
Information Cost Tradeoffs for Augmented Index
and Streaming Language Recognition

Amit Chakrabarti∗ Graham Cormode† Ranganath Kondapally‡ Andrew McGregor§

Abstract

This paper makes three main contributions to the theory of communication complexity and stream
computation. First, we present new bounds on the information complexity of AUGMENTED-INDEX. In
contrast to analogous results for INDEX by Jain, Radhakrishnan and Sen [J. ACM, 2009], we have to
overcome the significant technical challenge that protocols for AUGMENTED-INDEX may violate the
“rectangle property” due to the inherent input sharing. Second, we use these bounds to resolve an open
problem of Magniez, Mathieu and Nayak [STOC, 2010] that asked about the multi-pass complexity
of recognizing Dyck languages. This results in a natural separation between the standard multi-pass
model and the multi-pass model that permits reverse passes. Third, we present the first passive memory
checkers that verify the interaction transcripts of priority queues, stacks, and double-ended queues. We
obtain tight upper and lower bounds for these problems, thereby addressing an important sub-class of
the memory checking framework of Blum et al. [Algorithmica, 1994].

∗Dartmouth College. ac@cs.dartmouth.edu. Work supported by NSF Grant IIS-0916565 and by Dartmouth College
startup funds.

†AT&T Labs–Research. graham@research.att.com
‡Dartmouth College. rangak@cs.dartmouth.edu. Work supported by NSF Grant IIS-0916565 and by Dartmouth College

startup funds.
§University of Massachusetts, Amherst. mcgregor@cs.umass.edu. Work supported by NSF CAREER Award CCF-

0953754 and by University of Massachusetts startup funds.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 76 (2010)

1 Introduction

In recent work, Magniez, Mathieu and Nayak [15] considered the streaming complexity of language recog-
nition. That is, given a string σ of length n, what is the (randomized) space complexity of a recognizer for
a language L that is allowed only sequential access to σ? This question can be viewed as a generalization
of the classic notion of regularity of languages: one now considers automata that are allowed (1) random-
ization, and (2) a variable number of states that may depend on the input length. Their main result provided
near-matching bounds for single-pass recognizers for DYCK(2), the language of properly nested parentheses
of two kinds. In this paper, we look at the broader question and present the first multi-pass space lower
bounds for several languages, including DYCK(2), resolving an open question of theirs. We also study the
complexity of languages that arise in the context of memory checking [5], and present tight upper and lower
bounds for them. Our key technical contributions rely on a new understanding of the information complexity
of the augmented index problem, which leads to these multi-pass lower bounds.

Background, Augmented Index, and a New Lower Bound. The INDEX problem is one of a handful
of fundamental problems in communication complexity [14]: Alice has a string x ∈ {0, 1}n , and Bob has
an index k ∈ [n]; the players wish to determine the kth bit of x , written as xk . It is easy to show that the
problem is “hard” — requiring �(n) communication — when messages only go from Alice to Bob, and is
“easy” — solvable using O(log n) communication — without this restriction. The lower bound extends to
randomized constant-error protocols [1]. This makes INDEX the canonical hard-for-one-way, easy-for-two-
way communication problem. Is there really anything new to say about such a fundamental problem?

As it turns out, there is, provided one asks the right questions. Since INDEX is an asymmetric problem, it
makes sense to ask for the best possible tradeoff between the number, a, of bits communicated by Alice, and
the number, b, communicated by Bob. As shown by Miltersen et al. [16], we must have a ≥ n/2O(b), and a
simple two-round Bob→ Alice→ Bob protocol (with Bob announcing the output) shows that a ≤ dn/2b

e

is achievable. A more nuanced question asks for the best tradeoff of information revealed by each player to
the other in a protocol for INDEX, also called the information costs of Alice and Bob (we shall soon formally
define these). In principle, this tradeoff could have been better, as it is possible for messages to reveal less
information than their length. This issue was considered (in a more general quantum communication setting)
by Jain, Radhakrishnan and Sen [12] who called this the “privacy tradeoff” for the problem, and showed
that a ≥ n/2O(b) still holds, where a and b now represent information costs.

Such an information cost tradeoff opens up interesting possibilities for applications to lower bounds
for more complex problems, via the direct sum properties of this measure [4, 6]. One such applica-
tion is the aforementioned DYCK(2) lower bound. However, the tradeoff theorem of Jain et al. is not
strong enough to obtain the required direct sum result. One needs a tradeoff lower bound in a variant of
INDEX where Alice and Bob have much more “help,” in two ways. First, we relax INDEX so that Bob
additionally gets to see the length-(k − 1) prefix of Alice’s input; the resulting variant has been called
AUGMENTED-INDEX [10, 13] and the one-way communication lower bound easily extends to it [3]. Sec-
ond, in our variant of AUGMENTED-INDEX, Bob also gets a check bit c ∈ {0, 1} and must verify that xk = c.
This second twist clearly does not matter when considering communication complexity, but for us it makes
a huge difference, because our applications require that we measure information cost under an “easy” dis-
tribution, where xk always equals c.

With this background, we state our main theorem informally. A formal version appears as Theorem 2.3,
after the necessary definitions.

Theorem 1.1 (Informal). In a randomized communication protocol for AUGMENTED-INDEX with two-sided
error at most 1/ log2 n, either Alice reveals �(n) information about her input, or Bob reveals �(1) infor-
mation about his, where information is measured according to an “easy” input distribution.

2

The natural point of comparison is a similar theorem of Magniez et al. [15], that works only for restricted
protocols: Alice must be deterministic (thus, her information cost is just her usual communication cost),
and the protocol must be two-round with an Alice→ Bob→ Alice communication pattern. Under these
conditions, for errors below O(1/n2), they show that either Alice sends �(n) bits, or else Bob reveals
�(log n) information. Notice that this theorem is not quite a special case of ours, because of the higher
lower bound on Bob’s information cost. This is inevitable: for a general communication pattern, one cannot
obtain a tradeoff that strong, because of the aforementioned a ≤ dn/2b

e upper bound. However, we suspect
that the optimum tradeoff lower bound is in fact of the form a ≥ n/2Õ(b), where the Õ-notation hides factors
polylogarithmic in b, and we leave this conjectured generalization of our theorem as an open problem.

Ramifications: Streaming Language Recognition. In the streaming model, we have one-way access to
input and working memory sublinear in the input size N . Historically, the problems considered in it have
focused on estimating statistics. Recognizing structural properties of strings is just as natural a problem in
this model, and yet such language recognition problems have only recently been considered. It transpires
that AUGMENTED-INDEX has a key role to play in proving bounds here.

A first application is direct: following [15], a two-step argument shows �(
√

N) lower bounds for the
multi-pass streaming complexity of Dyck languages. We first plug Theorem 1.1 into a direct sum theo-
rem, which lower bounds the communication cost of a problem we call MULTI-AI (for “multiple copies of
AUGMENTED-INDEX”). We then reduce MULTI-AI to, e.g., DYCK(2). The direct sum theorem is a natural
extension to multiple passes of a similar single-pass theorem ([15], where the authors called the relevant
problems ASCENSION and MOUNTAIN). Thus, on the lower bound side, our chief contribution is Theo-
rem 1.1, and its most important consequence is the multi-pass nature of the resulting lower bounds. In
particular, this demonstrates a curious phenomenon: an explicit, natural data stream problem that is fairly
easy given two passes in opposite directions (Magniez et al. give an O(log2 N)-space algorithm), whereas
it is exponentially harder if only multiple unidirectional passes are allowed.

A second application is to memory checking, whose study was initiated by Blum et al. [5] and continued
by numerous groups including Ajtai [2], Chu et al. [8], Dwork et al. [11], and Naor and Rothblum [17].
The problem, as considered in this paper, is to observe a sequence of N updates and queries to (an imple-
mentation of) a data structure, and to report whether or not the implementation operated correctly on the
instance observed. A concrete example is to observe a transcript of operations on a priority queue: we see
a sequence of insertions intermixed with items claimed to be the results of extractions, and the problem
is to decide whether this is correct. Much of the previous work allowed the checker to be invasive, by
modifying the inserted items and/or introducing additional read operations. However, when the checker is
more realistically restricted to being completely passive, and can only observe, the problem becomes that of
understanding the (streaming) complexity of recognizing valid transcripts. For instance, we define PQ to be
the language of valid transcripts of priority queue operations that start and end with an empty queue. One
can similarly define languages STACK and DEQUE (for double-ended queues). The invasive protocols of [5]
typically modified the input items by attaching a “timestamp” to each inserted item, and this suggests variant
languages PQ-TS, STACK-TS, and DEQUE-TS, where each extraction is augmented by the timestamp of its
corresponding insertion. Though we briefly study these variant languages towards the end of this paper, we
consider the languages without auxiliary information to be more natural from a theoretical point of view,
and more applicable from a practical point of view.

We present new algorithms for these basic memory checking languages: we show that PQ, STACK, and
DEQUE can each be recognized in Õ(

√
N) space and one pass. On the lower bound side, Theorem 1.1 and

MULTI-AI again come into play, giving �(
√

N) bounds for each of these problems, even allowing multiple
passes over the transcript. We observe that our upper bound for PQ strengthens the Õ(

√
N) bound of Chu et

al. [8] for PQ-TS. This strengthening is significant, for timestamps can radically simplify problems: we note
that STACK-TS can be recognized in just O(log N) space, in marked contrast to STACK.

3

Highlights. Since we view Theorem 1.1 as our most important technical contribution, we first give a
careful exposition of its proof, in Section 2. The main technical hurdle in this proof is dealing with the
fact that Alice and Bob share some of the input, which breaks the useful “rectangle property.” (This is
reminiscent of number-on-the-forehead communication [7], where input sharing makes strong lower bounds
rather hard to prove.) The highlight of our proof is the Fat Transcript Lemma (Lemma 2.6), with its careful
interplay between a suitably weakened rectangle property (Lemma 2.5) and the information cost measure.

After a brief discussion (Section 3) of the direct sum theorem and its implications for MULTI-AI, we
address language recognition, in Section 4. The highlight of this section is our algorithm for recognizing
the language PQ. The ingenuity of the algorithm is that, rather than determining whether the interaction
sequence is valid directly, the algorithm conceptually reorders inserts and extracts (in addition to some
actual “local” reordering) in such a way that the new sequence is valid if and only if the original sequence
is valid. This reordering procedure is designed such that small-space fingerprinting methods can be used to
capture the state of the priority queue in a way they could not necessarily have been used for the original
sequence.

2 Augmented Index and an Information Cost Tradeoff

Let AI = AIn (short for AUGMENTED-INDEX) denote the communication problem where Alice receives a
string x ∈ {0, 1}n , Bob receives an index k ∈ [n], the length-(k − 1) prefix of x , which we denote x1: k−1,
and a check bit c ∈ {0, 1}, and the goal is to output AI(x, k, c) := xk ⊕ c, i.e., to output 1 iff xk 6= c.

We now formalize the notion of information cost. For this, we consider the most general model of
randomization in communication protocols: the parties may share a public coin, and separately, each party
may have its own private coin. Let P be such a randomized protocol for AI, let ξ be a distribution on
{0, 1}n × [n]× {0, 1} (effectively, a distribution on legal inputs to P) and let (X, K ,C) ∼ ξ . Let R denote
the public random string used by P , and let T denote the transcript of messages sent by Alice and Bob
(including the final output bit) in response to this random input (X, K ,C): note that, in general, T depends
on X, K ,C, R and the (unnamed) private random strings of the players. We define the information cost of
P under ξ to be a pair of real numbers (icostA

ξ (P), icostB
ξ (P)) defined as follows:

icostA
ξ (P) := I(T : X | K ,C, R) ; icostB

ξ (P) := I(T : K ,C | X, R) . (1)

In the above definition, the conditioning on R is crucial, for otherwise it is simple to make these costs
equal zero. It follows from the basics of information theory that, regardless of the choice of ξ , these costs
are bounded from above by the number of bits communicated by Alice and Bob, respectively, in P . Thus, a
tradeoff lower bound on information cost is a stronger statement than a similar tradeoff on numbers of bits
communicated. We now turn to the choice of input distribution.

Definition 2.1. We let µ denote the uniform distribution on {0, 1}n×[n]×{0, 1}. For (X, K ,C) ∼ µ, we let
µ0 := µ | (X K = C). Note that Eµ[AI(X, K ,C)] = 1

2 , whereas Eµ0[AI(X, K ,C)] = 0. Thus, intuitively,
µ is a hard distribution for AI, whereas µ0 is an easy distribution.

We are now ready to state our main theorem. But first, we give a technical lemma that is useful in
formalizing some averaging arguments in its proof.

Lemma 2.2. Consider functions f1, . . . , fL : D→ R+, and numbers b1, . . . , bL ∈ R+, where L > 0 is an
integer and D is a finite domain. Let Z be a random variable taking values in D. Then

∀ i ∈ [L] E[fi (Z)] ≤ bi H⇒ ∃ z ∈ D ∀ i ∈ [L] fi (z) ≤ Lbi .

4

Proof. Choose z to minimize g(z) :=
∑

i : bi>0 fi (z)/bi , and observe that E[g(Z)] ≤ L , so that g(z) ≤ L .
Now pick any i ∈ [L]. If bi = 0, then clearly fi (z) = 0. Else, fi (z)/bi ≤ g(z) ≤ L .

Theorem 2.3 (Main Theorem; formal version of Theorem 1.1). If P is a randomized protocol for AIn with
error at most 1/ log2 n under µ, then either icostA

µ0
(P) = �(n) or icostB

µ0
(P) = �(1). In particular, the

same tradeoff holds if P has worst case two-sided error at most 1/ log2 n.

Proof. We split this proof into two parts. First, assuming the contrary, we zoom in on a specific setting of
the public random string of P and a single transcript that has certain “fatness” properties that play a role
analogous to the “large rectangles” seen in elementary communication complexity. This part of the proof is
reminiscent of arguments in Pǎtraşcu’s proof of the lopsided set disjointness lower bound [18]. Next, and
more interestingly, we use these fatness properties to derive a contradiction, in Lemma 2.6. Throughout the
proof, and the rest of this section, we tacitly assume that n is large enough.

Assume, to the contrary, that for every choice of constants δ1 and δ2, there exists a (1/ log2 n)-error
protocol P∗ for AI with icostA

µ0
(P∗) ≤ δ1n and icostB

µ0
(P∗) ≤ δ2. To write these conditions formally, let

T ∗ denote the transcript of P∗ (which uses a public random string R) on input (X, K ,C) ∼ µ; we will
condition on X K = C when necessary, to effectively change the input distribution to µ0. We adopt the
convention that a transcript, t , also specifies its final output bit, out(t). We then have

Pr[out(T ∗) 6= AI(X, K ,C)] ≤ 1/ log2 n ,

I(T ∗ : X | K ,C, R, X K = C) ≤ δ1n , and

I(T ∗ : K ,C | X, R, X K = C) ≤ δ2 .

These three inequalities can be interpreted as bounding the expectations of three non-negative functions
of the random string R. Any particular setting of R reduces P∗ to a private-coin protocol. Thus, applying
Lemma 2.2 to these three inequalities, we see that there exists a private-coin protocol P for AI such that, if
T denotes the transcript of P on input (X, K ,C) ∼ µ, then

Pr[out(T) 6= AI(X, K ,C)] ≤ 3/ log2 n , (2)

I(T : X | K ,C, X K = C) ≤ 3δ1n , and (3)

I(T : K ,C | X, X K = C) ≤ 3δ2 . (4)

Notice that H(X | K ,C, X K = C) = n − 1 and H(K ,C | X, X K = C) = log n. Thus, by the
characterization of mutual information in terms of entropy, we can rewrite (3) and (4) as

n − 1− H(X | T, K ,C, X K = C) ≤ 3δ1n , and (5)

log n − H(K ,C | T, X, X K = C) ≤ 3δ2 . (6)

Definition 2.4. Let ν denote the distribution of T and let ν0 := ν | (X K = C). For a specific transcript t ,
let ρt denote the distribution µ | (T = t).

We can interpret (5) and (6) as bounding the expectations of appropriate functions of a random transcript
distributed according to ν0. Inequality (2), though, is not of this form, since there is no conditioning on
(X K = C); instead, it says

ET∼ν
[
Pr(X ′,K ′,C ′)∼ρT

[
out(T) 6= AI(X ′, K ′,C ′)

]]
≤ 3/ log2 n . (7)

Since we have Pr[X K = C] = 1
2 , every transcript t satisfies ν0(t) ≤ 2ν(t). Thus, switching the distribution

in the outer expectation from ν to ν0 can at most double the left-hand side. In other words, we have

ET0∼ν0

[
Pr(X ′,K ′,C ′)∼ρT0

[
out(T0) 6= AI(X ′, K ′,C ′)

]]
≤ 6/ log2 n . (8)

5

Finally, we can say that transcripts drawn from ν0 typically output “0”, because

PrT0∼ν0[out(T0) 6= 0] = Pr[out(T) 6= AI(X, K ,C) | X K = C] ≤ 6/ log2 n , (9)

where the final step uses (2). By another averaging argument, applying Lemma 2.2 to the four inequali-
ties (5), (6), (8) and (9), we conclude that there exists a transcript t such that

n − 1− H(X | K ,C, X K = C, T = t) ≤ 12δ1n ,

log n − H(K ,C | X, X K = C, T = t) ≤ 12δ2 ,

Pr(X ′,K ′,C ′)∼ρt [out(t) 6= AI(X, K ,C)] ≤ 24/ log2 n , and

out(t) = 0 .

However, by the Fat Transcript Lemma (Lemma 2.6) below, it follows that no transcript can simultaneously
satisfy the above four conditions. This completes the proof.

At this point, we need to understand what is special about the distributions ρt (from Definition 2.4),
given that they arise from transcripts of private-coin communication protocols. The key fact we need here is
the so-called rectangle property of deterministic communication protocols [14, Ch. 1]. More specifically, we
need its extension to private-coin randomized protocols, as used, e.g., by Bar-Yossef et al. [4, Lemma 6.7].

However, there is a complication here due to the fact that Alice and Bob share some information. Had
Bob not received any part of Alice’s input, ρt would have been a product of a distribution on values of x ,
and another distribution on values of (k, c). But because Bob does, in fact, start out knowing x1: k−1, we can
only draw the weaker conclusion given in the following lemma.

Lemma 2.5. Let X = {0, 1}n and Y = {(w, k, c) ∈ {0, 1}∗ × [n] × {0, 1} : |w| = k − 1}. Let P be a
private-coin protocol in which Alice receives a string x ∈ X while Bob receives (w, k, c) ∈ Y , with the
promise that w = x1: k−1. Then, for every transcript t of P, there exist functions pA,t : X → R+ and
pB,t : Y → R+ such that

∀ (x, k, c) ∈ {0, 1}n × [n]× {0, 1} : ρt(x, k, c) = pA,t(x) · pB,t(x[1 . . k − 1], k, c) .

Proof. Let T be the set of all possible transcripts of P and let T be a random transcript of P on input
(X, K ,C) ∼ µ. By the rectangle property for private-coin protocols (Lemma 6.7 of [4]), there exist map-
pings qA : T × X → R+ and qB : T × Y → R+ such that

Pr[T = t | (X, K ,C) = (x, k, c)] = qA(t; x) · qB(t; x1:k−1, k, c) .

Recall that µ is just a uniform distribution. In particular, it decomposes as µ(x, k, c) = µA(x)µB(k, c).
Thus, by Bayes’ Theorem,

ρt(x, k, c) =
µ(x, k, c) · Pr[T = t | (X, K ,C) = (x, k, c)]

Pr[T = t]

=
µA(x)·µB(k, c)·qA(t; x)·qB(t; x1:k−1, k, c)

Pr[T = t]
.

Now set pA,t(x) := µA(x) · qA(t; x)/Pr[T = t] and pB,t(w, k, c) := µB(k, c) · qB(t;w, k, c).

We now state the promised lemma that, as shown above, finishes the proof of Theorem 2.3. We alert
the reader that, from here on, the distribution of (X, K ,C) is no longer uniform; instead, we condition the
uniform distribution on a specific transcript.

6

Lemma 2.6 (Fat Transcript Lemma). There exist positive real constants δ3 and δ4 such that, for every
transcript t of a private-coin communication protocol for AI, with out(t) = 0, we have the following. Let
(X, K ,C) ∼ ρt and let ε(n) = 24/ log2 n. Then the following conditions do not hold simultaneously:

H(X | K ,C, X K = C) ≥ (1− δ3)n , (10)

H(K ,C | X, X K = C) ≥ log n − δ4 , (11)

E[AI(X, K ,C)] ≤ ε(n) . (12)

Proof. Suppose, to the contrary, that (10), (11) and (12) do hold for every choice of δ3 and δ4. Since
C is determined by X and K whenever the condition X K = C holds, the left-hand side of (11) equals
H(K | X, X K = C). Also, (12) is equivalent to Pr[X K = C] ≥ 1− ε(n). Thus, we can simplify (11) to

H(K | X) ≥ Pr[X K = C] · H(K | X, X K = C) ≥ (1− ε(n))(log n − δ4) ≥ log n − 2δ4 , (13)

where the last step uses the bound ε(n) = o(1/ log n). Similarly, we can simplify (10) to

H(X) ≥ H(X | K ,C) ≥ Pr[X K = C] ·H(X | K ,C, X K = C) ≥ (1− ε(n))(1− δ3)n ≥ (1− 2δ3)n . (14)

We now expand (12). In what follows, we use notation of the form “u0v” to denote the concatenation
of the string u, the length-1 string “0”, and the string v.

E[AI(X, K ,C)] =
n∑

k=1

∑
x∈{0,1}n

∑
c∈{0,1}

ρt(x, k, c) · AI(x, k, c)

=

n∑
k=1

∑
u∈{0,1}k−1

∑
b∈{0,1}

∑
v∈{0,1}n−k

∑
c∈{0,1}

ρt(ubv, k, c) · AI(ubv, k, c) . (15)

Let pA = pA,t and pB = pB,t be the functions given by Lemma 2.5. Let λ denote the distribution of
(X, K), i.e., let λ(x, k) = ρt(x, k, 0) + ρt(x, k, 1). Now, noting that AI(ubv, k, c) = 1 iff b 6= c, we can
manipulate (15) as follows.

E[AI(X, K ,C)] =
n∑

k=1

∑
u∈{0,1}k−1

∑
v∈{0,1}n−k

(
ρt(u0v, k, 1)+ ρt(u1v, k, 0)

)

=

n∑
k=1

∑
u∈{0,1}k−1

∑
v∈{0,1}n−k

(
pA(u0v) · pB(u, k, 1)+ pA(u1v) · pB(u, k, 0)

)

=

n∑
k=1

∑
u∈{0,1}k−1

(
pB(u, k, 1)

∑
v∈{0,1}n−k

pA(u0v) + pB(u, k, 0)
∑

v∈{0,1}n−k

pA(u1v)
)

≥

n∑
k=1

∑
u∈{0,1}k−1

(
pB(u, k, 0)+ pB(u, k, 1)

)
·min

 ∑
v∈{0,1}n−k

pA(u0v),
∑

v∈{0,1}n−k

pA(u1v)

=

n∑
k=1

∑
u∈{0,1}k−1

min

 ∑
v∈{0,1}n−k

λ(u0v, k),
∑

v∈{0,1}n−k

λ(u1v, k)

 . (16)

Let α : {0, 1}n → [0, 1] and β : [n] → [0, 1] be the marginals of λ, i.e., α(x) :=
∑n

k=1 λ(x, k) and
β(k) :=

∑
x∈{0,1}n λ(x, k). We now make the following crucial observations about these distributions.

Claim 2.7. We have ‖λ− α ⊗ β‖1 =
∑

x∈{0,1}n
∑n

k=1 |λ(x, k)− α(x)β(k)| ≤
√
(4 ln 2) · δ4.

7

Proof. Using the characterization of mutual information in terms of Kullback-Leibler divergence, we get

DK L(λ ‖ α ⊗ β) = I(K : X) = H(K)− H(K | X) ≤ 2δ4 ,

where the last step uses (13) and the basic fact that H(K) ≤ log n. The claim now follows from Pinsker’s
inequality (for which see, e.g., [9, Lemma 12.6.1]).

Claim 2.8. We have
∑n

k=1 |β(k)− 1/n| ≤
√
(4 ln 2) · δ4.

Proof. Relax (13) to H(K) ≥ log n − 2δ4. Let γ denote the uniform distribution on [n]. Then we have
DK L(β ‖ γ) = log n − H(K) ≤ 2δ4. Now apply Pinsker’s inequality.

Let δ5 :=
√
(4 ln 2) · δ4. Using Claim 2.7 to estimate the expression (16), keeping in mind that any

particular λ(x, k) term appears at most once in the summation, we get

E[AI(X, K ,C)] ≥
n∑

k=1

β(k)
∑

u∈{0,1}k−1

min
{ ∑
v∈{0,1}n−k

α(u0v),
∑

v∈{0,1}n−k

α(u1v)
}
− δ5 . (17)

For each k ∈ [n], define the probability distribution α̂k on {0, 1}k−1 by α̂k(u) :=
∑

w∈{0,1}n−k+1 α(uw) =
Pr[X1: k−1 = u]. Let Hb : [0, 1]→ [0, 1] denote the binary entropy function, i.e., Hb(z) := −z log z− (1−
z) log(1 − z). Let H−1

b : [0, 1]→ [0, 1
2] denote the (well-defined) inverse of this function. Observe that, if

Z is a binary random variable, then min{Pr[Z = 0],Pr[Z = 1]} = H−1
b (H(Z)). Using all this, we obtain

min
{ ∑
v∈{0,1}n−k

α(u0v),
∑

v∈{0,1}n−k

α(u1v)
}
= α̂k(u) ·min

{
α̂k+1(u0)
α̂k(u)

,
α̂k+1(u1)
α̂k(u)

}
= α̂k(u) · H−1

b

(
H(Xk | X1: k−1 = u)

)
. (18)

Plugging this back into (17), we obtain

E[AI(X, K ,C)]+ δ5 ≥

n∑
k=1

β(k)
∑

u∈{0,1}k−1

α̂k(u) · H−1
b

(
H(Xk | X1: k−1 = u)

)

≥

n∑
k=1

β(k) · H−1
b

 ∑
u∈{0,1}k−1

α̂k(u) · H(Xk | X1: k−1 = u)

 (19)

=

n∑
k=1

β(k) · H−1
b

(
H(Xk | X1: k−1)

)
≥ H−1

b

(
n∑

k=1

β(k) · H(Xk | X1: k−1)

)
(20)

≥ H−1
b

(
n∑

k=1

1
n
· H(Xk | X1: k−1)− δ5

)
= H−1

b

(
H(X)

n
− δ5

)
, (21)

where (19) and (20) follow from Jensen’s inequality (and the convexity of H−1
b) and (21) uses Claim 2.8 and

the fact that H−1
b is increasing on [0, 1]. We now invoke (14) and (12) to obtain

ε(n)+ δ5 ≥ H−1
b (1− 2δ3 − δ5) .

Recall that δ5 =
√
(4 ln 2) · δ4. By choosing δ3 and δ4 small enough, we can make the left-hand side of the

above inequality approach 0 and the right-hand side approach 1
2 , and we finally have our contradiction.

8

3 A Direct Sum Argument

Let MULTI-AIm,n denote the following communication problem, involving 2m players A1, B1, . . . , Am, Bm .
Each Ai receives a string x i

∈ {0, 1}n and each Bi receives an integer ki
∈ [n], a bit ci

∈ {0, 1}, and the
length-(ki

− 1) prefix x i
1: ki−1 of x i . The players wish to compute the predicate

∨m
i=1 AIn(x i , ki , ci). The

players may use private random strings and a common public random string, and use p rounds, where each
round consists of a player sending an s-bit message privately to the next player in the following sequence:

A1 → B1 → A2 → B2 → · · · · · · → Am → Bm → Am → Am−1 · · · · · · → A1 .

At the end of these p rounds, A1 must announce the answer, which is required to be correct with probability
at least (1− ε) on each possible input. Call such a protocol a [p, s, ε]-protocol. We then have:

Theorem 3.1. Every [p, s, 1/ log2 n]-protocol for MULTI-AIm,n satisfies ps = �(min{m, n}).

This theorem is easily seen to be near-optimal: even with p = 1, we have a trivial protocol achieving
s = O(n) and another trivial protocol achieving s = O(m log n).

Notice that the augmented index problem studied in Section 2 satisfies AIn = MULTI-AI1,n . Intuitively, a
protocol for MULTI-AIm,n must solve m independent AI instances, and thus, must use about m times the com-
munication that a single instance requires. To prove Theorem 3.1, we formalize this intuition as a direct sum
theorem, which we can prove using a suitable refinement of the information complexity paradigm [6]. To
state this direct sum theorem, we need a suitable notion of information cost for protocols solving MULTI-AI.
Let Q be a [p, s, ε]-protocol for MULTI-AIm,n . Let ξ be a distribution on inputs to Q and let Mm denote the
sequence of messages sent by player Bm when Q is run on a random input 〈(X i , K i ,C i)〉mi=1 ∼ ξ , using a
public random string R. We strategically define the information cost of Q under ξ to be

icostξ (Q) := I(Mm : K 1,C1, . . . , K m,Cm
| X1, . . . , Xm, R) . (22)

It is worth noting that when m = 1, i.e., we are considering a protocol for AI, this definition specializes to
that of icostB

ξ (Q) in (1). This is proved in Lemma A.1.

Theorem 3.2 (Direct sum theorem for AI). Suppose there exists a [p, s, ε]-protocol Q for MULTI-AIm,n .
Then there exists an ε-error randomized protocol P for AI in which Alice sends at most ps bits in total, such
that m · icostB

µ0
(P) ≤ icostµ⊗m

0
(Q) , where µ0 is as in Definition 2.1 and µ⊗m

0 denotes the m-fold product
of µ0 with itself.

Proof. This is a straightforward generalization, to multiple rounds, of a similar theorem of Magniez et
al. [15], which applied only to restricted families of one-round protocols. Details appear in Appendix A.

We can now prove our multi-round communication lower bound on MULTI-AI as follows.

Proof of Theorem 3.1. Let Q be a [p, s, 1/ log2 n]-protocol for MULTI-AIm,n . From basic information the-
ory, it follows that icostµ⊗m

0
(Q) ≤ ps. Now, by Theorem 3.2, there exists a protocol P for AI with

icostB
µ0
(P) ≤ ps/m and in which Alice communicates at most ps bits, so that icostA

µ0
(P) ≤ ps. By

Theorem 2.3, either ps/m = �(1) or ps = �(n); i.e., ps = �(min{m, n}).

4 Streaming Language Recognition and Passive Memory Checking

In this section we present our results for recognizing certain languages in the data stream model. Of partic-
ular interest is DYCK(2), the language consisting of the strings of well-balanced parentheses in two types of
parentheses. Formally, representing ‘(’, ‘)’, ‘[’, and ‘]’ as a, ā, b, and b̄ respectively,

9

Definition 4.1. DYCK(2) is the language generated by the context-free grammar S→ aSā | bSb̄ | SS | ε.

An important class of memory checking problems, which we call passive checking, can also be viewed
as language recognition problems in the data stream model. For example, we define PQ to be the language
corresponding to transcripts of operations, or “interaction sequences,” of a priority queue that begins and
ends with an empty queue. (Without this restriction, the resulting language would require �(N) space to
recognize, for simple reasons [8, Theorem 4].) Formally,

Definition 4.2. An interaction sequence σ = σ1σ2 . . . σN is a string over the alphabet 6 = {ins(u), ext(u) :
u ∈ [U]}. Let PQ = PQ(U) be the language defined over 6 where ins(u) is interpreted as an insertion of u
into a priority queue, and ext(u) as an extraction of u from the priority queue. The state of the queue at any
step j can be represented by a multiset M j so that

M0 = ∅ ; M j = M j−1 \ {min(M j−1)} if σ j = ext(v) ; and M j = M j−1 ∪ {u} if σ j = ins(u) . (23)

Then σ ∈ PQ for |σ | = N iff MN = ∅ and ∀ j ∈ [N] (σ j = ext(u)⇒ u = min(M j−1)).

We start by showing that a recognizer for PQ can also recognize DYCK(2) via an online transformation.
The reduction proceeds as follows. Consider a string p over parentheses {a, ā, b, b̄} and define

height(p) := | { j : p j ∈ {a, b}} | − | { j : p j ∈ {ā, b̄}} |

and height(ε) = 0. We transform p into ψ(p) = φ(p1:1)φ(p1:2) . . . φ(p1:N) where:

φ(p1: i) =

ins(2N − 2 height(p1: i−1)) if pi = a
ext(2N − 2 height(p1: i)) if pi = ā
ins(2N − 2 height(p1: i−1)− 1) if pi = b
ext(2N − 2 height(p1: i)− 1) if pi = b̄

For example, the string 〈a, a, ā, b, b̄, ā〉 is transformed into 〈ins(12), ins(10), ext(10), ins(9), ext(9),
ext(12)〉. The proof that ψ(p) ∈ PQ if and only if p ∈ DYCK(2) is given in Appendix B.

Lemma 4.3. There exists an O(log N)-space stream reduction from DYCK(2) to PQ(4N).

Our first result on the complexity of stream language recognition uses Theorem 3.1 to resolve the con-
jecture of Magniez, et al. [15] regarding the multi-pass complexity of DYCK(2) and PQ.

Theorem 4.4 (Multi-pass Lower Bounds for DYCK and PQ). Let L denote either DYCK(2) or PQ(N). Sup-
pose there exists a O(1/ log2 N)-error, p-pass, s-space, randomized streaming algorithm that recognizes L
on length-N streams. Then ps = �(

√
N).

Proof. Using the reduction of Magniez, et al. [15], an ε-error p-pass randomized streaming algorithm for
DYCK(2) that uses s bits of space on streams of length 2(mn) can be turned into a [p, s, ε]-protocol for
MULTI-AIm,n . One can similarly reduce MULTI-AIm,n to PQ(N); this was implicitly claimed without proof
in [15]. Alternatively, Lemma 4.3 gives an explicit reduction from MULTI-AIm,n to PQ via DYCK(2). To
complete the proof, we combine these reductions with Theorem 3.1, setting m = n.

Unidirectional versus Bidirectional Passes. As noted earlier, DYCK(2) can be recognized in O(log2 N)
space using two passes, one in each direction. On the other hand, the above theorem implies that achieving
polylog(n) space with only unidirectional access to the input would require �̃(

√
N) passes. To the best of

our knowledge, this is the first explicit demonstration of such a strong separation between these two natural
data stream models.

10

Algorithm 1 PQ-CHECK

1: input σ = σ E1σ I1σ E2σ I2 . . . σ Erσ Ir where σ E1 = σ Ir = ∅

2: for k ∈ {1, . . . , r}, u ∈ {1, . . . ,U }, do f [k]← 0, X [k, u]← 0, Y [k, u]← 0, Z [k, u]← 0
3: for i ∈ {1, . . . , r} do
4: for ext(u) ∈ σ Ei do
5: `← min{k : f [k] ≤ u}
6: Y [`, u]← Y [`, u]+ 1
7: Z [`, u]← max(Y [`, u], Z [`, u])
8: for 1 ≤ k < i do f [k]← max(u, f [k])
9: end for

10: for ins(u) ∈ σ Ii do
11: `← min{k : f [k] ≤ u}
12: if f [`] < u then X [`, u]← X [`, u]+ 1
13: if f [`] = u then Y [`, u]← Y [`, u]− 1
14: end for
15: end for
16: if X 6= Z or X 6= Y then reject else accept

4.1 Passive Checking of Priority Queues

Given the connection between PQ and DYCK(2) shown in Lemma 4.3, one might hope to adapt the algo-
rithms of [15] to this problem. However, there seems to be no such easy reduction in this direction. For
intuition, observe that DYCK(2) has a much stricter requirement on the permitted strings: if its second half
consists of close-parentheses only, then its first half is uniquely determined. On the other hand, in PQ, one
can find (N/2)! sequences consisting of N/2 insertions followed by N/2 extractions that all agree on the
second half. This suggests that the two languages are quite different.

We therefore give a novel algorithm that leads to the following theorem, which is the main upper bound
result in this paper.

Theorem 4.5. We can recognize the language PQ in one pass, using O(
√

N (log U + log N)) bits of space:
an input σ ∈ PQ is accepted with certainty, and an input σ 6∈ PQ is rejected with probability ≥ 1− 1/N 2.

Overview of the Algorithm. We first present a O(Ur(log U + log N)) space algorithm for the case when
the input string can be decomposed as σ = σ E1σ I1σ E2σ I2 . . . σ Erσ Ir where σ Ei is a sequence of extracts and
σ Ii is a sequence of inserts. We refer to σ Eiσ Ii as the i th epoch of the string and note that, for sufficiently
large r , any σ is of this form. After presenting the full space algorithm, we show how to transform σ such
that r = O(

√
N) and subsequently, to reduce the space to Õ(

√
N). Finally, a necessary condition for

σ ∈ PQ is that the extracts in each σ Ei are in ascending order and that σ E1 = σ Ir = ∅. Since both conditions
are easily verified, we assume that they are satisfied.

We present the algorithm PQ-CHECK as Algorithm 1. We first describe its properties informally, before
proceeding to a more formal analysis.

1. For each epoch k, PQ-CHECK maintains a value f [k] that is the maximum value that has been extracted
after the kth epoch. In particular, at the very start of the i th epoch, f [i − 1] = 0.

2. Each insert/extract of u is assigned to the earliest epoch “consistent” with the current f values maintained
by PQ-CHECK, i.e., ` = min{k : f [k] ≤ u}. Each ext(u) ∈ σ Ei is assigned to an epoch between 1 and
i − 1 (this follows because the extracts in σ Ei are in increasing order and f [i − 1] equals 0 when the first

11

extract in σ Ei is processed), while each ins(u) ∈ σ Ii is assigned to an epoch between 1 and i . Importantly,
for σ ∈ PQ, each ext(u) will be assigned to the same epoch as the most recent ins(u).

3. The algorithm maintains arrays X, Y , and Z to track information about occurrences of item u assigned
to epoch k (we later use hashing techniques to reduce the size of this information). Informally, X tracks
the number of insertions of u assigned to epoch k before the first extraction of u that is assigned to epoch
k, while Y tracks the number of extractions of u assigned to epoch k minus the number of insertions of
u assigned to epoch k from the first extraction of u assigned to epoch k onwards. A necessary condition
is that these two counts should agree. However, this counting alone fails to detect extractions of u that
appear before the corresponding insertions. Therefore, Z is used to identify the maximum “balance” of
u during epoch k. This should also match X if the sequence is correct, and we later show that these are
sufficient conditions to check membership in PQ.

Define ft(k) = max{u : σi = ext(u), |σ E1 . . . σ Ik | + 1 ≤ i ≤ t}. For u ∈ [U] and t ∈ [N], define
b(t, u) = min{k : ft(k) ≤ u}. Given an interaction sequence σ and u ∈ [U], define

cnt(σ, u) := |{t : σt = ins(u)}| − |{t : σt = ext(u)}| .

Lemma 4.6. After processing the tth element, Algorithm 1 has computed f [k] = ft(k), i.e., the maximum
value extracted after the end of the kth epoch. For all k, f [k] is non-decreasing as t increases.

Proof. Observe that Algorithm 1 only updates f [k] in Line 8, for k < i where the current epoch is the i th
epoch. The equivalence of f [k] and ft(k) follows immediately by an inductive argument over t . f [k] =
ft(k) is seen to be non-decreasing by inspection of the definition of ft(k).

Lemma 4.7. Let X t(k, u), Yt(k, u) and Z t(k, u) denote the values of X [k, u], Y [k, u], and Z [k, u] after
processing the tth element. Assume that the first t elements of the interaction sequence are a prefix of some
interaction sequence in PQ, i.e., for all j ∈ [t], (σ j = ext(v) H⇒ v = min(M j−1)) where {M j }

N
j=0 is the

family of multisets defined in Eq. (23). Then, for any u ∈ [U] and k = b(t, u), we have:

cnt(σ1: t , u) = X t(k, u)− Yt(k, u)

and for k < b(t, u), X t(k, u) = Yt(k, u).

Proof. Let u ∈ [U] be an arbitrary element. We proceed by induction on t . The lemma is true for t = 0
where X0(k, u) = Y0(k, u) = 0 for all k, u. For the inductive step with k = b(t − 1, u), there are four cases
to consider:

1. Case σt = ins(u): In this case b(t − 1, u) = b(t, u) = k. Therefore,

cnt(σ1: t , u) = cnt(σ1: t−1, u)+ 1 = 1+ X t−1(k, u)− Yt−1(k, u) = X t(k, u)− Yt(k, u)

The last step follows whether or not ft(b(t − 1, u)) = u (lines 12 and 13 in Algorithm 1).

2. Case σt = ext(u): In this case b(t − 1, u) = b(t, u) = k. Therefore,

cnt(σ1: t , u) = cnt(σ1: t−1, u)− 1 = X t−1(k, u)− (Yt−1(k, u)+ 1) = X t(k, u)− Yt(k, u)

3. Case σt = ins(v) for v 6= u or σt = ext(v) for v < u: In this case b(t − 1, u) = b(t, u) = k.
Therefore,

cnt(σ1: t , u) = cnt(σ1: t−1, u) = X t−1(k, u)− Yt−1(k, u) = X t(k, u)− Yt(k, u)

12

4. Case σt = ext(v) for u < v. In this case we know that cnt(σ1: t−1, u) = 0. Assume it was not:
then either there is a minimal prefix of σ for some j such that cnt(σ1: j , u) < 0 which implies that
σ j = ext(u) but u 6= min(M j−1); or else cnt(σ1: t−1, u) > 0 which implies that v 6= min(Mt−1) since
min(Mt−1) ≤ u < v. Either way, we contradict our assumption on σ . Therefore,

cnt(σ1: t , u) = cnt(σ1: t−1, u) = X t−1(b(t − 1, u), u)− Yt−1(b(t − 1, u), u)

= X t(b(t − 1, u), u)− Yt(b(t − 1, u), u)

If b(t − 1, u) = b(t, u) we are done but it is possible that b(t − 1, u) 6= b(t, u). This is because
following this extraction, for all 1 ≤ ` < i , we set f [`] to max(f [`], v) > u which forces b(t, u) = i ,
where i is the current epoch. But then X t(b(t, u), u) = Yt(b(t, u), u) = 0 since no inserts or extracts
of u can yet have been associated with epoch i . Hence, even if b(t − 1, u) 6= b(t, u), cnt(σ1: t , u) =
X t(k, u)− Yt(k, u) for k = b(t, u).

In all cases, for k < b(t − 1, u), we observe that Algorithm 1 does not modify X [k, u] or Y [k, u] and these
are already equal by the induction hypothesis. If k = b(t − 1, u) < b(t, u), then, as reasoned in case 4
above, we have X t(k, u) = Yt(k, u) as required.

Theorem 4.8. If σ /∈ PQ, Algorithm 1 rejects, else it accepts.

Proof. If σ /∈ PQ, consider the minimum t such that σt = ext(u) and u 6= min(Mt−1). Let k = b(t −
1, u). There are two possibilities. First, suppose u /∈ Mt−1. Then, by Lemma 4.7, before processing σt ,
X t−1(k, u)− Yt−1(k, u) = 0. After processing σt we have Yt(k, u) = Yt−1(k, u)+ 1. Hence,

Z t(k, u) ≥ Yt(k, u) > X t(k, u) .

Since Zs(k, u) is non-decreasing in s and Xs(k, u) = X t(k, u) for s > t after f (k) becomes equal to u,
at the end of the algorithm Z N (k, u) 6= X N (k, u). Hence the algorithm rejects σ . Otherwise, suppose
u ∈ Mt−1 but min(Mt−1) = v 6= u. Then cnt(σ1: t−1, v) > 0. Let k = b(t − 1, v) and by Lemma 4.7,
X t−1(k, v)−Yt−1(k, v) > 0. Once ext(u) is processed, f [k] is increased to u and hence Xs(k, v) > Ys(k, v)
for all s > t , and the algorithm rejects.

If σ ∈ PQ, then by Lemma 4.7, at t = N , X t(k, u)− Yt(k, u) = 0 for all u, k. Consequently, Z t(k, u) ≥
Yt(k, u) = X t(k, u) for all k, u. Since cnt(σt , u) ≥ 0 for any σ ∈ PQ, Yt(k, u) ≤ X t(k, u) for all t . Hence
Z t(k, u) ≤ X t(k, u) and so X N = YN = Z N and the algorithm accepts.

Local Consistency. We now consider a substring σ ′ of σ and show that if it does not violate some local
conditions, then without loss of generality it can be assumed to be in a specific form.

Definition 4.9. We say σ ′ is locally consistent if both

1. ∀i < k, u < v : (σ ′i = ins(u)) ∧ (σ ′k = ext(v)) H⇒ (cnt(σ ′i+1: k−1, u) < 0).

2. ∀i < k, u > v : (σ ′i = ext(u)) ∧ (σ ′k = ext(v)) H⇒ (cnt(σ ′i+1: k−1, v) > 0).

Observe that if σ ′ is not locally consistent, then σ /∈ PQ, since the identified subsequence includes an
extraction of an item which cannot be the smallest in the priority queue.

Lemma 4.10. Given σ = σ prefσ ′σ suff. If σ ′ is locally consistent, then there exists a mapping γ (σ ′) =
σ aσ bσ cσ d such that σ prefσ ′σ suff

∈ PQ iff σ prefγ (σ ′)σ suff
∈ PQ. Here, σ a and σ c are both sequences of

extracts in increasing order; and σ b and σ d are both sequences of inserts. The algorithm SUB-CHECK tests
if σ ′ is locally consistent and, if so, computes γ (σ ′) in time O(|σ ′| log |σ ′|).

13

Algorithm 2 SUB-CHECK

1: input σ ′
2: f ← 0; w← 0; E ← ∅; I ← {∞}
3: for i ∈ [|σ ′|] do
4: if σ ′i = ins(u) then I ← I ∪ {u}
5: if σ ′i = ext(v) then
6: m ← min(I)
7: if (v > m) then reject
8: if (v = m) then I ← I \ {v}; w← max(w, v)
9: if (v < m) then

10: if v < max(f, w) then reject
11: f ← v; E ← E ∪ {v}
12: end if
13: end if
14: end for
15: output 〈ext(v1), . . . , ext(v|E |), ins(w), ext(w), ins(u1), . . . , ins(u|I |)〉 where vi and ui are the i th small-

est values of E and I respectively

Proof. We first define the mapping γ procedurally based on local rearrangements of the locally consistent
σ ′ which maintain local consistency. First consider all adjacent character pairs of the form ins(u), ext(v).
Since the string is locally consistent, u ≥ v. Whenever u > v, we interchange these characters to obtain
ext(v), ins(u), without affecting local consistency or membership in PQ. Hence, we may assume that for
every two adjacent characters ins(u), ext(v), we have u = v, i.e., the pair represents an insertion followed
immediately by an extraction of the same item. This generates a string α(σ ′) that satisfies σ prefα(σ ′)σ suff

∈

PQ iff σ prefσ ′σ suff
∈ PQ.

We next define two rearrangement rules on substrings of length three in α(σ ′). If applied to a string that
was not locally consistent, they could “fix” errors, and lead to strings which are in PQ; however, since they
are applied to locally consistent strings, the rearrangement preserves membership in PQ.

1. ins(u) ext(u) ext(v)→ ext(v) ins(u) ext(u).

2. ins(v) ins(u) ext(u)→ ins(u) ext(u) ins(v).

By repeatedly applying these rearrangement rules to α(σ ′) until no further rearrangement is possible we
obtain β(σ ′). Define the potential function 8 over interaction sequences as 8(σ) =

∑
σi=ext(u) i . Observe

that each rearrangement reduces 8 by 1, so the process terminates. Let β(σ ′) denote the final permutation
and note that σ prefβ(σ ′)σ suff

∈ PQ iff σ prefσ ′σ suff
∈ PQ. Then, for some t1, t2, t3, β(σ ′) has the form,

〈ext(v1), . . . , ext(vt1), ins(w1), ext(w1), ins(w2), ext(w2), . . . , ins(wt2), ext(wt2), ins(u1), . . . , ins(ut3)〉

where v1 ≤ v2 ≤ . . . ≤ vt1 . For w = max{w1, . . . , wt2}, define γ (σ ′) = σ aσ bσ cσ d where

σ a
= 〈ext(v1), . . . , ext(vt1)〉, σ

b
= 〈ins(w)〉, σ c

= 〈ext(w)〉, and σ d
= 〈ins(u1), . . . , ins(ut3)〉 .

Observe that σ prefγ (σ ′)σ suff
∈ PQ iff σ prefβ(σ ′)σ suff

∈ PQ and σ prefσ ′σ suff
∈ PQ iff σ prefγ (σ ′)σ suff

∈ PQ.
We next show that it is possible to test local consistency and compute γ (σ ′) directly in O(|σ ′| log |σ ′|)

time. Consider SUB-CHECK in Algorithm 2.
We first argue that Algorithm 2 correctly determines whether σ ′ is locally consistent. First observe that I

records the multiset of items which have been inserted in σ ′ and not yet extracted. A violation of Condition 1

14

in Definition 4.9 is detected in line 7 where the existence of m ∈ I with m < v indicates that an insufficient
number of ext(m) have occurred before the ext(v) being considered.

A violation of Condition 2 is detected in line 10: this is when the current character is ext(v) but there
was an ext(u) for u > v earlier but no subsequent ins(v) that could be matched with the current ext(v). This
is monitored via two variables, f and w. w is the maximum value extracted that is matched to an insertion
happening within σ ′. f is the most recent value extracted that is not matched within σ ′. Observe that
because of the test in line 10, f is non-decreasing. Consequently, max(f, w) is the largest value extracted
so far. If there is some u > v such that ext(u) occurs in σ ′ before ext(v), then max(f, w) ≥ u > v. Hence,
it suffices to track only the greatest extracted item in σ ′. We can be sure that there is no ins(v) matching the
ext(v) since m = min(Mi) > v: if v were matched, it would be present in I and found as m.

The algorithm computes γ correctly: I is the multiset of items that are inserted but not extracted in σ ,
and E is the multiset of items that are extracted without a matching insert in σ ′. As noted above, w tracks
the greatest item which is inserted and subsequently extracted in σ ′, so the output has the necessary form.
Implementing I and E as priority queues means that each character is processed in O(log |σ ′|) time, giving
total O(|σ ′| log |σ ′|) time and O(|σ ′|) space.

Consequently, by breaking σ into sequential substrings of length l and reordering each substring (unless
we determine the substring is not locally consistent) we may ensure that the interaction sequence has the
form σ = σ E1σ I1σ E2σ I2 . . . σ Erσ Ir where r = 2dN/ le. The final algorithm runs PQ-CHECK and SUB-
CHECK in parallel. The space required by SUB-CHECK is O(l log U) bits and we will show that PQ-CHECK

can be implemented in O(r(log N + log U)) bits. Setting l =
√

N yields Theorem 4.5.

Finishing the Proof: A Small-Space Implementation of PQ-CHECK. Rather than maintain the arrays
X, Y , and Z explicitly in PQ-CHECK, it suffices to keep a linear hash (which serves as a homomorphic
fingerprint) of each array. These fingerprints can be compared, and if they match in Line 16, then, with high
probability, the arrays agree. In Line 7 we need to perform a max operation between two values. This can
be done by maintaining Y [k, ft(k)] and Z [k, ft(k)] explicitly for each k. At any time, there are at most
r such values that are needed: observe that when ft+1(k) > ft(k), Y [k, ft(k)] and Z [k, ft(k)] are never
subsequently altered. The new values for Y [k, ft+1(k)] and Z [k, ft+1(k)] are initialized to 0. Hence, the
space of the algorithm is O(r) words to store the Y [k, f [k]], Z [k, f [k]] and f [k] values, and a constant
number of fingerprints to represent X, Y , and Z .

4.2 Passive Checking of Stacks, Queues, and Deques

Stack. Let STACK denote the language over interaction sequences that corresponds to stack operations.
Now ins(u) corresponds to an insertion of u to a stack, and ext(u) is an extraction of u from the stack. Then
σ ∈ STACK iff σ corresponds to a valid transcript of operations on a stack which starts and ends empty.
That is, the state of the stack at any step j can be represented by a string S j so that S0

= ∅, S j
= uS j−1 if

σ j = ins(u) and S j
= S j−1

2:|S j−1|
if σ j = ext(u). Then σ ∈ STACK for |σ | = N iff

SN
= ∅ and ∀ j ∈ [N], (σ j = ext(u) H⇒ u = S j−1

1)

Theorem 4.11. Every O(1/ log2 N)-error, p-pass, s-space randomized streaming algorithm to recognize
STACK on length N streams must satisfy ps = �(

√
N). It is possible to recognize STACK in one pass with

O(
√

N log N) bits of space with high probability.

Proof. First, we observe that for U = 2, DYCK(U) = STACK if we associate ins(u) with u and ext(u) with
ū. Therefore, the lower bound follows immediately. For the upper bound, the one-pass algorithm from [15]
to recognize DYCK(2) can be used to recognize STACK over arbitrary U by appealing to their reduction from
DYCK(U) to DYCK(2).

15

We note that the algorithm of [15] for recognizing DYCK(2) can be used directly to recognize DYCK(U)
rather than appealing to the reduction from DYCK(U) to DYCK(2). In outline, the algorithm works as
follows. The input string is broken into blocks of length

√
N . Within each block, any adjacent pair of the

form 〈ins(u), ext(u)〉 can be matched and removed. When no further removals of pairs are possible, the
block now has the form of a prefix of extracts followed by a suffix of inserts. The algorithm keeps a stack of
hashes of (item, height) pairs, along with the number of items summarized in each hash. Each item extract
in the block, along with the current height, is removed from the hash on the top of the stack, until the hash
supposedly represents no items. If the hash is not identically zero, the algorithm rejects. Otherwise, the
procedure proceeds to the next hash on the stack, until the prefix of extracts are exhausted. Then the inserted
items are hashed with their current height, to build a single new hash value which is pushed onto the top of
the stack.

Queue. Let QUEUE denote the language over interaction sequences that correspond to queues. That is,
the state of the queue at any step j can be represented by a string Q j so that Q0

= ∅, Q j
= Q j−1u if

σ j = ins(u) and Q j
= Q j−1

2:|Q j−1|
if σ j = ext(u). Then σ ∈ QUEUE for |σ | = N iff

QN
= ∅ and ∀ j ∈ [N], (σ j = ext(u) H⇒ u = Q j−1

1)

As observed in [5], it is possible to recognize QUEUE with a single pass and O(log N) space: we use a
single fingerprint to check that the value of the i th insert equals the value of the i th extract for all i ∈ [N].

Deque. Let DEQUE denote the language over interaction sequences that corresponds to double-ended
queues. That is, there are now two types of insert and extract operations, one operation for the head and
one for the tail. Clearly, since a deque can simulate a stack via operations on the tail only, recognizing
DEQUE is at least as hard as recognizing STACK. For the upper bound, it is possible to adapt the algorithm
of [15]. Again, each block of

√
N operations is partitioned into a prefix of extractions (to head and tail) and

insertions (to head and tail). Now we maintain a deque of hash values of item, height pairs. Each extract
to the head is applied to the hash at the head of the deque of hashes, and each extract to the tail is applied
to the hash at the tail of the deque. The same check is applied: any hash which should now summarize no
items must be identically zero (otherwise, the algorithm rejects). Inserts to the head are parceled up into a
hash which is placed at the head of the deque, and inserts to the tail are placed in a hash at the tail of the
deque. Then we accept σ if after processing σ the algorithm reaches an empty deque and has not rejected at
any point. This gives the following theorem.

Theorem 4.12. Every O(1/ log2 N)-error, p-pass, s-space randomized streaming algorithm to recognize
DEQUE on length N streams must satisfy ps = �(

√
N). It is possible to recognize DEQUE in one pass with

O(
√

N log N) bits of space with high probability.

4.3 Variations with timestamps

As noted in the introduction, the results of Blum et al. [5] can be viewed as recognizing languages where each
ext(u) is augmented with the timestamp of its matching ins(u), and is denoted ext(u, t). These languages
are defined as before, but with the additional constraints that each t ∈ [N] appears at most once across all
extracts and

∀ j ∈ [N], (σ j = ext(v, t) H⇒ σt = ins(v))

This defines the variant languages QUEUE-TS, STACK-TS, DEQUE-TS and PQ-TS. The observations of
Blum et al. imply that verifying strings in STACK-TS and QUEUE-TS (and ensuring that all the timestamps
are also consistent) requires only O(log N) space. The same argument also gives an O(log N) bound
for deques. For PQ-TS, the problem seems harder: Chu et al. [8] gave an Õ(

√
N) streaming algorithm

16

which relied heavily on the presence of timestamps (and hence does not recognize PQ without timestamps).
We leave as an open question the problem of fully resolving the complexity of recognizing priority queue
sequences with timestamps, since the reduction via augmented indexing no longer holds in this case.

References

[1] F. Ablayev. Lower bounds for one-way probabilistic communication complexity and their application
to space complexity. Theoretical Computer Science, 175(2):139–159, 1996.

[2] M. Ajtai. The invasiveness of off-line memory checking. In Proc. 34th Annual ACM Symposium on
the Theory of Computing, pages 504–513, New York, NY, USA, 2002. ACM.

[3] Z. Bar-Yossef, T. S. Jayram, R. Krauthgamer, and R. Kumar. The sketching complexity of pattern
matching. In Proc. 8th RANDOM/APPROX, pages 261–272, 2004.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics approach to data
stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732, 2004.

[5] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of memories.
Algorithmica, 12(2/3):225–244, 1994.

[6] A. Chakrabarti, Y. Shi, A. Wirth, and A. C. Yao. Informational complexity and the direct sum problem
for simultaneous message complexity. In Foundations of Computer Science, pages 270–278, 2001.

[7] A. K. Chandra, M. L. Furst, and R. J. Lipton. Multi-party protocols. In Proc. 15th Annual ACM
Symposium on the Theory of Computing, pages 94–99, 1983.

[8] M. Chu, S. Kannan, and A. McGregor. Checking and spot-checking of heaps. In ICALP, pages 728–
739, 2007.

[9] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 1991.

[10] K. Do Ba, P. Indyk, E. Price, and D. P. Woodruff. Lower bounds for sparse recovery. In Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1190–1197, 2010.

[11] C. Dwork, M. Naor, G. N. Rothblum, and V. Vaikuntanathan. How efficient can memory checking be?
In TCC, pages 503–520, 2009.

[12] R. Jain, J. Radhakrishnan, and P. Sen. A property of quantum relative entropy with an application to
privacy in quantum communication. J. ACM, 56(6), 2009.

[13] D. M. Kane, J. Nelson, and D. P. Woodruff. On the exact space complexity of sketching and streaming
small norms. In Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1161–1178, 2010.

[14] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.

[15] F. Magniez, C. Mathieu, and A. Nayak. Recognizing well-parenthesized expressions in the streaming
model. In Annual ACM Symposium on the Theory of Computing, 2010.

[16] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures and asymmetric communi-
cation complexity. J. Comput. Syst. Sci., 57(1):37–49, 1998.

[17] M. Naor and G. N. Rothblum. The complexity of online memory checking. J. ACM, 56(1), 2009.

17

[18] M. Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. Manuscript, available at http:
//people.csail.mit.edu/mip/papers/structures/paper.pdf, 2010.

A Proof of the Direct Sum Theorem

For completeness, we give a full proof of our direct sum theorem that relates the information complexity of
MULTI-AI with that of AI. We begin with a small technical lemma that is an interesting observation in its
own right.

Lemma A.1. Let P be a communication protocol involving two players, Alice and Bob, who share a public
random string R in addition to their private random strings. Let T denote the transcript of P when Alice
receives input X and Bob receives Y , from an arbitrary input distribution. Let A and B denote the portions
of T that are communicated by Alice and Bob, respectively. Then

I(T : X | Y, R) = I(A : X | Y, R) and I(T : Y | X, R) = I(B : Y | X, R) .

Proof. By the chain rule for mutual information, we have

I(T : X | Y, R) = I(AB : X | Y, R) = I(A : X | Y, R)+ I(B : X | A, Y, R) .

Since Bob’s messages are just some function of A, Y, R, and his private coins, for any fixed setting of
A, Y, R, we have that B and X are independent. Thus, I(B : X | A, Y, R) = 0. Similarly, we can show that
I(T : Y | X, R) = I(B : Y | X, R).

Theorem 3.2 (restated). Suppose there exists a [p, s, ε]-protocol Q for MULTI-AIm,n . Then there exists an
ε-error randomized protocol P for AIn in which Alice sends at most ps bits in total, and which satisfies

m · icostB
µ0
(P) ≤ icostµ⊗m

0
(Q) ,

where µ0 is as in Definition 2.1 and µ⊗m
0 denotes the m-fold product of µ0 with itself.

Proof. Using Q, we can derive a family, {Pj } j∈[m], of protocols for AI, using the following simulation.
Suppose Alice and Bob receive inputs x and (k, c, x1:k−1) respectively.

1. Alice sets A j ’s input to x and Bob sets B j ’s input to (k, c, x1:k−1).

2. The players generate X1, X2, . . . , X j−1, X j+1, . . . , Xm, K 1, . . . , K j−1 independently and uniformly
at random using public coins. They choose C1, . . . ,C j−1 so that X i

K i = C i for all i ∈ [j − 1]. This
sets the input to players A1, B1, . . . , A j−1, B j−1 and ensures that (X i , K i ,C i) ∼ µ0 for all i < j .

3. Bob generates K j+1, K j+2, . . . , K m independently and uniformly at random using private coins. He
chooses C j+1, . . . ,Cm so that X i

K i = C i for each i ∈ { j + 1, . . . ,m}. This sets the input to players
A j+1, B j+1, . . . , Am, Bm and ensures that (X i , K i ,C i) ∼ µ0 for all i > j .

4. The players now jointly simulate Q on the random input Z thus generated. In each round:

(a) Alice simulates players A1, B1, . . . , A j and sends Bob the message that A j would have sent to
B j .

(b) Bob simulates B j , A j+1, . . . , Bm and then sends Alice the message that Bm would have sent to
Am .

18

http://people.csail.mit.edu/mip/papers/structures/paper.pdf
http://people.csail.mit.edu/mip/papers/structures/paper.pdf

(c) Alice then continues the simulation of Am, . . . , A1 and moves on to beginning of the next round
(if required), without having to communicate anything.

5. At the end of the simulation, Alice outputs the answer that player A1 would have output in Q.

Clearly, Alice communicates at most ps bits in Pj . The definition of µ0 ensures that AI(X i , K i ,C i) = 0
for all i 6= j , and therefore MULTI-AI(Z) = AI(X, K ,C); thus Pj is correct whenever Q is correct on the
randomly generated input. This bounds the worst-case error of Pj by ε. To bound the information cost of Pj ,
notice that when the input to Pj is distributed according to µ0, it simulates Q on an input that is distributed
according to µ⊗m

0 . Let (X j , K j ,C j) denote a random input to Pj distributed according to µ0, and let
T and B denote the resulting random transcript of Pj , and Bob’s portion of this transcript, respectively.
Defining Mm and R as in (22), we see that B ≡ Mm and that the public random string used by Pj is exactly
R′ = (R,X−j, K 1, . . . , K j−1). Thus,

icostB
µ0
(Pj) = I(T : K j ,C j

| X j , R′)

= I(B : K j ,C j
| X j , R′)

= I(Mm : K j ,C j
| K 1, . . . , K j−1, X1, . . . , Xm, R) ,

where the second equality follows from Lemma A.1. By the chain rule for mutual information, we have

icostµ⊗m
0
(Q) = I(Mm : K 1,C1, . . . , K m,Cm

| X1, . . . , Xm, R)

=

m∑
j=1

I(Mm : K j ,C j
| K 1,C1, . . . , K j−1,C j−1, X1, . . . , Xm, R)

=

m∑
j=1

I(Mm : K j ,C j
| K 1, . . . , K j−1, X1, . . . , Xm, R) (24)

=

m∑
j=1

icostB
µ0
(Pj) ,

where (24) holds because X j and K j completely determine C j , according to the distribution µ0. Picking j
to minimize icostB

µ0
(Pj) now gives us m · icostB

µ0
(Pj) ≤ icostµ⊗m

0
(Q).

B Reduction from DYCK(2) to PQ

Lemma 4.3 (restated). There exists an O(log N)-space stream reduction from DYCK(2) to PQ(4N).

Proof. Consider a string p over parentheses {a, ā, b, b̄} and define

height(p) := | { j : p j ∈ {a, b}} | − | { j : p j ∈ {ā, b̄}} |

and height(ε) = 0. Define the transformation ψ by ψ(p) = φ(p1:1)φ(p1:2) . . . φ(p1:N) where:

φ(p1: i) =

ins(2N − 2 height(p1: i−1)) if pi = a
ext(2N − 2 height(p1: i)) if pi = ā
ins(2N − 2 height(p1: i−1)− 1) if pi = b
ext(2N − 2 height(p1: i)− 1) if pi = b̄

19

First, note that the transformation can be done in O(log N) space since it is sufficient to maintain the
height of the last two elements. The transformation is onto [4N], since for any arbitrary string p of N
parentheses −N < height(p1:N−1) < N .

We now argue that p ∈ DYCK(2) iff ψ(p) ∈ PQ. For notational convenience, we first define ψ(p|p′) =
φ(p′ p1:1)φ(p′ p1:2) . . . φ(p′ p1:|p|) and note that ψ(p′ p) = ψ(p′)ψ(p|p′).

• p ∈ DYCK(2) implies ψ(p) ∈ PQ: We prove this by induction on the length of p. We may decompose
p = p1cc̄ p2 where c ∈ {a, b} and h = height(p1) is maximal over all such decompositions. Without
loss of generality assume c = a. Note that p1 p2

∈ DYCK(2) and hence, by induction ψ(p1 p2) =

ψ(p1)ψ(p2
|p1) ∈ PQ. But observe that

ψ(p) = ψ(p1)ψ(bb̄|p1)ψ(p2
|p1bb̄) = ψ(p1)ψ(bb̄|p1)ψ(p2

|p1)

which is in PQ because ψ(p1)ψ(p2
|p1) ∈ PQ and ψ(bb̄|p1) = ins(2N − 2h − 1) ext(2N − 2h − 1)

where 2N − 2h − 1 ≤ {u : ins(u) ∈ ψ(p1)}. Since h is maximal, 2N − h − 1 is indeed the smallest
value when it is extracted.

• p /∈ DYCK(2) implies ψ(p) /∈ PQ. Since p /∈ DYCK(2), a standard characterization of the language
implies that one of the following cases is true:

– Case 1. height(p1:N) 6= 0. Therefore, there are different numbers of extracts and inserts in
ψ(p) and hence ψ(p) /∈ PQ, since each open parenthesis maps onto an insert and each close
parenthesis maps onto an extract.

– Case 2. height(p1: i) < 0 for some i ∈ [N]. Therefore, there are more extracts than inserts in a
prefix of ψ(p) and hence ψ(p) /∈ PQ.

– Case 3. There exists a smallest j such that for some i < j ,

∗ height(p1: i−1) = height(p1: j) =: h
∗ p1: j−1 is a prefix for a string in DYCK(2) and hence ψ(p1: j−1) is a prefix for a string in PQ

∗ (pi , p j) = (a, b̄) or (pi , p j) = (b, ā).

Since ψ(p1: j−1) is a prefix for a string in PQ, we can consider the state, M j−1, of the priority
queue after the interaction sequence ψ(p1: j−1) as defined in Definition 4.2. Note that M j−1

contains at most one element from {2N − 2k − 1, 2N − 2k} for each k (else j was not the
minimal choice). If (pi , p j) = (b, ā) then 2N − 2h − 1 ∈ M j−1. But φ(p1: j) = ext(2N − 2h)
and we therefore deduce that ψ(p) /∈ PQ. If (pi , p j) = (a, b̄) then 2N − 2h ∈ M j−1 and hence
2N − 2h − 1 /∈ M j−1. Since φ(p1: j) = ext(2N − 2h − 1), we deduce that ψ(p) /∈ PQ.

20

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

