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Abstract

Locally decodable codes are error-correcting codes that admit efficient decoding algorithms;
any bit of the original message can be recovered by looking at only a small number of locations
of a corrupted codeword. The tradeoff between the rate of a code and the locality/efficiency of
its decoding algorithms has been well studied, and it has widely been suspected that nontrivial
locality must come at the price of low rate. A particular setting of potential interest in practice
is codes of constant rate. For such codes, decoding algorithms with locality O(kε) were known
only for codes of rate εΩ(1/ε), where k is the length of the message. Furthermore, for codes of
rate > 1/2, no nontrivial locality has been achieved.

In this paper we construct a new family of locally decodable codes that have very efficient
local decoding algorithms, and at the same time have rate approaching 1. We show that for
every ε > 0 and α > 0, for infinitely many k, there exists a code C which encodes messages of
length k with rate 1−α, and is locally decodable from a constant fraction of errors using O(kε)
queries and time.

These codes, which we call multiplicity codes, are based on evaluating multivariate polyno-
mials and their derivatives. Multiplicity codes extend traditional multivariate polynomial based
codes; they inherit the local-decodability of these codes, and at the same time achieve better
tradeoffs and flexibility in the rate and minimum distance.
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1 Introduction

Classical error-correcting codes allow one to encode a k-bit message x into an n-bit codeword C(x),
in such a way that x can still be recovered even if C(x) gets corrupted in a number of coordinates.
The traditional way to recover information about x given access to a corrupted version of C(x) is
to run a decoder for C, which would read and process the entire corrupted codeword, and then
recover the entire original message x. Suppose that one is only interested in recovering a single bit
or a few bits of x. In this case, codes with more efficient decoding schemes are possible, allowing
one to read only a small number of code positions. Such codes are known as Locally Decodable
Codes (LDCs). Locally decodable codes allow reconstruction of an arbitrary bit xi, by looking only
at t� k randomly chosen coordinates of (a possibly corrupted) C(x).

The main parameters of a locally decodable code that measure its utility are the codeword length
n (as a function of the message length k) and the query complexity of local decoding. The length
measures the amount of redundancy that is introduced into the message by the encoder. The query
complexity counts the number of bits that need to be read from a (corrupted) codeword in order
to recover a single bit of the message. Ideally, one would like to have both of these parameters as
small as possible. One however cannot minimize the codeword length and the query complexity
simultaneously; there is a trade-off. On one end of the spectrum we have LDCs with the codeword
length close to the message length, decodable with somewhat large query complexity. Such codes
are useful for data storage and transmission. On the other end we have LDCs where the query
complexity is a small constant but the codeword length is large compared to the message length.
Such codes find applications in complexity theory and cryptography. The true shape of the trade-
off between the codeword length and the query complexity of LDCs is not known. Determining it
is a major open problem (see [Yek10] for a recent survey of the LDC literature).

While most prior work focuses on the low query (and even constant query) regime, in this work
we will look at the other extreme and consider the setting of locally decodable codes with very low
redundancy, which may be of even greater practical interest. More precisely, we will be interested
in minimizing the query complexity of local decoding for codes of large rate (defined as the ratio
k/n, where the code encodes k bits into n bits). For codes of rate > 1/2, it was unknown how to
get any nontrivial local decoding whatsoever. For smaller rates, it was known how to construct
codes (in fact, the classical Reed-Muller codes based on evaluating multivariate polynomials have
this property) which admit local decoding with O(kε) queries and time, at the cost of reducing the
rate to εΩ(1/ε). In practical applications of coding theory to data storage and transmission, the rate
of encoding has always been paramount; using codes of very small rate translates into increasing
the storage required or transmission time manifold, and is unacceptable for most applications.

In this paper, we introduce a new and natural family of locally decodable codes, which achieve
high rates while admitting local decoding with low query complexity. These codes, which we call
multiplicity codes, are based on evaluating multivariate polynomials and their derivatives. They
inherit the local-decodability of the traditional multivariate polynomial codes, while achieving bet-
ter tradeoffs and flexibility in the rate and minimum distance. Using multiplicity codes, we prove
(see Theorem 4) that it is possible to have codes that simultaneously have (a) rate approaching 1,
and (b) allow for local decoding with arbitrary polynomially-small time and query complexity.

Main Theorem (informal): For every ε > 0, α > 0, and for infinitely many k, there exists a code
which encodes k-bit messages with rate 1− α, and is locally decodable from some constant fraction
of errors using O(kε) time and queries.

2



1.1 Previous work on locally decodable codes

Locally decodable codes have been implicitly studied in coding theory for a very long time, starting
with Reed’s “majority-logic decoder” for binary Reed-Muller codes [Ree54]. In theoretical computer
science, locally decodable codes (and in particular, locally decodable codes based on multivariate
polynomials) have played an important part (again implicitly) in the Proof-Checking Revolution of
the early 90s [BF90, Lip90, LFKN92, Sha92, BFLS91, BFL91, AS98, ALM+98] as well as in other
fundamental results in complexity theory [BFNW93, IW97, AS03, STV99, SU05].

Locally decodable codes were first formally defined by Katz and Trevisan [KT00] (see also [STV99]).
Since then, the quest for understanding locally decodable codes has generated many developments.
Most of the previous work on LDCs has focussed on local decoding with a constant number of
queries. For a long time, it was generally believed that for decoding with constantly many queries,
a k bit message must be encoded into at least exp(kα) bits, for constant α > 0. Recently, in a
surprising sequence of works [Yek08, Rag07, Efr09, DGY10, BET10, IS10, CFL+10] this was shown
to be soundly false; today we know constant query locally decodable codes which encode k bits into
as few as exp(exp(logα(k))) bits for constant α > 0.

There has also been considerable work [KT00, KdW04, GKST02, WdW05, Woo07, DJK+02, Oba02]
on the problem of proving lower bounds on the length of locally decodable codes. In particular, it
is known [KT00] that for codes of constant rate, local decoding requires at least Ω(log k) queries.
For codes locally decodable with ω(log k) queries, no nontrivial lower bound on the length on the
code is known. For error-correction with O(kε) queries, Dvir [Dvi10] recently conjectured a lower
bound on the length of some closely related objects called locally self-correctable codes. Precisely,
the conjecture of [Dvi10] states that for every field F, there exist positive constants α and ε such
that there are no linear codes over F of length n, rate 1−α and locally self-correctable with query
complexity O(nε) from a certain sub-constant fraction of errors. Dvir [Dvi10] then showed that
establishing this conjecture would yield progress on some well-known open questions in arithmetic
circuit complexity.

Our results refute Dvir’s conjecture over finite fields; using multiplicity codes, we show that for
arbitrary α, ε > 0, for every finite field F, for infinitely many n, there is a linear code over F of
length n with rate 1 − α, which is locally self-correctable from even a constant fraction of errors
with O(nε) queries1.

1.2 Multiplicity codes

We now give a quick introduction to multiplicity codes and demonstrate the principles on which
they are based.

To minimize extraneous factors and for ease of exposition, in this subsection we will deal with
the problem of constructing “locally self-correctable codes” over “large alphabets”, which we now
define. We have a set Σ (the “alphabet”), and we want to construct a subset C (the “code”) of Σn,
of size |Σ|k (we call k the “message length”), with the following local self-correction property: given

1[Dvi10] contains two conjectures; which are called the “strong conjecture” and the “weak conjecture”. We refute
only the strong conjecture. The weak conjecture, which has weaker implications for questions related to arithmetic
circuit complexity, remains open.
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access to any r ∈ Σn which is close to some codeword c ∈ C, and given i ∈ [n], it is possible to make
few queries to the coordinates of r, and with high probability output ci. The goal is to construct
such a subset C with rate k/n large. Note that this differs from the notion of locally decodable
code in that we seek to recover a coordinate of the nearby codeword c, not of the original message
which encodes to c. We also do not require that Σ has size 2, which is what the Main Theorem
mentioned earlier refers to. Translating from local self-correctability over large alphabets to local
decodability over small alphabets is a standard transformation.

Our plan is as follows. We will first recall an example of the classical Reed-Muller codes based on
bivariate polynomials and why it is locally self-correctable. We will then introduce the simplest
example of a multiplicity code based on bivariate polynomials, which has improved rate, and see
how to locally self-correct it with essentially the same query complexity. Finally, we mention how
general multiplicity codes are defined and some of the ideas that go into locally self-correcting them.

Bivariate Reed-Muller codes: Let q be a prime power, let δ > 0 and let d = (1 − δ)q. The
Reed Muller code of degree d bivariate polynomials over Fq (the finite field of cardinality q) is the
code defined as follows. The coordinates of the code are indexed by elements of F2

q , and so n = q2.
The codewords are indexed by bivariate polynomials of degree at most d over Fq. The codeword
corresponding the polynomial P (X,Y ) is the vector

C(P ) = 〈P (a)〉a∈F2
q
∈ Fq

2

q .

Because two distinct polynomials of degree at most d can agree on at most d/q-fraction of the
points in F2

q , this code has distance δ = 1 − d/q. Any polynomial of degree at most d is specified
by one coefficient for each of the

(
d+1

2

)
monomials, and so the message length k =

(
d+1

2

)
. Thus the

rate of this code is
(
d+1

2

)
/q2 ≈ (1− δ)2/2. Notice that this code cannot have rate more than 1/2.

Local Self-Correction of Reed-Muller codes: Given a received word r ∈ (Fq)q
2

such that
r is close in Hamming distance to the codeword corresponding to P (X,Y ), let us recall how the
classical local self-correction algorithm works. Given a coordinate a ∈ F2

q , we want to recover the
“corrected” symbol at coordinate a, namely P (a). The algorithm picks a random direction b ∈ F2

q

and looks at the restriction of r to coordinates in the line L = {a + bt | t ∈ Fq}. With high
probability over the choice of b, r and C(P ) will agree on many positions of L. Now C(P )|L is
simply the vector consisting of evaluations of the univariate polynomial Q(T ) = P (a+bT ) ∈ Fq[T ],
which is of degree ≤ d. Thus r|L gives us q “noisy” evaluations of a polynomial Q(T ) of degree
≤ (1− δ) · q; this enables us to recover Q(T ). Evaluating Q(T ) at T = 0 gives us P (a), as desired.
Notice that this decoding algorithm makes q queries, which is O(k1/2).

Bivariate Multiplicity Codes: We now introduce the simplest example of multiplicity codes,
which already achieves a better rate than the Reed-Muller code above, while being locally self-
correctable with only a constant factor more queries.

Let q be a prime power, let δ > 0 and let d = 2(1 − δ)q (which is twice what it was in the Reed-
Muller example). The multiplicity code of order 2 evaluations of degree d bivariate polynomials
over Fq is the code defined as follows. As before, the coordinates are indexed by F2

q (so n = q2)
and the codewords are indexed by bivariate polynomials of degree at most d over Fq. However the
alphabet will now be F3

q . The codeword corresponding the polynomial P (X,Y ) is the vector

C(P ) = 〈(P (a),
∂P

∂X
(a),

∂P

∂Y
(a))〉a∈F2

q
∈ (F3

q)
q2 .
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In words, the a coordinate consists of the evaluation of P and its partial derivatives ∂P
∂X and ∂P

∂Y at
a. Because two distinct polynomials of degree at most d can agree with multiplicity 2 on at most
d/2q-fraction of the points in F2

q , this code has distance δ = 1−d/2q. Since the alphabet size is now
q3, the message length k equals the number of q3-ary symbols required to specify a polynomial of
degree at most d; this is clearly

(
d+1

2

)
/3. Thus the rate of this code is (

(
d+1

2

)
/3)/q2 ≈ 2(1− δ)2/3.

Summarizing the differences between this multiplicity code with the Reed-Muller code described
earlier: (a) instead of polynomials of degree (1− δ)q, we consider polynomials of degree twice that,
(b) instead of evaluating the polynomials, we take their “order-2” evaluation. This yields a code
with the same distance, while the rate improved from < 1/2 to nearly 2/3.

Local Self-Correction of Multiplicity codes: Given a received word r ∈ (F3
q)
q2 such that r is

close in Hamming distance to the codeword corresponding to P (X,Y ), we will show how to locally
self-correct. Given a point a ∈ F2

q , we want to recover the “corrected” symbol at coordinate a,
namely (P (a), ∂P∂X (a), ∂P∂Y (a)). Again, the algorithm picks a random direction b = (b1, b2) ∈ F2

q and
looks at the restriction of r to coordinates in the line L = {a + bt | t ∈ Fq}. With high probability
over the choice of b, we will have that r|L and C(P )|L agree in many locations. Our intermediate
goal will be to recover the univariate polynomial2 Q(T ) = P (a + bT ). The important observation
is that for every t ∈ Fq, the a + bt coordinate of C(P ) completely determines both the value and
the 1st derivative of the univariate polynomial Q(T ) at the point t; indeed, by the chain rule we
have:

(Q(t),
∂Q

∂T
(t)) = (P (a + bt), b1

∂P

∂X
(a + bt) + b2

∂P

∂Y
(a + bt)).

Thus our knowledge of r|L gives us access to q “noisy” evaluations of the polynomial Q(T ) and its
derivative ∂Q

∂T (T ), where Q(T ) is of degree ≤ 2(1−δ)q. It turns out that this is enough to recover the
polynomial Q(T ). Evaluating Q(T ) at T = 0 gives us P (a). Evaluating the derivative ∂Q

∂T (T ) at T =
0 gives us the directional derivative of P at a in the direction b (which equals b1 ∂P∂X (a) + b2

∂P
∂Y (a)).

We have clearly progressed towards our goal of computing the tuple (P (a), ∂P∂X (a), ∂P∂Y (a)), but
we are not yet there. The final observation is that if we pick another direction b′, and repeat the
above process to recover the directional derivative of P at a in direction b′, then the two directional
derivatives of P at a in directions b,b′ together suffice to recover ∂P

∂X (a) and ∂P
∂Y (a), as desired.

This algorithm makes 2q queries, which is O(k1/2).

General Multiplicity codes: The basic example of a multiplicity code above already achieves
rate R > 1/2 while allowing local decoding with sublinear query complexity (which was not known
before). To get codes of rate approaching 1, we modify the above example by considering evaluations
of all derivatives of P up to an even higher order. In order to locally recover the higher-order
derivatives of P at a point a, the decoding algorithm will pick many random lines passing through
a, try to recover the restriction of P to those lines, and combine all these recovered univariate
polynomials in a certain way. To reduce the query complexity to O(kε) for small ε, we modify the
above example by considering multivariate polynomials in a larger number of variables m. The
local decoding algorithm for this case, in order to locally recover at a point a ∈ Fmq , decodes by
picking random lines passing through a; the reduced query complexity occurs because lines (with
only q points) are now much smaller relative to a higher dimensional space Fmq . Increasing both the

2Unlike in the Reed-Muller case, here there is a distinction between recovering Q(T ) and recovering C(P )|L. It
turns out that recovering C(P )|L given only r|L is impossible.

5



maximum order of derivative taken and the number of variables simultaneously yields multiplicity
codes with the desired rate and local decodability.

In Section 4, we present our local self-correction algorithm, which implements the plan outlined
above, along with an extra “robustification” so that the fraction of errors which can be recovered
from is a constant fraction of the distance of the code. We also show how the algorithm can be
made to run in sublinear time (almost as small as the query complexity).

Applications of derivatives and multiplicities: The notions of derivative and multiplicity have
played an important role in several prior works in coding theory and theoretical computer science.
The “method of multiplicities” is a powerful combinatorial/algorithmic technique which has been
developed and used in a number of contexts in recent years [GS99, PV05, GR08, SS08, DKSS09].
It is a method for analyzing subsets of Fmq by interpolating a polynomial that vanishes at each
point of that subset with high multiplicity; this often yields a strengthening of the “polynomial
method”, which would analyze such a subset by interpolating a polynomial that simply vanishes
at each point of that subset. Xing [Xin03] considers the space of differentials on an algebraic curve
to prove the existence of error-correcting codes above the Tsfasman-Vladut-Zink bound. Woodruff
and Yekhanin [WY05] use evaluations of polynomials and their derivatives to construct private
information retrieval schemes with improved communication complexity. Multiplicity codes add to
this body of work, which follows the general theme that wherever polynomials and their zeroes are
useful, also considering their derivatives and high-multiplicity zeroes can be even more useful3.

Organization of this paper: In the next section, we state our main theorems on the existence
of locally decodable/self-correctable codes. In Section 3, we formally define multiplicity codes,
calculate their rate and distance, state the theorem implying their local decodability, and show
how they imply the main theorems from the previous section. In Section 4 we give our local
self-correction algorithms for multiplicity codes. Section 5 contains some concluding remarks.

2 Main results on the existence of locally decodable codes

In this section, we state our main results on the existence of locally decodable codes with rate
approaching 1. We begin with some standard definitions.

For a set Σ and two vectors c, c′ ∈ Σn, we define their relative Hamming distance ∆(c, c′) to be the
fraction of coordinates where they differ: ∆(c, c′) = Pri∈[n][ci 6= c′i].

An error-correcting code of length n over the alphabet Σ is a subset C ⊆ Σn. The rate of C is the
defined to be log |C|

n log |Σ| . The (minimum) distance of C is defined to be the largest δ > 0 such that for
every distinct c1, c2 ∈ C, we have ∆(c1, c2) ≥ δ.

For q a prime power, let Fq denote the finite field on q elements. If Σ = Fq, then a code C over the
alphabet Σ is called a linear code if C is a Fq-linear subspace of Σn.

We now define locally self-correctable codes and locally decodable codes. For an algorithm A and
a string r, we will use Ar to represent the situation where A is given query access to r.

3
Some restrictions apply.
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Definition 1 (Locally Self-correctable Code) A code C ⊆ Σn is said to be locally self-correctable
from δ′-fraction errors with t queries if there is a randomized algorithm A, such that:

• Self-correction: Whenever c ∈ C and r ∈ Σn are such that ∆(r, c) < δ′, then for each
i ∈ [n],

Pr[Ar(i) = ci] ≥ 2/3.

• Query complexity t: Ar(i) always makes at most t queries to r.

Definition 2 (Locally Decodable Code) Let C ⊆ Σn be a code with |C| = |Σ|k. Let E : Σk → C
be a bijection (we refer to E as the encoding map for C; note that k/n equals the rate of the code C).
We say that (C, E) is locally decodable from δ′-fraction errors with t queries if there is a randomized
algorithm A, such that:

• Decoding: Whenever x ∈ Σk and r ∈ Σn are such that ∆(r, E(x)) < δ′, then for each i ∈ [k],

Pr[Ar(i) = xi] ≥ 2/3.

• Query complexity t: Ar(i) always makes at most t queries to r.

Suppose Σ = Fq, and that C is a linear code over Σ. By simple linear algebra, it follows that there
is an encoding function E such that for each x ∈ Σk and each i ∈ [k] there is a j ∈ [n], such that
E(x)j = xi. This implies that if C is locally self-correctable (from some fraction of errors with some
query complexity), then (C, E) is locally decodable (from the same fraction of errors and with the
same query complexity). This will allow us to focus on constructing linear codes which are locally
self-correctable.

We now state the two main theorems, which assert the existence of locally self-correctable codes
with improved rate and query complexity. The first theorem, which does this over a large alphabet
(and does not give a linear code), will be a direct consequence of what we show about multiplicity
codes in the next section.

Theorem 3 (Locally self-correctable codes over large alphabets) For every 0 < ε, α < 1,
for infinitely many n, there is a code C over an alphabet Σ, with |Σ| ≤ nO(1), such that C has length
n, rate at least 1 − α, distance δ ≥ εα/2, and is locally self-correctable from δ/10-fraction errors
with O(nε) queries.

The next theorem is the analogue of Theorem 3 for small alphabets (and gives linear codes). These
codes are obtained by simply concatenating multiplicity codes with suitable good linear codes over
the small alphabet. In particular, this shows the existence of locally decodable codes with similar
parameters.

Theorem 4 (Locally self-correctable codes over small alphabets) Let p be a prime power.
For every ε, α > 0, there exists δ > 0, such that for infinitely many n, there is a linear code C over
the alphabet Σ = Fp, such that C has length n, rate at least 1−α, distance at least δ, and is locally
self-correctable from δ/20-fraction errors with O(nε) queries.
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Remark The codes in both the above theorems are efficiently constructible. Furthermore, both
the local self-correction algorithms can be made to run in time O(n2ε).

The proofs of the theorems above appear in Section 3.3.

3 Multiplicity codes

In this section we formally define multiplicity codes, calculate their rate and distance, and state the
main theorem implying their decodability. We then show how multiplicity codes imply the main
theorems of the previous section.

First, we recall some preliminaries on derivatives and multiplicities. We will define our codes using
the Hasse derivative, which is a variant of the usual notion of derivative of a polynomial, and is
more suitable for use in fields of small characteristic.

3.1 Derivatives and multiplicities

We start with some notation. We use [n] to denote the set {1, . . . , n}. For a vector i = 〈i1, . . . , in〉
of non-negative integers, its weight, denoted wt(i), equals

∑n
j=1 ij .

For a field F, let F[X1, . . . , Xm] = F[X] be the ring of polynomials in the variables X1, . . . , Xm with
coefficients in F.

For a vector of non-negative integers i = 〈i1, . . . , in〉, let Xi denote the monomial
∏n
j=1X

ij
j ∈ F[X].

Note that the (total) degree of this monomial equals wt(i).

Definition 5 ((Hasse) Derivative) For P (X) ∈ F[X] and non-negative vector i, the ith (Hasse)
derivative of P , denoted P (i)(X), is the coefficient of Zi in the polynomial P̃ (X,Z)def=P (X + Z) ∈
F[X,Z].

Thus,
P (X + Z) =

∑
i

P (i)(X)Zi. (1)

Observe that for all P,Q ∈ F[X], and λ ∈ F,

(λP )(i)(X) = λP (i)(X) and P(i)(X) + Q(i)(X) = (P + Q)(i)(X). (2)

We are now ready to define the notion of the (zero-)multiplicity of a polynomial at any given point.

Definition 6 (Multiplicity) For P (X) ∈ F[X] and a ∈ Fn, the multiplicity of P at a ∈ Fn,
denoted mult(P,a), is the largest integer M such that for every non-negative vector i with wt(i) <
M , we have P (i)(a) = 0 (if M may be taken arbitrarily large, we set mult(P,a) =∞).
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Note that mult(P,a) ≥ 0 for every a.

The main technical fact we will need about derivatives and multiplicities is a bound on the number
of points that a low-degree polynomial can vanish on with high multiplicity. We state this lemma
below. For an elementary proof in our notation, see [DKSS09].

Lemma 7 Let P ∈ F[X] be a nonzero polynomial of total degree at most d. Then for any finite
S ⊆ F, ∑

a∈Sn

mult(P,a) ≤ d · |S|n−1.

In particular, for any integer s > 0,

Pr
a∈Sn

[mult(P,a) ≥ s] ≤ d

s|S|
.

3.2 The definition of multiplicity codes

We now come to the definition of multiplicity codes.

Definition 8 (Multiplicity code) Let s, d,m be nonnegative integers and let q be a prime power.

Let Σ = F(m+s−1
m )

q = F{i:wt(i)<s}
q . For P (X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] and a ∈ Fmq , we define the

order s evaluation of P at a, denoted P (<s)(a), to be the vector 〈P (i)(a)〉wt(i)<s ∈ Σ.

We define the multiplicity code of order s evaluations of degree d polynomials in m variables over Fq
as follows. The code is over the alphabet Σ, and has length qm (where the coordinates are indexed
by elements of Fmq ). For each polynomial P (X) ∈ Fq[X1, . . . , Xm] with deg(P ) ≤ d, there is a
codeword in C given by:

Encs,d,m,q(P ) = 〈P (<s)(a)〉a∈Fm
q
∈ (Σ)q

m
.

In the next lemma, we calculate the rate and distance of multiplicity codes. The striking feature of
the behavior here is that if we keep the distance δ fixed and let the multiplicity parameter s grow,
the rate of these codes improves (and approaches (1− δ)m).

Lemma 9 (Rate and distance of multiplicity codes) Let C be the multiplicity code of order
s evaluations of degree d polynomials in m variables over Fq. Then C has distance δ = 1− d

sq and

rate (d+m
m )

(s+m−1
m )qm

, which is at least

(
s

m+ s

)m
·
(
d

sq

)m
≥
(

1− m2

s

)
(1− δ)m .

Proof The alphabet size equals q(
m+s−1

m ). The block-length equals qm.

To calculate the distance, consider any two codewords c1 = Encs,d,m,q(P1), c2 = Encs,d,m,q(P2),
where P1 6= P2. For any coordinate a ∈ Fmq where the codewords c1, c2 agree (i.e., (c1)a = (c2)a),
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we have that P (<s)
1 (a) = P

(<s)
2 (a). Thus for any such a, we have (P1−P2)(i)(a) = 0 for each i with

wt(i) < s, and hence mult(P1 − P2,a) ≥ s. From the bound on the number of high-multiplicity
zeroes of multivariate polynomials, Lemma 7, the fraction of a ∈ Fmq on which this can happen is
at most d

sq . The minimum distance δ of the multiplicity code is therefore at least δ = 1− d
sq .

A codeword is specified by giving coefficients to each of the monomials of degree at most d. Thus
the number of codewords equals q(

d+m
m ). Thus the rate equals(
d+m
m

)(
s+m−1
m

)
qm

=

∏m−1
j=0 (d+m− j)∏m
j=1((s+m− j)q)

≥
(

1
1 + m

s

)m( d

sq

)m
≥
(

1− m2

s

)
(1− δ)m .

The next theorem, which will be the focus of the rest of this paper, shows that multiplicity codes
are locally self-correctable.

Theorem 10 (Multiplicity codes are locally self-correctable) Let C be the multiplicity code
of order s evaluations of degree d polynomials in m variables over Fq. Let δ = 1 − d/sq be the
distance of C. Suppose q ≥ max{10m, d+6

s , 5(s + 1)}. Then C is locally self-correctable from δ
10 -

fraction errors with O(s)m · q-queries.

The proof of this theorem appears in Section 4.2. In Section 4.3, we will show that the local
self-corrector can also be made to run very efficiently, in time O(s)m · qO(1).

Multiplicity codes can also be locally decoded with a factor exp(m + s)-increase in the query
complexity, for a suitable choice of encoding function (even though multiplicity codes are not
linear). We omit the details.

3.3 Proof of the main theorems

We now show how to instantiate multiplicity codes to prove our main theorems on the existence of
locally self-correctable codes with improved rate and query-complexity (assuming Theorem 10).

Proof of Theorem 3: Recall that we are trying to construct, for ever 0 < ε, α < 0, for infinitely
many n, a code over an alphabet of size nO(1), with block-length n, rate ≥ 1−α, distance δ ≥ εα/2,
and locally self-correctable with O(nε) queries from δ/10-fraction errors.

Pick m = d1/εe. For every large enough prime power q, we will construct such a code with n = qm.
Pick s so that

1− m2

s
>

1− α
(1− δ)m

,

10



(this can be done with s = O(m2)). Observe that m and s are constants. Let d = (1 − δ) · s · q.
Observe that for all α, ε, 1− α < (1− εα/2)2/ε < (1− εα/2)d1/εe, and hence 1− α < (1− δ)m.

Let C be the multiplicity code of order s evaluations of degree d polynomials in m variables over Fq.
Observe that C has block-length n and is over an alphabet of size q(

m+s−1
m ) = nO(1). By Lemma 9,

C has distance δ and rate at least (1 − m2

s ) · (1 − δ)m > 1 − α. By Theorem 10, C can be locally
self-corrected from δ/10-fraction errors using O(n1/m) = O(nε) queries. This completes the proof
of Theorem 3.

Finally, we complete the proof of Theorem 4, by concatenating suitable multiplicity codes with
good linear codes over small alphabets.

Proof of Theorem 4: Set α1 = α/2 and ε1 = ε/2. As in the proof of Theorem 3, there are
constants m and s such that for every prime power q, there is a multiplicity code with length
n1 = qm, rate 1− α1, distance δ1 ≥ ε1α1/2, over an alphabet Σ1 of size q(

m+s−1
m ), and locally self-

correctable from δ1/10 with O(nε11 ) queries. We will take such codes C1 where q = pt for integers
t > 0.

We now pick another code C2 of length
(
m+s−1
m

)
· t that is Fp-linear and has rate 1− α1 and use it

to encode the symbols of C1. The resulting concatenated code C is Fp-linear (this follows from the
linearity of C2 and the “pseudo-linearity” of C1 coming from Equation (2)), and has distance δ and
rate R that are at least the products of the corresponding parameters of C1 and C2. In particular,
if we take C2 to be a code of constant distance δ2 > 0 (C2 can even be taken to be efficiently
constructible, and such that there are efficient error-correction algorithms for decoding up to half
the minimum distance), then C has length n = qm ·

(
m+s−1
m

)
·t · 1

1−α1
, rate at least 1−α and constant

(as n grows) distance δ > 0.

We now argue that the code C is locally self-correctable. To locally self-correct some coordinate of a
codeword of C given access to a corrupted codeword of C, we first run the local self-corrector for C1

to decode the coordinate of C1 that contains that coordinate of C. Whenever this local self-corrector
wants to query a certain coordinate of C1, we recover that symbol by decoding the corresponding
codeword of C2 (if we only care about query complexity, this can be done by brute force; if we are
interested in having sublinear running time, then C2 should be chosen so that this step can be done
in time polynomial in the length of C2). The query complexity of the local self-corrector for C is
clearly O(nε1 log n) = O(nε). It remains to note that in case the total fraction of errors is below
δ/20, all but δ1/10 fraction of the C2 blocks will have < δ2/2-fraction errors, and can be correctly
recovered by the decoder for C2. Thus the local self-corrector for C1 will run correctly, and this
yields the desired corrected coordinate of C.

4 Local self-correction of multiplicity codes

In this section, we prove that multiplicity codes are locally self-correctable.

Suppose we are dealing with the multiplicity code of order s evaluations of degree d polynomials
in m variables over Fq. Let Σ be the alphabet for this code. Let r : Fmq → Σ be a received word.

11



Suppose P is a polynomial over Fq in m variables of degree at most d such that ∆(r,Encs,d,m,q(P ))
is small. Let a ∈ Fmq . Let us show how to locally recover P (<s)(a) given oracle access to r.

As indicated in the introduction, the idea is to pick many random lines containing a, and to consider
the restriction of r to those lines. With high probability over a random direction b ∈ Fmq \ {0}, by
looking at the restriction of r to the line a + bT and “decoding” it, we will be able to recover the
univariate polynomial P (a + bT ). Knowing this univariate polynomial will tell us a certain linear
combination of the various derivatives of P at a, 〈P (i)(a)〉wt(i)<s. Combining this information
for various directions b, we will know a system of various linear combinations of the numbers
〈P (i)(a)〉wt(i)<s. Solving this linear system, we get P (i)(a) for each i, as desired.

To implement this strategy we need to relate the derivatives of the restriction of a multivariate
polynomial P to a line to the derivatives of P itself. Fix a,b ∈ Fnq , and consider the polynomial
Q(T ) = P (a + bT ).

• The relationship of Q(T ) with the derivatives of P at a: By the definition of Hasse
derivatives,

Q(T ) =
∑

i

P (i)(a)biTwt(i).

Grouping terms, we see that:∑
i|wt(i)=e

P (i)(a)bi = coefficient of T e in Q(T ). (3)

• The relationship of the derivatives of Q at t with the derivatives of P at a + tb:
Let t ∈ Fq. By the definition of Hasse derivatives, we get the following two identities:

P (a + b(t+R)) = Q(t+R) =
∑
j

Q(j)(t)Rj .

P (a + b(t+R)) =
∑

i

P (i)(a + bt)(bR)i.

Thus,

Q(j)(t) =
∑

i|wt(i)=j

P (i)(a + bt)bi. (4)

In particular, Q(j)(t) is simply a linear combination of the various P (i)(a + bt) (over different
i).

We are now in a position to describe our decoding algorithm. Before describing the main local
self-correction algorithm for correcting from Ω(δ)-fraction errors, we describe a simpler version of
the algorithm which corrects from a much smaller fraction of errors. The analysis of this algorithm
will contain many of the ideas. In the description of both algorithms, the query-efficiency will be
clear, and we do not comment on how to make them run time-efficiently. In Section 4.3, we show
how the various steps of the algorithms can be made to run in a time-efficient manner as well.

12



4.1 Simplified error-correction from few errors

Simplified Local Self-correction Algorithm
Input: received word r : Fmq → Σ, point a ∈ Fmq . We are trying to recover P (<s)(a), where P (X)
is such that Encs,d,m,q(P ) is close to r. Abusing notation, we will write r(i)(a) when we mean the
i coordinate of r(a).

1. Pick a set B of directions: Choose B ⊆ Fmq \ {0}, a uniformly random subset of size
w =

(
m+s−1
m

)
.

2. Recover P (a+bT ) for directions b ∈ B: For each b ∈ B, consider the function `b : Fq →
Fsq given by

(`b(t))j =
∑

i|wt(i)=j

r(i)(a + bt)bi.

Find the polynomialQb(T ) ∈ Fq[T ] of degree at most d (if any), such that ∆(Encs,d,1,q(Qb), `b) <
δ/2.

3. Solve a linear system to recover P (<s)(a): For each e with 0 ≤ e < s, consider the
following system of equations in the variables 〈ui〉wt(i)=e (with one equation for each b ∈ B):∑

i|wt(i)=e

biui = coefficient of T e in Qb(T ). (5)

Find all 〈ui〉wt(i)=e which satisfy at all these equations. If there are 0 or > 1 solutions, output
FAIL.

4. Output the vector 〈ui〉wt(i)<s.

We will show that the above algorithm is a local self-corrector from a δ
100(m+s−1

m ) -fraction of errors.

Fix a received word r : Fmq → Σ and a ∈ Fmq . Let P (X1, . . . , Xm) be a polynomial such that
∆(Encs,d,m,q(P ), r) < δ

100(m+s−1
m ) . We will call the set of points where r and Encs,d,m,q(P ) differ the

“errors”.

Step 1: All the b ∈ B are “good”. For b ∈ Fmq \ {0}, we will be interested in the fraction
of errors on the line {a + tb | t ∈ Fq \ {0}} through a in direction b. Since these lines cover
Fmq \ {a} uniformly, we can conclude that at most 1

50(m+s−1
m ) of the lines containing a have more

than δ/2-fraction error on them. Hence with probability at least 0.9 over the choice of B, all the
b ∈ B will be such that the line through a in direction b has fewer than δ/2 errors on it.

Step 2: Qb(T ) = P (a + bT ) for each b ∈ B. Assume that B is such that the above event
occurs. In this case, by Equation (4), for each b ∈ B, the corresponding function `b will be such
that ∆(Encs,d,1,q(P (a + bT ), `b) < δ/2. Thus for each b ∈ B, the algorithm will find Qb(T ) =
P (a + bT ). (Note that at most one polynomial Q(T ) of degree at most d has the property that
∆(Encs,d,1,q(Q), `b) < δ < 2. This is because for distinct Q(T ), Q′(T ) of degree at most d, Lemma 9
implies that ∆(Encs,d,1,q(Q),Encs,d,1,q(Q′)) ≥ δ.)
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Step 3: ui = P (i)(a) for each i. Since Qb(T ) = P (a + bT ) for each b ∈ B, Equation (3) now
implies that for each 0 ≤ e < s, the vector 〈ui〉wt(i)=e with ui = P (i)(a) will satisfy all the equations
in the system (5). Finally, we observe that this solution ui is unique. Indeed, with probability at
least 0.9 over the choice of B, the elements of B will form an interpolating set for polynomials of
degree < s (this holds as long as q is large enough in terms of m and s); in particular, there is no
nonzero polynomial of degree < s that vanishes on all the points of B.

Hence for each e, the vector 〈ui〉wt(i)=e that satisfies all the equations in the system (5) is unique. If
not, then the difference 〈ui − u′i〉wt(i)=e of two such vectors 〈ui〉wt(i)=e, 〈u′i〉wt(i)=e will be the vector
of coefficients of a polynomial of degree < s that vanishes on all of B (for every b ∈ B, we have:∑

i|wt(i)=e(ui − u′i)(bi) = 0), contradicting the fact that B is an interpolating set for polynomials
of degree < s.

Overall, with probability at least 0.8, the algorithm will output P (i)(a), as desired.

4.2 Error-correction from Ω(δ)-fraction errors

We now come to the main local self-correcting algorithm and the proof of Theorem 10. As above,
to decode at a point a, we will pick several lines a+bT through a, and try to recover the univariate
polynomial P (a + bT ). However, unlike the above algorithm, we will not count on the event that
all these lines have less than δ/2-fraction errors. Instead, we will pick a larger number of lines
than the bare-minimum required for the next step, and hope that most (but not necessarily all) of
these lines will have fewer than δ/2-fraction errors. Counting on this weakened event allows us to
self-correct from a significantly larger fraction of errors. To compensate for the weakening, we will
need to make the next step of the algorithm, that of solving a linear system, more robust; we will
have to solve a noisy system of linear equations.

Let us elaborate on the method by which we pick the lines in the new algorithm. In the previous
algorithm, we picked exactly

(
m+s−1
m

)
random lines through a and used them to decode from

Ω( δ

(m+s−1
m ))-fraction errors. By picking a larger number of lines, we can decode all the way up to

Ω(δ)-fraction errors. There are several ways of picking this larger number of lines. One way is to
pick Θ(

(
m+s−1
m

)
) independent and uniformly random lines through the point a. The algorithm we

present below picks these lines differently; the directions of these lines will come from a random
affinely transformed grid. This way of choosing lines admits a simpler analysis, and the noisy
system of linear equations that we end up needing to solve turns becomes an instance of the noisy
polynomial interpolation problem on a grid, for which time-efficient algorithms are known.

Main Local Self-Correction Algorithm:
Input: received word r : Fmq → Σ, point a ∈ Fmq . Abusing notation again, we will write r(i)(a)
when we mean the i coordinate of r(a).

1. Pick a set B of directions: Pick z,y1,y2, . . .ym ∈ Fmq independently and uniformly at
random. Let S ⊂ Fq be any set of size 5(s+ 1). Let B = {z +

∑m
i=1 αiyi | αi ∈ S}.

2. Recover P (a+bT ) for directions b ∈ B: For each b ∈ B, consider the function `b : Fq →
Fsq given by

(`b(t))j =
∑

i|wt(i)=j

r(i)(a + bt)bi.
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Find the polynomialQb(T ) ∈ Fq[T ] of degree at most d (if any), such that ∆(Encs,d,1,q(Qb), `b) <
δ/2.

3. Solve a noisy linear system to recover P (<s)(a): For each e with 0 ≤ e < s, consider the
following system of equations in the variables 〈ui〉wt(i)=e (with one equation for each b ∈ B):∑

i|wt(i)=e

biui = coeff of T e in Qb(T ). (6)

Find all 〈ui〉wt(i)=e which satisfy at least 3/5 of these equations. If there are 0 or > 1 solutions,
output FAIL.

4. Output the vector 〈ui〉wt(i)<s.

We now proceed to analyze the above algorithm (and thus complete the proof of Theorem 10).

Proof of Theorem 10: For m = 1 the theorem is trivial, and so we assume m ≥ 2. Recall that
we have q ≥ 10m, q ≥ d+6

s (so that q ≥ 6
δ ) and that q ≥ 5(s+ 1).

We will show that the above algorithm is a local self-corrector from a δ
10 -fraction of errors. Fix

a received word r : Fmq → Σ and a ∈ Fmq . Let P (X1, . . . , Xm) be a polynomial such that
∆(Encs,d,m,q(P ), r) < δ

10 . We will call the set of points where r and Encs,d,m,q(P ) differ the
“errors”.

Step 1: Many b ∈ B are “good”. For b ∈ Fmq \ {0}, we will be interested in the fraction of
errors on the line {a + tb | t ∈ Fq} through a in direction b. Since these lines cover Fmq \ {a}
uniformly, we can conclude that at least 2

3 of b ∈ Fmq are such that the line {a + tb | t ∈ Fq} has

a fraction of errors which is less than
(
δ
3 + 1

q

)
< δ

2 . We call these directions b good. In the claim
below, we show that the set B samples the set of good directions well.

Claim 11 Let m be a positive integer, and let S ⊂ Fq be any set such that |S|m ≥ 50. Pick
z,y1,y2, . . .ym ∈ Fmq independently and uniformly at random. Let B = {z +

∑m
i=1 αiyi | αi ∈ S}.

Then for every set E ⊆ Fmq of size at least 2qm/3, the probability that fewer than 3/5 of the points
of B lie in E is at most 0.1.

Proof The claim follows from a standard application of Chebyshev’s inequality, using the fact
that the collection of random variables 〈z +

∑m
i=1 αiyi〉(α1,...,αm)∈Sm is pairwise independent.

Hence (recall that we have m ≥ 2, and so (5(s+ 1))m > 50), with probability at least 0.9 over the
choice of B, 3/5-fraction of the b ∈ B will be good.

Step 2: Qb(T ) = P (a + bT ) for each good b ∈ B. By Equation (4), for each good b ∈ B,
the corresponding function `b will be such that ∆(Encs,d,1,q(P (a + bT )), `b) < δ/2. Thus for each
good b, the algorithm will find Qb(T ) = P (a + bT ). (Note that at most one polynomial Q(T )
of degree at most d has the property that ∆(Encs,d,1,q(Q), `b) < δ/2. This is because for distinct
Q(T ), Q′(T ) of degree at most d, Lemma 9 implies that ∆(Encs,d,1,q(Q),Encs,d,1,q(Q′)) ≥ δ.)
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Step 3: ui = P (i)(a) for each i. Since Qb(T ) = P (a + bT ) for each good b ∈ B, Equation (3)
now implies that with probability 0.9, for each 0 ≤ e < s, the vector 〈ui〉wt(i)=e with ui = P (i)(a)
will satisfy at least 3/5 of the equations in the system (6).

Finally, we observe that this solution ui is unique with probability at least 0.9. Indeed, with
probability at least 0.9 over the choice of B, the elements y1, . . . ,ym will be linearly independent
over Fmq (since q ≥ 10m). In this case, there is an Fq-linear map which gives a bijection between
Sm and B. Via this linear map, we get a degree preserving correspondence between polynomials
evaluated on Sm and polynomials evaluated on B. Now by Lemma 7 (and recalling that |S| =
5(s+ 1)), there is no nonzero polynomial of degree < s that vanishes on more that 1/5-fraction of
the points of Sm. Hence no nonzero polynomial of degree < s vanishes on more that 1/5-fraction
of the points of B.

Hence for each e, the vector 〈ui〉wt(i)=e that satisfies 3/5 of the equations in the system (6) is unique;
if not, then the difference 〈ui − u′i〉wt(i)=e of two such vectors 〈ui〉wt(i)=e, 〈u′i〉wt(i)=e will be the
coefficients of a polynomial of degree < s that vanishes on at least 1/5 fraction of B; for any b ∈ B
such that both 〈ui〉wt(i)=e and 〈u′i〉wt(i)=e satisfy the equation (6), we have:

∑
i|wt(i)=e(ui−u′i)(bi) =

0, contradicting the fact that there is no nonzero polynomial of degree < s that vanishes on more
that 1/5-fraction of the points of B.

Overall, with probability at least 0.8, the algorithm will output P (i)(a), as desired.

This completes the proof of Theorem 10.

4.3 Running time

In this section, we will see how the above local self-correction algorithms can be made to run
efficiently, in time polynomial in the query complexity.

There are two key steps which we need to elaborate on. The first step is the search for the univariate
polynomial Qb(T ). Here the problem boils down to the problem of decoding univariate multiplicity
codes up to half their minimum distance. The second step we will elaborate on is solving the noisy
linear system of equations. This will reduce to an instance of decoding Reed-Muller codes.

Decoding univariate multiplicity codes. We deal with the first step first, that of decoding
univariate multiplicity codes. Explicitly, let Σ = Fsq, we have a function ` : Fq → Σ, and we want
to find the univariate polynomial Q(T ) ∈ Fq[T ] of degree at most d such that ∆(`,Encs,d,1,q(Q)) <
(1− d/sq)/2 = δ/2. Abusing notation again, we let `(i) : Fq → Fq be the function which equals the
i-coordinate of `, for 0 ≤ i < s.

Univariate multiplicity codes are instances of “ideal error-correcting codes” [GSS00, Sud01]. For-
mally defining ideal error-correcting codes will take us too far afield; we will content ourselves with
instantiating the known algorithm for decoding ideal error-correcting codes in this case, and explic-
itly writing out the resulting efficient algorithm for decoding univariate multiplicity codes. All these
algorithms are extensions of the beautiful Berlekamp-Welch algorithm for decoding Reed-Solomon
codes.

Let Q(T ) be a polynomial of degree at most d such that ∆(`,Encs,d,1,q(Q)) < δ/2. Our underlying
goal is to search for polynomials E(T ), N(T ) such that N(T ) = E(T )Q(T ) (and so we obtain Q(T )
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as N(T )/E(T )). By the product rule for Hasse derivatives (which states that (P1 · P2)(i)(T ) =∑i
j=0 P

(j)
1 (T )P (i−j)

2 (T ), see [HKT08]), such polynomials E(T ), N(T ) will also satisfy the equalities

N (1)(T ) = (E ·Q)(1)(T ) = E(T )Q(1)(T ) + E(1)(T )Q(T ),

N (2)(T ) = (E ·Q)(2)(T ) = E(T )Q(2)(T ) + E(1)(T )Q(1)(T ) + E(2)(T )Q(T ),
· · · (7)

N (s−1)(T ) = (E ·Q)(s−1)(T ) =
s−1∑
i=0

E(i)(T )Q(s−1−i)(T )

This motivates the following algorithm.

• Search for nonzero polynomials E(T ), N(T ) of degrees at most (sq− d)/2, (sq+ d)/2 respec-
tively such that for each x ∈ Fq, we have the following equations:

N(x) = E(x)`(0)(x)

N (1)(x) = E(x)`(1)(x) + E(1)(x)`(0)(x)
· · ·

N (s−1)(x) =
s−1∑
i=0

E(i)(x)`(s−1−i)(x)

This is a collection of sq homogeneous linear equations in (sq−d)/2 + 1 + (sq+d)/2 + 1 > sq
unknowns (the coefficients of E and N). Thus a nonzero solution E(T ), N(T ) exists. Take
any such nonzero solution.

• Given E, N as above, output N/E.

To see correctness, take any Q such that ∆(`,Encs,d,m,q(Q)) < δ/2. Observe that for any x where
`(x) = Encs,d,m,q(Q)(x), the system of equations (7) is satisfied at T = x, and hence the polynomial
N(T )−E(T )Q(T ) has a root with multiplicity s at x. Thus

∑
x∈Fq

mult(N−EQ, x) > (1−δ/2)sq =
(sq + d)/2. Since deg(N − EQ) ≤ (sq + d)/2, we conclude that the polynomial N − EQ must be
identically 0, and hence Q(T ) = N(T )/E(T ), as desired (here we used the fact that E,N are not
both identically 0). In particular E | N , and N/E is a polynomial.

Solving the noisy system. We now show how to solve the noisy system of linear equations
efficiently. For m and s constant, this is a system of constantly many (O(s)m) linear equations
over Fq, and hence by running over all subsystems consisting of 3/5-fraction of these equations,
and solving that subsystem of linear equations exactly, we can solve the noisy system in time
exp(sm) · poly log q.

This is somewhat unsatisfactory. We point out some special situations where solving these noisy
linear equations can be done in (optimal) time poly(sm, log q). Observe that our task is of the form:
“Given a function r : B → Fq, find all polynomials R(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] of degree < s
such that R(b) = r(b) for at least α-fraction of the b ∈ B”. Thus, this is a problem of noisy
polynomial interpolation. As observed in Step 3 of the analysis of the main local self-correction
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algorithm, there is a linear map which puts Sm and B in bijection. This linear map gives rise to a
degree-preserving correspondence between polynomials evaluated on Sm and polynomials evaluated
on B. Thus, our task of doing noisy polynomial interpolation (for polynomials of degree < s) on
B reduces to noisy polynomial interpolation (for polynomials of degree < s) on Sm. This brings
us into familiar territory. For certain fields Fq, and certain choices of the set S, there are known
efficient algorithms for doing this. In particular, if S is a subfield of Fq, say S = Fp, given a function
r : Sm → Fq, one can recover4 the unique degree < s polynomial R that agrees with r in at least
(1 + s/p)/2-fraction of the points of Sm in time poly(|S|m, log q). Since p = |S| ≥ 5(s + 1), this
fraction is at most 3/5, and this suffices for application to the local self-correcting algorithm of the
previous section.

5 Discussion

Multiplicity codes seem to be a natural and basic family of codes. Their heritage from multivariate
polynomial codes endows them with a useful geometric structure, and their better rate/distance
tradeoff allows them to carry that usefulness into new combinatorial regimes.

There are a number of questions related to multiplicity codes that invite further exploration.

• Because of their high rate, multiplicity codes seem to have potential for use in practice. It
will be very interesting to further explore the practicality of these codes.

Here is an example instantiation of multiplicity codes (based on order 4 evaluations of poly-
nomials in 2 variables over F215). Suppose we have a storage medium which stores data in
150 bit blocks. Then, 720 million blocks of data can be encoded at rate ≈ 0.72 to become
an ≈ 1 billion block long codeword, such that even if an arbitrary 10 million blocks of the
codeword get corrupted, then one can recover with high probability any desired block of the
original data by just looking at 640,000 blocks of the corrupted codeword. Earlier, codes of
this rate would have required one to read and process at least ≈ 720 million blocks of the
codeword to recover 1 block of original data.

• For every ε > 0, multiplicity codes yield positive-rate O(nε)-query LDCs tolerating a constant
fraction of errors. It is very interesting to see if one can reduce the query complexity of
positive-rate LDCs even further. The only lower bound that we currently have on the query
complexity for codes of positive rate is Ω(log n).

If we are willing to relax the requirement of recovering from a constant fraction of errors, and
consider a smaller (but nontrivial) fraction of errors, then one can get multiplicity codes of
positive rate which can be locally self-corrected with exp

(√
log n log log n

)
queries.

• Finally, it would be interesting to see if multiplicity codes can be useful in the various other
settings where multivariate polynomial codes have proven useful.

4Viewing r : Fm
p → Fq as a tuple of functions from Fm

p to Fp, the noisy polynomial interpolation problem for r
reduces to several instances of the problem of decoding Reed-Muller codes up to half their minimum distance, for
which there are polynomial-time algorithms.
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