiently constructible if there exists
a polynomial time algorithm that on input 1n outputs zn.

Theorem 1.1 (Treelike resolution — informal). There exists an efficiently constructible family of 3-CNF
formulas {zn | n ∈ Z} over n variables and θ(n) clauses satisfying

1. The minimal length of a treelike resolution refutation of zn is 2Ω(n/ logn).

2. Letting z′n denote the formula obtained by adding to zn all symmetry breaking clauses pertaining to
symmetries of support size ≤ 2, then z′n has a treelike resolution refutation of length O(n).

Our next result holds for the stronger proof system known as resolution (see Definition 2.1).

Theorem 1.2 (Resolution — informal). There exists an efficiently constructible family of 6-CNF formulas
{zn | n ∈ Z} over n variables and θ(n3/2) clauses satisfying
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1. The minimal length of a resolution refutation of zn is 2Ω(
√
n).

2. Letting z′n denote the formula obtained by adding to zn all symmetry breaking clauses pertaining to
symmetries of support size ≤ 2, then z′n has a resolution refutation of length O(n3/2).

We end with our strongest proof system, known as k-DNF resolution (see Definition 2.3). For simplicity
we state here only the case of constant k (for a more general statement see Theorem 5.6).

Theorem 1.3 (k-DNF resolution — informal). For any integer k ≥ 1 there exists an efficiently constructible
family of O(k)-CNF formulas {zn | n ∈ Z} over n variables and θ(n3/2) clauses satisfying

1. The minimal length of a k-DNF resolution refutation of zn is 2n
Ω(1)

.

2. Letting z′n denote the formula obtained by adding to zn all symmetry breaking clauses pertaining to
symmetries of support size ≤ k + 1, then z′n has a resolution refutation of length O(n3/2).

The constants hidden by asymptotic notation may depend on k.

Proof technique The method of proof we use is that of formula substitution, which has been employed
in several instances in the past to show separations between propositional proof systems (examples include
[BS02, BOP03, Ngu07, Sch08, BN08]). In a nutshell, it works like this. Start with a formula H over
variables x1, . . . , xn that has a short (think polynomial length) refutation in the proof system of interest.
Substitute each variable xi with a formula over a small number k of variables (think k = 2), such as the
exclusive-or of k variables. We use k new variables for each “substituted” variable xi appearing in H and
denote these new variables by xi(1), . . . , xi(k). Now we have a new formula z in hand that has k · n
variables. Next we argue (relying on previous results) that refuting z requires exponential length. The key
point is that if we carefully picked the formula we substitute xi with to be a “very symmetric” formula (see
Definition 4.7) then the symmetry breaking clauses of z of support size k will be sufficient to recover all
clauses of H using short derivations. To sum, we find that z is “hard-to-refute” but if we add to z all
symmetry breaking clauses of support size at most k then the resulting formula is “easy-to-refute”.

Relevance to SAT solving The satisfiability problem (SAT) is one of great theoretical and practical im-
portance in computer science. In this problem we are given as input a CNF formula z and asked to find
an assignment to the variables satisfying (at least) one literal in each clause, or to output “unsatisfiable” in
case no such assignment exists. The theoretical importance of this problem stems from the well-known fact
that it is a natural NP-complete problem with a rich combinatorial structure. The practical importance arises
from the discovery that reducing constraint satisfaction problems to CNF format and feeding this as input
to state-of-the-art SAT solvers — algorithms that solve instances of the satisfiability problem — is often
the most computationally-efficient way to deal with them. Indeed, in recent years many tasks ranging from
motion planning to formal verification have been successfully resolved on real-world instances by use of
SAT solvers.

Most SAT solvers used in practice, as well as the vast majority of algorithms competing successfully in
recent SAT solving competitions [SAT], are based on the successful branch-and-bound method suggested
by Davis, Putnam, Loveland and Logemann (and known as DPLL) [DP60, DLL62]. A recently suggested
augmentation of DPLL by clause learning, suggested by Bayardo and Schrag and by Silva and Sakallah in
[BS97, SS96], has been found to perform particularly well on real-world and industry based instances of
the satisfiability problem. The term “DPLL SAT solving” actually refers to a large collection of heuristics
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which vary according to the way branches are explored. Similarly, “DPLL augmented with clause learning”,
which we denote from here on by DPLL+, refers to a family of algorithms, members of which differ based
upon the methods used to detect and learn clauses.

Proving lower bounds on the running time of all members of the family of DPLL (or DPLL+) SAT
solvers on satisfiable instances is beyond our current ability because it implies P 6= NP1. But if instead
we consider the running time of these algorithms on unsatisfiable formulas then proving lower bounds
becomes a feasible task. The reason is that the sequence of branches explored by a DPLL SAT solver
on an unsatisfiable CNF input formula z corresponds to treelike resolution refutation of z. Similarly,
the sequence of clauses learned by a DPLL+ algorithm augmented with clause learning, when added to
the above-mentioned branch sequence, corresponds to a resolution refutation of z. And like-wise, the
sequence of branches explored by a k-valued logic branch-and-bound algorithm on z corresponds to a
k-DNF resolution refutation of z (cf. [JN02]).

In light of this connection between families of SAT solvers and proof complexity, our results show that
applying a symmetry breaking preprocessor, even one that is limited to discovering and breaking only sym-
metries of small support, can have a great impact on the running time of SAT solvers, potentially reducing
their running time from exponential to polynomial, or (in the case of DPLL and treelike resolution) even
linear (!).

Organization of the rest of the paper After presenting the necessary definitions in the next section,
we start in Section 3 with a formal treatment of the automorphisms of a CNF and its symmetry breaking
clauses. Section 4 contains the main technical part of this paper as it shows the effect of substitution on the
automorphisms of a CNF formula. Section 5 presents the formal proofs of our main results.

2 Preliminaries

2.1 Notation regarding formulas

Throughout this paper x will denote a Boolean variable over {0, 1}. A literal over x is either x (which is
called “positive”) or x̄ (“negative”). We say that x and x̄ are opposite literals over x. When working with
n variables we will number them x1, . . . , xn and to facilitate the definition of permutations over literals we
shall denote the positive literal over xi by x0

i and the negative one by x1
i . In other words, these 2n literals

are indexed by {1, . . . , n} × {0, 1}.
A clause is a disjunction (OR) of literals. Often we shall view a clause as the set of literals appearing

in it. We say that a variable x appears in a clause C (denoted x ∈ C) if either x or x̄ appears in C. Let
vars(C) denote the set of variables appearing in C. The width of a clause C, denoted by |C| is the number
of literals in it. A formula in conjunctive normal form (CNF) is a conjunction (AND) of clauses and we
often view it also as a set of clauses, i.e., as a set of sets of literals. For example, we view the CNF formula
{(x1 ∨ x2) , (x3 ∨ x̄4)} as the following set of sets of literals: {{x1, x2} , {x3, x̄4}}. If all clauses of a CNF
formula z have width at most d we say that z is a d-CNF formula. Let |z| denote the number of clauses
in z and let vars(z) =

⋃
C∈z vars(C). Two CNF formulas z,z′ over variable sets X,Y respectively are

said to be equivalent if there exists a bijective mapping g from the literals of X , denoted L(X) to the literals
of Y , denoted L(Y ) such that (i) each pair of opposite literals in L(X) is mapped to a pair of opposite

1To see this, notice that if P = NP then there exists a polynomial-time DPLL heuristic that uses the satisfying assignment of
a satisfiable formula to decide which way to branch on each variable, in such a way that a satisfying assignment is reached with no
backtracking at all.
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literals in L(Y ), and (ii) z′ = g(z) where g(z) denotes the formula z with each literal xbi replaced by
g(xbi).

A Formula in disjunctive normal form (DNF) is defined, similarly to a CNF formula, as a disjunction of
conjunctions of literals and all notations and definitions appearing in the previous paragraph are extended to
DNF in the natural way.

A partial assignment or restriction to a formula z is a partial mapping ρ from vars(z) to {0, 1}. Letting
dom(ρ) denote the subset of variables that ρ maps to {0, 1}, the value of a literal xbi , b ∈ {0, 1} under ρ is

xbi |ρ =

{
(ρ(xi))

b xi ∈ dom(ρ)
xbi otherwise

For G a formula constructed of literals and AND and OR gates of unbounded fan-in (in particular, this class
of formulas includes clauses and CNF and DNF formulas) we use the standard definition of the restriction
of G by ρ, which is defined by induction on the depth of G as follows:

G|ρ =


xbi |ρ G = xbi
1 G =

∨m
j=1Gi and Gj′ |ρ = 1 for some j′ ∈ {1, . . . ,m}

0 G =
∧m
j=1Gi and Gj′ |ρ = 0 for some j′ ∈ {1, . . . ,m}⊙m

j=1Gj |ρ otherwise, where G =
⊙m

j=1Gj and
⊙

denotes either
∧

or
∨

An assignment α to z is a partial assignment whose domain is all of vars(z). The truth value of an
assignment α over a CNF z, denoted z(α), is the value of z according to the Boolean algebra. That is,
z(α) = 1 iff for each clause of z, at least one literal is evaluated to 1 by α.

2.2 Proof systems

All proof systems considered here are sequential, i.e., a derivation of a formula G from a CNF formula
z is a sequence of lines where each line is either a clause of z or is derived from previous lines by one
of the allowed derivation rules of the proof system, and the very last line of the derivation is G. The size
of a derivation is defined to be the number of lines in it. Letting P denote the proof system in which the
derivation is conducted, we denote by SP (z ` G) the minimal size of a derivation of G from z in the proof
system P . A refutation of z is a derivation of the fixed contradiction, denoted 0, from z. We let SP (z ` 0)
denote the minimal size of a P -refutation of z.

The results of this paper pertain to three basic and well-studied proof systems: (i) resolution , (ii) the
tree-like version of resolution, and (iii) the extension of resolution known as k-DNF resolution. The formal
definitions of these three proof systems follow (See [Seg07] for a more information on these and other
propositional proof systems.)

Definition 2.1 (Resolution). A resolution derivation allows use of the following two derivation rules. In
what follows E and F are clauses and x is a variable.

1. Resolution: Infer E ∨ F from E ∨ x and F ∨ x̄

2. Weakening: Infer E ∨ F from E

For a CNF z and clause C we denote by SR (z ` C) the minimal size of a resolution derivation of C from
z and if z is unsatisfiable then SR(z ` 0) denotes the minimal size of a resolution refutation of z.
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We point out that the weakening rule is not essential, as even without it the resolution proof system is
complete with respect to refutations, but we add this rule for the sake of simplicity.

Definition 2.2 (Tree-like resolution). A treelike resolution derivation allows use of the two derivation rules
allowed in the resolution system (Definition 2.1), and has the added requirement that every inferred clause
is used at most once as an assumption in the derivation of a new clause in the refutation. Axioms, which are
noninferred clauses, may be used more than once. For a CNF z and clause C we denote by ST (z ` C)
the minimal size of a treelike resolution derivation of C from z and if z is unsatisfiable then ST (z ` 0)
denotes the minimal size of a treelike resolution refutation of z.

The following extension of resolution to lines that are k-DNF formulas was introduced by Krajı́ček in
[Kra01] as an interesting intermediate step between resolution and depth-2 Frege systems.

Definition 2.3 (k-DNF resolution). The k-DNF resolution system is a proof system in which lines are k-
DNF formulas. The derivation rules are as follows, where A,B denote k-DNF formulas and l, l1, ..., lj are
literals:

1. Subsumption: Infer A ∨ l from A.

2. Cut: Infer A ∨B from A ∨
j∧
i=1
li and B ∨

j∨
i=1
l̄i.

3. And-elimination: Infer A ∨ li from A ∨
j∧
i=1
li.

4. And-introduction: Infer A ∨
j∧
i=1
li from A ∨ l1, ..., A ∨ lj .

For a CNF z and a k-DNF formula D we denote by SR[k] (z ` D) the minimal size of a k-DNF resolution
derivation of D from z and if z is unsatisfiable then SR[k](z ` 0) denotes the minimal size of a k-DNF
resolution refutation of z.

Notice that all derivation rules in the definition above are sound. I.e., every assignment that satisfies the
assumption, satisfies the conclusion of the rule as well. The resolution derivation rule is a special case of
rule number 2 of k-DNF resolution for k = 1.

We say that a proof system P simulates another proof system Q if for all pair of formulas z and C we
have SP (z ` C) ≤ SQ(z ` C). Since every treelike resolution derivation is also a resolution derivation
and every resolution derivation is also a k-DNF resolution derivation for k > 1 we see that k-DNF resolution
simulates resolution, which in turn simulates treelike resolution.

The proof of the following statement is folklore, and we will use it later on in our proofs. For z, G two
formulas we say that z implies G, denoted z |= G if every assignment that sets z to 1 also sets G to 1.

Claim 2.4 (Implicational completeness of treelike resolution). Let z be a CNF formula over n variables
and let C be a clause. If z |= C then there exists a treelike resolution derivation of C from z of size at most
2n+1.

We conclude with a statement whose proof is obtained by observing that all derivation rules in the proof
systems defined above are invariant under renaming of variables and literals.

Claim 2.5. If z and z′ are equivalent unsatisfiable formulas as defined in Section 2.1 and P is one of the
proof systems defined earlier in this section, then SP (z ` 0) = SP (z′ ` 0).
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3 The Automorphism Group and Symmetry Breaking Clauses

In this section we discuss the group of automorphisms of a CNF formula z and its symmetry breaking
clauses. We show how to find “simple” automorphisms, i.e., ones that leave most variables unchanged.
We go on to discuss the partitioning of the assignments into equivalence classes based on the group of
automorphisms of z. We define the symmetry breaking clauses of z as those clauses that rule out all but
the minimal lexicographic assignment in an equivalence class. In the end of this section we prove that adding
to z its symmetry breaking clauses is a sound operation — if z was satisfiable then it remains so even when
these new clauses are added as constraints.

3.1 The group of automorphisms of a CNF formula

In this paper we shall consider only legal literal-permutations as per the following definition. Since all
permutations will be of this form, we will abuse notation and refer to them simply as “permutations”. Recall
from Section 2.1 that a CNF formula z over n variables is viewed as a set of sets of literals and that literals
are indexed by {1, ..., n} × {0, 1}.

Definition 3.1 (Legal literal-permutation). Let z be a CNF over X = {x1, ..., xn} and let L(X) ={
x0

1, x
1
1, . . . , x

0
n, x

1
n

}
be the set of literals over X . A permutation π of L(X) is said to be a legal literal-

permutation if it sends pairs of opposite literals to pairs of opposite literals. Formally, for each i ∈ {1, ..., n}
we have that π(x0

i ) and π(x1
i ) are opposite literals. The order of π, denoted ord(π), is the minimal integer t

such that π composed with itself t times (denoted πt) is the identity permutation. The support of π, denoted
supp(π), is the set of variables that are not fixed by π. Formally, supp(π) =

{
i
∣∣ π(x0

i ) 6= x0
i

}
.

A permutation π′ of {1, . . . , n}will be associated with the legal literal-permutation π defined by π(x0
i ) =

x0
π′(i) and π(x1

i ) = x1
π′(i), i.e., indices of variables are permuted according to π′ without changing the sign

of literals.

Definition 3.2 (Formula automorphisms). Let π be a legal literal-permutation of the variables of a CNF
formula z. Denote by zπ the CNF where each clause C of z, viewed as a set of literals, is replaced with
the set of literals that is the image of C under π.

A legal literal-permutation π is called an automorphism of z if it has the property that zπ equals z as
sets, i.e., if every clause of zπ is also a clause of z and vice versa.

We denote by aut(z) the set of automorphisms of z.

For example, for z = {(x1 ∨ x2) , (x3 ∨ x4)} = {{x1, x2} , {x3, x4}}, the permutation π1 = ((2, 1) , (3) , (4))
which swaps x1 and x2 and leaves x3, x4 unchanged is an automorphism because zπ1 = z. In contrast, the
permutation π2 = ((1) (2, 3) (4)) is not an automorphism because zπ2 = {{x1, x3} , {x2, x4}} 6= z.

Claim 3.3. For every formula z, the set of automorphisms aut (z) forms a group under composition.

Proof. First, aut(z) is closed under composition. Next, the identity permutation is the identity element of
the group. Furthermore, composition of automorphisms satisfies associativity and finally, every automor-
phism has an inverse, namely, its inverse permutation.

3.2 Symmetry breaking clauses

A legal literal-permutation π over n literals can be viewed as a function over the assignments to variables.
Namely, if α is an assignment to x1, . . . , xn then let απ be defined as the assignment that sets the variable
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π (xi) with the value that α assigns to xi. For example, if π1 = ((2, 1) , (3) , (4)) and α = (1, 0, 1, 0) then
απ1 is the assignment (0, 1, 1, 0). The following proposition appears in [CGLR96] and we provide its proof
for the sake of completeness.

Proposition 3.4. Let z = {C1, C2, ..., Cm} be a CNF formula over n variables X = {x1, ..., xn} and let
π be an automorphism of z. Then for any assignment α, z (α) = z (απ).

Proof. We have z (α) = zπ (απ) = z (απ). The first equality follows because we apply the same permu-
tation to literals and to their truth values. The second equality is because π ∈ aut (z).

We use Proposition 3.4 to define an equivalence relation on the set of assignments to z. Namely, two
assignments α, β are said to be equivalent if and only if απ = β for some π ∈ aut (z). Proposition 3.4
implies that for such equivalent α, β we have z(α) = z(β). This observation implies that in order to check
whether z is satisfiable it is sufficient to check the value of z on a single representative of each equivalence
class.

Definition 3.5 (Symmetry breaking clauses). Given a CNF z over variable set X , let S1, . . . , St ⊆ {0, 1}X
be the equivalence classes induced by aut(z). A CNF z′ over variable set X is said to be a set of symmetry
breaking clauses for z if z′ has at least one satisfying assignment from Si for all i = 1, . . . , t.

Notice that Proposition 3.4 implies that z is satisfiable iff z
⋃
z′ is satisfiable, where z′ is any single set

of symmetry breaking clauses z′ for z. Notice furthermore that it could so happen that z′ and z′′ are two
distinct sets of symmetry breaking clauses for a satisfiable CNF z, however, z

⋃
z′
⋃
z′′ is unsatisfiable

(see Remark 3.9 for an example).

3.3 Algorithms for adding symmetry breaking clauses of small width

As discussed in the introduction, there are two concerns when attempting to harness the automorphism group
of z to speed up a SAT solver’s running time on z. The first problem is that of finding elements of aut(z)
and the second problem is that of properly using π ∈ aut(z) once we have found it. In what follows we
offer solutions to both these problems in the limited case of automorphisms of “small” support size. We
start by defining an algorithm that runs in time nO(k) and finds all automorphisms of z that have support
size at most k.

Algorithm 3.6 (find-aut).
Input: (i) A CNF formula z and (ii) integer k.
Output: The set of automorphisms of z of support size at most k.

find-aut(z, k)

1. Initialize S = ∅.

2. For all legal literal-permutations π over the literals of z

(a) If zπ = z then add π to S.

3. Return S.

9



Notice that when z has n variables then the running time of find-aut(z, k) is bounded by
(
n
k

)
· k! ·

2k · O(|F |) = O((kn)k · |F |). When k is a small constant (later on we shall mainly work with k = 2)
the running time of this algorithm is polynomial in its input length. Next we define an algorithm that on
input z and a set of automorphisms of small support, outputs a set of symmetry breaking clauses. We prove
below (in Theorem 3.8) that adding these clauses to z is sound, i.e., will not make a satisfiable formula
unsatisfiable. As in [CGLR96], to define the algorithm we require a lexicographic ordering on assignments,
which is obtained without loss of generality by ordering the variables as x1 < x2 < . . . < xn. Later
on (in Remark 3.9) we explain why such an ordering is critical for maintaining soundness. This ordering
of variables also induces a partial order on clauses, where C < C ′ if both clauses have the same set of
variables X and the unique assignment to X that sets C to false is smaller than the unique assignment that
sets C ′ to false. The algorithm will add clauses that will be satisfied only by the minimal assignment of
every equivalence class. It can be executed using any legal literal-permutation π but we will use it only with
automorphisms.

Algorithm 3.7 (add-clause).
Input: (i) CNF formula z, (ii) legal literal-permutation π.
Output: A set of symmetry breaking clauses to be added to z.

add-clause (z, π)

1. Initialize S = ∅.

2. For each clause C with vars(C) = supp(π), in increasing lexicographic order

(a) If C 6∈ S then add
{
Cπ

j
∣∣∣ 1 ≤ j < ord(π)

}
\ {C} to S.

3. Return S.

Notice that if π has support size k (recall that later on we will consider k = 2) then the running time of
the algorithm is bounded by O(k · 2k). The following statement is the main result of this section. It says
that adding to z the clauses obtained from add-clause(z, π1), . . . ,add-clause(z, πs) is a sound
operation (i.e., it does not turn a satisfiable formula into an unsatisfiable one) as long as π1, . . . , πs are
automorphisms of z.

Theorem 3.8 (Soundness of add-clause). Let z be a CNF and assume π1, . . . , πs ∈ aut(z). Let
z′i be the set of clauses that is returned by add-clause(z, πi). Then z′ = z′1

⋃
. . .
⋃
z′s is a set of

symmetry breaking clauses for z as per Definition 3.5.
Consequently, z has a satisfying assignment if and only if z′′ = z

⋃
z′ has a satisfying assignment.

Proof. Let S1, . . . , St be a partition of the assignments to vars(z) into equivalence classes induced by
aut(z). We need to show that every equivalence class Si contains an assignment that satisfies z′. Fix such
an equivalence class and let α0 ∈ Si. Consider the sequence of assignments α0, α1, . . . defined as follows
for t ≥ 0: If αt satisfies z′ terminate the sequence. Otherwise, there exists some C ′ ∈ z′`, 1 ≤ ` ≤ s

such that C ′ is set to false by αt. Inspection of add-clause reveals that C ′ = Cπ
j
` for some integer `

and furthermore by construction we have C 6∈ z′`. In this case set αt+1 = α
π−`j
t and repeat the process with

αt+1. That is: αt+1 is the assignment that agrees with αt on all variables except vars(C) and falsifies C.
Notice that all assignments αt belong to Si because Si is invariant under aut(z). Next, we claim that

the sequence must be finite. The key observation is that αt+1 is strictly smaller than αt according to the
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lexicographic ordering. To see this, use the notation of the previous paragraph and notice that C ′ is strictly
greater than C according to the lexicographic ordering and αt+1 is equivalent to αt on all variables not in
vars(C) = vars(C ′). Furthermore, the assignment of αt to vars(C) falsifies C ′ whereas αt+1 falsifies C,
i.e., αt+1 is strictly smaller than αt. Now, using the key observation and the fact that the set of assignments
is finite we conclude that our sequence is finite, as claimed.

In particular, the very last element in the sequence belongs to Si and satisfies z′. This shows that z′ is
symmetry breaking set of clauses.

Consequently, if z is satisfiable and α0 ∈ Si satisfies z, then by Proposition 3.4 the last element in
the sequence also satisfies z, and by the previous discussion it also satisfies z′. (If z is unsatisfiable then
clearly so is z′′). In other words, z is satisfiable iff z′′ is satisfiable. This completes the proof.

Remark 3.9 (The importance of a lexicographic order). The following example shows that if one does
not employ a lexicographic order in algorithm add-clause then applying the algorithm to two permu-
tations whose support has nonempty intersection can transform a satisfiable formula into an unsatisfiable
one. Consider z = {{x1, x2, x3} , {x̄1, x̄2, x̄3}} which is satisfiable and the three automorphism that swap
two variables: π1 which swaps x1 and x2, π2 which swaps x2 and x3 and π3 which swaps x1 and x3.
If we do not respect a lexicographic order and add arbitrary symmetry breaking clauses, then π1, π2, π3

could respectively introduce the three clauses {x1, x̄2},{x2, x̄3},{x3, x̄1} (the last of which does not respect
lexicographic order). One can now verify that adding these clauses to z results in an unsatisfiable formula.

Theorem 3.8 shows that running add-clause produces a set of symmetry breaking clauses. Later on
we will examine what effect does add-clause have on proof length and to this end make the following
definition.

Definition 3.10 (Symmetry breaking clauses derived from add-clause). For z a CNF formula let autk(z)
denote the set of automorphisms of z of support size at most k. (Notice this set is not necessarily a
group.) Let SBC(z, k) denote the set of symmetry breaking clauses output by running add-clause
on all π ∈ autk(z).

Claim 3.11. Let z be a CNF formula over variable set X . Let S1, . . . , St ⊆ {0, 1}X be the equivalence
classes of assignments satisfying z that is induced by aut(z). Then the only assignments satisfying z ∪
SBC(z, n) are the lexicographically minimal assignments of S1, . . . , St.

Proof. Let β be an assignment satisfying z ∪ SBC(z, n). To satisfy z, the assignment β must belong
to some Si. Let α be the lexicographically minimal assignment in Si. Assume by way of contradiction
that β 6= α. There exists some (nonidentity) permutation π ∈ aut(z) such that απ = β. Invoking
add-clause(z, π) will add the clause set to false by β to the set SBC(z, k), contradicting our assumption
that β satisfies z ∪ SBC(z, n) and completing our proof.

4 Substitution and local symmetries

4.1 Substitution

All our proofs follow the same outline which is as follows. Suppose P is a proof system. We will start
with an “easy” formula z that has n variables and nO(1) clauses and has short P -refutations, i.e., SP (z `
0) = nO(1). We will transform z using “substitution”, to be described below, into a formula z′ such that
SP (z′ ` 0) > exp(nΩ(1)). Finally, we will show, using the main technical theorem (Theorem 4.11) that
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SP ((z′ ∪ SBC(z′, k)) ` z) ≤ nO(1). Combining these two inequalities we obtain our desired separation
and show that adding symmetry breaking clauses, even when they pertain to symmetries of constant support
size, can lead to an exponential reduction in proof length and associated SAT solving running time.

The transformation of “easy” formulas into “hard” ones goes by formula substitution as defined in
[BN09]. See also the discussion on “hardness escalation” in [BHP09] and references within. The definition
we use is slightly different than that appearing in [BN09], the difference being that here we associate a
canonical CNF formula with a boolean function f whereas there any pair of CNF formulas that compute f
and f̄ were sufficient.

Definition 4.1 (Canonical CNF). Let f : {0, 1}k → {0, 1} be a boolean function. The canonical CNF of f
over variables y1, . . . , yk, denoted Hf (y1, . . . , yk), is defined to be the unique CNF formula over y1, . . . , yk
that computes f and consists of clauses of width precisely k. Formally, for α ∈ {0, 1}k, letting Cα denote
the unique clause of width k that is set to false by α, we have

Hf (y1, . . . , yk) =
{
Cα

∣∣∣ α ∈ {0, 1}k, f(α) = 0
}
.

In what follows, for z′,z′′ a pair of CNF formulas, each viewed as a set of sets of literals, let z′ ×z′′
be the CNF formula defined by

z′ ×z′′ =
{
C ′ ∨ C ′′

∣∣ C ′ ∈ z′, C ′′ ∈ z′′
}
.

For more explanations and examples of substitution, see [BN09].

Definition 4.2 (Substitution). Let z be a CNF with m clauses over variables X = {x1, ..., xn}. Let
f : {0, 1}k → {0, 1} be a boolean function and let f̄ denote the negation of f , i.e., the boolean function
defined by f̄(α) = 1− f(α) for all α ∈ {0, 1}k.

To define the substitution of z with f we start by making k copies of each variable xi ∈ X and denote
them by xi(1), . . . , xi(k). The substitution of z with f is the CNF formula z[f ] = {C[f ] | C ∈ z} where
C[f ] is defined as follows. Assuming xi1 , . . . , xis are the variables appearing as positive literals in C and
xj1 , . . . , xjt are the variables appearing negatively in C, define

C[f ] = Hf (xi1(1), . . . , xi1(k))× . . .×Hf (xis(1), . . . , xis(k))×
Hf̄ (xj1(1), . . . , xj1(k))× . . .×Hf̄ (xjt(1), . . . , xjt(k)) .

An alternative and equivalent definition is to set z[f ] to the formula obtained as the output of the follow-
ing two-stage process. First, substitute every occurrence of a positive literal xi in z withHf (xi(1), ..., xi(k))
and replace every occurrence of a negative literal x̄i in z with Hf̄ (xi(1), ..., xi(k)). The resulting formula
is of the form ∧ ∨ ∧∨. Use the distributivity of disjunction over conjunction to collapse the two middle
levels and transform it into a CNF formula.

Example 4.3. Let z = (x1 ∨ x̄2) and f : {0, 1}2 → {0, 1} be the exclusive or (or parity) of its two inputs.
In this case

Hf (y(1), y(2)) = ((y(1) ∨ y(2)) ∧ (ȳ(1) ∨ ȳ(2)))

and
Hf̄ (y(1), y(2)) = ((ȳ(1) ∨ y(2)) ∧ (y(1) ∨ ȳ(2))) .

Substituting Hf (x1(1), x1(2)) for x1 and substituting Hf̄ (x2(1), x2(2)) for x2 in z we obtain

((x1(1) ∨ x1(2)) ∧ (x̄1(1) ∨ x̄1(2))) ∨ ((x̄2(1) ∨ x2(2)) ∧ (x2(1) ∨ x̄2(2))) .
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Using distributivity we open the expression above to obtain the following CNF:

z[f ] = (x1(1) ∨ x1(2) ∨ x2(1) ∨ x̄2(2)) ∧ (x1(1) ∨ x1(2) ∨ x̄2(1) ∨ x2(2)) ∧
(x̄1(1) ∨ x̄1(2) ∨ x2(1) ∨ x̄2(2)) ∧ (x̄1(1) ∨ x̄1(2) ∨ x̄2(1) ∨ x2(2)) .

We use the following claim from [BN09], the proof of which follows by inspection.

Claim 4.4. If z is a CNF over n variables consisting of m clauses of width at most w and f : {0, 1}k →
{0, 1} is any boolean function, then z[f ] is a CNF with k ·n variables that has at most m ·2w·k clauses and
each clause is of width at most w · k.

Remark 4.5. Notice that if z is not satisfiable then so is z [f ]. This is because the first step of the substi-
tution plugs a formula into each input of z and this leaves the resulting formula unsatisfiable. The second
step obtains z[f ] by applying the distributive law which does not change the function being computed.

4.2 Symmetries of substituted formula

We now begin to explore the effect of substitution on the set of automorphisms of the substituted formula.
The following lemma will be crucial later on. It says that automorphisms of Hf will also show up as
automorphisms in z[f ].

Lemma 4.6. Let z be a CNF formula over variables x1, . . . , xn and f : {0, 1}k → {0, 1} be a boolean
function. If π ∈ aut(Hf (xi(1), . . . , xi(k))), letting π′ be the permutation on vars(Hf ) whose support is
xi(1), . . . , xi(k) and that agrees with π on this support, then π′ ∈ aut(z[f ]).

Proof. Let
z0 = {C | (xi 6∈ C) ∈ z}

zxi = {C | (xi ∨ C) ∈ z}

zx̄i = {C | (x̄i ∨ C) ∈ z}.

Notice
z = z0

⋃
(zxi × {{xi}})

⋃
(zx̄i × {{x̄i}}) .

Thus, by definition of the substitution operation we get

z[f ] = z0[f ]
⋃

(zxi [f ]×Hf (xi(1), . . . , xi(k)))
⋃(

zx̄i [f ]×Hf̄ (xi(1), . . . , xi(k))
)
. (1)

Consider (z[f ])π
′

by examining the effect of π′ on each of the three sets appearing in the right hand side
of (1). We start with z0[f ]. Since supp(π′) ⊆ {xi(1), . . . , xi(k)} and z0[f ] ∩ {xi(1), . . . , xi(k)} = ∅
we conclude (z0[f ])π

′
= z0[f ]. We move on to the second term in the right hand side of (1). Since

vars(zxi [f ]) ∩ {xi(1), . . . , xi(k)} = ∅ we deduce

(zxi [f ]×Hf (xi(1), . . . , xi(k)))π
′

= (zxi [f ])× (Hf (xi(1), . . . , xi(k)))π
′
.

But since π′ acts like π on xi(1), . . . , xi(k) and π ∈ aut(Hf (xi(1), . . . , xi(k))) we conclude that the right
hand side of the previous equation equals zxi [f ] × Hf (xi(1), . . . , xi(k)). The third term of Equation (1)
is argued similarly, using the observation that π ∈ aut(Hf̄ (xi(1), . . . , xi(k))). This latter fact follows
immediately from Proposition 3.4 and Definition 4.1.

We have shown that all three terms of the left hand side of Equation (1) remain unchanged under the
application of the permutation π′ and this completes our proof.

13



4.3 Recovering a formula from its substituted version

We have reached the main part of our paper, where we show how in certain cases a formula can be derived
via a short derivation from its substituted version. For this to be possible, we need the substitution function
f to be simple.

Definition 4.7 (Simple function). Let f be a boolean function f : {0, 1}k → {0, 1} and let S1, . . . , St be
the equivalence classes of assignments induced by aut(Hf (x(1), . . . , x(k))) and similarly let S′1, . . . , S

′
t′

be the equivalence classes induced by aut(Hf̄ (x(1), . . . , x(k))). We say that f is simple if there exists
r ∈ {1, . . . , k} and b ∈ {0, 1} such that

1. For every i ∈ {1, . . . , t}, the lexicographically minimal assignment satisfying Si also satisfies (x(r))b.

2. For every i′ ∈ {1, . . . , t′}, the lexicographically minimal assignment satisfying S′i′ also satisfies
(x(r))1−b.

Example 4.8. If both aut(Hf ) and aut(Hf̄ ) each induce a single equivalence class then clearly f is simple,
because there must be some r on which the lexicographically minimal assignment setting f to 1 differs
from the lexicographically minimal assignment setting f to 0. In particular, the exclusive-or function over k
inputs is simple, because aut(Hf ) includes all literal-permutations that permute variable-indices arbitrarily
and flip an even number of literal signs. Consequently, aut(Hf ) induces a single equivalence class that
includes all assignments with an odd number of ones.

Example 4.9. Any threshold function on k inputs with threshold 0 < ` ≤ k, i.e., a function that outputs 1
iff at least ` of its inputs are 1, is simple. As special cases we get that the OR and AND functions are simple.
First observe that the equivalence classes induced by aut(Hf ) are the sets of assignments of weight exactly
`′ for ` ≤ `′ ≤ k. And the lexicographically minimal assignment in each of these classes must set x(`) to
1. A similar argument shows that the lexicographically minimal assignment in an equivalence class induced
by aut(Hf̄ ) sets x(`) to 0.

Although the following lemma is not needed to prove our main technical theorem, it explains the role
played by simple functions in the statement of the main theorem, and its proof may help understand the proof
of the main technical theorem. Roughly speaking, the lemma says that a simple function f : {0, 1}k →
{0, 1} has the desirable property that the symmetry breaking clauses SBC(Hf , k) can be used to derive the
lexicographically minimal satisfying assignment of f .

Lemma 4.10. Let f : {0, 1}k → {0, 1} be a simple nonconstant function as in Definition 4.7 and let
r ∈ {1, . . . , k}, b ∈ {0, 1} be as defined there. Let α = (α1, . . . , αk) ∈ {0, 1}k be the lexicographically
minimal assignment setting f to 1. Then the clause (x(r))b can be derived from

Hf (x(1), . . . , x(k))
⋃

SBC(Hf (x(1), . . . , x(k)))

via a treelike resolution derivation of size at most 2k+1.

Proof. By the implicational completeness of treelike resolution (Claim 2.4) it suffices to prove that every
assignment β that satisfies Hf (x(1), . . . , x(k))

⋃
SBC(Hf (x(1), . . . , x(k))) also satisfies x(r)b. To satisfy

Hf (x(1), . . . , x(k)) we must have f(β) = 1. Let S be the equivalence class of assignments setting f to 1 in-
duced by aut(Hf (x(1), . . . , x(k))) to which β belongs. Claim 3.11 implies that SBC(Hf (x(1), . . . , x(k)))
can only be satisfied by the lexicographically minimal assignment in S. By the simplicity of f this assign-
ment also satisfies x(r)b. This completes the proof.
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The following theorem is the main technical contribution of this section. Roughly speaking, it says that
if z has a short refutation and f is a simple boolean function on a small (e.g., constant) number of inputs,
then adding the symmetry breaking clauses of support size≤ k to z[f ] results in a formula with short proofs
(even when z[f ], taken by itself, has no short refutations).

Theorem 4.11 (Main Technical). Let z be an unsatisfiable d-CNF formula and f : {0, 1}k → {0, 1} be a
nonconstant simple boolean function as in Definition 4.7 and let r ∈ {1, . . . , k}, b ∈ {0, 1} be as defined
there. Then for any proof system P that simulates treelike resolution we have

SP ((z[f ]
⋃

SBC(z[f ], k)) ` 0) ≤ SP (z ` 0) · 2dk+1.

Proof. The overall idea is to refute z[f ] using a P -refutation of z of minimal length, and whenever an
axiom of z is needed we shall use Lemma 4.12 below to derive it from z[f ]

⋃
SBC(z[f ], k).

The mapping that sends each positive literal xj (belonging to vars(z)) to the literal (xj(r))
b (belonging

to vars(z[f ])) and each negative literal x̄j to the literal (xj(r))
1−b maps z to a formula z′ that is equivalent

to z as defined in Section 2.1. This implies by Claim 2.5 that SP (z ` 0) = SP (z′ ` 0).
To complete the proof notice that, by Lemma 4.12 below, for every clause C ∈ z the corresponding

clause in z′, denoted C ′, can be derived from C[f ]
⋃

SBC(C[f ], k) via a P -derivation of size at most
2dk+1, because P simulates treelike resolution. This completes the proof of the theorem.

Lemma 4.12. Let C = {x1, . . . , xs, ȳ1, . . . , ȳt} be a clause with s positive literals and t negative literals (s
and t may equal zero). Let f : {0, 1}k → {0, 1} be a nonconstant simple boolean function as in Definition
4.7 and let r ∈ {1, . . . , k}, b ∈ {0, 1} be as defined there. Then the clause

C ′ =
{

(x1(r))b, . . . , (xs(r))
b, (y1(r))1−b, . . . , (yt(r))

1−b
}

can be derived from C[f ]
⋃

SBC(C[f ], k) via a treelike resolution derivation of size at most 2k(s+t)+1.

Proof. Similar to the proof of Lemma 4.10 above. By the implicational completeness of resolution (Claim
2.4) it suffices to prove that every assignment satisfying C[f ]

⋃
SBC(C[f ], k) also satisfies C ′. Let β be

any assignment to the variables of C[f ] that satisfies C[f ]
⋃

SBC(C[f ], k). To satisfy C[f ] at least one of
the following must hold.

1. There exists ` ∈ [s] such that f(β(x`(1)), . . . , β(x`(k))) = 1.

2. There exists q ∈ [s] such that f(β(yq(1)), . . . , β(yq(k))) = 0.

Assume the former case occurs (the proof in the other case is identical). Claim 3.11 implies that in order to
satisfy SBC(x`[f ], k), which is a subset of SBC(C[f ], k), the assignment (β(x`(1)), . . . , β(x`(k))) must
in fact be the minimal lexicographic assignment in its equivalence class. Since f is simple we conclude β
satisfies (x`(r))

b as claimed.

5 Proofs of main results

With our main technical theorem (Theorem 4.11) in hand we can use existing proof-system separation results
to obtain exponential separations between proof-length with and without symmetry breaking clauses for all
three proof systems of interest. We start by stating the overall proof strategy formally and then give the
detailed proofs for each proof system.
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5.1 Proof outline

LetP be a proof system that simulates treelike resolution (all our systems are such). Suppose {zn | n ∈ Z}, |zn| =
nΘ(1) is a family of d-CNF formulas (for constant d) and f : {0, 1}k → {0, 1} is a simple nonconstant
boolean function such that:

1. zn has short P -refutations: SP (z ` 0) ≤ nO(1).

2. The formula obtained from substituting zn with f has no short P -refutations: SP (z [f ] ` 0) ≥
2n

Ω(1)
.

Then Theorem 4.11 implies that z [f ]
⋃

SBC(z[f ], k) has short (polynomial length) proofs as long as
k = O(log n), whereas the second condition above says that z [f ] requires exponential length proofs.

Remark 5.1. We point out that for certain formulas and proof systems, substitution does not increase proof
length. For instance, the family of “pebbling contradictions” used in the proof of Theorem 5.2 below
has short (linear size) resolution refutations, and applying substitution to this family with any nonconstant
boolean function results in a family of functions that still has linear size resolution refutations (cf. [Ben09]).

5.2 Treelike resolution

Recall that a sequence of polynomial-size formulas {zn | n ∈ Z}, |zn| = nθ(1) is efficiently constructible
if there exists a polynomial time algorithm that on input 1n outputs zn.

Theorem 5.2. For all integers n there exist efficiently constructible 3-CNF formulas zn over n variables
and O(n) clauses satisfying the following properties.

1. ST (zn ` 0) = 2Ω(n/ logn).

2. ST (zn
⋃

SBC(zn, 2) ` 0) = O(n).

Proof. Ben-Sasson et al. showed in [BIW04, Ben09] a polynomial time construction of 3-CNF formulas
z′n with n variables and O(n) clauses (called “pebbling contradictions” there, see [Ben09, Definition 3.2])
satisfying the following pair of properties. In what follows let ORk denote the OR (disjunction) function
with k inputs. Notice that f is a nonconstant simple boolean function (see Example 4.9).

1. ST (z′n ` 0) = O(n).

2. For all k > 1 it holds that ST (z′n[ORk] ` 0) ≥ 2Ω(n/ logn).

Part 1 is shown in [Ben09, Lemma 3.3] and Part 2 is proved in [BIW04, Theorem 1]. Take, say, k = 2 and
set zn = z′n[OR2]. Claim 4.4 implies that zn is a 6-CNF formula with 2n variables and O(n) clauses.
Theorem 4.11 completes the proof.

5.3 Resolution

Theorem 5.3. For all integers n there exist efficiently constructible 6-CNF formulas zn over n variables
and O(n3/2) clauses satisfying the following properties.

1. SR(zn ` 0) = 2Ω(
√
n).
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2. SR (zn
⋃

SBC(zn, 2) ` 0) = O(n3/2).

To prove the theorem we need to work a bit harder by proving the following lemma. In what follows let
⊕k denote the exclusive-or function on k inputs.

Lemma 5.4. For all integers n there exist efficiently constructible 3-CNF formulas z′n over n variables and
O(n3/2) clauses satisfying the following properties.

1. SR(z′n ` 0) = nO(1).

2. For all k > 1 it holds that SR(z′n[⊕k] ` 0) ≥ 2Ω(
√
n).

Proof of Theorem 5.3. Take k = 2 and set zn = z′n[⊕2] where z′n is the formula from Lemma 5.4. Recall
(from Example 4.8) that⊕2 is a simple nonconstant boolean function. Claim 4.4 implies that zn is a 6-CNF
formula with 2n variables and O(n3/2) clauses. Lemma 5.4 and Theorem 4.11 complete the proof.

Proof of Lemma 5.4. Bonet and Galesi showed in [BG01, Section 3] a polynomial time construction of 3-
CNF formulas z′n (called “modified graph transitivity” and denoted by MGT there) with n variables and
O(n3/2) clauses satisfying the following properties.

1. SR(z′n ` 0) ≤ nO(1).

2. W (z′n ` 0) = Ω(
√
n), where W (z′n ` 0) denotes the minimal width of a refutation of z′.

Part 1 is proved in [BG01, Theorem 3.2] and Part 2 is shown in Theorem 3.7 there. Next, we “lift” the width
lower bound on z′n to an exponential size lower bound on z′n[⊕k] using the method described in [Ben09,
Section 4] and due to the late Mikhail Alekhnovich [Personal Communication].

Lemma 5.5 (Lifting width lower bounds to size lower bounds). For every unsatisfiable CNF formula z and
integer k > 1 we have

SR(z[⊕k] ` 0) ≥
(

4

3

)W (z`0)

.

This lemma, combined with the lower bound on W (z′n ` 0) stated in Part 2 above completes the
proof.

Proof of Lemma 5.5. Let π be a resolution refutation of z[⊕k] of size S. For ρ a restriction to the variables
of z[⊕k], let π|ρ denote the sequence of clauses obtained by applying the restriction to each clauses in π
and removing all clauses that are set to 1 by ρ. It is well-known that πρ is a resolution refutation of z[⊕k]|ρ
(see, e.g., [Ben09, Section 4]). By definition the size of π|ρ is at most the size of ρ.

Consider a restriction ρ obtained in the following manner. For each variable xi appearing in z, pick
ji ∈ [k] uniformly at random. Then fix random values to {xi(`) | ` 6= ji}. In other words, ρ fixes random
values to all but one randomly chosen variable in xi(1), . . . , xi(k) and this is done independently for each
variable x1, . . . , xn appearing in z.

Inspection reveals that (z[⊕k])|ρ is equivalent to z. Since π|ρ is a refutation of z we conclude
W (π|ρ) ≥ W (z ` 0). By assumption there are at most S clauses in π that have width ≥ W (z ` 0).
We claim that the probability that one such clause of width w is not set to 1 by ρ is at most(

3

4

)w
. (2)
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To see this, let ki denote the number of variables among xi(1), . . . , xi(k) that appear in C (notice ki may
equal zero). Assume without loss of generality that these variables are xi(1), . . . , xi(ki). Let E(i) be the
event “xi(1)|ρ 6= 1 and xi(2)|ρ 6= 1 and . . . xi(k

′)|ρ 6= 1”. We claim that

Pr[E(i)] ≤
(

3

4

)ki
(3)

which immediately implies (2). To see (3) there are two cases to consider.

• ki < k: The variable xi(1) is set to 1 by ρ with probability k−1
k ·

1
2 . The first term accounts for the

probability of ρ setting a value to xi(1) and the second term is the probability that this value is 1.
Thus, Pr[xi(1)|ρ 6= 1] = 1 − k−1

k ·
1
2 . Assuming xi(1)|ρ 6= 1, the variable xi(2) is set to 1 with

probability at most k−2
k−1 ·

1
2 , where the first term comes from assuming ρ sets a value to xi(1) (if ρ

does not fix a value to xi(1) then ρ must fix a value to xi(2) and the probability of xi(2)|ρ 6= 1 is even
smaller). Continuing in this manner we see that

Pr[E(i)] ≤
ki∏
j=1

(
1− k − j

k − (j − 1)
· 1

2

)
and the right hand side is at most (3/4)ki for all integers k > ki ≥ 1.

• ki = k: In this case ρ assigns random values to all but one variable, thus Pr[E(i)] ≤ 2−(k−1) which
is at most (3/4)k for all k > 1.

5.4 k-DNF resolution

Theorem 5.6. There exist constants β, γ > 0 and integer d > 0 such that the following holds. For integers
k ≥ 1 and n satisfying k ≤ β log n there exist efficiently constructible d(k + 1)-CNF formulas z(k)

n over n
variables and O(2dk · n3/2) clauses satisfying the following properties.

1. SR[k](z
(k)
n ` 0) ≥ 2Ω(nγ).

2. SR[k]

(
z(k)
n
⋃

SBC(z(k)
n , k + 1) ` 0

)
= O(2dk · n3/2).

Remark 5.7. Setting k = 1 in the previous theorem gives another proof of Theorem 5.3, but with a smaller
exponential lower bound on proof size of the form 2n

γ
(where γ < 1/2). We include Theorem 5.3 because

(i) it has a somewhat better exponential lower bound and (ii) a different (and arguably simpler) method of
proof than what is needed to prove lower bounds on R[k] for k > 1.

Proof. Segerlind showed in [Seg05, Definition 3.1] a polynomial time construction of d-CNF formulas z′n
with n variables and O(n3/2) clauses (called “graph ordering principle” and denoted GOP there) satisfying
the following pair of properties.

1. SR(z′n ` 0) = O(n3/2).

2. For all 1 ≤ k ≤ β log n it holds that SR[k](z′n[⊕k+1] ` 0) ≥ 2n
γ
.

Part 1 above is shown in [Seg05, Lemma 2] and Part 2 appears in Theorem 12 there. Setting z(k)
n =

z′n[⊕k+1], Claim 4.4 implies that z(k)
n is a d(k+ 1)-CNF with (k+ 1)n variables and O(2dk ·n3/2) clauses

and⊕k is a simple nonconstant boolean function (see Example 4.8). Theorem 4.11 completes the proof.
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