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Abstract

We show how to efficiently simulate the sending of a message M to a receiver who has
partial information about the message, so that the expected number of bits communicated in
the simulation is close to the amount of additional information that the message reveals to the
receiver. This is a generalization and strengthening of the Slepian-Wolf theorem, which shows
how to carry out such a simulation with low amortized communication in the case that M is a
deterministic function of X . A caveat is that our simulation is interactive.

As a consequence, we prove that the internal information cost (namely the information re-
vealed to the parties) involved in computing any relation or function using a two party interactive
protocol is exactly equal to the amortized communication complexity of computing independent
copies of the same relation or function. We also show that the only way to prove a strong direct
sum theorem for randomized communication complexity is by solving a particular variant of the
pointer jumping problem that we define. Our work implies that a strong direct sum theorem for
communication complexity holds if and only if efficient compression of communication protocols
is possible.
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1 Introduction

Suppose a sender wants to transmit a message M that is correlated with an input X to a receiver
that has some information Y about X. What is the best way to carry out the communication
in order to minimize the expected number of bits transmitted? A natural lower bound for this
problem is the mutual information between the message and X, given Y : I(M ;X|Y ), i.e. the
amount of new information M reveals to the receiver about X. In this work, we give an interactive
protocol that has the same effect as sending M , yet the expected number of bits communicated
is asymptotically close to optimal — it is the same as the amount of new information that the
receiving party learns from M , up to a sublinear additive term1.

Our result is a generalization of classical data compression, where Y is empty (or constant),
and M is a deterministic function of X. In this case, the information learnt by the receiver is
equal to the entropy H(M), and the compression result above corresponds to classical results on
data compression first considered by Shannon [Sha48] — M can be encoded so that the expected
number of bits required to transmit M is H(M) + 1 (see for example the text [CT91]).

Typical work in information theory usually focuses on the easier problem of communicating
n independent copies M1, . . . ,Mn, where each Mi has an associated dependent Xi, Yi. Here n is
viewed as a growing parameter, and the average communication is measured. Indeed, any solution
simulating a single message can be applied to simulate the transmission of n messages, but there is
no clear way to use an asymptotically good solution to compress a single message. By the asymptotic
equipartition property of the entropy function, taking independent copies essentially forces most
of the probability mass of the distributions to be concentrated on sets of the “right” size, which
simplifies this kind of problem significantly. The Slepian-Wolf theorem [SW73] addresses the case
when M is determined by X. The theorem states that there is a way to encode many independent
copies M1, . . . ,Mn using roughly I(M ;X|Y ) on average, as n tends to infinity. The theorem and
its proof do not immediately give any result for communicating a single message. Other work has
focused on the problem of generating two correlated random variables with minimal communication
[Cuf08], and understanding the minimal amount of information needed to break the dependence
between X,Y [Wyn75], neither of which seem useful to the problem we are interested in here.

Motivated by questions in computer science, prior works have considered the problem of en-
coding a single message where M is not necessarily determined by X (see [JRS03, HJMR07] and
the references there), but these works do not handle the case above, where the receiver has some
partial information about the sender’s message.

2 Consequences in Communication Complexity

Given a function f(x, y), and a distribution µ on inputs to f , there are several ways to measure
the complexity of a communication protocol that computes f .

• The communication complexity Dµ
ρ , namely the maximum number of bits communicated by

a protocol that computes f correctly except with probability ρ.

1Observe that if X,Y,M are arbitrary random variables, and the two parties are tasked with sampling M effi-
ciently (as opposed to one party transmitting and the other receiving), it is impossible to succeed in communication
comparable to the information revealed by M . For example, if M = f(X,Y ), where f is a boolean function with high
communication complexity on average for X,Y , M reveals only one bit of information about the inputs, yet cannot
be cheaply sampled.
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• The amortized communication complexity, limn→∞Dµ,n
ρ /n, where here Dµ,n

ρ denotes the
communication involved in the best protocol that computes f on n independent pairs of
inputs drawn from µ, getting the answer correct except with probability ρ in each coordinate.

Let π(X,Y ) denote the public randomness and messages exchanged when the protocol π is run
with inputs X,Y drawn from µ. Another set of measures arises when one considers exactly how
much information is revealed by a protocol that computes f .

• The minimum amount of information that must be learnt about the inputs by an observer
who watches an execution of any protocol (I(XY ;π(X,Y ))) that compute f except with
probability of failure ρ, called the external information cost in [BBCR10].

• The minimum amount of new information that the parties learn about each others input by
executing any protocol (I(X;π(X,Y )|y) + I(Y ;π(X,Y )|X)) that computes f except with
probability of failure ρ, called the internal information cost in [BBCR10]. In this paper we
denote this quantity ICi

µ(f, ρ).

• The amortized versions of the above measures, namely the average external/internal infor-
mation cost of a protocol that computes f on n independent inputs correctly except with
probability ρ in each coordinate.

Determining the exact relationship between the amortized communication complexity and the
communication complexity of the function is usually referred to as the direct sum problem, which
has been the focus of much work [CSWY01, Sha03, JRS03, HJMR07, BBCR10, Kla10]. For
randomized and average case complexity, we know that n copies must take approximately (at
least)

√
n times the communication of one copy, as shown by the authors with Barak and Chen

[BBCR10]. For worst case (deterministic) communication complexity, Feder, Kushilevitz, Naor,
and Nisan [FKNN91] showed that if a single copy of a function f requires C bits of communication,
then n copies require Ω(

√
Cn) bits. In the rest of the discussion in this paper, we focus on the

average case and randomized communication complexity.
The proofs of the results above for randomized communication complexity have a lot to do with

the information theory based measures for the complexity of communication protocols. Chakrabarti,
Shi, Wirth and Yao [CSWY01] were the first to define the external information cost, and prove
that if the inputs are independent in µ, then the external information cost of f is at most the
amortized communication complexity of f . This sparked an effort to relate the amortized commu-
nication complexity to the communication complexity. If one could compress any protocol so that
the communication in it is bounded by the external information cost, then, at least for product
distributions µ, one would show that the two measures of communication complexity are the same.

For the case of general distributions µ, it was shown in [BYJKS04, BBCR10] that the amortized
communication complexity can only be larger than the internal information cost. In fact, the
internal and external information costs are the same when µ is a product distribution, so the
internal information cost appears to be the appropriate measure for this purpose. [BBCR10] gave
a way to compress protocols so that the communication is reduced to the geometric mean of the
internal information and the communication in the protocol, which gave the direct sum result
discussed above.

The main challenge that remains is to find a more efficient way to compress protocols whose
internal information cost is small. Indeed, as we discuss below, in this paper we show that this
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is essentially the only way to make progress on the direct sum question, in the sense that if some
protocol cannot be compressed well, then it can be used to define a function whose amortized
communication complexity is significantly smaller than its communication complexity.

2.1 Our Results

Figure 1: The relationships between different measures of complexity for communication problems,
with the new results highlighted. The present work collapses the upper-right triangle in the diagram,
showing that amortized communication complexity is equal to the internal information cost of any
functionality. We further show three equivalent characterizations that would lead to a collapse in
the lower-left triangle: strong direct sum theorems, near-optimal protocol compression and solving
the Correlated Pointer Jumping efficiently.

Our main technical result is a way to compress one round protocols according to the internal
information cost, which corresponds to the problem of efficiently communicating information when
the receiver has some partial information, discussed in the introduction. In fact, we design a
protocol that solves a harder problem, that we describe next. We give a way for two parties to
efficiently sample from a distribution P that only one of them knows, by taking advantage of a
distribution Q known only to the other. We obtain a protocol whose communication complexity
can be bounded in terms of the informational divergence D (P ||Q) =

∑

x P (x) log(P (x)/Q(x)).

Theorem 2.1. Suppose that player A is given a distribution (described by the probabilities assigned
to each point) P and player B is given a distribution Q over a universe U . There is a public coin
protocol that uses an expected

D (P ||Q) + 2 log(1/ε) +O
(

√

D (P ||Q) + 1
)

bits of communication such that at the end of the protocol:
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• Player A outputs an element a distributed according to P ;

• Player B outputs b such that for each x ∈ U , P[b = x| a = x] > 1− ε.

As a corollary, we obtain the formulation discussed earlier. For any distribution X,Y and
message M that is independent of Y once X is fixed, we can have the sender set P to be the
distribution of M conditioned on her input x, and the receiver set Q to be the distribution of
M conditioned on her input y. The expected divergence D (P ||Q) turns out to be equal to the
mutual information I(M ;X|Y ). Indeed, applying Theorem 2.1 to each round of communication
in a multiround protocol, gives the following corollary, where setting r = 1 gives the formulation
discussed in the introduction. The proof appears in Section 6.1.

Corollary 2.2. Let X,Y be inputs to a k round communication protocol π whose internal infor-
mation cost is I. Then for every ε > 0, there exists a protocol τ such that at the end of the protocol,
each party outputs a transcript for π. Furthermore, there is an event G with P[G] > 1 − kε such
that conditioned on G, the expected communication of τ is I +O(

√
kI + k) + 2k log(1/ε), and both

parties output the same transcript distributed exactly according to π(X,Y ).

This compression scheme significantly clarifies the relationship between the various measures
of complexity discussed in the introduction. In particular, it allows us to prove that the internal
information cost of computing a function f according to a fixed distribution is exactly equal to the
amortized communication complexity of computing many copies of f .

Theorem 2.3. For any f , µ, and ρ,

IC
i
µ(f, ρ) = lim

n→∞

Dµ,n
ρ (f)

n
.

This result seems surprising to us, since it characterizes the information cost in terms of a
quantity that at first seems to have no direct connection to information theory. The proof appears
in Appendix 6.2. It proves that if a function’s information cost is smaller than its communication
complexity, then multiple copies of the function can be computed more efficiently in parallel than
sequentially. Observe that the naive sequential protocol for computing multiple copies would only
give a bound on the error in each copy separately (exactly as in our definition of amortized commu-
nication complexity). The consequences to the various measures discussed earlier are summarized
in Figure 1.

In Appendix 6.3, we define a communication problem we call Correlated Pointer Jumping –
CPJ(C, I) – that is parametrized by two parameters C and I such that C ≫ I. CPJ(C, I) is
designed in a way that the randomized communication complexity cost I ≤ R(CPJ(C, I)) ≤ C.
We show that determining the worst case randomized communication complexity R(CPJ(C, I)) for
I = C/n is equivalent (up to poly-logarithmic factors) to determining the best parameter k(n) for
which a direct sum theorem R(fn) = Ω(k(n) · R(f)) holds. For simplicity, we formulate only part
of the result here.

Theorem 2.4. If R(CPJ(C,C/n)) = Õ(C/n) for all C, then a near optimal direct sum theorem
holds: R(fn) = Ω̃(n · R(f)) for all f .

On the other hand, if R(CPJ(C,C/n)) = Ω((C loga C)/n) for all a > 0, then direct sum is
violated by CPJ(C,C/n):

R(CPJ(C,C/n)n) = O(C logC) = o(n · R(CPJ(C,C/n))/ loga C),

for all a.
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Finally, letting fn denote the function that computes n copies of f on n different inputs, our
protocol compression yields the following direct sum theorem:

Corollary 2.5 (Direct Sum for Bounded Rounds). Let C be the communication complexity of the
best protocol for computing f with error ρ on inputs drawn from µ. Then any r round protocol
computing fn on the distribution µn with error ρ − ε must involve at least Ω(n(C − r log(1/ε) −
O(

√
C · r))) communication.

2.2 Techniques

The key technical contribution of our work is a sampling protocol that proves Theorem 2.1. The
sampling method we show is different from the “Correlated Sampling” technique used in work on
parallel repetition [Hol07, Rao08] and in the previous paper on compression [BBCR10]. In those
contexts it was guaranteed that the input distributions P,Q are close in statistical distance. In
this case, the sampling can be done without any communication. In our case, all interesting inputs
P,Q are very far from each other in statistical distance, and not only that, but the ratios of the
probabilities P (x)/Q(x) may vary greatly with the choice of x. It is impossible to solve this problem
without communication, and we believe it is unlikely that it can be solved without interaction.

Indeed, our sampling method involves interaction between the parties, and for good reasons.
In the case that the sample is x for which P (x)/Q(x) is very large, one would expect that a lot
of communication is needed to sample x, since the second party would be surprised with this
sample, while if P (x)/Q(x) is small, then one would expect that a small amount of communication
is sufficient. Our protocol operates in rounds, gradually increasing the number of bits that are
communicated until the sample is correctly determined.

To illustrate our construction, consider the baby case of the problem where the issue of high
variance in P (x)/Q(x) does not affect us. Recall that the informational divergenceD (P ||Q) is equal

to
∑

x P (x) log P (x)
Q(x) . Suppose Q is the uniform distribution on some subset SQ of the universe U ,

and P is the uniform distribution on some subset SP ⊂ SQ. Then the informational divergence
D (P ||Q) is exactly log(|SQ|/|SP |).

In this case, the players use an infinite public random tape that samples an infinite sequence
of elements a1, a2, . . . uniformly at random from the universe U . Player A then picks the first
element x that lies in SP to be his sample. Next the players use the public randomness to sample
a sequence of uniformly random boolean functions on the universe. A then sends a stream of these
functions evaluated at x. At each round i, player B finds the first element yi on the tape that
belongs to SQ and is consistent with the values Player A has sent so far. Player B uses yi as his
working hypothesis for the element Player A is trying to communicate. Player B lets Player A
know (and outputs yi) if the element yi stays the same for some interval i = [j..2j + log 1/ε]. That
is, when the hypothesis for the element x stops changing. For the analysis, one has to note that
the (expected) number of elements that B will have to reject before converging to x is bounded in
terms of log |SQ|/|SP | – the divergence between P and Q in this case.

3 Preliminaries

Notation. We reserve capital letters for random variables and distributions, calligraphic letters
for sets, and small letters for elements of sets. Throughout this paper, we often use the notation |b
to denote conditioning on the event B = b. Thus A|b is shorthand for A|B = b.
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We use the standard notion of statistical/total variation distance between two distributions.

Definition 3.1. Let D and F be two random variables taking values in a set S. Their statistical
distance is

|D − F | def= max
T ⊆S

(|Pr[D ∈ T ]− Pr[F ∈ T ]|) = 1

2

∑

s∈S

|Pr[D = s]− Pr[F = s]|

If |D − F | ≤ ε we shall say that D is ε-close to F . We shall also use the notation D
ε≈ F to mean

D is ε-close to F .

3.1 Information Theory

Definition 3.2 (Entropy). The entropy of a random variableX isH(X)
def
=
∑

x Pr[X = x] log(1/Pr[X =
x]). The conditional entropy H(X|Y ) is defined to be Ey∈

R
Y [H(X|Y = y)].

Fact 3.3. H(AB) = H(A) +H(B|A).

Definition 3.4 (Mutual Information). The mutual information between two random variables
A,B, denoted I(A;B) is defined to be the quantity H(A) − H(A|B) = H(B) − H(B|A). The
conditional mutual information I(A;B|C) is H(A|C)−H(A|BC).

In analogy with the fact that H(AB) = H(A) +H(B|A),

Proposition 3.5 (Chain Rule). Let C1, C2,D,B be random variables. Then

I(C1C2;B|D) = I(C1;B|D) + I(C2;B|C1D).

We also use the notion of divergence (also known as Kullback-Leibler distance or relative en-
tropy), which is a different way to measure the distance between two distributions:

Definition 3.6 (Divergence). The informational divergence between two distributions isD (A||B)
def
=

∑

xA(x) log(A(x)/B(x)).

For example, if B is the uniform distribution on {0, 1}n then D (A||B) = n−H(A).

Proposition 3.7. Let A,B,C be random variables in the same probability space. For every a in
the support of A and c in the support of C, let Ba denote B|A = a and Bac denote B|A = a,C = c.
Then I(A;B|C) = Ea,c∈

R
A,C [D (Bac||Bc)]

Lemma 3.8.

D (P1 × P2||Q1 ×Q2) = D (P1||Q1) +D (P2||Q2) .

3.2 Communication Complexity

Let X ,Y denote the set of possible inputs to the two players, who we name A and B. In this paper2,
we view a private coins protocol for computing a function f : X × Y → ZK as a rooted tree with
the following structure:

2The definitions we present here are equivalent to the classical definitions and are more convenient for our proofs.
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• Each non-leaf node is owned by A or by B.

• Each non-leaf node owned by a particular player has a set of children that are owned by the
other player. Each of these children is labeled by a binary string, in such a way that this
coding is prefix free: no child has a label that is a prefix of another child.

• Every node is associated with a function mapping X to distributions on children of the node
and a function mapping Y to distributions on children of the node.

• The leaves of the protocol are labeled by output values.

On input x, y, the protocol π is executed as in Figure 2.

Generic Communication Protocol

1. Set v to be the root of the protocol tree.

2. If v is a leaf, the protocol ends and outputs the value in the label of v. Otherwise, the
player owning v samples a child of v according to the distribution associated with her input
for v and sends the label to indicate which child was sampled.

3. Set v to be the newly sampled node and return to the previous step.

Figure 2: A communication protocol.

A public coin protocol is a distribution on private coins protocols, run by first using shared
randomness to sample an index r and then running the corresponding private coin protocol πr.
Every private coin protocol is thus a public coin protocol. The protocol is called deterministic if
all distributions labeling the nodes have support size 1.

Definition 3.9. The communication complexity of a public coin protocol π, denoted CC(π), is the
maximum number of bits that can be transmitted in any run of the protocol.

Definition 3.10. The number of rounds of a public coin protocol is the maximum depth of the
protocol tree πr over all choices of the public randomness.

Given a protocol π, π(x, y) denotes the concatenation of the public randomness with all the
messages that are sent during the execution of π. We call this the transcript of the protocol.
We shall use the notation π(x, y)j to refer to the j’th transmitted message in the protocol. We
write π(x, y)≤j to denote the concatenation of the public randomness in the protocol with the first j
message bits that were transmitted in the protocol. Given a transcript, or a prefix of the transcript,
v, we write CC(v) to denote the number of message bits in v (i.e. the length of the communication).

Definition 3.11 (Communication Complexity notation). For a function f : X × Y → ZK , a
distribution µ supported on X × Y, and a parameter ρ > 0, Dµ

ρ (f) denotes the communication
complexity of the cheapest deterministic protocol for computing f on inputs sampled according to
µ with error ρ. Rρ(f) denotes the cost of the best randomized public coin protocol for computing
f with error at most ρ on every input.
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For ease of notations, we shall sometimes use the shorthand R(f) to denote R1/3(f).
We shall use the following theorem due to Yao:

Theorem 3.12 (Yao’s Min-Max). Rρ(f) = maxµD
µ
ρ (f).

Recall that the internal information cost ICi
µ(π) of a protocol π is defined to be I(π(X,Y );X|Y )+

I(π(X,Y );Y |X).

Lemma 3.13. Let R be the public randomness used in the protocol π. Then ICi
µ(π) = ER

[

ICi
µ(πR)

]

Proof. By the chain rule (Proposition 3.5),

IC
i
µ(π) = I(π(X,Y );X|Y ) + I(π(X,Y );Y |X)

= I(R;X|Y ) + I(R;Y |X) + I(π(X,Y );X|Y R) + I(π(X,Y );Y |XR)

= I(π(X,Y );X|Y R) + I(π(X,Y );Y |XR)

= E
R

[

IC
i
µ(πR)

]

A priori, one might believe that the internal information cost can be as large as twice the
communication in a protocol. However, we can use the fact that each transmission only reveals
information to one of the parties to bound it by the communication in the protocol:

Lemma 3.14. ICi
µ(π) ≤ CC(π).

Proof. First, let us assume that π is a private coin protocol. Let πi denote the i’th bit transmitted
in the protocol. Then, by the chain rule,

IC
i
µ(π) = I(π(X,Y );X|Y ) + I(π(X,Y );Y |X)

=

CC(π)
∑

i=1

I(πi;X|π1π2 . . . πi−1Y ) + I(πi;Y |π1π2 . . . πi−1X)

Given any prefix γ = π1 . . . πi−1, let Eγ denote the event that the first i− 1 bits of the transcript
are equal to γ. Then we have

IC
i
µ(π) =

CC(π)
∑

i=1

E
γ∈

R
π1...πi−1

[I(πi;X|EγY ) + I(πi;Y |EγX)] .

Now we claim that I(πi;X|EγY ) + I(πi;Y |EγX) ≤ 1. Each of these terms is individually
bounded by 1 since πi contains only one bit. If γ is such that it is the first party’s turn to transmit
πi, then for every fixing of X, πi is independent of Y , so I(πi;Y |EγX) = 0. On the other hand, if γ
is such that it is the second party’s turn to transmit πi, then for every fixing of Y , πi is independent
of X, so I(πi;X|EγY ) = 0. Thus,
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IC
i
µ(π) =

CC(π)
∑

i=1

E
τ∈

R
π1...πi−1

[I(πi;X|EτY ) + I(πi;Y |EτX)] ≤ CC(π).

If π involves public randomness, then by Lemma 3.13, we have that ICi
µ(π) = ER

[

ICi
µ(πR)

]

≤
CC(π), where R denotes the public randomness of π.

A version of the following theorem was proved in [BYJKS04]. Here we need a slightly stronger
version (alluded to in a remark in [BBCR10]):

Theorem 3.15. For every µ, f, ρ there exists a protocol τ computing f on inputs drawn from µ with

probability of error at most ρ and communication at most Dµn

ρ (fn) such that ICi
µ(τ) ≤ Dµn

ρ (fn)
n .

Since this theorem is subsumed by Theorem 3.17 below, we do not give the details of its proof.
For our results on amortized communication complexity, we need the following definition: we

shall consider the problem of computing n copies of f , with error ρ in each coordinate of the
computation, i.e. the computation must produce the correct result in any single coordinate with
probability at least 1− ρ. We denote the communication complexity of this problem by Dµ,n

ρ (f) ≤
D
µn

ρ (fn). Formally,

Definition 3.16. Let µ be a distribution on X × Y and let 0 < ρ < 1. We denote by Dµ,n
ρ (f) the

distributional complexity of computing f on each of n independent pairs of inputs drawn from µ,
with probability of failure at most µ on each of the inputs.

The result above can actually be strengthened:

Theorem 3.17. For every µ, f, ρ, let π be a protocol realizing Dµ,n
ρ (f). Then there exists a protocol

τ computing f on inputs drawn from µ with probability of error at most ρ such that CC(τ) = CC(π)

and ICi
µ(τ) ≤ IC

i
µn (π)
n ≤ Dµ,n

ρ (f)
n .

Proof. First let us assume that π only uses private randomness. The protocol τ(x, y) is defined as
follows.

1. The parties publicly sample J , a uniformly random element of the set {1, 2, 3, . . . , n}.

2. The parties publicly sample X1, . . . ,XJ−1 and YJ+1, . . . , Yn.

3. The first party privately samples XJ+1, . . . ,Xn conditioned on the corresponding Y ’s. Simi-
larly, the second party privately samples Y1, . . . , YJ−1.

4. The parties set XJ = x, YJ = y, and run the protocol π on inputs X1, . . . ,Xn, Y1, . . . , Yn.
They output the result computed for the J ’th coordinate.
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Observe that CC(τ) = CC(π), and the probability of making an error in τ is bounded by ρ. It
only remains to bound ICi

µ(τ) = I(X; τ |Y ) + I(Y ; τ |X). Let us bound the first term.

I(X; τ |Y ) ≤ I(X; τY1, . . . , Yn|Y )

= I(X;JX1 . . . XJ−1Y1 . . . Ynπ|Y )

= I(X;JX1 . . . XJ−1Y1 . . . Yn|Y ) + I(XJ ;π|JX1 . . . XJ−1Y1 . . . Yn)

= I(XJ ;π|JX1 . . . XJ−1Y1 . . . Yn)

where the final equality is from the fact that J,X1, . . . ,XJ−1, Y1, . . . , Yn are all independent of
X,Y , conditioned on every fixing of Y .

Expanding the expectation according to J , we get by the Chain Rule:

I(X; τ |Y ) ≤ (1/n)
n
∑

j=1

I(Xj ;π|X1 . . . Xj−1Y1 . . . Yn)

= I(X1 . . . Xn;π|Y1 . . . Yn)/n

Similarly, we can bound I(Y ; τ |X) ≤ I(Y1 . . . Yn;π|X1 . . . Xn)/n, and thus ICi
µ(τ) ≤ ICi

µn(π)/n ≤
CC(π)/n, by Lemma 3.14.

If π uses public randomness R, then denote by τR the protocol induced for each fixing of R.
Then ICi

µ(τ) = ER

[

ICi
µ(τR)

]

≤ ER

[

ICi
µn(πR)/n

]

≤ CC(π)/n.

4 Proof of Theorem 2.1

We shall prove a stronger version of Theorem 2.1.

Theorem 4.1. Suppose that player A is given a distribution P and player B is given a distribution
Q over a universe U . There is a protocol such that at the end of the protocol:

• player A outputs an element a distributed according to P ;

• player B outputs an element b such that for each x, P[b = a| a = x] > 1− ε.

• the communication in the protocol is bounded by logP (a)/Q(a) + log 1/ε + log log 1/ε +
5
√

logP (a)/Q(a) + 9.

Note that the second condition implies in particular that player B outputs an element b such that
b = a with probability > 1 − ε. The protocol requires no prior knowledge or assumptions on
D (P ||Q).

Proof. The protocol runs as follows. Both parties interpret the shared random tape as a sequence
of uniformly selected elements {ai}∞i=1 = {(xi, pi)}∞i=1 from the set A := U × [0, 1]. Denote the
subset

P := {(x, p) : P (x) > p}
of A as the set of points under the histogram of the distribution P . Similarly, define

Q := {(x, p) : Q(x) > p}.
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For a constant C ≥ 1 we will define the C-multiple of Q as

C · Q := {(x, p) ∈ A : (x, p/C) ∈ Q}.

We will also use a different part of the shared random tape to obtain a sequence of random
hash functions hi : U → {0, 1} so that for any x 6= y ∈ U , P[hi(x) = hi(y)] = 1/2.

Figure 3: An illustration on the execution of the protocol. The elements ai are selected uniformly
from A = U × [0, 1]. The first ai to fall in P is a6, and thus player A outputs x6. Player A sends
hashes of a6, which do not match the hashes of a5, the only ai in Q. Player B responds ‘failure’,
and considers surviving elements in 2Q, which are a6 and a9. After a few more hashes from A, a6
is selected by B with high probability.

We are now ready to present the protocol:

1. Player A selects the first index i such that ai = (xi, pi) ∈ P, and outputs xi;

2. Player A uses 1 + ⌈log log 1/ε⌉ bits to send Player B the binary encoding of k := ⌈i/|U|⌉ (if
k is too large, Player A sends an arbitrary string);

3. For all t, set parameters Ct := 2t
2

, st = 1 + ⌈log 1/ε⌉ + (t+ 1)2;

4. Repeat, until Player B produces an output, beginning with iteration t = 0:

(a) Player A sends the values of all hash functions hj(xi) for 1 ≤ j ≤ st, that have not
previously been sent.

(b) if there is an ar = (yr, qr) with r ∈ {(k − 1) · |U| + 1, . . . , k · |U|} in Ct · Q such that
hj(yr) = hj(xi) for 1 ≤ j ≤ st, Player B responds ‘success’ and outputs yr; if there is
more than one such ar, player B selects the first one;

11



(c) otherwise, Player B responds ‘failure’, and the parties increment t and repeat.

The output of Player A is distributed according to the distribution P , and further, the output is
independent of k. To see this, note that the output is independent of whether or not k > s, for
every s.

Fix a choice of i and the pair (xi, pi) by Player A. Step 4 of the protocol is guaranteed to ter-

minate when t2 ≥ logP (xi)/Q(xi) since ai belongs to
P (xi)
Q(xi)

· Q. Denote T :=
⌈

√

log P (xi)/Q(xi)
⌉

.

By iteration T , Player A will have sent sT bits in Step 4, and Player B will have sent T + 1 bits.
Thus the amount of communication in Step 4 is bounded by

sT + T + 1 = 1 + ⌈log 1/ε⌉ + (T + 1)2 + T + 1

≤ (
√

logP (xi)/Q(xi) + 2)2 +
√

logP (xi)/Q(xi) + ⌈log 1/ε⌉ + 3

= logP (xi)/Q(xi) + 5
√

logP (xi)/Q(xi) + ⌈log 1/ε⌉ + 7,

which shows that the total communication is at most

logP (xi)/Q(xi) + 5
√

logP (xi)/Q(xi) + log 1/ε+ log log 1/ε + 9.

It only remains to show that Player B outputs the same xi with probability > 1− ε. We start
with the following claim.

Claim 4.2. For each n, P[k > n] < e−n.

Proof. For each n, we have

P[k > n] = P[ai /∈ P for i = 1, . . . , n · |U|] = (1− 1/|U|)|U|·n < e−n.

Thus the probability that the binary encoding of k exceeds 1 + ⌈log log 1/ε⌉ bits is less than

e−2·2⌈log log 1/ε⌉ ≤ ε/2. It remains to analyze Step 4 of the protocol. We say that an element a = (x, p)
survives iteration t if a ∈ 2t

2 · Q and it satisfies hj(x) = hj(xi) for all j = 1, . . . , st for this t.

Note that the “correct” element ai survives iteration t if and only if 2t
2 ≥ P (xi)/Q(xi).

Claim 4.3. Let Eai be the event that the element selected by player A is ai, which is the i-th
element on the tape. Denote k := ⌈i/|U|⌉. Conditioned on Eai , the probability that a different
element aj with j ∈ {(k − 1) · |U|+ 1, . . . , k · |U|} survives iteration t is bounded by ε/2t+1.

Proof. Without loss of generality we can assume that |U| ≥ 2, since for a singleton universe our
sampling protocol will succeed trivially. This implies that for a uniformly selected a ∈ A, P[a /∈
P] ≥ 1/2, so:

P[a ∈ Ct · Q| a /∈ P] ≤ P[a ∈ Ct · Q]/P[a /∈ P] ≤ 2 ·P[a ∈ Ct · Q] ≤ 2Ct/|U|.

Denote K := k · |U|. Conditioning on Eai , the elements aK−|U|+1, . . . , ai−1 are distributed uniformly
on A\P, and ai+1, . . . , aK are distributed uniformly on A. For any such j = K−|U|+1, . . . , i− 1,
and for any C > 0,

P[aj ∈ C · Q] ≤ 2C/|U|.
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For such a j, surviving round t means aj belonging to 2t
2 · Q and agreeing with ai on st =

1+ ⌈log 1/ε⌉+(t+1)2 random hashes h1, . . . , hst . The probability of this event is thus bounded by

P[aj survives round t] ≤ P[aj ∈ 2t
2 · Q] · 2−st

≤ 2 · 2t2 · 2−st/|U|
≤ 21+t2−st/|U|
≤ 2−2t−1ε/|U|.

By taking a union bound over all j = K − |U|+ 1, . . . ,K, j 6= i, we obtain the bound of ε/22t+1 ≤
ε/2t+1.

Thus for any Eai , the probability of Player B to output anything other than xi conditioned on Eai

is <
∑∞

t=0 ε/2
t+1 = ε.

To get a bound on the expected amount of communication in the protocol, as in Theorem 2.1,
note that

Exi∼P

[

log P (xi)/Q(xi) + 2 + 5
√

log P (xi)/Q(xi)
]

= D (P ||Q) + 9 + 5 ·Exi∼P

√

log P (xi)/Q(xi)

≤ D (P ||Q) + 2 + 5 ·
√

Exi∼P logP (xi)/Q(xi) = D (P ||Q) +O(D (P ||Q)1/2 + 1),

where the inequality is by the concavity of
√

. This completes the proof.

Remark 4.4. Note that if the parties are trying to sample many independent samples from distri-
butions P1, P2, . . . , with the receiving party knowing Q1, . . . , as in the setting of the Slepian-Wolf
theorem, the analysis of the above protocol can easily be strengthened to show that the commu-
nication is the right amount with high probability. This is because the central limit theorem can
be used to show that samples xi with higher than expected Pi(xi)/Qi(xi) are rare and do not
contribute much to the communication on average (see for example Section 6.2).

Remark 4.5. The sampling in the proof of Theorem 4.1 may take significantly more than one
round. In fact, the expected number of rounds is Θ(

√

D (P ||Q)). We suspect that the dependence
of the number of rounds in the simulation on the divergence cannot be eliminated, since D (P ||Q)
is not known to the players ahead of time, and the only way to “discover” it (and thus to estimate
the amount of communication necessary to perform the sampling task) is through interactive com-
munication. By increasing the expected communication by a constant multiplicative factor, it is
possible to decrease the expected number of rounds to O(logD (P ||Q)).

5 Correlated Pointer Jumping

Here we define the correlated pointer jumping problem, that is at the heart of several of our results.
The input in this problem is a rooted tree such that

• Each non-leaf node is owned by Player A or by Player B.
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• Each non-leaf node owned by a particular player has a set of children that are owned by the
other player. Each of these children is labeled by a binary string, in such a way that this
coding is prefix free: no child has a label that is a prefix of another child.

• Each node v is associated with two distributions on its children: childAv known to Player A
and childBv known to Player B.

• The leaves of the tree are labeled by output values.

The number of rounds in the instance is the depth of the tree.
The goal of the problem is for the players to sample the leaf according to the distribution

that is obtained by sampling each child according to the distribution specified by the owner of the
parent. We call the distribution of this path, the correct distribution. We give a way to measure
the correlation between the knowledge of the two parties in the problem.

For every non-root vertex w in the tree whose parent is v, define the divergence cost of w as

D (w) =















log
(

childAv (w)
childBv (w)

)

if v is owned by Player A

log
(

child
B
v (w)

childAv (w)

)

if v is owned by Player B

The divergence cost of the root is set to 0.
Given a path T that goes from the root to a leaf in the tree, the divergence cost of the path,

denoted D (T ) is the sum of the divergence costs of the nodes encountered on this path. Finally,
the divergence cost of the instance F , denoted D (F ) is the expected sum of divergence costs of the
vertices encountered in the correct distribution on paths.

We can use our sampling lemma to solve the correlated pointer jumping problem, with commu-
nication bounded by the divergence cost:

Theorem 5.1. There is a protocol that when given a k-round correlated pointer jumping instance
F , can sample a path T such that there is an event E, with P[E] > 1− kε, and conditioned on E,

• the parties both output the same sampled path T that has the correct distribution

• the communication in the protocol is bounded by D (T ) + 2k log(1/ε) + 5
√

kD (T ) + 9k.

Proof. The protocol for sampling the path is obtained simply by repeatedly running the protocol
from Theorem 4.1. In each step, the parties sample the correct child. For each round i let Ei denote
the event that the parties are consistent after round i. When Ei occurs, the sampled vertex has
the correct distribution, and Pr[Ei] > 1− ε. Define E to be the intersection of the events Ei. Then
Pr[E] > 1 − kε. Conditioned on E, the sampled path has the correct distribution. Moreover, the
if the sampled path is T = v0, v1, . . . , vk, then by Theorem 4.1, the communication in the protocol
is at most
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k
∑

i=1

(

D (vi) + log(1/ε) + log log(1/ε) + 5
√

D (vi) + 9
)

≤
k
∑

i=1

(D (vi)) + 2k log(1/ε) + 5

√

√

√

√k ·
k
∑

i=1

D (vi) + 9k

= D (T ) + 2k log(1/ε) + 5
√

k ·D (T ) + 9k,

where the inequality is by the Cauchy-Schwartz inequality.

A key fact is that both the internal and external information cost of a protocol can be used
to bound the expected divergence cost of an associated distribution on correlated pointer jumping
instances. Since, in this work, we only require the connection to internal information cost, we shall
restrict our attention to it.

Given a public coin protocol with inputs X,Y and public randomness R, for every fixing of
x, y, r, we obtain an instance of correlated pointer jumping. The tree is the same as the protocol
tree with public randomness r. If a node v at depth d is owned by Player A, let M be the
random variable denoting the child of v that is picked. Then define childAv

x
so that it has the

same distribution as M | X = x, π(X,Y )≤d = rv, and childBv
y
so it has the same distribution as

M | Y = y, π(X,Y )≤d = rv. We denote this instance of correlated sampling by Fπ(x, y, r). Let µ
denote the distribution on X,Y . Next we relate the average divergence cost of this instance to the
internal information cost of π:

Lemma 5.2. EX,Y,R [D (Fπ(x, y, r))] = ICi
µ(π)

Proof. We shall prove that for every r, EX,Y [D (Fπ(x, y, r))] = ICi
µ(πr). The proof can then be

completed by Lemma 3.13.
So without loss of generality, assume that π is a private coin protocol, and write F (x, y) to

denote the corresponding divergence cost. We proceed by induction on the depth of the protocol
tree of π. If the depth is 0, then both quantities are 0. For the inductive step, without loss of
generality, assume that Player A owns the root node v of the protocol. Let M denote the child of
the root that is sampled during the protocol, and let F (x, y)m denote the divergence cost of the
subtree rooted at m. Then

E
X,Y

[D (F (x, y))] = E
x,y,m∈

R
X,Y,M

[

log(childAv
x
(m)/childBv

y
(m)) +D (F (x, y)m)

]

(1)

Since for every x, y, M |xy has the same distribution as M |x, Proposition 3.7 gives that the first
term in Equation 1 is exactly equal to I(X;M |Y ) = I(X;M |Y ) + I(Y ;M |X). The second term is

EM

[

EX,Y |M [D (F (X,Y )M )]
]

. For each fixing of M = m, the inductive hypothesis shows that the
inner expectation is equal to I(X;π(X,Y )|Y m) + I(Y ;π(X,Y )|Xm). Together, these two bounds
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imply that

E
X,Y

[D (F (x, y))]

= I(X;M |Y ) + I(Y ;M |X) + I(X;π(X,Y )|Y M) + I(Y ;π(X,Y )|XM)

= IC
i
µ(π)

6 Applications

In this section, we use Theorem 5.1 to prove a few results about compression and direct sums.

6.1 Compression and Direct sum for bounded-round protocols

Here we prove our result about compressing bounded round protocols (Corollary 2.2). We shall
need the following lemma.

Lemma 6.1.

Proof of Corollary 2.2. The proof follows by applying our sampling procedure to the correlated
pointer jumping instance Fπ(x, y, r). For each fixing of x, y, r, define the event Gx,y,r to be the
event E from Theorem 5.1. Then we have that P[G] > 1− kε. Conditioned on G, we sample from
exactly the right distribution, and the expected communication of the protocol is

E
X,Y,R

[

D (Fπ(X,Y,R)) + 2k log(1/ε) +O(
√

kD (Fπ(X,Y,R)) + k)
]

≤ E
X,Y,R

[D (Fπ(X,Y,R))] + 2k log(1/ε) +O

(

√

E
X,Y,R

[kD (Fπ(X,Y,R))] + k

)

,

where the inequality follows from the concavity of the square root function. By Lemma 5.2, this

proves that the expected communication conditioned onG is ICi
µ(π)+2k log(1/ε)+O

(

√

kICi
µ(π) + k

)

.

6.2 Information = amortized communication

In this section we will show that Theorem 5.1 reveals a tight connection between the amount
of information that has to be revealed by a protocol computing a function f and the amortized
communication complexity of computing many copies of f . Recall that ICi

µ(f, ρ) denotes the
smallest possible internal information cost of any protocol computing f with probability of failure
at most ρ when the inputs are drawn from the distribution µ. Observe that ICi

µ(f, ρ) is an infimum
over all possible protocols and may not be achievable by any individual protocol. It is also clear
that ICi

µ(f, ρ) may only increase as ρ decreases.
We first make the following simple observation.

Claim 6.2. For each f , ρ and µ,

lim
α→ρ

IC
i
µ(f, α) = IC

i
µ(f, ρ)
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Proof. The idea is that if we have any protocol with internal information cost I, error δ and input
length ℓ, for every ε we can decrease the error to (1− ε)δ at the cost of increasing the information
by at most ε · ℓ just by using public randomness to run the original protocol with probability 1− ε,
and with probability ε, run the trivial protocol where the players simply exchange their inputs.
Thus as α tends to ρ, the information cost of the best protocols must tend to each other.

Next we define the amortized communication complexity of f . We define it to be the cost of
computing n copies of f with error ρ in each coordinate, divided by n. Note that computing n
copies of f with error ρ in each coordinate is in general an easier task than computing n copies
of f with probability of success 1 − ρ for all copies. We use the notation Dµ,n

ρ (f) to denote the
communication complexity for this task, when the inputs for each coordinate are sampled according
to µ. Dµ,n

ρ (f) was formally defined in Definition 3.16.
It is trivial to see in this case that Dµ,n

ρ (f) ≤ n · Dµ
ρ (f). The amortized communication com-

plexity of f with respect to µ is the limit

AC(fµ
ρ ) := lim

n→∞
Dµ,n

ρ (f)/n,

when the limit exists. We prove an exact equality between amortized communication complexity
and the information cost:

Theorem 6.3.

AC(fµ
ρ ) = IC

i
µ(f, ρ).

Proof. There are two directions in the proof:

AC(fµ
ρ ) ≥ ICi

µ(f, ρ). This is a direct consequence of Theorem 3.17.

AC(fµ
ρ ) ≤ ICi

µ(f, ρ). Let δ > 0. We will show that Dµ,n
ρ (f)/n < ICi

µ(f, ρ) + δ for all sufficiently
large n.

By Claim 6.2 there is an α < ρ such that ICi
µ(f, α) < ICi

µ(f, ρ) + δ/4. Thus there is a protocol
π that computes f with error < α with respect to µ and that has an internal information cost
bounded by I := ICi

µ(f, ρ) + δ/4.
For every n, denote by πn the protocol that takes n pairs of inputs Xn, Y n and executes in

parallel, sending the first bits of each copy in the first round, and then the second bits in the second
round and so on. Thus πn has CC(π) rounds, and communication complexity nCC(π). Further, πn

computes n copies of f as per Definition 3.16 with error bounded by α.
We shall obtain our results by compressing πn.
Let iπ denote the transcript of the i’th copy, and let Xi, Yi denote the i’th inputs. Then

observe that for all i, (Xi, Yi,
i π) are mutually independent of each other. Indeed, this implies that

ICi
µn(πn) =

∑n
i=1 IC

i
µ(

iπ) = nICi
µ(π). On the other hand, compressing πn incurs a per round

overhead that is still dependent only on CC(π).
Let T n denote the random variable of the path sampled in πn. Let T1, . . . , Tn denote the

random variables of the n paths sampled in the individual copies of π. Then, since each protocol
runs independently, E [D (T n)] =

∑n
i=1 E [D (T )]. Indeed, each vertex in the protocol tree of πn

corresponds to an n-tuple of vertices of π, and if w corresponds to the vertices (1w, . . . ,nw), with
parents v = (1v, . . . ,n v) owned by Player A, then

D (w) = log

(

childAv (w)

childBv (w)

)

= log

(

∏n
i=1 child

A
vi
(wi)

∏n
i=1 child

B
vi
(wi)

)

=
n
∑

i=1

log

(

childAvi
(wi)

childBvi(wi)

)

=
n
∑

i=1

D (wi) .
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By Lemma 5.2, E [D (T )] = ICi
µ(π). Thus, by the central limit theorem, for n large enough,

Pr[D (T n) ≥ n · (ICi
µ(π) + δ/4)] < (ρ− α)/2.

We use Theorem 5.1 to simulate πn, with error parameter ε = (ρ − α)/2 and truncate the
protocol after

n · (ICi
µ(π) + δ/4) + 5

√

CC(π) · n · (ICi
µ(π) + δ/4) + 2 log(1/ε) + 9 · CC(π)

bits of communication. The new protocol thus has error < α+ ρ− α = ρ. On the other hand, for
n large enough, the per copy communication of this protocol is at most ICi

µ(π) + δ/2 as required.

6.3 A complete problem for direct sum

Let fn denote the function mapping n inputs to n outputs according to f . We will show that the
promise version of the correlated pointer jumping problem is complete for direct sum. In other
words, if near-optimal protocols for correlated pointer jumping exist, then direct sum holds for all
promise problems. On the other hand, if there are no near-optimal protocols for correlated pointer
jumping, then direct sum fails to hold, with the problem itself as the counterexample. Thus any
proof of direct sum for randomized communication complexity must give (or at least demonstrate
existence) of near-optimal protocols for the problem.

We define the CPJ(C, I) promise problem as follows.

Definition 6.4. The CPJ(C, I) is a promise problem, where the players are provided with a binary
instance3 F of a C-round pointer jumping problem, i.e. player A is provided with the distributions
child(v)x and player B is provided with the distributions child(v)y for each v, with the following
additional guarantees:

• the divergence cost D (F ) ≤ I;

• let µF be the correct distribution on the leafs of F ; each leaf z of F are labeled with ℓ(z) ∈
{0, 1} so that there is a value g = g(F ) such that Pz∈

R
µF

[ℓ(z) = g(F )] > 1−ε, for some small
ε. The goal of the players is to output g(F ) with probability > 1− 2ε.

Note that players who know how to sample from F can easily solve the CPJ problem. It follows
from [BBCR10] that:

Theorem 6.5. If CPJ(C, I) has a randomized protocol that uses T (C, I) := R(CPJ(C, I)) commu-
nication, so that T (C,C/n) < C/k(n), then for each f ,

R(fn) = Ω(k(n) · R(f)).

In [BBCR10] a bound of T (C, I) = Õ(
√
C · I) is shown, which implies R(fn) = Ω̃(

√
n · R(f))

for any f . Using Theorem 5.1 we are able to prove the converse direction.

Theorem 6.6. For any C > I > 0, set n := ⌊C/I⌋, then

R(CPJ(C, I)n) = O(C log(nC/ε)).

3Each vertex has degree 2.
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Thus, if there are parameters C and n such that CPJ(C,C/n) cannot be solved using I = C/n
communication, i.e. T (C,C/n) > C/k(n) ≫ C/n, then CPJ(C,C/n) is a counterexample to direct
sum, i.e.

R(CPJ(C, I)n) = O(C log nC/ε) = Õ(C) = Õ(k(n)R(CPJ(C,C/n))) = o(n · R(CPJ(C,C/n))).

Proof. (of Theorem 6.6) We solve CPJ(C, I)n by takingm := n log n copies of the CPJ(C, I) problem
representing log n copies of each of the n instances. The players will compute all the copies in parallel
with error < 2ε, and then take a majority of the log n copies for each instance. For a sufficiently
large n this guarantees the correct answer for all n instances except with probability < ε. Thus our
goal is to simulate m copies of CPJ(C, I). We view CPJ(C, I)m as a degree-2m, C-round correlated
pointer jumping problem in the natural way. Each node represents a vector V = (v1, . . . , vm) of
m nodes in the m copies of CPJ(C, I). The children of V are the 2m possible combinations of
children of {v1, . . . , vm}. The distribution on the children is the product distribution induced by
the distributions in v1, . . . , vm. We claim that

D
(

CPJ(C, I)nv1 ,...,vm
)

=

m
∑

i=1

D (CPJ(C, I)vi ) . (2)

This follows easily by induction on the tree, since the distribution on each node is a product
distribution, and for each independent pairs (P1, Q1), . . . , (Pm, Qm) we have

D (P1 × P2 × . . . × Pm||Q1 ×Q2 × . . .×Qm) = D (P1||Q1) + . . .+D (Pm||Qm) ,

by Lemma 3.8. By applying (2) to the root of the tree we see that D (CPJ(C, I)m) ≤ m·I ≤ C log n.
Thus Theorem 5.1 implies that CPJ(C, I)n can be solved with an additional error of ε/2 using an
expected

C log n+ C logC/ε+ o(C log n)

bits of communication.
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