
Space-Efficient Algorithms for Reachability in Surface-Embedded

Graphs

Derrick Stolee∗

Department of Computer Science
Department of Mathematics

University of Nebraska–Lincoln
dstolee@cse.unl.edu

N. V. Vinodchandran†

Department of Computer Science
University of Nebraska–Lincoln

vinod@cse.unl.edu

October 8, 2010

Abstract

We consider the reachability problem for a certain class of directed acyclic graphs embedded
on surfaces. Let G(m, g) be the class of directed acyclic graphs with m = m(n) source vertices
embedded on a surface (orientable or non-orientable) of genus g = g(n). We give a log-space
reduction that on input 〈G, u, v〉 where G ∈ G(m, g) and u and v are two vertices of G, outputs
〈G′, u′, v′〉 where G′ is directed graph, and u′, v′ are vertices of G′, so that (a) there is a directed
path from u to v in G if and only if there is a directed path from u′ to v′ in G′ and (b) G′ has
O(m+ g) vertices.

By a direct application of Savitch’s theorem on the reduced instance we get a deterministic
O(log n + log2(m + g))-space algorithm for the reachability problem for graphs in G(m, g). By
setting m and g to be 2O(

√
logn) we get that the reachability problem for directed acyclic graphs

with 2O(
√

logn) sources embedded on surfaces of genus 2O(
√

logn) is in L (deterministic logarithmic
space). Earlier, in this direction, deterministic log-space algorithms were known only for planar
directed acyclic graphs with O(log n) sources. Hence our result drastically improves the class of
directed graphs for which we now know how to decide reachability in deterministic logarithmic
space. By setting m and g to be no(1) we get a deterministic algorithm for reachability for
directed acyclic graphs embedded on surfaces with sub-polynomial genus and with sub-polynomial
number of sources, that asymptotically beats Savitch’s O(log2 n) space bound.

Our reduction can also be combined with a simple depth-first search to achieve new simulta-
neous time-space upper bounds for reachability in a large class of directed acyclic graphs embed-
ded on surfaces. In particular, for any ε < 1, by performing a depth-first search on the reduced
instance, we get a polynomial time algorithm for reachability over graphs in G(O(nε), O(nε))
that uses O(nε) space. This beats the best upper bound of polynomial time and O(n/2

√
logn)

space for this class of graphs known earlier.

∗This author is supported in part by the NSF grants CCF-0916525 and DMS-0914815.
†This author is supported in part by the NSF grants CCF-0830730 and CCF-0916525.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 154 (2010)

1 Introduction

Graph reachability problems are central to computational complexity theory. Different versions of
this problem very closely characterize several important space complexity classes. The problem of
deciding whether there is a path from a node u to v in a directed graph is the canonical complete
problem for non-deterministic log-space (NL). Recent break-through result of Reingold implies that
for undirected graphs, the reachability problem characterizes deterministic log-space computation
(L) [Rei08]. It is also known that some restricted promise versions of the directed reachability
problem characterize randomized log-space computations (RL) [RTV06]. Because of its fundamen-
tal role, designing space efficient algorithms for reachability problems is of great significance to
complexity theory.

Prior Results

Savitch’s O(log2 n) space bound for the directed reachability problem [Sav70], Saks and Zhou’s
O(log3/2 n) bound for reachability problems characterizing RL computations [SZ99], and Reingold’s
log-space algorithm for the undirected reachability problem [Rei08] are the three most significant
results in this topic. Clearly, designing algorithm for general reachability problem that beats
Savitch’s bound is one of the most important open questions in this area. While this appears
to be a difficult problem, investigating classes of directed graphs for which we can design space
efficient algorithms is an important research direction that appears to have promise. Recently,
there has been progress reported along this theme. Jacoby, Lískiewicz, and Reischuk, and, Jacoby
and Tantau show that various reachability and optimization questions for series-parallel graphs
admit deterministic log-space algorithms [JLR06,JT07]. Series-parallel graphs are a very restricted
subclass of planar directed acyclic graphs (DAGs). In particular, such graphs have a single source
and a single sink. Allender, Barrington, Chakraborty, Datta, and Roy [ABC+09] extended Jacoby
et al. ’s result to show that the reachability problem for planar DAGs with single source and
multiple sinks (SMPDs) can be decided in log-space. Building on this work, in [SBV10], the
authors show that in fact, for planar DAGs with O(log n) sources, reachability can be decided
in log-space. Investigating tree-width restricted graphs has also resulted in new space-efficient
algorithms. Elberfeld, Jakoby, and Tantau present a log-space algorithm for reachability (and
other problems) over graphs with constant tree-width [EJT10]. Another interesting class of graphs
for which we know an algorithm that beats Savitch’s bound is the class of mangroves – digraphs
where every pair of vertices are connected by at most one path. Allender and Lange showed that
reachability in mangroves can be solved in deterministic O(log2 n/ log log n) space [AL98].

Designing algorithms for reachability with simultaneous time and space bound is another im-
portant direction that has been of considerable interest in the past. Since a depth first search can
be implemented in linear time and O(n) space, the goal here is to improve the space bound while
maintaining running time to be a polynomial. The most significant result here is Nisan’s O(log2 n)
space, nO(1) time bound for RL [Nis95]. The best upper bound for general directed reachability is
the O(n/2

√
logn) space, nO(1) time algorithm due to Barnes, Buss, Ruzzo and Schieber [BBRS92]

However, these results were discovered nearly two decades ago and there appears to be not much
recent progress reported on this topic. In this paper we give new bounds that beats the Barnes et
al. bound for a large class of directed acyclic graphs.

Our Results

We consider the reachability problem over a large class of directed acyclic graphs embedded on
surfaces. Since the graph is acyclic, there exist vertices with no incoming edge, called sources.

2

Define n = n(G) to be the number of vertices in the input graph. Let G(m, g) denote the class
of directed acyclic graphs (DAGs) with at most m = m(n) source vertices embedded on a surface
(orientable or non-orientable) of genus at most g = g(n). Our main technical contribution is the
following log-space reduction that compresses an instance of reachability for such surface-embedded
DAGs.

Theorem 1.1. There is a log-space reduction that given an instance 〈G, u, v〉 where G ∈ G(m, g)
and u, v vertices of G, outputs an instance 〈G′, u′, v′〉 where G is a directed graph and u′, v′ vertices
of G′, so that

(a) there is a directed path from u to v in G if and only if there is a directed path from u′ to v′

in G′,
(b) G′ has O(m+ g) vertices.

Combining this reduction with known algorithms leads to many new space complexity upper
bounds for the reachability problem.

By a direct application of Savitch’s theorem on the reduced instance we get the following result.

Theorem 1.2. The reachability problem for graphs in G(m, g) can be decided in deterministic
O(log n+ log2(m+ g)) space.

By setting m = g = 2O(
√

logn) we get a deterministic log-space algorithm for reachability in
DAGs with 2

√
logn sources embedded on a surface of genus 2

√
logn. This drastically improves the

class of graphs for which we now know how to decide reachability in deterministic logarithmic space.

Corollary 1.3. The reachability problem for directed acyclic graphs with 2O(
√

logn) sources embed-
ded on surfaces of genus 2O(

√
logn) can be decided in deterministic logarithmic space.

A more relaxed setting of parameters leads to deterministic algorithms that asymptotically beat
the Savitch’s bound of O(log2 n). By setting m and g to be no(1) we get the following.

Corollary 1.4. The reachability problem for directed acyclic graphs embedded on surfaces with
sub-polynomial genus and with sub-polynomial number of sources can be decided in deterministic
space o(log2 n).

Combining our reduction with a simple depth-first search gives us better simultaneous time-
space bound for reachability over a large class of graphs than known before.

Theorem 1.5. The reachability problem for graphs in G(m, g) can be decided in polynomial time
using O(log n+m+ g) space.

In particular, for any ε < 1, we get a polynomial time algorithm for reachability over graphs in
G(nε, nε) that uses O(nε) space. This beats the Barnes et al. upper bound of polynomial time and
O(n/2

√
logn) space for this class of graphs.

Corollary 1.6. For any ε with 0 < ε < 1, the reachability problem for graphs in G(O(nε), O(nε))
can be decided in polynomial time using O(nε) space.

We note that the upper bound on space given in Theorem 1.5 can be slightly improved to
O
(

m+g

2
√

log(m+g)

)
by using Barnes et al. algorithm instead of the depth-first search, which will give

o(nε) space bound in the above corollary.

Theorem 1.7. The reachability problem for graphs in G(m, g) can be decided in polynomial time
using O

(
log n+ m+g

2
√

log(m+g)

)
space.

3

Overview of the Construction

This main theorem is proven in several parts. In Section 2, we present a simple structural de-
composition called the forest decomposition of the given directed acyclic graph. Based on this
decomposition, we classify the edges as local and global. Reachability using only local edges can
be decided in log-space. In order to pinpoint how the global edges interact, we define the notion
of topological equivalence among global edges. We show that the number of possible equivalence
classes is bounded by O(m + g) where m is the number of sources and g is the genus of the sur-
face. Then, Section 3 describes a finite list of patterns that characterize how paths pass through
these equivalence classes. We also analyze the structure of these patterns. In particular, for each
pattern type we identify a pair of log-space computable edges in the corresponding equivalence
class that has certain canonical properties. In Section 4, we describe a graph P(G,F) on O(m+ g)
vertices (where F is the forest decomposition) called the pattern graph whose vertices are described
by (pattern-equivalence class) pairs. We finally show that this pattern graph is computable in
log-space and preserves reachability between a given pair of vertices.

Before we begin, we note that through out this paper certain known log-space primitives are fre-
quently used as subroutines without explicit reference to them. In particular, Reingold’s log-space
algorithm for undirected reachability is often used, for example to identify connected components
in certain undirected graphs.

2 Preliminaries

We mainly deal with directed graphs. A directed edge e = xy has the direction from x to y and we
call x the tail and y the head. Sometimes we use the notation x = Tail(e), and y = Head(e).

We assume that G is a graph and the embedding is given as part of the input. If G is planar,
this can be detected in log-space and the embedding can be generated using a log-space reduction.
We assume that the input graph G is embedded on a surface S where every face is homeomorphic
to an open disk. Such embeddings are called 2-cell embeddings. We also assume that the graph is
presented as a combinatorial embedding where for each vertex v the circular ordering of the edges
incident to v is specified. In the case of a non-orientable surface, the signature of an edge is also
given, specifying if the orientation of the rotation switches across this edge.

Let G be a graph with n vertices and e edges embedded on a surface S with f faces, then by
the well known Euler’s Formula we have n−e+f = χS , where χS is the Euler characteristic of the
surface S. The number of faces in a graph is log-space computable from a combinatorial embedding
(for a proof, see [KV10]), so χS is also computable in log-space. The genus gS of the surface S
is given by the equation χS = 2 − 2gS for orientable surfaces and χS = 2 − gS for non-orientable
surfaces.

Let C be a simple closed curve on S given by a cycle in the underlying undirected graph of G.
C is called surface separating if the removal of C disconnects S. A surface separating curve C is
called contractible if removal of C disconnects S where at least one of the connected components
is homeomorphic to a disc. Given a cycle C it is possible to detect the type of C in log-space (for
example by using log-space algorithm for undirected reachability to find the connected components,
then calculating the Euler characteristic for each component).

We assume that the given graph is acyclic. Lemma 2.1 gives a technique for converting a source-
bounded reachability algorithm on graphs promised to be acyclic into a cycle-detection algorithm
without asymptotically increasing the space requirement.

4

Lemma 2.1. Let s(n,m, g) = Ω(log n). If there exists an O(s(n,m, g))-space bounded algorithm
for testing uv-reachability over graphs in G(m, g) then there exists an O(s(n,m, g))-space bounded
algorithm to test if a graph is acyclic, given that it has at most m sources and is embedded in a
surface of genus at most g.

Proof. Let A(G, u, v) be the algorithm for testing uv-reachability on G ∈ G(m, g). Fix an incoming
edge at each non-source vertex, making a set F ⊆ E(G). By taking reverse walks from each vertex,
it can be verified that F has no cycles.

Order the edges E(G) as {e1, . . . , e|E(G)|}. For each i ∈ {0, 1, . . . , |E(G)|}, letGi be the subgraph
of G where an edge ej is present in Gi if ej ∈ F or j ≤ i. Iterate through all such i and test if
A(Gi,Head(ei+1),Tail(ei+1)) ever returns with success. If any returns True, then there is a cycle
including the edge ei+1. Note that A gives the correct response, since G0 was cycle free and by
iteration, Gi is cycle free. Each Gi is acyclic for i ∈ {1, . . . , |E(G)|} if and only if G is acyclic and
all queries A(Gi,Head(ei+1),Tail(ei+1)) return False.

Forest Decomposition, Edge Classification, and Topological Equivalence

A simple structural decomposition, called a forest decomposition, of a directed acyclic graph forms
the basis of our algorithm. This forest decomposition has been utilized in previous works [ABC+09,
SBV10].

Let G be a directed acyclic graph and let u, v be two vertices. Our goal is to decide whether
there is directed path from u to v. Let u, s1, . . . , sm be the sources of G. If u is not a source, make
it a source by removing all the incoming edges. This will not affect uv-reachability, increases the
number of sources by at most one, and only reduces the genus of the embedding.

Definition 2.2 (Forest Decomposition). Let A be a deterministic log-space algorithm that on input
of a non-source vertex x, outputs an incoming edge yx (for example, selecting the lexicographically-
first vertex y so that yx is an edge in G). This algorithm defines a set of edges

FA = {yx : x ∈ V (G) \ {u, v, s1, . . . , sm}, y = A(x)},

called a forest decomposition of G.

Note that since G is acyclic, the reverse walk x1, x2, . . . , where x1 = x and xi+1 = A(xi), must
terminate at a source sj , u, or v, so the edges in FA form a forest subgraph. For the purposes of
the forest decomposition, v is treated as a source since no incoming edge is selected. If a vertex
x is in the tree with source v, then all non-tree edges entering x are deleted. This does not affect
uv-reachability, since G is acyclic and does not increase the number of sources or the genus of the
surface. Each connected component in FA is a tree rooted at a source vertex, called a source tree.
The forest forms a typical ancestor and descendant relationship within each tree.

For the remainder of this work, we fix an acyclic graph G ∈ G(m, g) embedded on a surface S
(defined by the combinatorial embedding) and F = FA a log-space computable forest decomposi-
tion.

Definition 2.3 (Tree Curves). Let x and y be two vertices in some source tree T of F . The tree
curve at xy is the curve on S formed by the unique undirected path in T from x to y. If xy is an
edge, then the closed curve formed by xy and the tree curve at xy is called the closed tree curve at
xy.

Edges in G that are not included in F can be partitioned into two classes, local and global. We
use this classification to create subgraphs of G which are locally embedded on a disk.

5

Definition 2.4 (Local and Global Edges). Given an S-embedded graph G and a forest decompo-
sition F , an edge xy in E(G) \ F is classified as

- local1 if the following three conditions hold:

1. x and y are on the same tree in F .
2. The closed tree curve at xy is contractible (i.e. the curve cuts S into a disk and another

surface).
3. No sources lie on the interior of the surface which is homeomorphic to a disk.

If S is the sphere, then the curve cuts S into two disks and xy is local if one of the disks
contains no source in the interior.

- global otherwise.

Note that the subgraph of G given by the edges in F and the local edges has each connected
component a DAG with a single source.

Definition 2.5 (The Region of a Source Tree). Let T be a connected component in the forest
decomposition F along with the local edges between vertices in T . The region of T , denoted R[T]
is the portion of the surface S given by the faces enclosed by the tree and local edges in T .

The faces that compose R[T] form a disk, since R[T] can contract to the source vertex by
contracting the disks given by the local edges into the tree, and then contracting the tree into the
source vertex. This disk is oriented using the combinatorial embedding at the source by the right-
hand rule. Reachability in such subgraphs T can be decided using the SMPD algorithm [ABC+09],
in log-space. Note that the restriction of a 2-cell embedding implies all global edges are incident
to vertices on the outer curve of the disk R[T]. Our figures depict source trees as circles, with the
source placed in the center, with tree edges spanning radially away from the source2.

The following notion of topological equivalence plays a central role in our algorithms. It was
originally presented in [SBV10] for planar graphs, but we extend it to arbitrary surfaces.

Definition 2.6 (Topological Equivalence). Let G be a graph embedded on a surface S. Let F
be a forest decomposition of G. We say two (undirected) global edges xy and wz are topologically
equivalent if the following two conditions are satisfied:

- They span the same source trees in F (assume x and w are on the same tree).
- The closed curve in the underlying undirected graph formed by (1) the edge xy, (2) the tree

curve from y to z, (3) the edge zw, and (4) the tree curve from w to x bounds a connected
portion of S, denoted D(xy,wz), that is homeomorphic to a disk and no source lies within
D(xy,wz).

Topological equivalence is an equivalence relation. For the sake of the reflexive property, we
take as convention that a single edge is topologically equivalent to itself. The symmetry property
is implied by the symmetry of the definition. For transitivity, consider the following lemma.

1This definition of local differs from the use in [ABC+09] and [SBV10].
2This visualization of source trees was crucial to the development of this work, and is due to [ABC+09].

6

Lemma 2.7. Let e1, e2 be topologically equivalent global edges and e3 a global edge.

1. If e3 has an endpoint in D(e1, e2), then e3 is equivalent to both e1 and e2.
2. If e3 is equivalent to e2, then one of the following cases holds:

(a) e1 is in D(e2, e3).
(b) D(e1, e2) and D(e2, e3) intersect at the curve given by e2 and the ancestor paths from its

endpoints to their respective sources, and D(e1, e3) = D(e1, e2) ∪D(e2, e3).

In both cases (a) and (b), e1 is topologically equivalent to e3.

Let E′ be an equivalence class of global edges containing an edge e, where e spans two different
source trees. Consider the subgraph of G given by the vertices in the source trees containing the
endpoints of e, along with all local edges in those trees and the edges in E′. This subgraph is
embedded in a disk on S. We shall make explicit use of this locally-planar embedding.

For an equivalence class of global edges spanning vertices in the same tree, a similar subgraph
and embedding is formed by considering the ends of the equivalence class to be different copies of
that source tree.

The lexicographically-least edge e in a topological equivalence class of global edges is log-space
computable. By counting how many global edges which are lexicographically smaller than e and are
the lexicographically-least in their equivalence classes, the equivalence class containing e is assigned
an index i. The class Ei is the ith equivalence class in this ordering. We shall use this notation to
label the equivalence classes.

Definition 2.8 (The Region of an Equivalence Class). Let Ei be an equivalence class of global
edges. Define the region enclosed by Ei as

R[Ei] =
⋃

e1,e2∈Ei

D(e1, e2).

(a) A region of edges spanning different trees. (b) A region of edges spanning a
single tree.

Figure 1: Regions of an equivalence class. The representative edge e defines the A-end and B-end of R[Ei].

The region R[Ei] has some properties which are quickly identified.

1. Two regions R[Ei] and R[Ej] on different classes Ei and Ej intersect only on the boundary
paths. The vertices on the boundary are not considered inside the region, since they may be
in multiple regions.

7

2. There are two edges ea, eb ∈ Ei so that R[Ei] = D(ea, eb). These outer edges define the sides
of R[Ei].

3. The boundary of R[Ei] is given by these two edges and their ancestor paths in F on all four
endpoints.

4. Let TA and TB be the two source trees containing the tail and head, respectively, of the
representative edge in Ei. The vertices in R[Ei] are partitioned into two ends, A and B,
where the vertices are placed in an end determined by containment in R[TA] ∩ R[Ei] and
R[TB] ∩R[Ei] when there trees TA and TB different or by the two connected components of
R[TA] ∩R[Ei] when the trees TA and TB are equal.

5. There is an ordering ea = e1, e2, . . . , ek = eb of Ei so that the endpoints of the ej on the
A-end appear in a clockwise order in that tree.

Since global edges appear on the boundary of R[T] for a given source tree T , there is a natural
clockwise ordering on these edges, with respect to the orientation of T . Further, we can order the
incident equivalence classes (with possibly a single repetition, in the case of global edges with both
endpoints in T) by the clockwise order the ends R[Ei] ∩R[T] appear on the boundary of R[T].

The resource bounds we prove directly depends on the number of equivalence classes. The
following lemma bounds the number of equivalence classes.

Lemma 2.9. Let G be a graph embedded on a surface S with Euler characteristic χS with a forest
decomposition F with m sources. There are at most 3(m + |χS |) topological equivalence classes of
global edges. If gS is the genus of S, |χS | = O(gS) and there are O(m+ gS) equivalence classes of
global edges.

Proof. Consider a graph G which has a maximal number of equivalence classes and remove all but
one representative of each class. Create a new multigraph H on the m sources with edges given by
the representatives of each class, with the edges embedded in S by following the undirected path
composed of the tree path from the first source to the edge, the edge, then the tree path from the
edge to the second source. There are m vertices, and let e be the number of edges, f the number of
faces. Subdivide these edges twice to get a simple graph embedded in S. Note that Euler’s formula
holds in this graph on m+ 2e vertices, 3e edges, and f faces. Hence,

χS = (m+ 2e)− (3e) + f

= m− e+ f.

Moreover, each face must have at least three equivalence classes, and each edge is incident to
two faces, so 2e ≤ 3f and f ≤ 2

3e. This gives

χS = m− e+ f ≤ m− 1
3
e

⇒ e ≤ 3m− 3χS ≤ 3(m+ |χS |).

An important consequence of this lemma is that it requires only O(log(m + gS)) bits to store
the binary representation of the index i of an equivalence class Ei.

Remark. Now that all tree and local edges are embedded in disks of the form R[T] and global
edges are in O(m+ g) disks of the form R[Ei], we are able to abandon all other portions of S. The
important information from S is that the ends of regions incident to a given source tree appear

8

in a clockwise order on the boundary of R[T] and that there are O(m + g) equivalence classes of
global edges. Each source tree looks like a disk (R[T]) with strips (R[Ei] for incident classes Ei)
stretching radially away from it (as long as the other end of the strip R[Ei] is not considered).

In the next section, we investigate how global edges are used by paths in G by utilizing this
locally-planar embedding. The paths are broken down into parts where only local paths and
equivalent global edges are used. Each time global edges in a class Ei are used, we focus on two
disks R[TA] and R[TB] connected by the strip R[Ei].

3 Patterns in Equivalence Classes

If a directed path P from u to v exists in G, then P leaves the tree rooted at u and travels through
the other source trees and global edge equivalence classes before taking a global edge to v. The
crucial observation to this work is the following: If we focus on certain “nice” paths, then there
are a finite number of ways such paths can enter and exit the region of an equivalence class. Thus
for each equivalence class Ei, there are a finite number of “patterns” we need to consider. In this
section we formalize these notions.

First we define what we mean by a “nice” path.

Definition 3.1 (Irreducible Paths). Let G be a DAG and F be a forest decomposition of G. Let
P = x1, . . . , xk be a directed path in G. P is said to be irreducible if whenever a vertex xi appears
before xj in P and xj is a descendant of xi in some tree of F , then P follows the edges in F from
xi to xj .

Note that if a path exists between two vertices, an irreducible path also exists, by swapping
violating subpaths with the appropriate tree paths.

Irreducible paths that use only local edges travel clockwise or counter-clockwise, depending on
the orientation of the tree. We associate right and left with these rotational directions, respectively.

Definition 3.2. Consider an equivalence class Ei between source trees TA and TB and a vertex x
in TA, outside the region R[Ei].

- The vertex x fully reaches Ei if there is a local path from x to the corresponding endpoint of
each edge in Ei.

- If x does not fully reach Ei, but there is a local path from x to the corresponding endpoint
of some edge of Ei, then x partially reaches Ei.

- If a path given above is irreducible, then the path follows a clockwise or counter-clockwise
direction within TA. Then, x fully (partially) reaches Ei using a clockwise (counter-clockwise)
rotation.

Lemma 3.3. Let x be a vertex in a source tree TA. For each rotational direction (clockwise or
counter-clockwise), there is an ordering Ei0 , Ei1 , . . . , Ei` of the edge classes reachable via irreducible
paths in that direction so that x fully reaches each Eij for j ∈ {1, . . . , `−1}, x either fully or partially
reaches Ei0 and Ei`, and if x is not in the interior of R[Ei0], x fully reaches Ei0.

Proof. Construct the list using all reachable classes in the given rotational direction and order by
their appearance. The irreducible path P from x to the class Ei` must intersect the tree paths from
the source to the edges in each class Eij for all j < `, with x 6∈ R[Eij], since the edges in P lie in
R[T], but the endpoints of the edges in Eij are on the boundary of R[T]. Hence, x fully reaches
these classes.

9

Figure 2: A vertex x with three counter-clockwise reachable classes, Ei1,, Ei2 , and Ei3 , as in Lemma 3.3.

Definition 3.4 (Induced Class List). Each irreducible path P between two vertices x and y induces
a list of edge classes Ei1 , . . . , Ei` for some ` where the global edges of P visit each class Eij in order
of increasing j, and Eij 6= Eij+1 for each j ∈ {1, . . . , ` − 1}. This list is the induced class list for
the path P .

Once the induced class list is known, the path P must take local paths between edges in Ei
and edges in Ei+1. This direction is determined by the orientation of the path, which is inherited
from x as if a normal vector were being pushed along the surface of S on the curve of P . Since P
is irreducible, these local paths have a clockwise or counterclockwise direction, determined by the
orientation of the path (which may agree or disagree with the orientation of the current tree). While
this local path traverses from Ei to Ei+1, it must cross the boundary of R[Ei] and the boundary
of R[Ei+1] at an ancestor path of a boundary edge. There are only two possible ends (A or B)
these local paths can start and end, only two possible rotational directions (R and L for right and
left), and two possible orientations (+ or − with respect to the current tree). Note that since P is
irreducible, P does not leave R[Ei] at the same boundary that it entered R[Ei].

For each edge class Ei in the induced class list of P , there are induced patterns which are given
by the entrance end of R[Ei], the orientation of P with respect to the source tree on the entrance
end, the rotational direction of the local path at the entrance, the exit end of R[Ei], and the
rotational direction of the local path at the exit. These items together form a pattern description.
Specifically, the entrance direction, the exit end, and the exit direction combine into a pattern
which has the most important information about the behavior of P within Ei.

Definition 3.5. Let Ei be a class of global edges. An irreducible path P that involves an edge of
the class Ei induces a pattern on Ei defined by the following cases3:

Full Patterns:
〈RR〉 enters R[Ei] via a clockwise path and exits via a clockwise path on the same end.
〈LL〉 enters R[Ei] via a counter-clockwise path and exits via a counter-clockwise path on

the same end.
〈RXL〉 enters R[Ei] via a clockwise path and exits via a counter-clockwise path on the

opposite end.
〈LXR〉 enters R[Ei] via a counter-clockwise path and exits via a clockwise path on the

opposite end.

3The interested reader will find the notation for patterns derived from move sequences in the Coin Crawl Game
from [SBV10].

10

Nesting Patterns:

〈RXR〉 enters R[Ei] via a clockwise path and exits via a clockwise path on the opposite
end.

〈LXL〉 enters R[Ei] via a counter-clockwise path and exits via a counter-clockwise path on
the opposite end.

The names full and nesting refer to specific properties — properties which are investigated in
following sections — that are revealed when paths attempt to induce these patterns. See Table 1
for figures of these patterns.

A

B

... exex
out in

A

B

... exex
outin

A

B

... exex
out in

A

B

... exex
outin

A

B

...e =x ex
outin

A

B

... e = x ex
outin

〈RR〉 〈LL〉 〈RXL〉 〈LXR〉 〈RXR〉 〈LXL〉
Full Patterns Nesting Patterns

Table 1: Different patterns using an edge class Ei, entering from the A-end of R[Ei]. The notation einx and
eout
x refers to Definition 3.7.

For future reference, define the pattern set, P, as

P = {〈RR〉, 〈LL〉, 〈RXR〉, 〈RXL〉, 〈LXR〉, 〈LXL〉}.

Definition 3.6 (Entrance and Exit). Given an edge class Ei the region R[Ei] has a boundary
given by ancestor paths of the outer edges ea, eb ∈ Ei. Let t be an end of R[Ei] (either A or B)
and fix an orientation on that end and a pattern p.

- the entrance of the pattern is the ancestor path on the boundary of R[Ei] on the t-end that
a path must cross before using the edges in Ei that induce the pattern p with the given
orientation.

- the exit of the pattern is the ancestor path on the boundary of R[Ei] on the t-end that a path
must cross after using the edges in Ei that induce the pattern p with the given orientation.

See Figure 3 for a visual representation of the entrance and exit of a pattern, along with some
modifiers to help describe different parts of the region R[Ei].

The main difference between full and nesting patterns is that nesting patterns have the entrance
and exit on the same side of the region, while full patterns involve both sides of the region. A path
through the region from one side to the other will force all edges in the class to be reachable.

Combining Definition 3.4 and Definition 3.5, we see that each irreducible path P from u to v
induces a list of edge classes Ei1 , Ei2 , . . . , Ei` paired with the patterns P takes through the classes.

11

Figure 3: Terminology for the entrance and exit of a pattern and the modifiers of direction, end, and side.
This example is an 〈LXR〉 pattern.

The reduction in the next section takes the graph G and the forest decomposition F and outputs
a graph P(G,F) with vertices u′, v′, and vertices corresponding to patterns on global edge classes.
These vertices come from the set

VP = {1, . . . , k} × {A,B} × {+1,−1} × P,

where k is the number of equivalence classes in G. A vertex (i, t, o, p) ∈ VP is a pattern
description and has an interpretation as:

1. i ∈ {1, . . . , k} gives the equivalence class Ei.
2. t ∈ {A,B} gives the end of R[Ei] that contains the entrance.
3. o ∈ {+1,−1} specifies if the orientation of the path is in agreement with (or opposite to) the

local orientation of the tree on the t-side of Ei. The rotation directions of the pattern depend
on this orientation of the path.

4. p ∈ P gives the pattern used in Ei.

For example, the vertex (i, B,+1, 〈RXL〉) is the vertex in VP corresponding to a 〈RXL〉 pattern
crossing the class Ei starting at the B-side and leaving the A-side, oriented to agree with the B-side.
Note that it requires O(log(m+ gS)) bits to store the label of a pattern description.

First, we must investigate some properties of paths that induce these patterns. We focus on a
path which uses local paths and edges in a single equivalence class of global edges and induces a
single pattern on that class. These single-pattern paths will be concatenated to make larger paths
once the structure of the shorter paths is understood.

An important property of these patterns is that if the pattern is of full type or the equivalence
class is fully reachable, we can assume without loss of generality that the path used two special
edges, which we call the canonical edge pair.

Definition 3.7 (Canonical Edge Pairs). Let x = (i, t, o, p) ∈ VP be a pattern description centered
at the edge class Ei with pattern p. There are two edges (incoming and outgoing) in Ei, called the
canonical edge pair for x, defined as

- The outgoing edge, eout
x , is the edge e ∈ Ei that is farthest from the exit side so that there

exists a local path from Head(e) to the exit of R[Ei].

12

- The incoming edge, einx , is the edge e ∈ Ei that is closest to the entrance side so that Tail(eout
x)

is reachable from Head(e) using local paths and edges in Ei.

The Structure of Full Patterns

Full patterns are named because they can only be used if every single edge in the equivalence
class is eventually reachable. This gives us complete knowledge on when these patterns can be
induced, based on reachability using the canonical edge pair. The following lemmas describe these
properties.

Lemma 3.8. Let x be a pattern description of full type. The canonical edge pair (einx , e
out
x) is

log-space computable.

Proof. The outgoing edge, eout
x , is computed by enumerating the set of edges in the class Ei with

head on the exit end of R[Ei] which reach the boundary of the region R[Ei] using local edges in
the exit direction of the pattern.

The incoming edge is computed by an iterative procedure. Store two edge pointers, e1 and e2.
These edges will always be in the class Ei or null. The edge e1 will have tail in the entrance end of
R[Ei] and e2 with have tail in the exit end of R[Ei]. Initialize e1 = eout

x and set e2 to be null.
Proceed by iterating through the edges in Ei starting at eout

x to the last edge in Ei on the
entrance side of R[Ei]. Each edge is a candidate to update e1 and e2.

If the tail is in the entrance side of R[Ei], check if the head reaches the tail of e2 or eout
x using

a local path. If so, then update e1 to this edge.
If the tail is in the exit side of R[Ei], check if the head reaches the tail of e1 or eout

x using a
local path. If so, then update e2 to this edge.

After all edges have been tested, set einx = e1. There is a path from e1 to eout
x using local paths

and edges in Ei by considering the reverse sequence of e1 and e2 updates that allowed Tail(eout
x)

to be reachable from Head(e1). Further, no edge beyond e1 in the proper direction can reach eout
x

because it must cross the ancestor paths from e1 to the sources on each endpoint.

Lemma 3.9. Let x be a pattern description of full type centered at an edge class Ei. Let y, z ∈ V (G)
be vertices not inside R[Ei], where y is in the source tree on the entrance end of x and z is in the
source tree on the exit end of x.

There is a path from y to z in G using only local paths and edges of the class Ei that induces
the pattern x if and only if Tail(einx) is reachable from y using a local path in the entrance direction
of x and z is reachable from Head(eout

x) using a local path in the exit direction of x.

Proof. Note that if the tail of einx is reachable from y using a local path in the entrance direction,
and z is reachable from the head of eout

x using a local path in the exit direction, then there is a path
from y to z that induces the pattern x using the path between einx and eout

x given by the definition
of the canonical pair.

If a path exists from y to z that induces the pattern x, then there is at least one edge of the class
Ei in the path. Let e1 be the first edge of class Ei used in the path and e2 be the last. Consider
where e1 and e2 are in comparison to the canonical pair (einx , e

out
x) in the ordering of the edges in

Ei. An example of the edges e1 and e2 are shown in Figure 4.
If e1 is closer to the entrance side of Ei compared to einx , then (by the definition of einx) there

is no path from the head of e1 to the tail of eout
x using local paths and edges in Ei. Hence, a path

from e1 that leaves R[Ei] in the exit direction can not cross the ancestor path of the tail of eout
x ,

13

Figure 4: The edges used in the proof of Lemma 3.9 in an 〈LXR〉 pattern.

so it must cross the ancestor path of the head of eout
x . This implies there is an edge e in Ei in the

direction of eout
x that is farther from the exit direction and whose head reaches the head of eout

x .
This contradicts the definition of eout

x , since there is now a local path from the head of e1 that
reaches the boundary of R[Ei] in the exit direction.

Therefore, the edge e1 appears after einx in the order on Ei starting from the entrance side. This
implies that y has a local path that crosses the ancestor path from the tail of einx and hence reaches
the tail of einx . If eout

x is on the exit side of Ei compared to e2, then by the definition of eout
x , there

is no local path from the head of e2 that reaches the boundary of R[Ei] in the exit direction. So,
e2 is on the exit side of Ei compared to eout

x . The local path that reaches the boundary of R[Ei]
from the head of eout

x crosses the ancestor path to the head of e2, so z is reachable from the head
of eout

x using a local path.

The Structure of Nesting Patterns

Nesting patterns are named because exactly one edge is used in an irreducible path that induces a
nesting pattern, and we may assume that the edge used is the one farthest from the entrance that
is reachable (and that a local path exists from its head to the exit). The following lemmas describe
these properties.

Lemma 3.10. If an irreducible path using local paths and edges in a global edge class Ei induces
a nesting pattern, then the path uses exactly one edge in the class Ei.

Proof. Let x and y be vertices outside Ei with a path from x to y that induces a nesting pattern
on Ei. Let e1 be the first edge in Ei used and e2 be the second. Note that e2 cannot be closer to
the entrance direction than e1, or else the head of e2 is a descendant of the local path from x to
the tail of e1, contradicting irreducibility. Also, e2 cannot be farther from the entrance direction
than e1 or else the path from the head of e2 to y must cross the ancestor path at the head of e1,
creating a cycle, contradicting that the graph is acyclic.

Lemma 3.11. Let x be a pattern description of nesting type centered at a global edge class Ei.
Then, einx = eout

x , and eout
x is log-space computable.

Proof. By the definition of eout
x , there is a local path P from the head of eout

x to the boundary
of R[Ei] in the exit direction (which is also the entrance direction). All edges in Ei closer to the
boundary in the entrance direction from eout

x have at least one endpoint reachable from P . If any
of these edges could reach eout

x , then there would be a cycle. Therefore, einx = eout
x .

Iterate through the edges in Ei starting on the exit side. Then, eout
x is the last edge in this

order with a local path from the head to the boundary of R[Ei] in the exit direction.

14

While it would be useful to have a property similar to Lemma 3.9 for nesting patterns, it is
possible to induce a nesting pattern without reaching the incoming edge einx of a nesting pattern
description x. This causes a small challenge, which is overcome in Definition 4.1. For now, we
do have one half of the reachability properties in Lemma 3.9, that the outgoing edge eout

x reaches
everything that a path using the nesting pattern can reach.

Lemma 3.12. Let x be a nesting pattern centered at an edge class Ei. Let y and z be vertices not
inside R[Ei]. If there exists an irreducible path from y to z using local paths and edges in the global
edge class Ei which induces x, then z is reachable from Head

(
eout
x

)
.

Proof. Let e be the edge in Ei used in the path from y to z that induces the nesting pattern. If
e = eout

x , then the result holds.
Otherwise, since the head of e reaches z in the exit direction using local paths, e is closer to

the exit side of Ei than eout
x . Note that the path from the head of eout

x that reaches the boundary
of R[Ei] in the exit direction must cross the ancestor path at the head of e, so z is reachable from
the head of eout

x using a local path.

The reachability property of nesting patterns given by Lemma 3.12 is not as strong as those
for full patterns given by Lemma 3.9. This is because there may exist vertices w that have paths
inducing the nesting pattern without reaching the incoming edge einx . While the global incoming
edge einx does not need to be reached in order to induce a nesting pattern, each starting vertex w
determines a special edge that gives a strong reachability characterization.

Definition 3.13 (Most-Interior Edge). Let x = (i, t, o, p) be a pattern description of nesting type
and w be a vertex not in the interior of R[Ei]. The most-interior edge of x reachable from w,
denoted eint(w)

x , is the edge e in the class Ei that is farthest from the entrance side of R[Ei] so that
there is a local path from w to Tail(e) in the entrance direction, and there is a local path from
Head(e) to the exit boundary of R[Ei].

Figure 5: The most-interior edge from a vertex w in a pattern description x with an 〈RXR〉 pattern.

Lemma 3.14. Let x be a pattern description of nesting type and w a vertex not in the interior
of R[Ei]. The most-interior edge, eint(w)

x , is log-space computable. For any vertex z not in R[Ei],
there is a path from w to z that induces the pattern x if and only if there is an irreducible local path
from Head

(
e
int(w)
x

)
to z in the exit direction of x.

15

Proof. The edges in the class Ei have an order using the rotation given by the entrance direction of
the pattern description x, where two edges in Ei can be compared using this order in log-space. Let
e
int(w)
x be the edge e of class Ei farthest from the entrance side of R[Ei] with tail reachable from w

and the head has a local path reaching the exit boundary of R[Ei] in the exit direction of x. Note
that this edge is computable in log-space using the SMPD algorithm and pairwise comparison of
the rotational order of edges.

Consider an irreducible path P from w that induces the pattern description x to reach a vertex
z outside R[Ei]. By Lemma 3.12, the path P uses exactly one edge e of the class Ei. The edge
cannot farther from the entrance side of R[Ei] than e

int(w)
x or else either w does not reach Tail(e)

or Head(e) does not reach the exit of R[Ei]. The path that exits the class Ei from the head of
e
int(w)
x must pass through the tree path from the source to the head of e. Therefore, the head of e

is reachable from the head of eint(w)
x and so is anything reachable from the head of e, including z.

Since Tail(eint(w)
x) is reachable from w using a local path in the entrance direction, anything

reachable from Head(eint(w)
x) using a local path in the exit direction is reachable from w using a

path that induces the pattern description x.

Armed with these patterns and reachability patterns, we describe a graph of order O(m+ gS)
that preserves uv-reachability.

4 The Pattern Graph

Definition 4.1 (The Pattern Graph). Given G and F as above, the pattern graph, denoted P(G,F),
is the graph on vertex set

V ′P = {u′, v′} ∪ VP = {u′, v′} ∪
[
{1, . . . , k} × {A,B} × {+1,−1} × P

]
,

where two pattern descriptions x,y ∈ VP have an adjacency x→ y if and only if there exists a
(possibly empty) list of nesting pattern descriptions z1, . . . , z` (called an adjacency certificate), so
that the following two conditions hold:

1. There is an irreducible path from Head(eout
x) to Tail(einy) which induces the sequence z1, . . . , z`

of nesting pattern descriptions.
2. For each j ∈ {1, . . . , `}, Tail(einzj

) is not reachable from Head(eout
x) using irreducible paths

that induce the pattern descriptions z1, . . . , zj−1.

The two vertices u′ and v′, which are not pattern descriptions, have adjacencies as well. The
vertex u′ has an edge to all patterns on edge classes in G with the t-end in the tree Tu. A pattern
description x = (i, t, o, p) has an edge to v′ if and only if the class Ei is incident to v, t is the other
end of the class, and p ∈ {〈RXL〉, 〈LXR〉}.

Theorem 4.2. There exists a path from u to v in G if and only if there exists a path from u′ to v′

in P(G,F).

Proof. Let P be an irreducible path from u to v in G. We wish to show that there is a path from
u′ to v′ in P(G,F).

P induces a sequence of pattern descriptions x1, . . . ,x`. Note that x1 is centered at an edge
class that is incident to Tu and the entrance end is on Tu. Note also that x` is centered at an edge
class where the edges have head v. Thus, in P(G,F), u′ → x1 and x` → v′ are edges.

16

For full pattern descriptions xi, Lemma 3.9 implies that we may assume the first edge in the
global edge class of xi used by P is einxi

and the last such edge is eout
xi

.
Fix i ∈ {1, . . . , ` − 1} and let xj be the next full pattern induced after xi. If j = i + 1, then

the path P takes a local path between the edges that induce the patterns xi and xi+1. By Lemma
3.9, einxj

is reachable from eout
xi

by a local path and an adjacency exists from xi to xi+1 in P(G,F),
using an empty list of nesting patterns as the adjacency certificate.

Otherwise, j > i+1 and there are j− i nested patterns between xi and xj . Rename the nesting
patterns between xi and xj as z1, . . . , zj−i where zi′ = xi+i′ . If z1, . . . , zj−i compose an adjacency
certificate for xi → xj , then this edge exists in P(G,F). Otherwise, there exists such a k that
violates the adjacency condition between xi and xj , then let i′ be the smallest such index. There
is an edge in P(G,F) from xi to the nesting pattern description zi′ , since Tail(einzi′

) is reachable
from Head(eout

xi
) by a path using the nesting patterns z1, . . . , zi′−1 as the adjacency certificate. By

Lemma 3.12, Tail(einxj
) is reachable from Head(eout

zi′
) using an irreducible path which induces the

patterns zi′+1, . . . , zj−i. By iteration, there is a path from zi′ to xj in P(G,F), and hence a path
from xi to xj in P(G,F). Connecting all of the edges between the full patterns in x1, . . . ,x` gives
a path from u′ to v′ in P(G,F).

It remains to show that any path in P(G,F) from u′ to v′ produces an irreducible path in G
from u to v which induces those adjacencies.

Given a path P = u′,x1,x2, . . . ,x`, v′ in P(G,F), let xj = (ij , tj , oj , pj) for each j ∈ {1, . . . , `}.
Since u′ → x1 in P (G), Ei1 is a class incident to Tu and all edges are reachable from u. Specifically,
there is a tree path P0 from u to eout

x1
. Similarly, since x` → v′ in P(G,F), Eik is a class incident

to Tv and all edges have v as a head. For each j ∈ {1, . . . , ` − 1}, Lemmas 3.9 and 3.12 imply
there is an irreducible path Pi in G from the head of eout

xj
to the tail of einxj+1

that is either a local
path or induces a list of nesting pattern descriptions which form an adjacency certificate. Also, by
Definition 3.7, there exist (possibly empty) paths Qj from einxj

to eout
xj

using local paths and edges
of the class Eij . These paths concatenate to a path

uP0e
out
x1
P1e

in
x2
Q2e

out
x2
P2e

in
x3
. . . eout

x`−1
P`−1e

in
x`
v

from u to v in G.

Lemma 4.3. The pattern graph P(G,F) is log-space computable.

Proof. Given a pattern description x, we describe a log-space algorithm for enumerating the pattern
descriptions reachable by an edge in P(G,F).

A necessary subroutine takes a global edge e and enumerates all pattern descriptions reachable
from Head(e) using local paths in the exit direction of x. By Lemma 3.3, there is an ordered list of
topological equivalence classes Ei0 , Ei1 , . . . , Ei` reachable by local paths from the head of e. Ei0 is
the class containing e, so e is in R[Ei0]. All other classes Eij (for j ≥ 1, except possibly j = `) are
fully reachable. Hence, each pattern description y centered at a class Eij with j ∈ {1, . . . , ` − 1}
(where the entrance direction of y, orientation, and end all match the exit direction of x) has einy
reachable from Head(e) using a local path. Each pattern description y with entering direction the
same as the exit direction of x and centered at Ei` can be checked if einy is reachable from e. The
only pattern that could be used without having einy reachable is a nesting pattern.

To enumerate all neighbors of x in P(G,F), perform the above subroutine on eout
x , adding edges

from x to each reachable pattern description y. If the nesting pattern z on Ei` is not fully reachable
(i.e. there is no local path from e to einz in the proper direction) then compute the most-interior edge

17

Figure 6: The nesting patterns z1 and z2 satisfy the adjacency conditions in Definition 4.1 from x to each
yj . The pattern adjacencies are enumerated during the algorithm of Lemma 4.3 where e is assigned to e0,
e1, and e2, sequentially. Note that e0 = eout

x , e1 = e
int(Head(e0))
z1 , and e2 = e

int(Head(e1))
z2 . The pattern y1 is

reachable from w0 with no internal nesting patterns. The patterns y2 and y3 are reachable from w0 using
the nesting pattern z1. The pattern y4 is reachable from w0 using the nesting patterns z1 and z2. The
algorithm from Lemma 4.3 terminates at e2, since e2 does not give a partially-reachable class.

e
int(Head(e))
z . Repeat the subroutine on this edge, continuing until the class Ei` is fully reachable (or

the list is empty). See Figure 6 for an example of this iterative procedure.
It is clear this algorithm takes log-space. It enumerates all neighbors of x in P(G,F), since a

neighbor y requires a list of nesting classes z1, . . . , z` so that there is an irreducible path from x
to y inducing these classes. Moreover, each class zj has the edge einzj

not reachable from x using
the patterns z1, . . . , zj−1. This means that the patterns zj are centered at the class Ei` computed
by the iteration of the subroutine on the edge eint(wj−1)

zj−1 . Moreover, y appears as a reachable class
from the most-interior edge computed at z`, so y is enumerated. Finally, any pattern enumerated
by this procedure can reconstruct the list of z1, . . . , z` by using the nesting patterns used in the
subroutine iterations.

We have all the necessary tools to prove the main theorem.

The Main Theorem

Theorem 1.1. There is a log-space reduction that given an instance 〈G, u, v〉 where G ∈ G(m, g)
and u, v vertices of G, outputs an instance 〈G′, u′, v′〉 where G is a directed graph and u′, v′ vertices
of G′, so that

(a) there is a directed path from u to v in G if and only if there is a directed path from u′ to v′

in G′,
(b) G′ has O(m+ g) vertices.

Proof. Fix a forest decomposition F and let G′ be the pattern graph P(G,F). Lemma 4.2 shows
that there is a path from u to v in G if and only if there is a path from u′ to v′ in P(G,F) if and
only if there is a path from u′ to v′ in P(G,F). Lemma 4.3 gives that G′ is log-space computable.
By Lemma 2.9, there are at most O(m+ g) equivalence classes in G (with respect to F), and there
is a constant multiple of pattern descriptions per equivalence class, so G′ has O(m+g) vertices.

18

5 Comparison with other space-bounded reachability algorithms

See Table 2 for a list of space bounds of different algorithms for reachability in certain classes of
graphs. Table 3 describes which results give which space bounds with simultaneous polynomial-time
algorithms.

Ealier known graph class Space bound s New graph class given by Theorem 1.2

Undirected Graphs [Rei08]

O (log n) G
(

2O(
√

logn), 2O(
√

logn)
)

SMPD4 [ABC+09]

LMPD5 [SBV10]

Poly-mixing time [RTV06,SZ99] O
(

log
3
2 n
)

G
(

2O(log
3
4 n), 2O(log

3
4 n)

)
Mangroves [AL98] O

(
log2 n

log logn

)
G
(

2O
“

log n√
log log n

”
, 2O

“
log n√
log log n

”)
o(log2 n) G(no(1), no(1))

All directed graphs [Sav70] O(log2 n)

Table 2: A table of graph classes (old and new) for which reachability can be solved using space s, for various
interesting values of s.

6 Discussion

This work significantly extends the concepts introduced in [SBV10] in multiple directions. The
notion of topological equivalence has been extended to arbitrary surfaces. A careful analysis of the
interactions between the equivalent classes of edges was used to create a graph of size linear in the
number of equivalence classes that preserves uv-reachability. It appears that improving the bounds
proved in this paper may require significantly new ideas.

One potential attack could be to design an explicit algorithm A for selecting the forest decom-
position FA. Our arbitrary selection has been handled in the worst case, as if an adversary chose
the worst possible decomposition for our algorithm. The goal of such a decomposition algorithm
would be to reduce the minimum number of patterns induced by a path from u to v. Note that the
best case has the tree Tu given as a DFS or BFS tree centered at u, where all reachable vertices
from u are in the tree. Since the bound on the number of equivalence classes we prove is based on
the number of sources and the genus of S, it may not be possible to find a forest decomposition
with asymptotically fewer equivalence classes. However, if the length of the shortest path from u′

to v′ in the pattern graph could be bound to sub-polynomial in m and g, a standard Savitch-like
divide and conquer technique will give a o(log2(m + g)) space bound. This might be possible by

4SMPD: Single-source Multiple-sink Planar DAG
5LMPD: Log-source Multiple-sink Planar DAG
6It is a quick observation that reachability in mangroves is decidable by a LogDCFL machine.

19

Earlier known graph class Space bound s
with poly-time

New graph class given by Theorem 1.7

Poly-mixing time [RTV06,Nis95]
O(log2 n)

Mangroves6 [Lan97,Coo79]

2O
“
log

1
2+ε n

”
G
(

2O
“
log

1
2+ε n

”
, 2O

“
log

1
2+ε n

”)
o(nε) G(O(nε), O(nε)).

All directed graphs [BBRS92] O
(

n
2
√

log n

)
Table 3: A table of graph classes (old and new) with simultaneous time-space bound (nO(1), s) for reachability
for various values of s.

relaxing the space requirement on A from log-space to o(log2(m + g)). It might be possible to
find a balance between the space requirement on A and the improvement it makes to the resulting
pattern graph. Another approach might be to carefully study the properties of the pattern graph
P(G,F) and exploited them to solve reachability in P(G,F) while improving the space bound.

The fact that the space bounds we get is for the case when both m and g are asymptotically
equal can somewhat be explained by the fact that sources can be removed by increasing the genus of
the surface. Thus an alternate approach to get the space bounds that we prove here is to reduce the
number of sources by increasing the genus (by adding a new vertex and connecting this to all other
sources through additional handles). However, this approach will not lead to any simplification in
our analysis and hence we prefer to keep these parameters separate.

Acknowledgements

We thank Jeff Erickson for sharing his knowledge on topological embeddings of graphs. We also
thank Jonathan F. Buss for discussions on simultaneous time-space bounds for reachability at the
2010 Conference on Computational Complexity.

References

[ABC+09] Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sam-
buddha Roy. Planar and grid graph reachability problems. Theory of Computing Sys-
tems, 45(4):675–723, 2009.

[AL98] Eric Allender and Klaus-Jörn Lange. RUSPACE(log n) ⊆ DSPACE(log2 n/ log logn).
Theory of Computing Systems, 31:539–550, 1998. Special issue devoted to the 7th
Annual International Symposium on Algorithms and Computation (ISAAC’96).

[BBRS92] Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. A sublinear
space, polynomial time algorithm for directed s-t connectivity. In Structure in Complex-
ity Theory Conference, 1992., Proceedings of the Seventh Annual, pages 27–33, 1992.

20

[Coo79] S.A. Cook. Deterministic CFL’s are accepted simultaneously in polynomial time and
log squared space. In Proceedings of the eleventh annual ACM symposium on Theory of
computing, pages 338–345. ACM, 1979.

[EJT10] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theo-
rems of bodlaender and courcelle. In FOCS ’10: Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science, 2010.

[JLR06] Andreas Jakoby, Maciej Lískiewicz, and Rüdiger Reischuk. Space efficient algorithms
for directed series-parallel graphs. Journal of Algorithms, 60(2):85–114, 2006.

[JT07] Andreas Jakoby and Till Tantau. Logspace algorithms for computing shortest and
longest paths in series-parallel graphs. In FSTTCS 2007: Foundations of Software
Technology and Theoretical Computer Science, pages 216–227, 2007.

[KV10] Jan Kynčl and Tomáš Vyskočil. Logspace reduction of directed reachability for bounded
genus graphs to the planar case. ACM Transactions on Computation Theory, 1(3):1–11,
2010.

[Lan97] Klaus-Jörn Lange. An unambiguous class possessing a complete set. In STACS ’97:
Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer Science,
pages 339–350, 1997.

[Nis95] Noam Nisan. RL⊆ SC. In In Proceedings of the Twenty Fourth Annual ACM Symposium
on Theory of Computing, pages 619–623, 1995.

[Rei08] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4), 2008.

[RTV06] Omer Reingold, Luca Trevisan, and Salil Vadhan. Pseudorandom walks on regular
digraphs and the RL vs. L problem. In STOC ’06: Proceedings of the thirty-eighth
annual ACM Symposium on Theory of Computing, pages 457–466, New York, NY,
USA, 2006. ACM.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

[SBV10] Derrick Stolee, Chris Bourke, and N. V. Vinodchandran. A log-space algorithm for
reachability in planar acyclic digraphs with few sources. 25th Annual IEEE Conference
on Computational Complexity, pages 131–138, 2010.

[SZ99] Michael Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer
and System Sciences, 58(2):376–403, 1999.

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

