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Abstract

Two-source and affine extractors and dispersers are fundamental objects studied in the context of
derandomization. This paper shows how to construct two-source extractors and dispersers for arbitrarily
small min-entropy rate in a black-box manner from affine extractors with sufficiently good parameters.
Our analysis relies on the study of approximate duality, a concept related to the polynomial Freiman-
Ruzsa conjecture (PFR) from additive combinatorics.

Two black-box constructions of two-source extractors from affine ones are presented. Both construc-
tions work for min-entropy rate ρ < 1

2 . One of them can potentially reach arbitrarily small min-entropy
rate provided the affine extractor used to construct it outputs, on affine sources of min-entropy rate 1

2 ,
a relatively large number of output bits and has sufficiently small error. This shows that for purposes
of constructing better two-source extractors, minimizing the error of affine extractors is more important
than decreasing their min-entropy rate.

Our results are obtained by first showing that each of our constructions yields a two-source disperser
for a certain min-entropy rate ρ < 1

2 and then using a general extractor-to-disperser reduction that applies
to a large family of constructions. This reduction says that any two-source disperser for min-entropy rate
ρ coming from this family is also a two-source extractor for min-entropy rate ρ+ ε for arbitrarily small
ε > 0.

The extractor-to-disperser reduction arises from studying approximate duality, a notion related to
additive combinatorics. The duality measure of two sets A,B ⊆ Fn

2 aims to quantify how “close” these
sets are to being dual and is defined as

µ⊥(A,B) =
∣∣∣Ea∈A,b∈B

[
(−1)

∑n
i=1 aibi

]∣∣∣ .
Notice that µ⊥(A,B) = 1 implies that A is contained in an affine shift of B⊥ — the space dual to the
F2-span of B. We study what can be said of A,B when their duality measure is large but strictly smaller
than 1 and show that A,B contain subsets A′, B′ of nontrivial size for which µ⊥(A′, B′) = 1 and
consequently A′ is contained in an affine shift of (B′)⊥. Surprisingly, the PFR implies that such A′, B′

exist even if the duality measure is exponentially small in n, and this implication leads to two-source
extractors with exponentially small error.
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1 Introduction

This paper shows a new connection between two objects that have been studied in recent years in the context
of derandomization — two-source and affine extractors. First, we show two constructions that convert in a
black-box manner any affine extractor for min-entropy rate below half into a two-source disperser for min-
entropy rate below half. One of our constructions can reach arbitrarily small min-entropy rate as long as the
affine extractor has sufficiently small min-entropy loss. Second, we bound the error on sources of slightly
larger min-entropy rate using bounds on approximate duality, a new notion related to additive combinatorics
to which a large portion of this paper is devoted. Third, we propose an approximate duality conjecture
(ADC), show it is implied by the polynomial Freiman-Ruzsa conjecture (PFR) and implies a weak version
of PFR, and use ADC to obtain exponentially small bounds on the error of our two-source extractors.

1.1 Extractors and dispersers for affine and two independent sources

Two-source extractors, dispersers and bipartite Ramsey graphs Randomness extractors, or, simply,
extractors, deal with the task of extracting uniformly random bits from weak sources of randomness. (See the
survey of Shaltiel [2002] for an introduction to this topic.) The gold-standard measure for the randomness of
a sourceX , i.e., a distribution over {0, 1}n, is its min-entropy which is defined to be the largest k such that for
every x ∈ {0, 1}n the probability assigned to x by X is at most 2−k. (It is useful to think of X as uniformly
distributed over an arbitrary subset of {0, 1}n of size precisely 2k.) A function f : {0, 1}n × {0, 1}n →
{0, 1}m is said to be a two-source extractor for min-entropy k with error ε if for every pair of independent
sources X,Y that each have min-entropy at least k, the statistical distance between the uniform distribution
on m bits and the distribution f(X,Y ) is at most ε. A two-source disperser is a one-output-bit (m = 1)
two-source extractor with a nontrivial (but possibly large) bound on the error of the form ε < 1. In other
words, a two-source disperser for min-entropy k is a function f that is non constant on S × T for every pair
of subsets S, T of size at least 2k. Viewing f as the indicator function of the edge-set of a bipartite graph
Gf on vertex sets of size 2n, the graph Gf is known as a 2k-bipartite Ramsey graph because the subgraph
induced by any pair of sets of vertices of size at least 2k is neither complete, nor empty.

Erdös [1947] inaugurated the use of the probabilistic method in combinatorics and showed among
other things that a random function f is with high probability a two-source disperser1 for min-entropy
log n + O(1). However, up until a few years ago the best known construction of two-source dispersers
(and extractors) required min-entropy at least n/2. This lower bound of half on the min-entropy rate —
defined as the ratio between the min-entropy (k) and n — was first broken by Pudlák and Rödl [2004] for
the case of two-source dispersers. They constructed two-source dispersers for min-entropy rate 1

2 − o(1).
Later on, following the seminal work of Barak, Impagliazzo, and Wigderson [2006a] which brought tools
from additive combinatorics to bear on the construction of extractors, Barak et al. [2005] reduced the min-
entropy for dispersers down to δn for any δ > 0 . In the meanwhile Bourgain [2005] used more tools from
additive combinatorics and constructed a two-source extractor for min-entropy rate 1

2− ε0 for some constant
ε0 > 0, and this construction remains to this date the best in terms of its min-entropy rate. (If the sum of
min-entropies of both sources is considered, Raz [2005] showed a construction that requires one source to
have min-entropy rate just above half but the other source can have its min-entropy be as small asO(log n).)
Finally, Barak et al. [2006b] constructed what remains the state of the art for two-source dispersers, achiev-
ing min-entropy nδ for any δ > 0. Regarding conditional results, ones that depend on unproven conjectures,
[Zuckerman, 1991, Section 6.3] showed that the Paley Conjecture from number theory implies two-source

1The original statement of Erdös [1947] was in terms of non-bipartite Ramsey graphs, but the proof method holds non-the-less
for the case of bipartite Ramsey graphs, which are equivalent to two-source dispersers.
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extractors for very small min-entropy rate and Tauman Kalai et al. [2009] constructed two-source extractors
based on cryptographic assumptions.

Affine extractors An affine extractor for min-entropy k is a function g : Fn2 → Fm2 , where F2 denotes the
two-element finite field, such that for every random variable X distributed uniformly on a k-dimensional
affine subspace A of Fn2 , the random variable g(X) is close to being uniformly distributed on Fm2 . A one-
output-bit (m = 1) function that is nonconstant on every k-dimensional affine subspace is called an affine
disperser for min-entropy k.

The probabilistic method can be used to show that affine extractors exist for min-entropy as small as
log n + O(1) but up until recently explicit constructions were known only for min-entropy rate above half.
This bound was broken by Barak et al. [2005] for the case of dispersers, they obtained dispersers for min-
entropy rate δ for any δ > 0. Bourgain [2007] used new bounds on exponential sums resulting from additive-
combinatorics to construct affine extractors for similar min-entropy rates that achieve exponentially small
error (cf. Yehudayoff [2009], Li [2010] for improvements and alternative constructions along this line).
Gabizon and Raz [2008] showed constructions of affine extractors for X distributed uniformly on affine
spaces of dimension as small as 1 when the field F2 is replaced with a sufficiently large field F, and the
minimal required field-size was reduced by DeVos and Gabizon [2009]. Finally, Ben-Sasson and Kopparty
[2009] showed constructions of affine dispersers (over F2) for sublinear min-entropy as small as n4/5.

1.2 A pair of bilinear-composed two-source constructions

In this paper we analyze two families of two-source constructions. In both families we start with a function
f : Fn2 → Fm2 that we assume to be a “good” affine extractor for min-entropy rate δ (reserving ρ for denoting
the min-entropy rate of the two-source extractor built from f ). By a “good” affine extractor we mean that
for all affine sources X of min-entropy δn and y ∈ Fm2 we have Pr[f(X) = y] ≤ 2 · 2−m. (The use of
this particular error measure is explained in Remark 2.2). A parameter of crucial importance to our work
is the min-entropy loss rate λ = 1 − m

δn which measures how much entropy is lost when going from X to
f(X). To see that λ does indeed measure entropy loss notice that in the extreme case of λ = 0 we have
m = δn which means that f recovers almost all the entropy of X . As explained later on in Section 6, affine
extractors with min-entropy loss rate strictly smaller than 1 are known to exist (cf. Theorem 2.3).

Our two-source constructions are described next. For the second one we use f−1(z) to denote the set
of preimages of z ∈ Fm2 and assume the existence of z with at least 2n−m preimages (such z exists by the
pigeonhole principle).

Concatenated two-source construction This construction takes two n-bit inputs x, y and is computed by
(i) concatenating f(x) to x, (ii) concatenating f(y) to y and (iii) outputting the binary inner-product
of the two (concatenated) strings. The binary inner-product of z, z′ ∈ Fk2 is denoted by 〈z, z′〉 and
defined by

∑k
i=1 zi · z′i where all arithmetic operations are in F2.

Preimage two-source construction Let F be a one-to-one mapping of Fn−m2 to f−1(z). On a pair of
(n−m)-bit inputs x, y output the inner-product of F (x) and F (y).

Our first pair of main results is that the two constructions are two-source dispersers for min-entropy
rates that depend only on the parameters of the affine extractor mentioned above. The concatenated one is a
two-source disperser for min-entropy rate that is roughly

ρconcatenated =
1− δ(1− λ)

2
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as long as δ < 1
2 (see Theorem 2.9 for an exact statement). For the preimage one, assuming δ = 1

2 , we get
(in Theorem 2.11) a two-source extractor for min-entropy rate

ρpreimage =
λ

1 + λ
.

Notice that both constructions easily give dispersers for min-entropy rate ρ < 1
2 . For the preimage construc-

tion all we need is nontrivial loss rate (i.e., λ < 1) for min-entropy rate δ = 1
2 . For the concatenated one we

also need δ to be strictly smaller than 1
2 . As commented earlier, several constructions of affine extractors ob-

tain these parameters. The dependence of the preimage construction on min-entropy loss rate is particularly
striking and motivates the future study of the loss rate parameter of affine extractors for min-entropy rate 1

2 .
Both constructions come from a larger family which we call bilinear-composed two-source construc-

tions: We first apply a one-to-one function to each of x and y separately to obtain x′, y′ and then apply a
full-rank bilinear map (the binary inner-product function) to x′, y′. We point out this common denominator
of the two constructions because our second main result says that any bilinear-composed two-source dis-
perser for min-entropy rate ρ has bounded error on sources of min-entropy rate ρ+γ for any γ > 0. We give
two bounds on the error in this case. The first one bounds the error by a non-trivial constant 1 − γ′ where
γ′ > 0 depends only on γ and the parameters of the affine extractor. This result is stated in Lemma 2.13 and
Theorem 2.14. The second bound says that the error is at most 2−cγn for an absolute constant c > 0 (see
Lemma 2.18 and Theorem 2.19). This bound assumes the approximate duality conjecture (discussed next),
a natural conjecture which is implied by, and implies a weak (though unproven) version of, the polynomial
Freiman Ruzsa conjecture from additive combinatorics.

Comparison of the two constructions Special cases of both constructions, which used specific functions
f not necessarily known to be affine extractors, have been studied in the context of two-source dispersers
and extractors — Bourgain [2007] used certain concatenated constructions and Pudlák and Rödl [2004]
used preimage ones. Each construction has its advantages. The concatenated one is more efficient from
a computational perspective whereas the preimage one can potentially reach arbitrarily small min-entropy
rate. Let us elaborate on these two points.

Assuming f is explicit, i.e., can be computed in time nO(1), inspection reveals that the concatenated
construction is also explicit. The preimage one is not necessarily explicit, because F is not necessarily
explicit even if f is. It is nonetheless semi-explicit — it can be computed in time 2n · poly(n) which is far
better than what can be done when using exhaustive search to look for a two-source extractor, this takes time
22n .

When it comes to min-entropy rate, the preimage construction has two advantages over the concatenated
one. First, it only requires an affine extractor for min-entropy rate δ = 1

2 whereas the concatenated one needs
δ < 1

2 . More significantly, as the min-entropy loss rate λ approaches zero so does the min-entropy rate of
the preimage-extractor — it is roughly λ/(1 + λ) — but the concatenated construction does not go below
min-entropy 1

4 even if we assume that f has no min-entropy loss (λ = 0).

1.3 Proof overview

Our proofs can be broken into two parts. First we show that each of our constructions is a two-source
disperser for a certain min-entropy rate ρ that depends only on the parameters of the affine extractor we
started with. Then we use approximate duality to bound the bias on sources of min-entropy rate slightly
larger than ρ. We now elaborate on these two parts, focusing on the second and harder part.
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To prove that our constructions are two-source dispersers consider S, T ⊂ {0, 1}n, |S|, |T | > 2ρn

and recall that our constructions are bilinear-composed, meaning that we first apply a certain function h :
Fn2 → Fm2 to each input individually. Let h(S) = {h(s) | s ∈ S} and define h(T ) similarly. Our main
observation in this part is that the dimension of each of span (h(S)) , span (h(T )) is greater than m/2, and
this immediately shows that the function E(X,Y ) = 〈h(X), h(Y )〉 is not constant on S × T . This part
of our proofs is inspired by [Pudlák and Rödl, 2004, Bourgain, 2007] which applied similar reasoning to
particular functions (cf. Rao [2007]), and our argument can be viewed as a generalization of these works to
the case of arbitrary affine extractors.

To bound the error of bilinear-composed constructions we study the notion of approximate duality,
elaborated upon next, and use it to show that every bilinear-composed two-source disperser for min-entropy
rate ρ is a two-source extractor for min-entropy rate ρ + γ for any γ > 0. Two sets A,B ⊆ Fn2 are said to
be dual to each other if and only if 〈a, b〉 = 0 for all a ∈ A, b ∈ B. We define the duality measure of A,B
in (1) as an estimate of how “close” this pair is to being dual.

µ⊥(A,B) ,

∣∣∣∣Ea∈A,b∈B [(−1)〈a,b〉
] ∣∣∣∣. (1)

It can be verified that if µ⊥(A,B) = 1 then A is contained in an affine shift of B⊥ which is the space
dual to the linear span of B. The question we study is what happens when µ⊥(A,B) is large though strictly
less than 1. We postulate thatA,B contain pretty large subsets that have a duality measure of 1 and prove (in
Lemma 2.12) that this indeed holds when µ⊥(A,B) > 1− ε for sufficiently small ε > 0. The approximate
duality conjecture (ADC, Conjecture 2.16) says that a similar statement should hold even when µ⊥(A,B) is
exponentially small in n and before we justify our belief in this conjecture by relating it to the PFR let us see
how approximate duality comes up in the analysis of the error of two-source bilinear-composed extractors.

Suppose that the bilinear-composed construction E(x, y) = 〈h(x), h(y)〉 is known to be a two-source
disperser for min-entropy rate ρ, assuming h maps Fn2 to Fm2 . To prove that E is an extractor assume by
way of contradiction that there exist S, T ⊂ Fn2 , |S|, |T | > 2(ρ+γ)n on which E is very biased. Letting
S̃ ⊆ Fm2 be the set S̃ = h(S) and defining T̃ analogously, our assumption is that µ⊥(S̃, T̃ ) is very large.
Approximate duality statements like Lemma 2.12 and the ADC imply the existence of large sets Ŝ ⊆ S̃
and T̂ ⊆ T̃ that have a duality measure of 1 and this implies that E is constant on the pair of large sets
S′ = h(−1)(Ŝ), T ′ = h(−1)(T̂ ) which contradicts our assumption that E is a two-source disperser. We now
discuss approximate duality in the context of additive combinatorics.

Approximate duality and the polynomial Freiman Ruzsa conjecture The question addressed by the
Freiman-Ruzsa Theorem [Freiman, 1973, Ruzsa, 1999] is the following2. Start by recalling that A is a
subspace of Fn2 if and only if A does not expand under addition, by which we mean that |A + A| = |A|
where A+A = {a+ a′ | a, a′ ∈ A}. Now suppose A ⊂ Fn2 behaves “approximately” like a subspace, i.e.,
|A+A| ≤ K|A| (think of K � |A|). Can we conclude that A is “close” to a subspace, meaning it contains
a large subset A′ that is itself a large fraction of a subspace H of Fn2 ? The Freiman-Ruzsa theorem gives a
positive answer to this question, showing that both fractions |A|/|H| and |A∩H|/|A| can be bounded from
below by 2−poly(K), the best lower bound on these ratios to date is of the form K−O(K) [Green and Tao,
2009]. The polynomial Freiman-Ruzsa conjecture (PFR) postulates that these ratios can be bounded from
below by a polynomial, instead of exponential, function in K of the form K−O(1).

2We describe the Freiman-Ruzsa Theorem for linear spaces over F2, the case most relevant to our study, whereas the Freiman-
Ruzsa Theorem applies to arbitrary subsets of groups. See Green [2005b] and references within for more information.
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The question of approximate duality has a similar flavor: If two sets behave “approximately” like dual
sets, do they contain large subsets that are strictly dual? Stated this way it seems natural to explore the
connection between approximate duality and PFR, which is what we do later on in the paper. We show that
PFR implies ADC and, in the reverse direction, ADC implies a “weak” form of PFR that, although weaker
than the PFR, is stronger than what is currently known. Interesting avenues for future research are to pin
down the exact versions of PFR and ADC that are equivalent (assuming they exist) and to study the ADC as
a means to obtain a possibly weaker, though better than currently known, version of PFR.

1.4 Open questions

From two-source to affine extractors The question of possible connections between two-source and
affine extractors was first raised by Barak et al. [2005] in Section 1.4, where they say about their affine
dispersers:

“Note that the new results here are quantitatively the same as our 2-source results . . . The tech-
niques are related as well, but at this point this fact may be surprising — there seem to be little
resemblance between the models, and indeed there seem to be no reductions between them in
either direction. The similarity in techniques may simply be a byproduct of the fact that we were
working on them in parallel, . . . however it would be interesting to find any tighter connections
between the two models.”

Our results address this question only in one direction, that of constructing two-source extractors out of
affine ones. The reverse direction, that of constructing in a black-box manner affine extractors from two-
source ones, remains wide open. This is somewhat perplexing because we would have guessed that the
two-source-to-affine part should be easier. Counting the set of distinct sources that are uniformly distributed
over sets of size 2ρn we see there are

(
2n

2ρn

)2 ≈ 2n·2
ρn

of them, and this is much larger than the size of the
set of affine sources, of which there are at most 2n

2
. All things considered it should be easier to go from

extractors that work against a large set of sources to ones that work against a smaller set. We leave the
problem of constructing affine extractors and dispersers from two-source ones as an interesting question for
future research.

Decreasing min-entropy loss rate of affine extractors So far most work on affine extractors and dis-
persers has focused on reducing the min-entropy rate and significant progress has been made along this
line, as surveyed in the previous section. But the question of minimizing the min-entropy loss rate of affine
extractors has received much less attention. Our work shows that at least as far as two-source constructions
are concerned, it is the min-entropy loss rate that should be minimized while the min-entropy rate can be
set to be a pretty large constant, like 1

2 . It would be interesting to see if, for instance, affine extractors for
small min-entropy rate and the tools used to analyze them could be converted into constructions for large
min-entropy rate (like 1

2 ) but with very small min-entropy loss rate.

Affine extractors as fundamental building blocks of extractors In recent years we have seen a num-
ber of interesting constructions of extractors for structured sources of randomness, including “bit-fixing”,
“samplable” and “low-degree” sources, to name a few [Chor et al., 1985, Gabizon et al., 2006, Trevisan and
Vadhan, 2000, Kamp and Zuckerman, 2007, Dvir, 2009, Dvir et al., 2009]. Our work suggests exploring
the use of affine extractors in constructing extractors for these structured sources of randomness. A related
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question is to construct “seeded” extractors out of affine ones. Arguably, these structured sources of ran-
domness show very little resemblance with affine sources. But a similar objection could have been made
just as well with respect to using affine extractors for building two-source ones.

2 Main results

We start by defining the main objects of study in this paper — affine and two-source extractors (and dis-
persers) — and to do so introduce a bit of notation.

We identify {0, 1}with the two-element field F2 and {0, 1}n with Fn2 . Given x = (x1, . . . , xn) ∈ Fn2 and
x′ = (x′1, . . . , x

′
m) ∈ Fm2 let (x ◦ x′) denote their concatenation, i.e., (x ◦ x′) = (x1, . . . , xn, x

′
1, . . . , x

′
m).

For two sequences x, y ∈ Fk2 let 〈x, y〉 denote the F2-bilinear form 〈x, y〉 =
∑k

i=1 xi · yi , commonly
referred to as the inner-product function. For A ⊂ Fn2 let A⊥ denote the space that is dual to span (A),
i.e., A⊥ = {b ∈ Fn2 | 〈a, b〉 = 0 for all a ∈ A} . A source over n bits is a distribution X over Fn2 . The
min-entropy of X is denoted by H∞(X) and the min-entropy rate of X is h∞(X) = H∞(X)/n. If X
is distributed uniformly over an affine subspace of Fn2 of dimension d we call X a d-dimensional affine
source. For a function f : Fn2 → Fm2 we denote by f(X) the distribution induced on Fm2 by f(X) and by
supp(f(X)) the subset of Fm2 on which the distribution f(X) is supported. We denote by f−1(x) the set
of preimages of the string x under the function f . For A ⊆ Fn2 we denote by f(A) the image of A under
f , i.e., f(A) = {f(a) | a ∈ A}. Throughout the paper we reserve the letter E to denote various extractors,
and E denotes expectation.

Definition 2.1 (Extractor and disperser). Let S be a set of N -bit sources. A [N,m,S, ε]-extractor is a
function f : FN2 → Fm2 satisfying for every source S ∈ S and y ∈ Fm2∣∣Pr[f(S) = y]− 2−m

∣∣ ≤ ε.
The function f is called an [N,m,S]-disperser if f is nonconstant on every source S ∈ S. An alternative
definition is to say that the random variable f(S) is of size greater than 1 for every S ∈ S.

We call N the source length, m is the output length, and ε is the bias error, or simply error of the
extractor. We shall be interested in extractors for two special kinds of sources:

• Two-source extractors and dispersers: When N = 2n and S is the set of product distributions
S = X×Y where bothX and Y have min-entropy rate greater than ρ, we refer to f : Fn2 ×Fn2 → Fm2
as a [n,m, ρ, ε]-two source extractor, or [n,m, ρ]-two source disperser.

• Affine extractors and dispersers: When S is the set of uniform distributions on affine subspaces of
FN2 of dimension greater than ρN , we refer to f as a [N,m, ρ, ε]-affine extractor, or [N,m, ρ]-affine
disperser.

A parameter that will have great importance later on is the entropy loss rate defined as

λ = max
S∈S

1− H∞(f(S))

H∞(S)
. (2)

This rate measures how much relative min-entropy is lost when applying f to a source S in S, and smaller
λ corresponds to better extractors, ones that retain a larger min-entropy rate.
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Remark 2.2 (Bias error). We use a nonstandard measure of error in our definition of extractors, typical
definitions use statistical distance between f(S) and the uniform distribution over Fm2 as the error parameter.
The reason for this nonstandard choice is that it will be relatively easy to analyze our constructions using this
measure. For instance, we shall argue (is Section 6) that existing affine extractors, which are typically stated
as one-output bit extractors, can be easily converted into m-output bit extractors with a relatively small
loss in bias error. And using similar reasoning we will also show how to get multi-output bit two-source
extractors out of our constructions (cf. Lemma 2.20). Notice that if f is an extractor with output length m
and bias error ε then f has “standard”, statistical distance, error at most ε2m.

A number of explicit constructions of affine extractors have appeared in recent years Bourgain [2007],
Gabizon and Raz [2008], Ben-Sasson and Kopparty [2009], DeVos and Gabizon [2009], Li [2010]. The
following one, due to Bourgain [2007] (see also Yehudayoff [2009], Li [2010]) achieves the largest amount
of output bits — a linear number of them, together with an exponentially small bias error, which results in
min-entropy loss rate that is strictly less than 1.

Theorem 2.3 (Bourgain’s affine extractor). For every δ > 0 there exists λδ < 1 that depends only on δ such
that there exists an explicit (as per Remark 2.7) family of [n,m = (1− λδ)δn, δ, 2−m]-affine extractors.

Notice that the min-entropy loss rate of the construction above is λδ + (δn)−1 = λδ + o(1).

Remark 2.4 (Multi-output bit affine extractors). The original statement in Bourgain [2007] gives a family
of [n, 1, δ, 2−Ω(n)]-affine extractors, i.e., the output length is 1. It is nonetheless rather straightforward to
obtain a linear number of output bits with essentially the same bias error (cf. Lemma 6.1).

2.1 Candidate two-source constructions

All results stated in this paper refer to the following two candidate constructions of two-source extractors.

Definition 2.5 (Concatenated construction). Given functions f, g : Fn2 → Fm2 , the (f, g)-concatenated
construction is the function Ec

f,g : Fn2 × Fn2 → F2 defined for x, y ∈ Fn2 by

Ec
f,g(x, y) = 〈(x ◦ f(x)), (y ◦ g(y))〉. (3)

Definition 2.6 (Preimage construction). Given functions f, g : Fn2 → Fm2 let n′ = n −m. Let z, z′ ∈ Fm2
satisfy |f−1(z)|, |g−1(z′)| ≥ 2n

′
. Let F : Fn′2 → f−1(z) and G : Fn′2 → g−1(z′) be injective. The

(F,G)-preimage construction is the function Ep
F,G : Fn′2 × Fn′2 → F2 defined for x, y ∈ Fn′2 by

Ep
F,G(x, y) = 〈F (x), G(y)〉. (4)

Remark 2.7 (Explicitness). A family of functions {En : Fn2 → F2 | n ∈ N} is called explicit if there exists
a polynomial time algorithm that on input x ∈ Fn2 outputs En(x). The family is semi-explicit if it can be
computed in time 2n · poly(n), or, in other words, the truth-table of En can be obtained in quasi-linear3

time in the size of this truth-table (which is 2n). Assuming the functions f, g given in Definitions 2.5, 2.6
are explicit we see that the concatenated construction is also explicit. Regarding the preimage construction,
it is certainly semi-explicit but not necessarily explicit — this depends on the explicitness of the injective
functions F,G.

3We call a function t : N→ N quasi-linear if t(n) = O(n · poly logn).
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Both constructions are instances of a family of functions we call m-bilinear according to the follow-
ing definition. We will use this definition later on (in Lemma 2.18) to bound the error of our two-source
extractors, assuming only the fact that they are two-source dispersers.

Definition 2.8 (m-Bilinear two-source construction). A function E : {0, 1}n × {0, 1}n → {0, 1} is called
an m-dimensional bilinear-composed two-source construction, or, for brevity, m-bilinear, if there exist two
injective functions f1, f2 : {0, 1}n → {0, 1}m such that E(x, y) = 〈f1(x), f2(y)〉 for every x, y ∈ {0, 1}n.

2.2 Two-source dispersers

Our first pair of results is that both the concatenated and preimage constructions are two-source dispersers,
or bipartite Ramsey graphs, for min-entropy rate below half. The preimage construction can reach arbitrarily
small min-entropy rate provided the entropy loss of the affine extractor is sufficiently small. For f : Fn2 →
Fm2 and m′ ≤ m, the m′-bit projection of f is obtained by taking4 the first m′ bits of f(x). Formally,
if f(x) = (y1, . . . , ym) where yi ∈ F2 then f ′(x) = (y1, . . . , ym′). To better understand the selection
of parameters in the following Theorem we point out that if f is an [n,m = (1 − λ)δn, δ, 2−m]-affine
extractor, then for any 1 > λ′ ≥ λ and m′ = δ(1 − λ′)n, the m′-bit projection of f is an [n,m′, δ, 2−m

′
]-

affine extractor.

Theorem 2.9 (Concatenated two-source disperser from affine extractor). Suppose f and g are [n,m =
(1 − λ)δn, δ, 2−m]-affine extractors for δ < 1

2 and λ < 1. Let λ′ = max
{
λ, 5

3 −
1
3δ

}
(noticing λ′ < 1)

and ρ = 1−δ(1−λ′)
2 (noticing ρ < 1

2 ). Set m′ = bδ(1− λ′)nc − 2 and let f ′, g′ be m′-bit projections of f, g
respectively. Then Ec

f ′,g′ is a [n, 1, ρ]-two-source disperser.

Combining Bourgain’s affine extractor for min-entropy rate 1
5 and noticing that for such rate we have

λ′ = λ in the previous theorem we get:

Corollary 2.10 (A two-source disperser for min entropy rate below half). Take f = g to be Bourgain’s
[n,m = (1 − λ 1

5
)n/5, 1

5 , 2
−m]-affine extractor, with min-entropy loss rate λ 1

5
< 1. Then the concatenated

construction Ec
f,f is a [n, 1, ρ]-two source disperser for min-entropy rate ρ = 2

5 +
λ 1

5
10 < 1

2 .

Inspecting Theorem 2.9 we see that, even if we assume minimal loss λ = 0 and a min-entropy rate
δ = 1

5 for the affine extractor which maximizes the min-entropy rate of the resulting concatenated two-
source extractor, we end up with a two-source extractor for min-entropy rate 2

5 . This min-entropy rate
barrier can be broken by the preimage construction. The following theorem says that if f is an affine
extractor for min-entropy rate half that has loss λ, then the preimage construction based on f is a two-
source disperser for min-entropy rate λ/(1 + λ), a quantity that is strictly less than half for any loss rate
strictly smaller than 1, and which approaches 0 for λ→ 0.

Theorem 2.11 (Preimage two-source disperser from affine extractor). If f and g are [n,m = (1−λ)n/2, 1
2 , 2
−m]-

affine extractors and F,G are as in Definition 2.6, then Ep
F,G is a [n′ = 1+λ

2 n, 1, λ
1+λ ]-two-source disperser.

We end this section by bounding the error of both dispersers presented above. These bounds follow from
a version of the ADC that we prove in Section 4.1. This version requires µ⊥(A,B) to be close to 1, i.e.,
A,B have to be “nearly-dual”.

4One can take a more general definition of an m′-bit projection as any function f ′ : Fn2 → Fm
′

2 obtained by composing f
with 2m−m

′
-to-1 mapping, such as a full-rank linear transformation T : Fm2 → Fm

′
2 where f ′(x) = T (f(x)). We stick with the

definition above for simplicity.
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Lemma 2.12 (Approximate-duality for nearly-dual sets). For every δ > 0 there exists a constant ε > 0 that
depends only on δ, such that if A,B ⊆ Fn2 satisfy µ⊥(A,B) ≥ 1− ε then there exist subsets A′ ⊆ A, |A′| ≥
1
2 |A| and B′ ⊆ B, |B′| ≥ 2−δn|B|, such that µ⊥(A′, B′) = 1.

This lemma allows us to convert dispersers into extractors with a large, though nontrivial, bound on
error:

Lemma 2.13 (Bounding the error of bilinear-composed two-source dispersers). For every ρ, γ, ν > 0 there
exists γ′ < 1/2 such that the following holds for sufficiently large n. Every n

ν -bilinear-composed [n, 1, ρ]-
two-source disperser is a [n, 1, ρ+ γ, γ′]-two source extractor.

Combining this lemma with Theorems 2.9 and 2.11 gives the following corollary.

Theorem 2.14 (Nontrivial bounds on extractor error). For all γ > 0 there exists γ′ < 1/2, depending only
on γ such that the following holds.

1. If f, g are [n,m = (1 − λ)δn, δn, 2−m]-affine extractors, then Ec
f ′,g′ defined in Theorem 2.9 is a

[n, 1, ρ+ γ, γ′]-two source extractor for ρ as defined in the same theorem.

2. If f, g are [n,m = (1 − λ)n/2, 1
2 , 2
−m]-affine extractors and F,G are as defined in Definition 2.6,

then Ep
F,G is a [n′ = 1+λ

2 n, 1, λ
1+λ + γ, γ′]-two source extractor.

2.3 Two-source extractors assuming the polynomial Freiman Ruzsa Conjecture

Both constructions — concatenated and primage — are two-source extractors with exponentially small error
if the following well-known conjecture from additive combinatorics is true.

Conjecture 2.15 (Polynomial Freiman-Ruzsa (PFR)). There exists an integer r such that if A ⊂ Fn2 has
|A+A| ≤ K|A|, then A may be covered by at most Kr cosets of some subspace of size at most Kr|A|.

It will be easier to work with the following conjecture, which we later on show is implied by PFR. Recall
the definition of the duality measure of two sets given in (1).

Conjecture 2.16 (Approximate Duality (ADC)). For every pair of constants α, δ > 0 there exist a constant
ζ > 0 and an integer r, both depending only on α and δ such that the following holds for sufficiently large
n. If A,B ⊆ Fn2 satisfy |A|, |B| > 2αn and µ⊥(A,B) ≥ 2−ζn, then there exists a pair of subsets

A′ ⊆ A, |A′| ≥ |A|
2δn+1

and B′ ⊆ B, |B′| ≥
(
µ⊥(A,B)

2

)r
· |B|

2δn

such that µ⊥(A′, B′) = 1.

Remark 2.17 (Exponential loss is necessary). It may seem that the factor 2−δn appearing in the bound on the
relative size of A′, B′ can be avoided or perhaps replaced by a polynomial factor in µ⊥(A,B). While there
should be some room for improvement in the parameters of the conjecture, Shachar Lovett pointed out to us
[personal communication] that a factor of 2−Ω(

√
n) is unavoidable even for large values of µ⊥(A,B): Take

n = 3k and let S denote the subset of k-bit strings of Hamming weight γ
√
k for constant γ > 0. Consider

A = Fk2×S×
{

0k
}
, B =

{
0k
}
×S×Fk2 . It is not hard to verify that |A| = |B| ≈ 2n/3 and µ⊥(A,B) ≥ ε,

where ε > 0 depends on γ and can be set to be arbitrarily close to 1, but the largest equal-sized dual subsets
of A,B have size at most 2−Ω(

√
n) · |A| and 2−Ω(

√
n) · |B| respectively.
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The ADC, which is implied by the PFR, allows us to argue that any m-bilinear two-source disperser
is actually a two-source extractor, with exponentially small error, for roughly the same min-entropy as the
disperser.

Lemma 2.18 (m-bilinear two-source dispersers are extractors). Assuming ADC (Conjecture 2.16), for every
ρ, γ, ν > 0 there exists ζ > 0 such that the following holds for sufficiently large n: Every n

ν -bilinear
composed [n, 1, ρ]-two source disperser is a [n, 1, ρ+ γ, 2−ζn]-two-source extractor.

Theorem 2.19 (Two-source extractors from affine ones). Assuming ADC, for every δ, λ, γ > 0 there exists
ζ > 0 such that the following holds for sufficiently large n.

1. If f, g are [n,m = (1−λ)δn, δ, 2−m]-affine extractors thenEc
f ′,g′ defined in Theorem 2.9 is a [n, 1, ρ+

γ, 2−ζn]-two source extractor for ρ defined in that theorem.

2. If f, g are [n,m = (1 − λ)n/2, 1
2 , 2
−m]-affine extractors and F,G are as defined in Definition 2.6,

then Ep
F,G is a [n′ = 1+λ

2 n, 1, λ
1+λ + γ, 2−ζn]-two source extractor.

We end by pointing out that since our constructions are Ω(ρn)-bilinear composed, and the error is
exponentially small in ρn, we can use the following lemma to obtain two-source extractors that output a
linear number of bits and obtains exponentially small error.

In what follows call a set of matrices M1, . . . ,Mm ∈ Fm×m2 independent if they satisfy the following
property: For every v1, . . . , vm ∈ F2 not all zero, the matrix

∑
i viMi has full rank. In Section 6 we explain

how a collection of independent matrices can be obtained. There we also prove the following statement.

Lemma 2.20 (Multi-output extractors). Let f, g : Fn2 → Fm2 be such that the m-bilinear function

E(x, y) = 〈f(x), g(y)〉

is a [n, 1, ρ, ε]-two source extractor. Then for t ≤ m, the function E : Fn2 × Fn2 → Ft2 defined by

E(x, y) = (〈f(x),M1g(y)〉, . . . , 〈f(x),Mtg(y)〉)

is an [n, t, ρ, ε]-two source extractor.

2.4 On the polynomial Freiman Ruzsa and approximate duality conjectures

We end the description of our main results by describing the relationship between the PFR and ADC. We
have already said that the PFR conjecture implies the ADC one. To prove this implication it is crucial to us
that the exponent r in the PFR conjecture be close to 1, i.e., that the polynomial in the “polynomial Freiman
Ruzsa” conjecture be nearly-linear. To achieve this, we are willing to assume not only that 2A is small but
even that `A =

{∑`
i=1 ai | ai ∈ A

}
is small for some constant ` > 2. In other words, to prove the ADC

what we really need is the Nearly-linear Freiman Ruzsa (NLFR) conjecture:

Conjecture 2.21 (Nearly-linear Freiman-Ruzsa (NLFR)). For every ρ > 0 there exists an integer ` which
depends only on ρ, such that if A ⊂ Fn2 has |`A| ≤ K|A|, then A may be covered by at most Kρ cosets of
some subspace of size at most K|A|.

In Section 5 we show that the NLFR and PFR are equivalent. (The implication NLFR⇒ PFR is rela-
tively easy but the other direction is nontrivial.) We also show that NLFR⇒ ADC. Regarding the reverse
direction, we show that the ADC implies the following weaker form of PFR:
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Conjecture 2.22 (Weak PFR for dense sets (wPFR)). For every 1 > α′ > 0 and 1 > δ′ > 0, there exists
an integer r′ which depends only on α′ and δ′, such that if A ⊂ Fn2 has 2α

′n ≤ |A| ≤ 2(1−α′)n and
|A + A| ≤ K|A|, then A may be covered by at most 2δ

′n+1 · K cosets of some subspace of size at most
2δ
′n(2K)r

′ |A|.

The above conjecture differs from the standard PFR conjecture in two ways. First, in the above con-
jecture the set A must be of high density, and the exponent r′ depends on the density of the set. Second,
the number of cosets and the size of the subspace are multiplied by an exponential factor. However, this
exponential factor can set to be arbitrarily small, at the cost of enlarging r′.

The relation between these conjectures can be summarized by:

(PFR⇔ NLFR)⇒ ADC⇒ wPFR

The current state-of-affairs regarding PFR and ADC deserves further thought. It could be that ADC is
equivalent to wPFR. The exponential loss necessary in the ADC (cf. Remark 2.17) may offer some support
to this belief. And if the ADC is strictly weaker than PFR it may an easier conjecture to settle. We have
shown here that it would imply better two-source extractors, and the wPFR implied by it could be sufficient
for some of the other applications of the PFR (see Green [2005a] for a survey of some of them).

2.5 Organization of the rest of the paper

The proofs of our main results appear in the next two sections. In the next section we first prove that
our constructions are two-source dispersers and then in Section 4 show that this also implies that they are
extractors for roughly the same min-entropy. In Section 5 we discuss the relation between PFR, NLFR and
ADC in more detail. Finally, in Section 6 we study the bias error of existing affine extractor and multi-output
two-source extractors arising from bilinear-composed constructions.

3 From affine extractors to two-source dispersers

In this section we prove that plugging an affine extractor with sufficiently good parameters into our two-
source constructions results in a two-source disperser for min-entropy rate that is related to the min-entropy
rate and loss rate of the affine extractor.

3.1 Concatenated two-source disperser — Proof of Theorem 2.9

The main step in the proof is the following lemma. Before proving the lemma we show how it implies
Theorem 2.9. For S ⊆ Fn2 we denote by dim(S) the dimension of span (S).

Lemma 3.1 (Affine extractors lead to dimension expansion). Suppose f is an [n,m, δ, 2−m]-affine extractor.
Then for every S ⊆ Fn2 of size greater than 2m+δn, denoting

S = {(x ◦ f(x))|x ∈ S},

we have
dim(S) ≥ blog |S|c+m− 1.
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Proof of Theorem 2.9. Our setting of λ′ = max
{
λ, 5

3 −
1
3δ

}
and ρ = 1−δ(1−λ′)

2 implies that

ρ ≥ δ(2− λ′). (5)

Given two n-bit sources X,Y of min-entropy rate greater than ρ let S, T ⊆ Fn2 denote their respective
supports. Recalling m′ = δ(1− λ′)n− 2 we conclude from (5) that

|S|, |T | > 2ρn ≥ 2δn+m′ .

Letting S = {(x ◦ f(x))|x ∈ S} and T = {(y ◦ g(y))|y ∈ T}, Lemma 3.1 implies

dim(S), dim(T ) > ρn+m′ − 1 ≥ n+m′

2
.

The last inequality follows because ρn > n−m′
2 + 1. We conclude that dim(S) + dim(T ) > m′ + n + 1

which means that span
(
S
)

is not contained in an affine coset of (span
(
T
)
)⊥. So S is not contained in an

affine coset of (T )⊥ and this shows that Ec
f ′,g′(S, T ) is non-constant, thereby completing the proof.

And now we give the proof of Lemma 3.1.

Proof of Lemma 3.1. Denote dim(S) by s and dim(S) by s+ r, noticing s ≥ m+ δn and 0 ≤ r ≤ m. To
prove the lemma we will show

s+ r ≥ blog |S|c+m.

Start with a basis for span
(
S
)

and use Gaussian elimination to make the first r elements of this basis,
denoted v1, . . . , vr, have their support in the last m bits. The s remaining basis elements can be partitioned
into two sets, those whose last m bits lie in the span of v1, . . . , vr, and those whose last m bits do not lie in
this span. Denote the former basis elements (whose last m bits lie in the span of v1, . . . , vr) by u1, . . . , us0 ,
and the latter ones by w1, . . . , ws1 . We further assume u1, . . . , us0 to have their support in the first n bits.
We have s1 ≤ m and s0 + s1 = s. Let V = span ({v1, . . . , vr}) and define U,W analogously. Let
π0 : Fn+m

2 → Fm2 be the linear operator which projects Fn+m
2 onto the last m bits5 and let π1 : Fn+m

2 → Fn2
be the projection onto the first n bits.

The crucial observation is that, assuming S ⊆ span (V ∪ U ∪W ), we see that f(S) ⊆ π0(V + W ).
Furthermore, for each z = π0(v + w) ∈ π0(V + W ) which is a possible output of f on S — there are at
most 2r+s1 such z’s — the set of preimages of z lies in the affine space π1(w + U). This affine space has
dimension s0 = s − s1 ≥ s −m because s1 ≤ m. By definition of m and the assumption on s we have
s −m ≥ δn which implies dim(π1(w + U)) ≥ δn. Assuming f is an [n,m, δ, 2−m]-affine extractor we
bound the size of the preimage of z within S by

|f (−1)(z) ∩ S| ≤ |f (−1)(z) ∩ π1(w + U)| ≤ 2s0−m+1.

Summing up, the size of S is bounded by the size of f(S) times the size of the preimage set of each element
of f(S), i.e.,

|S| ≤ 2r+s1 · 2s0−m+1.

The proof is completed by taking logarithm of both sides and recalling s = s0 + s1.

5Formally, letting
{
e
(t)
1 , . . . , e

(t)
t

}
denote the standard basis for Ft2 and representing elements of Fn+m2 in this basis for t =

n+m, we define π0(
∑n+m
i=1 aie

(n+m)
i ) =

∑n+m
j=n+1 aje

(m)
j and π1(

∑n+m
i=1 aie

(n+m)
i ) =

∑n
j=1 aje

(n)
j .

13



3.2 Preimage two-source dispersers — Proof of Theorem 2.11

Proof of Theorem 2.11. Let m = 1−λ
2 n and recall n′ = n − m = 1+λ

2 n. Let z, z′ ∈ Fm2 be the strings
from Definition 2.6, such that F is an injective mapping of Fn′2 into f−1(z) and G is an injective mapping
of Fn′2 into f (−1)(z′). Given two n′-bit sources X,Y of min-entropy rate greater than λ

1+λ let S, T ⊆
Fn2 denote the respective supports of F (X), G(Y ), noticing |S|, |T | > 2

λ
1+λ

n′ = 2
λ
2
n. We shall show

that dim(S),dim(T ) > n
2 , hence F (X), G(Y ) are not contained in affine shifts of dual spaces, thereby

completing our proof.
By symmetry it suffices to prove that S is not contained in any affine space of dimension n/2. Let A be

such a space. By Definition 2.1 we get

|A ∩ S| ≤ |A ∩ f−1(z)| ≤ 2 · 2−
1−λ
2
n · 2

n
2 = 2

λ
2
n.

We conclude that S * A and since this holds for all affine spaces of dimension n/2 our proof is complete.

4 From two-source dispersers to extractors

In this Section we prove Lemma 2.13 which shows that any bilinear-composed two-source disperser is
actually a two-source extractor with a nontrivial, alas large, bound on the bias error. This result is implied
by the Approximate-Duality Lemma for nearly-dual sets (Lemma 2.12) which we prove first. Then in
Section 4.2 we show that assuming ADC our two-source dispersers are actually extractors with exponentially
small error. And now for the details.

4.1 Bounding disperser bias by approximate duality for nearly-dual sets

We start with the proof of the approximate duality for nearly-dual sets (Lemma 2.12) and then prove
Lemma 2.13 which is implied by it. We shall need the notion of the spectrum of a set which we take
from [Tau and Vu, 2006, Chapter 4]. This concept will be used also later on in the proof of ADC⇒ wPFR
in Section 5.3.

Definition 4.1 (Spectrum). For a set B ⊆ Fn2 and α ∈ [0, 1] let the α-spectrum of B be the set

specα(B) :=
{
x ∈ Fn2 | Eb∈B

[
(−1)〈x,b〉

]
≥ α

}
.

Proof of Lemma 2.12. We assume without loss of generality that Ea∈A,b∈B
[
(−1)〈a,b〉

]
> 0, the proof for

the case in which Ea∈A,b∈B
[
(−1)〈a,b〉

]
< 0 is similar. Let A′ = A ∩ spec1−2ε(B). The assumption

µ⊥(A,B) ≥ 1− ε together with Markov’s inequality shows |A′| ≥ 1
2 |A|.

The idea of the proof is as follows. The elements of A′ partition Fn2 into affine cosets of A′⊥. Let
a1, . . . , ad ∈ A′ form a basis for span (A′). We argue that since A′ ⊆ spec1−2ε(B), most elements of B
must belong to affine cosets H of A′⊥ for which µ⊥(H, {a1, . . . , ad}) is large. Then we argue that there are
not too many such cosets, and hence there exists an affine coset of A′⊥ which contains a large fraction of
the elements in B. This will imply the existence of a large set B′ for which µ⊥(A′, B′) = 1. Details follow.

In what follows let H : (0, 1)→ (0, 1) denote the binary entropy function given by:

H(p) = p log
1

p
+ (1− p) log

1

1− p
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Choose 0 < ε ≤ 1
8 such that H(

√
2ε) < δ. Let α = d

n denote the fractional dimension of span (A′). For
b ∈ Fn2 let w(b) denote the fraction of zeros in the set {〈b, ai〉 | i ∈ {1, 2, . . . , d}}, i.e.,

w(b) =
|{〈b, ai〉 = 0 | i ∈ {1, . . . , d}}|

d

Since a1, . . . , ad are all contained in spec1−2ε(B) we have Eb∈B [w(b)] ≥ 1 − 2ε. From Markov’s
inequality, this implies that at least

(
1−
√

2ε
)
-fraction of b’s in B have weight at least 1 −

√
2ε. We let B̃

denote the subset of B which contains all elements in B with weight at least 1−
√

2ε.
Now observe that a1, a2, . . . , ad partition Fn2 into 2d = 2αn sets, where each set is an affine shift of

{a1, a2, . . . , ad}⊥ and all elements in the set have the same weight. In particular, for every 0 ≤ t ≤ αn,
there are precisely

(
αn
t

)
sets of weight 1 − t

αn . Our main observation here is that since all the elements in
B̃ are of very high weight, they cannot participate in too many different affine shifts, and in particular there
exists one such affine shift which contains a large fraction of b’s in B̃. More precisely, we are forced to pick
B̃ from sets of weight at least 1−

√
2ε, and we have that the number of such sets is at most:∑

0≤t≤
√

2εαn

(
αn

t

)
≤ 1 +

√
2εαn ·

(
αn√
2εαn

)
= 2(H(

√
2ε)+o(1))αn ≤ 2(H(

√
2ε)+o(1))n,

where the first inequality is due to our choice of ε ≤ 1
8 , which implies

√
2εαn ≤ 1

2αn. This in turn

implies the existence of an affine shift of {a1, a2, . . . , ad}⊥ which contains at least a 2−(H(
√

2ε)+o(1))n-
fraction of b’s in B̃. Let B̂ denote the subset of B̃ which is contained in this affine shift. Recalling we set
δ > H(

√
2ε) we get for sufficiently large n

|B̂| ≥ 2−(H(
√

2ε)+o(1))n · |B̃| ≥ 2−(H(
√

2ε)+o(1))n · |B| ≥ 2 · 2−δn|B|.

We have almost concluded the proof. We have at hand a pretty large set B̂ that is contained in a +

A′⊥ =
{
a+ a′ | a′ ∈ A′⊥

}
for some a ∈ Fn2 . Partition B̂ into B̂0 =

{
b ∈ B̂ | 〈b, a〉 = 0

}
and B̂1 ={

b ∈ B̂ | 〈b, a〉 = 1
}

. To complete the proof of the lemma take B′ to be the larger of B̂0, B̂1 and notice

|B′| ≥ 2−δn|B|, |A′| ≥ 1
2 |A| and µ⊥(B′, A′) = 1.

Proof of Lemma 2.13. Let δ = νγ and set γ′ = 1−ε
2 where ε = ε(δ) > 0 is the constant guaranteed by

Lemma 2.12. We argue by way of contradiction. Let X and Y be two sources of min-entropy rate > ρ+ γ
which we assume without loss of generality to be uniformly distributed over sets A,B respectively, each of
size greater than 2(ρ+γ)n = 2ν(ρ+γ)m, and for which the error of E(X,Y ) is greater than γ′.

Assuming E is an m-bilinear composed two-source construction there exist bijective functions f1, f2 :
Fn2 → Fm2 such that E(x, y) = 〈f1(x), f2(y)〉. LetA = {f1(a)|a ∈ A} andB = {f2(b)|b ∈ B}. Assuming
the bias error of E(X,Y ) is greater than 1−ε

2 , is equivalent to saying µ⊥(A,B) > 1 − ε . Consequently,
Lemma 2.12 implies the existence of subsets A′ ⊆ A, |A′| ≥ 1

2 |A| and B′ ⊆ B, |B′| ≥ 2−γνm|B| ≥ 2ρn

such that µ⊥(A′, B′) = 1.
Let Â := f

(−1)
1 (A′), B̂ := f

(−1)
2 (B′). Then Â and B̂ are sets of size at least 2ρn each, such that

|E(Â, B̂)| = 1, contradiction.

4.2 Exponentially small bounds on bias using the approximate duality conjecture

We now show that, assuming ADC, our two-source dispersers are extractors with exponentially small error.

15



Proof of Lemma 2.18. Let E : Fn2 × Fn2 → F2 be the m-bilinear [n, 1, ρ] two-source disperser defined by
E(x, y) = 〈f1(x), f2(y)〉 and recall ν = n

m . Let ζ ′ and r be the constant and the integer guaranteed by
Conjecture 2.16 for the constants α = (ρ + γ)ν and δ = γν

3 , and let ζ = min{ ζ
′

ν ,
γ
2r}. Our proof goes by

way of contradiction, along the lines of the proof of Lemma 2.13.
Let X and Y be two n-bit sources of min-entropy rate > ρ + γ, we assume without loss of generality

these sources to be uniform distributions over sets A,B respectively, each of size greater than 2(ρ+γ)n. Let
A = {f1(a) | a ∈ A} and B = {f2(b) | b ∈ B}. Notice A,B ⊆ Fm2 and |A|, |B| ≥ 2(ρ+γ)n = 2αm.
Assume by way of contradiction that the error of E(X,Y ), which equals 1

2µ
⊥(A,B) , is greater than

2−ζn ≥ 2−ζ
′m. Applying ADC to A,B we conclude the existence of subsets A′ ⊆ A,B′ ⊆ B such that

µ⊥(A′, B′) = 1 and A′, B′ are quite large,

|A′| ≥ |A|
2δm+1

> 2ρn and |B′| ≥ |B|
2δm+r(ζn+1)

≥ |B|
2γ( 1

3
+ 1

2
)n+r

≥ 2ρn.

The second inequality regarding |B′| above follows from the definition of δ and ζ and the last inequality
holds for sufficiently large n. But assuming f1, f2 are injective we deduce that X ′, Y ′, which are uniformly
distributed over f (−1)

1 (A′) and f (−1)
2 (B′), are a pair of n-bit sources of min-entropy rate greater than ρ on

which E is constant, contradiction.

5 On the approximate duality, nearly-linear, and polynomial Freiman Ruzsa
conjectures

In this section we study the relation between the PFR, NLFR, and ADC. We shall prove the following
relations between these conjectures:

(PFR⇔ NLFR)⇒ ADC⇒ wPFR

We start by showing the equivalence of PFR and NLFR in the next two sections. Then, in Section 5.3
we move to the rightmost implication. We end in Section 5.4 with the most complicated proof, that of the
middle implication (NLFR⇒ ADC).

5.1 The nearly-linear Freiman Ruzsa conjecture implies the polynomial one

The implication NLFR ⇒ PFR is a relatively easy consequence of the following inequality of Plunnecke
[1969], a new proof of which was found by Ruzsa [1989]:

Theorem 5.1 (Plunnecke’s inequality). Let A, B, be finite sets in a commutative group, and suppose that
|A+B| ≤ K|A|. Then for arbitrary nonnegative integers m,n we have:

|mB − nB| ≤ Km+n|A|

In Conjecture 2.21 (NLFR) choose ρ = 1 and let ` be the integer guarantied by this conjecture for ρ = 1.
Assuming |A + A| ≤ K|A|, Theorem 5.1 implies that |`A| ≤ K`|A|. So NLFR (Conjecture 2.21) implies
that A may be covered by at most K` cosets of some subspace of size at most K`|A|. This shows NLFR⇒
PFR.
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5.2 The polynomial Freiman Ruzsa conjecture implies the nearly-linear one

For this implication, as well as for proofs that appear later on, we will need Ruzsa’s covering lemma,
appearing in [Tau and Vu, 2006] as Lemma 2.14.

Lemma 5.2 (Ruzsa’s covering lemma). Let A,B be subsets of an abelian group such that |A+B| ≤ K|A|.
Then there is a set X ⊆ B, |X| ≤ K, such that B ⊆ A−A+X .

This powerful lemma has a short and elegant proof, which we bring here for the sake of completeness.

Proof of Lemma 5.2. Pick a maximal set X ⊆ B such that the sets A + x, x ∈ X , are pairwise disjoint.
Since

⋃
x∈X(A + x) ⊆ A + B, we have that |A||X| ≤ K|A|, which implies that |X| ≤ K. Suppose that

b ∈ B. By maximality there must be some x ∈ X such that (A + b) ∩ (A + x) 6= ∅, which means that
b ∈ A−A+X .

To show PFR ⇒ NLFR let ρ > 0 be the constant stated in NLFR (Conjecture 2.21) and let r be the
constant guaranteed by PFR (Conjecture 2.15). Choose the integer ` referred to in NLFR to be the smallest
power of 2 satisfying (

1

1 + ρ/(4r)

)log(`)

≤ ρ

r
. (6)

We say that a set B expands under addition with respect to A if

|B +B|
|A|

≥

(
|B|
|A|

)1+ρ/(4r)

. (7)

The idea of the proof is the following: for every integer 1 ≤ t ≤ log(`) we check whether Bt := 2tA
expands under addition with respect to A. The proof splits into two cases. The first is the case in which Bt
expands under addition with respect to A for all t, namely the size of Bt+1 = Bt +Bt is large compared to
the size of Bt for all t. In this case we shall see that the size of B1 = 2A is very small compared to the size
of Blog(`) = `A. Applying PFR to the set A we conclude that it can be covered by a few cosets of a small
subspace. The second case is the case in which there exists some integer t for which Bt does not expand
under addition with respect to A. In this case we have that Bt+1 = Bt +Bt is not too large compared to the
size of Bt. Applying PFR to the set Bt together with Ruzsa’s covering lemma we conclude that in this case
too A can be covered by a few cosets of a small subspace. Details follow.

Case I — All sets Bt expand under addition with respect to A: Equation (7) applied to t = 1 . . . log `
gives

|B1|
|A|
≤

(
|B2|
|A|

) 1
1+ρ/(4r)

≤

(
|B3|
|A|

)( 1
1+ρ/(4r)

)2
≤ . . . ≤

(
|Blog(`)|
|A|

)( 1
1+ρ/(4r)

)log(`)

The assumption |`A| ≤ K|A| gives

|2A|
|A|
≤

(
|`A|
|A|

)( 1
1+ρ/(4r)

)log(`)
≤ K

(
1

1+ρ/(4r)

)log(`)
≤ Kρ/r
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where the last inequality is due to our choice of ` in Equation (6).
We conclude that in this case |2A| ≤ Kρ/r|A|. Applying PFR (Conjecture 2.15) we conclude that A

may be covered by Kρ cosets of some subspace of size at most Kρ|A|, and this shows PFR⇒ NLFR with
even better parameters than stated in NLFR (Conjecture 2.21).

Case II — There exists Bt which does not expand under addition with respect to A: For this t we
have

|Bt +Bt| ≤

(
|Bt|
|A|

)ρ/(4r)
|Bt| (8)

Applying PFR (Conjecture 2.15) to the set Bt we conclude that it may be covered by
(
|Bt|
|A|

)ρ/4
cosets

of a subspace L of size at most

(
|Bt|
|A|

)ρ/4
|Bt|. By the pigeonhole principle there exists a set Ã ⊆ Bt which

is contained in an affine shift of L — denote this shift by a+ L — such that

|Ã| ≥

(
|Bt|
|A|

)−ρ/4
|Bt| (9)

and

|L| ≤

(
|Bt|
|A|

)ρ/4
|Bt| ≤

(
|Blog(`)|
|A|

)1+ρ/4

|A| =

(
|`A|
|A|

)1+ρ/4

|A| ≤ K1+ρ/4|A|. (10)

The last inequality follows from our assumption that |`A| ≤ K|A|. We shall apply Ruzsa’s Covering
Lemma 5.2 with the sets A and Ã, so we compute

|A+ Ã| ≤ |A+Bt| (since Ã ⊆ Bt)
≤ |Bt+1| (since an affine shift of A is contained in Bt)

≤

(
|Bt|
|A|

)ρ/(4r)
|Bt| (by Equation (8))

≤

(
|Bt|
|A|

)ρ/(4r)(
|Bt|
|A|

)ρ/4
|Ã| (by Equation (9))

≤

(
|Bt|
|A|

)ρ/2
|Ã| ≤

(
|`A|
|A|

)ρ/2
|Ã| ≤ Kρ/2|Ã| (by the assumption |`A| ≤ K|A|)

Ruzsa’s covering Lemma 5.2 now implies the existence of a set X ⊆ A of size at most Kρ/2 such that

A ⊆ X + Ã− Ã ⊆ X + (a+ L)− (a+ L) = X + L

Concluding, in this case we have that A may be covered by at most Kρ/2 cosets of the subspace L,
where |L| ≤ K1+ρ/4|A| (Equation (10)). Finally, if we write L as a direct sum of subspaces L′ and L′′,
where L′′ is a subspace of size Kρ/4, and let X ′ = X+L′′, we get that A may be covered by at most K3ρ/4

cosets of the subspace L′, where |L′| ≤ K|A| (the cosets are of the form x′ + L′ where x′ ∈ X ′).
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5.3 The approximate duality conjecture implies the weak polynomial Freiman Ruzsa con-
jecture

To prove this implication we need to recall the definition of the spectrum of a set given in Definition 4.1.
Our proof uses the following lemma from Tau and Vu [2006] (appearing there as Lemma 4.38) which shows
that a set having a small sum set must have large spectrum:

Lemma 5.3 (Small sumset forces large spectrum). Let A be a subset of a finite abelian group Z, and let
0 < ε ≤ 1. Then we have the following lower bound on the sum set:

|A−A| ≥ |A||Z|
|A||specε(A)|+ |Z|ε2

We shall also need the following easy consequence of Ruzsa’s Covering Lemma 5.2:

Lemma 5.4 (Covering). Suppose that A ⊂ Fn2 is a subset with the property that |A+A| ≤ K|A|. Suppose
furthermore that there exists a subset A′ of A of size at least 1

K1
|A|, such that |span (A′) | ≤ K2|A|. Then

A may be covered by at most KK1 cosets of a subspace of size at most K2|A|.

Proof. We apply Ruzsa’s covering lemma to the sets A′ and A:

|A+A′| ≤ |A+A| ≤ K|A| ≤ KK1|A′|

Hence Ruzsa’s covering lemma implies the existence of a subset X of size at most KK1 such that A ⊆
X + A′ − A′. The proof is completed by noticing that A′ − A′ is contained in a subspace of size at most
K2|A|.

The idea of the proof of ADC⇒ wPFR is as follows. Lemma 5.4 implies that it is enough to prove that
if A has a small sumset then there exists a large subset A′ of A which has small span. Suppose that A has a
small sum set. Then Lemma 5.3 implies thatA has large spectrum, denote the spectrum set byB. Assuming
the approximate-duality conjecture, we have that A and B contain large subsets A′, B′ respectively which
lie in affine shifts of dual subspaces. But this implies in turn that dim(A′) ≤ n − dim(B′), i.e. A′ has a
small span, and setting the parameters correctly we arrive at the desired result. Now for the details and we
start by setting our parameters.

Let α := α′/2, δ := δ′, and let ζ and r be the constant and the integer guaranteed by Conjecture 2.16
for the constants α and δ. We will show next that |A| may be covered by at most 2δ

′n+1 · K cosets of a
subspace of size at most 2δ

′n(2K)r
′
, where r′ := max

{
1
ζ ,

4
α′ , r + 2

}
.

First we observe that without loss of generality we may assume that

K ≤ min
{

2α
′n/4, 2ζn

}
(11)

since otherwise from our choice of r′ we have that Kr′ ≥ 2n, and hence the PFR conjecture holds trivially.
Next, in Lemma 5.3 set ε = 1/K. Then from the lemma and the assumption that |A + A| ≤ K|A| we

have:

K|A| ≥ |A−A| ≥ |A|2n

|A||spec1/K(A)|+ 2nK−2

And rearranging we obtain:

|spec1/K(A)| ≥ 2n

|A|K
K − 1

K
≥ 2n

|A|K2
(12)
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We would like to apply ADC (Conjecture 2.16) to the sets A and spec1/K(A). We obviously have that
µ⊥(A, spec1/K(A)) ≥ 1/K , where 1/K ≥ 2−ζn (Equation (11)). Also, our choice of K ≤ 2α

′n/4 in (11)
and our assumption that |A| ≤ 2(1−α′)n, together with Equation (12) imply that

|spec1/K(A)| ≥ 2n

|A|K2
≥ 2n

2(1−α′)n22α′n/4
= 2α

′n/2 = 2αn

where the last equality is due to our choice of α.
Our choice of α, together with our assumption that A is of size at least 2α

′n, also imply that A is of size
at least 2αn. Hence ADC (Conjecture 2.16) implies the existence of subsets A′ ⊆ A, B′ ⊆ spec1/K(A)
which lie in affine shifts of dual spaces such that

|A′| ≥ |A|
2δn+1

, |B′| ≥
|spec1/K(A)|

(2K)r2δn
.

respectively.
But this implies in turn that dim(A′) + dim(B′) ≤ n, and consequently

|span
(
A′
)
| ≤ 2n

|B′|
≤ (2K)r2δn · 2n

|spec1/K(A)|
≤ 2δn(2K)r+2|A|

where the last inequality is due to Equation (12).
Set K1 = 2δn+1 and K2 = 2δn(2K)r

′
recalling r′ ≥ r + 2. We have |span (A′) | ≤ K2|A| where A′ is

a subset of A of size at least |A|/K1. Using Lemma 5.4 and recalling δ′ = δ we conclude A can be covered
by ≤ 2δ

′n+1 ·K cosets of span (A′) which is of size ≤ 2δ
′n(2K)r

′ |A| and this completes the proof of ADC
⇒ wPFR.

5.4 The polynomial Freiman Ruzsa conjecture implies the approximate duality conjecture

Our proof of the implication PFR⇒ ADC uses the following lemma, which shows that whenever µ⊥(A,B)
is sufficiently large we can find a large set A′ ⊂ A and a set B′ ⊂ B that is contained in an affine shift
of A and, most importantly, the size of B′ is proportional to the size of the `-wise sum-set of A′. This last
property is important because it allows us to make a “win-win” argument: Either |`A′| is large in which case
B′ is also large and we have proved the ADC, or |`A′| is small and then NLFR implies that a large subset
A1 ⊂ A′ (which is a large subset ofA) is even closer in size to its linear span, and we apply the lemma again
with A1 instead of A. Continuing in this way we construct a finite sequence A0 = A ⊇ A1 ⊇ A2 ⊇ . . .

such that |Ai+1|
|span(Ai+1)| �

|Ai|
|span(Ai)| . We prove that the last member of this sequence is a pretty large subset

of A and is almost the desired set we need.
We stress that the following lemma, although similar in spirit to the ADC, relies on no unproven as-

sumptions. Its proof is deferred to the next subsection.

Lemma 5.5 (ADC as function of sumset). For every 1 > δ′ > 0, 1 > α′ > 0, and non-negative integer `,
there exist a constant ζ ′ > 0 and an integer k, both depend only on δ′, α′, and `, such that the following holds
for sufficiently large n. If A,B ⊆ Fn2 satisfy |A| ≥ 2α

′n and A ⊆ specε(B) (which implies µ⊥(A,B) ≥ ε)
for ε ≥ 2−ζ

′n, then there exist subsets A′ ⊆ A and B′ ⊆ B satisfying

1. |A′| ≥ |A|1−δ′ .

2. |B′| ≥ ε2k |`A
′|1−δ′

|span(A)| |B|.
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3. The set B′ is contained in an affine coset of A⊥.

To prove the implication NLFR ⇒ ADC we need to set a few parameters that will be used later on.
Choose small enough constants ρ > 0 and δ′ > 0 which satisfy δ2/2 > ρ(1 + 2δ′ − δ) + δ′ and δ/2 <
(1 + ρ)(δ− 2δ′)− ρ . Choose ` to be a large enough integer so that Conjecture 2.21 holds with the constant
ρ with respect to `. Choose a constant α′ > 0 such that α′ < α − δ. Let ζ ′ > 0 and k be the constant and
the integer guaranteed by Lemma 5.5 for the constants δ′, α′ and the integer `, and suppose that ε ≥ 2−ζ

′n.
Now we describe how the sequence A = A0 ⊇ A1 ⊇ . . . is obtained. Start with the set A0 := A ∩

specε/2(B), which, by Markov’s inequality is of size at least |A|/2. For i = 0, 1, . . . let A′i ⊆ Ai, B
′
i ⊆ B

be the subsets guaranteed by Lemma 5.5 with respect to Ai, B and let

σi =
|`A′i|1−δ

′

|span (Ai) |
. (13)

To obtain Ai+1 we use the following claim.

Claim 5.6. If σi ≤ 2−δn and |Ai| ≥ 2α
′n then assuming NLFR (Conjecture 2.21) there exists Ai+1 ⊆ Ai

satisfying
|Ai+1| ≥ 2−(δ2/2)n|Ai| (14)

|Ai+1|
|span (Ai+1) |

≥ 2(δ/2)n |Ai|
|span (Ai) |

(15)

We pick Ai+1 to be the set guaranteed by the above claim, as long as σi ≤ 2−δn, and if σi > 2−δn we
terminate the sequence by setting Ai to be the last member of it.

Before proving the claim let us complete the proof of PFR⇒ ADC. Since the left hand side of Equation
(15) is at most 1 and the right hand side of this equation is at least 2−n we conclude that the sequence A is
finite and of length at most 2

δ . Consequently, our assumption that |A| ≥ 2αn and (15) imply for sufficiently
large n that for all Ai ∈ A

|Ai| ≥ 2−δn|A|/2 ≥ 2(α−δ)n−1 ≥ 2α
′n. (16)

The last member in the sequence A, denote it by At, is a subset of A of size at least 2−(δn+1)|A|. Applying
Lemma 5.5 one final time with At and B and using the assumption σt > 2−δn we conclude the existence of
B′ ⊆ B, |B′| >

(
ε
2

)2k
2−δn|B| that is contained in an affine coset of At. So A′ = At and B′ are the two

sets promised by ADC and this shows PFR⇒ ADC but for the proof of Claim 5.6 which appears next.

Proof of Claim 5.6. Assuming σi ≤ 2−δn we get from Equation (13)

|`A′i| ≤ 2−δn|span (Ai) ||`A′i|δ
′

= 2−δn
|span (Ai) |
|A′i|

|`A′i|δ
′ |A′i|

≤ 2−δn
|span (Ai) |
|Ai|1−δ′

|`A′i|δ
′ |A′i| (using first bullet of Lemma 5.5)

= 2−δn
|span (Ai) |
|Ai|

|`A′i|δ
′ |Ai|δ

′ |A′i| ≤ 2−(δ−2δ′)n |span (Ai) |
|Ai|

|A′i| (since |`A′i|, |A′i| ≤ 2n)

So |`A′i| ≤ K|A′i| for

K = 2−(δ−2δ′)n |span (Ai) |
|Ai|

. (17)
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Applying NLFR (Conjecture 2.21) to the `-wise sum of A′i with the above constant K implies the
existence of a subset Ai+1 ⊆ A′i, of size at least K−ρ|A′i|, such that

|span (Ai+1) | ≤ K|A′i| ≤ K1+ρ|Ai+1|

To complete the proof we show that Ai+1 satisfies equations (14) and (15). For (14) compute

|Ai+1| ≥ K−ρ|A′i| = 2−ρ(2δ′−δ)n
(

|Ai|
|span (Ai) |

)ρ
|A′i| (using Equation (17))

≥ 2−ρ(1+2δ′−δ)n|A′i| (since |Ai|
|span(Ai)| ≥ 2−n)

≥ 2−ρ(1+2δ′−δ)n|Ai|1−δ
′

(by first bullet of Lemma 5.5)

≥ 2−(ρ(1+2δ′−δ)+δ′)n|Ai| (since |Ai| ≤ 2n)

≥ 2−(δ2/2)n|Ai| (by choice of δ′ and ρ′)

And for (15) compute

|Ai+1|
|span (Ai+1) |

≥ K−(1+ρ) ≥ 2(1+ρ)(δ−2δ′)n

(
|Ai|

|span (Ai) |

)1+ρ

(using Equation (17))

≥ 2((1+ρ)(δ−2δ′)−ρ)n |Ai|
|span (Ai) |

(since |Ai|
|span(Ai)| ≥ 2−n)

≥ 2(δ/2)n |Ai|
|span (Ai) |

(by choice of δ′ and ρ′)

This completes the proof of the claim.

5.5 Proof of Main Technical Lemma

In this section we prove the main technical lemma used in the proof of PFR ⇒ ADC, Lemma 5.5. The
proof breaks down to two lemmas stated next. We assume Ea∈A,b∈B

[
(−1)〈a,b〉

]
is positive, the proof for

the negative case is similar.
The proof consists of two main steps stated in Lemmas 5.7 and 5.8. The first can be seen as a version of

the ADC which applies when |span (A) | is not much larger than |A|.

Lemma 5.7 (Approximate-duality for sets with small span). GivenB ⊆ Fn2 andA ⊆ specε(B), there exists
a subset B′ of B of size at least ε2 |A|

|span(A)| |B| which is contained in an affine coset of A⊥.

The second main step in the proof is to show if µ⊥(A,B) ≥ ε, then assuming the PFR conjecture, there
exists a large subset Ã ⊆ span (A) for which µ⊥(Ã, B) ≥ εk for some constant k. By showing this we will
be able to apply the above lemma also to sets that have large span relative to their size, by applying it to the
sets Ã and B. Recall the definition of the spectrum given in Definition 4.1. Our candidate set Ã will be the
set specε`/2(B) ∩ span (A) for a sufficiently large constant `. Obviously, we have that µ⊥(Ã, B) ≥ ε`/2.
A lower bound on the on the size of this set is given by the following unconditional lemma:
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Lemma 5.8. For every 1 > δ′ > 0, 1 > α′ > 0, and for every non-negative integer `, there exist a constant
ζ ′ > 0 and an integer k, both depend only on δ′, α′, and `, such that the following holds for sufficiently large
n. Given B ⊆ Fn2 and A ⊆ specε(B), |A| ≥ 2α

′n where ε ≥ 2−ζ
′n, there exists a subset A′ of A of size at

least |A|1−δ′ such that
|`A′|1−δ′ ≤ |span (A) ∩ specεk(B)|. (18)

Given these two lemmas we can complete the proof of Lemma 5.5. Then we prove the two lemmas.

Proof of Lemma 5.5. Noticing the assumptions of Lemma 5.5 and Lemma 5.8 are the same, let A′ be the
subset of A which is of size at least |A|1−δ′ and satisfies Equation (18). Notice A′ satisfies bullet 1 of
Lemma 5.5.

Let Ã := span (A) ∩ specεk(B). Apply Lemma 5.7 to Ã, B and conclude the existence of B′ ⊆ B
contained in an affine coset of Ã⊥ which satisfies

|B′| ≥ ε2k |Ã|∣∣∣span
(
Ã
)∣∣∣ · |B| ≥ ε2k |`A

′|1−δ′∣∣∣span
(
Ã
)∣∣∣ · |B|.

The last inequality above uses Equation (18). To show that B′ satisfies bullets 2 and 3 of Lemma 5.5 notice
Ã ⊇ A because A ⊆ specε(B) ⊆ specεk(B) which implies span

(
Ã
)

= span (A) and, consequently,

Ã⊥ = A⊥. This completes the proof.

For the proof of Lemma 5.7 we shall use Fourier analysis and recall the standard notation for it. For a
function f : Fn2 → C and α ∈ Fn2 we denote by f̂(α) the α-coefficient of the Fourier expansion of f over
Fn2 , defined by

f̂(α) = Eβ∈Fn2
[
f(β)(−1)〈β,α〉

]
.

We shall need Parseval’s equality which says that for a function f : Fn2 → C,∑
α∈Fn2

(f̂(α))2 = 2−n
∑
β∈Fn2

(f(β))2. (19)

Proof of Lemma 5.7. Let d := dim(A) and choose an arbitrary basis a1, a2, . . . , ad of A. For every β =
(β1, β2, . . . , βd) ∈ Fd2, we denote by Sβ the following coset of A⊥:

Sβ = {γ ∈ Fn2 |〈ai, γ〉 = βi for all i = 1, 2, . . . , d}

For every β ∈ Fd2 we denote the relative weight of B inside Sβ by:

w(β) = Prb∈B[b ∈ Sβ] =
|B ∩ Sβ|
|B|

Our goal will be to find β ∈ Fd2 such that w(β) ≥ ε2 |A|
|span(A)| , since in this case B′ := B∩Sβ is a subset

of B of size at least ε2 |A|
|span(A)| |B| which is contained in an affine coset of A⊥.

Our main observation is that for every a ∈ A, if we write a =
∑d

i=1 αiai, α = (α1, α2, . . . , αd), then
we have

ŵ(α) = Eβ∈Fd2
[
w(β)(−1)〈β,α〉

]
= 2−d

∑
β∈Fd2

w(β)(−1)〈β,α〉 = 2−dEb∈B
[
(−1)〈a,b〉

]
(20)
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The equality above allows to prove the lemma by bounding the sum
∑

α∈Ã(ŵ(α))2 from above and
from below, where:

Ã =

{
α = (α1, α2, . . . , αd) ∈ Fd2|

d∑
i=1

αiai ∈ A
}

For obtaining the lower bound we use Equation (20) together with our assumption that µ⊥(A,B) ≥ ε,
while for the upper bound we use Parseval’s equality together with the fact that w is a distribution, i.e.,∑

β∈Fd2
w(β) = 1. We start with bounding the sum

∑
α∈Ã(ŵ(α))2 from above

∑
α∈ Ã

(ŵ(α))2 ≥ |Ã|
(
Eα∈Ãŵ(α)

)2

(by convexity)

= |Ã|
(

2−dEa∈AEb∈B
[
(−1)〈a,b〉

])2

(by Equation (20))

= |A|2−2d
(
µ⊥(A,B)

)2 ≥ |A|2−2dε2 (21)

Next we bound the sum
∑

α∈Ã(ŵ(α))2 from above:

∑
α∈Ã

(ŵ(α))2 ≤
∑
α∈Fd2

(ŵ(α))2 = 2−d
∑
β∈Fd2

(w(β))2 (by Parseval’s Equality)

≤ 2−d max
β∈Fd2

w(β)
∑
β∈Fd2

w(β)

= 2−d max
β∈Fd2

w(β) (because
∑

β∈Fd2
w(β) = 1) (22)

Finally, the combination of equations (21) and (22) implies the existence of β ∈ Fd2 such that

w(β) ≥ |A|2−dε2 = ε2
|A|

|span (A) |

which finishes the proof of the lemma.

For the proof of Lemma 5.8, which follows next, we shall apply repeated squaring followed by the
hypergraph version of the Balog-Szemerédi-Gowers (BSG) Theorem [Balog and Szemerédi, 1994, Gowers,
1998]. The BSG Theorem says that if the collision probability ofA+A is large, i.e., if Pra,a′,b,b′∈A[a+a′ =
b+ b′] > 1/K, then there exists a subset A′ ⊂ A of size at least |A|/Kc such that |A′+A′| ≤ Kc · |A|. The
exponent c appearing in the original theorem is too large for our purposes, we would like it to be close to 1.
Fortunately, the proof of the hypergraph version of the BSG Theorem due to Sudakov et al. [2005] has been
worked out by Croot and Borenstein [2008] into a statement, quoted next, that gives very tight bounds on
the exponent c. Informally, this theorem says that for every integer ` there exists an integer k for which the
following holds. If the collision probability of k-sums of A is large, then there exists A′ ⊂ A that is nearly
all of A such that |`A′| is very close to |A|, i.e., this A′ hardly expands under addition.
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Theorem 5.9 (BSG Theorem — Hypergraph version with small exponent). For every 1 > δ > 0 and c > 1,
and non-negative integer `, there exist a constant ζ > 0 and an integer k, both depend only on δ, c, and `,
such that the following holds. If A is a sufficiently large subset of an additive abelian group which satisfies:

Pra1∈A,a2∈A,...,ak∈A

[ k∑
i=1

ai ∈ S
]
≥ |A|−ζ , |S| ≤ |A|c

then there exists a subset A′ of A of size at least |A|1−δ such that:

|`A′|1−δ ≤ |S|

Proof of Lemma 5.8. Let δ := δ′, c := 1/α′, and let ζ > 0 and k be the constant and the integer guaranteed
by Theorem 5.9 for the constants δ, c, and `

We may assume that k is even (if k is odd replace it by k + 1 and the proof goes through). From our
assumption that µ⊥(A,B) ≥ ε and using convexity we get

εk ≤
(
Eb∈BEa∈A

[
(−1)〈a,b〉

])k
≤ Eb∈B

(
Ea∈A

[
(−1)〈a,b〉

])k
=

Eb∈BEa1∈A,a2∈A,...,ak∈A
[
(−1)〈

∑k
i=1 ai,b〉

]
.

Markov’s inequality implies

Pra1∈A,a2∈A,...,ak∈A

[ k∑
i=1

ai ∈ specεk/2(B) ∩ span (A)

]
≥ εk

2

Let S := specεk/2(B) ∩ span (A). Let ζ ′ = α′

k ζ, and suppose that ε ≥ 2−ζ
′n. From our choice of ε and

the assumption that |A| ≥ 2α
′n we have

εk ≥ 2−ζ
′kn ≥ 2−

α′
k
ζkn ≥ |A|−ζ

We conclude that

Pra1∈A,a2∈A,...,ak∈A

[ k∑
i=1

ai ∈ S
]
≥ 1

2
|A|−ζ

and in addition
|S| ≤ 2n ≤ |A|c

Theorem 5.9 applies, and we conclude that there exists a subset A′ of A of size at least |A|1−δ′ such that

|`A′|1−δ′ ≤ |S|.

This completes the proof of the lemma.
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6 On the bias error of multi-output affine and two-source extractors

In this section we explain our use of bias as the measure of error in the definition of extractors (Definition
2.1). In a nutshell, it yields cleaner and tighter analysis than we would have obtained using statistical distance
as our measure of error. And it allows us to construct affine and (in Section 6.1) two-source extractors with
multiple output bits with essentially no loss in (bias) error. Details follow.

All known affine extractors, i.e., those of Bourgain [2007], Yehudayoff [2009], Ben-Sasson and Kop-
party [2009], Gabizon and Raz [2008], DeVos and Gabizon [2009], Li [2010] have the following prop-
erty. Each of them is defined as evaluating a certain r-variate polynomial P over a finite field F2m , where
n = r · m. The n-input bits are viewed as describing an input β = (β1, . . . , βr) ∈ Fr2m . And each of
these constructions shows a bound on the error of any nontrivial character applied to P (β). Recall that a
nontrivial additive character χα : F2m → {−1, 1} of F2m is a function of the form

χα(x) = (−1)
∑m
j=1 αj ·xj ,

where (x1, . . . , xm) is the representation of x according to an arbitrary fixed F2-basis for F2m . In other
words, for each of the known constructions of affine extractors we have a result of the following form. For
every nontrivial character χα as above, and every F2-affine subspace A of (F2m)r of dimension at least d,
we have

|Ex∈A [χα(P (x))]| ≤ ε.

We point out that Vazirani’s “XOR-lemma” shows that extractors with error bounds as above are also
ε · 2m/2-close to uniform in statistical distance. This can be converted back to a bound on bias of the form
ε · 2m/2. But using the lemma below we can deduce that the bias error is merely ε, i.e., we lose literally
nothing from outputting m bits instead of a single bit.

Lemma 6.1 (Multi-output extractors). Let ζ be a distribution on Fm2 satisfying for every nontrivial additive
character

|E[χα(x)]| ≤ ε, (23)

where x is distributed according to ζ. Then for any linearly independent α1, . . . , αt ∈ Fm2 and any
b1, . . . , bt ∈ F2, denoting by Sb the affine space

Sb = {x ∈ Fm2 | 〈α1, x〉 = b1, . . . , 〈αt, x〉 = bt} ,

we have
2−t − ε < ζ(Sb) < 2−t + ε.

Consequently, taking t = m and α1, α2, . . . , αm to be the standard basis and noticing that in this case
ζ(Sb) = PrX∼ζ [X = b] we conclude the bias of ζ is at most ε.

Proof of Lemma 6.1. Consider α ∈ span (α1, . . . , αt) of the form α =
∑t

i=1 aiαi where ai ∈ F2. Let a
denote the vector (a1, . . . , at). We have that

〈α, x〉 =

t∑
i=1

ai · 〈αi, x〉.

Thus, for c = (c1, . . . , ct) ∈ Ft2 and x ∈ Sc we have 〈α, x〉 = 〈a, c〉 which implies

E[χα(x)] =
∑

c∈Ft2,〈c,a〉=0

ζ(Sc)−
∑

c∈Ft2,〈c,a〉=1

ζ(Sc) (24)
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which, by (23), implies that for any α ∈ span (α1, . . . , αt) \ {0} and β ∈ F2 we have

− ε ≤
∑

c∈Ft2,〈c,a〉=β

ζ(Sc)−
∑

c∈Ft2,〈c,a〉=1−β

ζ(Sc) ≤ ε. (25)

For α = 0 we get from (24) ∑
c∈Ft2

ζ(Sc) = 1, (26)

because every c satisfies 〈0, c〉 = 0. Set βa = 〈b, a〉. Consider the following sum:

∑
a∈Ft2

 ∑
c∈Ft2,〈c,a〉=βa

ζ(Sc)−
∑

c∈Ft2,〈c,a〉=1−βa

ζ(Sc)

 . (27)

Using (25) and (26) we bound (27) from above by 1 + (2t − 1) · ε (the first summand comes from α = 0
via (26) and the remaining ones come from α 6= 0 via (25)). Similarly, (27) is bounded from below by
1 − (2t − 1) · ε. Finally, we observe that (27) is equal to 2t · ζ(Sb). The reason for this is that we have
by definition 〈b, a〉 = βa for all a ∈ Ft2, whereas for any fixed c 6= b we have 〈c, a〉 = βa if and only if
〈c, a〉 = 〈b, a〉 which happens iff 〈c− b, a〉 = 0. Since c 6= b (and both b and c are fixed) this latter event
happens for precisely half of the a’s and thus the summand ζ(Sc) appears in (27) equally often positively as
negatively and gets canceled.

We have shown that
1− (2t − 1) · ε ≤ 2t · ζ(Sb) ≤ 1 + (2t − 1) · ε,

and dividing this inequality by 2t completes the proof.

6.1 Increasing the output length of bilinear-composed extractors

In this section we prove Lemma 2.20 and show how to obtain two source extractors with multiple output
bits. Before doing so we briefly explain how a so-called collection of independent matrices can be obtained.

Let F2m denote the finite field with 2m elements. It is well-known that elements of this field form a
F2-linear space of dimension m. Let β1, . . . , βm ∈ F2m be a basis for this space. Since multiplication by
any β ∈ Fm2 \ 0 is an invertible F2-linear transformation, let Mi be the matrix representing multiplication
by βi in our basis. It is now rather straightforward to verify that M1, . . . ,Mm are independent according to
our definition.

We now proceed to prove Lemma 2.20.

Proof of Lemma 2.20. Let χα : Ft2 → [−1, 1] be a nontrivial additive character. We have

χα(E(x, y)) = (−1)
∑t
i=1 αi〈f(x),Mig(y)〉 = (−1)〈f(x),Mg(y)〉

where M =
∑t

i=1 αiMi. Since M has full rank and g is injective, we see that M · g(Y ) is a n-bit source of
min-entropy rate > ρ, which implies

|EX,Y [χα(E(X,Y ))]| ≤ ε.

Applying Lemma 6.1 completes the proof.
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