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Abstract

For any 0 < r < p < 2, and ε > 0, we give an efficient deterministic construction of a linear
subspace V ⊆ Rn, of dimension (1 − ε)n in which the `p and `r norms are the same up to
a multiplicative factor of poly(ε−1) (after the correct normalization). As a corollary we get a
deterministic compressed sensing algorithm (Base Pursuit) for a new range of parameters. In
particular, for any constant ε > 0 and p < 2, we obtain a linear operator A : Rn → Rεn with
the `1/`p guarantee for (n · poly(ε))-sparse vectors. Namely, let x be a vector in Rn whose `1
distance from a k-sparse vector (for some k = n · poly(ε)) is δ. The algorithm, given Ax as
input, outputs an n dimensional vector y such that ||x− y||p ≤ δk1/p−1. In particular this gives
a weak form of the `2/`1 guarantee.

Our construction has the additional benefit that when viewed as a matrix, A has at most
O(1) non-zero entries in each row. As a result, both the encoding (computing Ax) and decoding
(retrieving x from Ax) can be computed efficiently.
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1 Introduction

A typical question, related to dimensional reduction, in geometric functional analysis is: For two
spaces X and Y with norms || · ||X and || · ||Y , when does there exist an embedding F : X → Y
with the property that for every α ∈ X, we have ||α||X ≤ ||F (α)||Y ≤ C||α||X for some constant
C > 1 (we refer to C as the distortion of the embedding F )?

A theorem by Dvoretzky [Dvo59] asserts that there exists a function n(m, ε), such that for any
normed space Y of dimension n(m, ε), the m dimensional Euclidian space `m2 can be embedded,
with distortion C = 1 + ε, into Y . A special case of interest to us is when Y = Rn equipped with
the `1 norm.

The image of the embedding V = F (`m2 ) ⊆ Rn(m,ε) is called an Euclidian section in `n(m,ε)
1 . We

use the notion of distortion in the same manner w.r.t. both an embedding or a section. That is,
the distortion of a subspace V ⊆ `n1 of dim(V ) = m is defined as the distortion of an embedding
F mapping `m2 into V . In Dvoretzky’s theorem, the expression n(m, ε) is non-optimal for the case
of the `1 norm. Moreover, the proof is non-constructive in the sense that it only guarantees the
existence of such a section and does not provide an algorithm for finding one. Classical results in
high dimensional geometry [FLM77, Kas77] assert that for a constant value of ε, a random subspace
X ⊆ Rn of dimension δn [FLM77] or even (1 − δ)n [Kas77] is an euclidian section in `n1 w.h.p..
Namely, for any ε there exist a subspace of dimension cεn with distortion 1+ ε. Alternatively, there
also exists a subspace of dimension (1− ε)n and distortion Cε.

Such subspaces are instrumental in several algorithms for important theoretical and practi-
cal problems such as high dimensional nearest neighbor search [Ind06], and compressed sensing
[DeV07]. One expects that an explicit construction will lead to a better understanding of the
underlying geometric structures and as a result, to improved algorithms for these problems. Con-
sequently, the problem of finding such an explicit Euclidian section has been given much attention
over the last years.

In the constructions of [Kas77, FLM77], the number of random bits required for picking the
random subspace is O(n2 log(n)). One direction of research consists of (partially) derandomizing
these constructions. Namely, finding a low distortion subspace using fewer random bits. The second
research direction is to look for a deterministic construction where we either allow the subspace to
be of smaller dimension (i.e., sublinear) or the distortion to be large (i.e., super-constant).

In [AAM05], the authors gave a randomized construction that achieves the same parameters
as [Kas77] while using only O(n log(n)) random bits. [LS08] showed how to reduce the number of
random bits to O(n) using similar techniques to those of [AAM05]. [GLW08] achieve a constant
distortion subspace, of linear dimension using O(nδ) random bits (for any constant δ) by applying
ideas from coding theory. Recently, [IS10] achieved a subspace with arbitrarily (constant) low
distortion with only O(nδ) random bits using different methods.

As for explicit constructions, Rudin [Rud60] and later Linial, London and Rabinovich, [LLR95],
gave an example of a subspace X with a constant distortion and with dim(X) = O(

√
n). Indyk

[Ind06, Ind07] presented a subspace X with distortion 1 + o(1) and dim(X) ≥ n
exp((log logn)2)

. Note
that these constructions give constant distortion but the dimension is sublinear. In [DS89] a
subspace X of dim(X) = n/2 and distortion O(n1/4) is (implicitly) constructed. [GLR08] gave a
construction of a subspace of dimension dim(X) = (1− ε)n and distortion (ε−1 log logn)O(log logn).
Table 1 contains a summary of the results.

In this paper we consider a relaxation of the problem at hand. Instead of considering the `1/`2
distortion, we consider the `1/`p distortion for any p < 2. That is, we find a high dimensional
subspace in which the ratio between the `1 and `p norms is the same in every vector up to some
constant multiplicative factor.
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Table 1: Parameters of known Euclidean sections in `n1
Distortion Dimension Randomness Paper
Oε(1) (1− ε)n O(n log(n)) [AAM05]
Oε(1) (1− ε)n O(n) [LS08]
Oε,δ(1) (1− ε)n O(nδ) [GLW08]
1 + ε (δε)O(δ−1)n O(nδ) [IS10]

1 + 1/n 2O(
√

logn) explicit [Ind06]
1 + 1/ log n n2−O((log logn)2) = n1−o(1) explicit [Ind07]

(ε−1 log log n)O(log logn) (1− ε)n explicit [GLR08]

1.1 Some definitions and statement of our results

We begin with a formal definition of the distortion of a subspace. We give a slightly more general
definition than that of the distortion w.r.t. the `1 and `2 norms.

Definition 1.1. Let 0 < r < p and let V ⊆ Rn. Denote

Cmin = min
06=x∈V

||x||p
||x||r

Cmax = max
06=x∈V

||x||p
||x||r

.

The distortion of V w.r.t. `r and `p, denoted by ∆r→p (V ), is defined as Cmax/Cmin

In this paper we consider a new approach towards finding high dimensional subspaces with
constant distortion. We deterministically construct a subspace V ⊆ Rn, for any n, in which the
distortion between the `1 and `p norms is constant, for any p < 2 (recall that ||x||p = (

∑
|xi|p)1/p).

An immediate corollary is the following: Given a subspace of constant dimension in which `2 and
`2−ε are the same (up to a constant multiplicative factor), one can deterministically construct a
subspace of almost the same dimension with a constant distortion (w.r.t. `1 and `2 norms). The
following theorem states our main result.

Theorem 1.2. For any ε > 0 and sufficiently large n ∈ N, there exists a deterministic algorithm
which constructs, in poly(n)·exp(poly(ε−1)) time, a matrix A of dimension εn×n with the following

properties: For any 0 < r < p < 2, it holds that ∆r→p (Ker(A)) ≤ ε
O( 1

rp(2−p) ) where Ker(A) is the
kernel of A when viewed as a linear transformation from Rn to Rεn.

This result has two immediate corollaries regarding “proper” Euclidean sections. First, any
high dimension Euclidean section in `np for p < 2 would lead to an Euclidean section in `n1 with
roughly the same distortion (up to some constant multiplicative factor). Second, by setting p =
2 − (log(n) · log(ε−1))−1/2, r = 1, one can get a section of dimension (1 − ε)n and with distortion
no(1) for any constant ε > 0. We note however that this result is weaker than that of [GLR08].

Corollary 1.3. Let ε > 0, n ∈ N and A ∈ Rn×εn as in Theorem 1.2. Then Ker(A) is a subspace
with dimension dim(Ker(A)) ≥ (1− ε)n and

∆1→2 (Ker(A)) ≤ 2O
(√

log(n)·log(ε−1)
)
.

In particular, for any constant ε > 0, ∆1→2 (Ker(A)) = no(1).
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1.2 Application to Compressed Sensing

1.2.1 Background

In the area of Compressed Sensing, given parameters k, n ∈ N where k < n, the objective is to
construct a linear operator A : Rn → Rm(n,k) and a matching recovery algorithm with the following
properties: For any k-sparse 1 (or “almost k-sparse”) vector x ∈ Rn, given Ax as input, the recovery
algorithm must efficiently reconstruct x (or an “approximation” of x). This problem is also known
as the problem of sparse signal recovery.

The three major properties of an operator A : Rn → Rm(n,k) and its recovery algorithm are
the following: The encoding/decoding time, the description length m(n, k), and the approximation
guarantee. The encoding time is the running time of the algorithm computing Ax given x. The
decoding time is the time required to recover x from Ax. The description length is m, the length of
the compressed vector, which we would like to minimize. The approximation guarantee concerns the
quality of recovery in the case of almost sparse vectors. To define it we introduce some notations.
Let x ∈ Rn be some vector and let z be the closest k-sparse vector to x. Denote by y the output
of the recovery algorithm given Ax as input. We would like the algorithm to satisfy that the
distance of y from x is somehow bounded by the distance of z from x. We say that the algorithm
has the `1/`1 guarantee when ||y − x||1 = O(||z − x||1). Similarly, it has the `1/`2 guarantee
when ||y − x||2 = O(||z − x||1/

√
k). The `1/`2 guarantee is a stronger requirement than the `1/`1

guarantee as any algorithm with the `1/`2 guarantee also has the `1/`1 guarantee. For a more
thorough review we refer the reader to, e.g., [CT06, GI10, Bar07].

We focus on the case where the sparsity guarantee k is linear. Namely, k = Ω(n). In this
setting all known algorithms achieving an approximation guarantee better than the `1/`1 guarantee
have two main disadvantages: First, the construction of the encoding matrix A is randomized.
Furthermore, there is no known deterministic algorithm that can verify whether a specific matrix
A is a good encoding matrix. The second disadvantage is the running time of the encoder and of
the decoder. The matrices are usually highly dense and require an encoding time of2 Θ(n2). The
sparsest matrix so far was given by [GLW08]: For any δ > 0 they construct a matrix with Θ(nδ)
non-zeros in each row leading to an encoding time of Θ(n1+δ) (the description length grows as δ
approaches 0). We note that for the range of parameters that we discussed above (and that is
studied in this paper), the decoding is done via a linear program (base pursuit), whose running
time is also dependent on the density of A (each row of A is a constraint and thus its density is
translated into that of the constraints).

Our result gives an encoding matrix A which has at most O(1) non-zero entries in each row.
Given Ax as input, the “base pursuit” algorithm (details are given in the following section) has the
`1/`p guarantee for any p < 2. Namely, using the above notations, ||y−x||p = O(||z−x||1 ·k1/p−1).
As the matrix is highly sparse, the encoding and decoding (that is done using the mentioned
linear program) are more efficient than in previous works. Another advantage of our result is that
our construction is deterministic whereas all previous works, for this range of parameters, were
randomized.

1.2.2 The application

In [KT07], an explicit connection between Euclidean sections and compressed sensing is given.
Assume a linear operator A : Rn → Rm has the property that the distortion between `2 and `1 in

1A k-sparse vector is a vector with at most k non-zero entries.
2We note that for values of k < n/polylog(n) there are constructions of matrices for which the encoder runs in

quasilinear time.

4



Ker(A) is bounded by D. That is, ∆1→2 (Ker(A)) ≤ D. Then any vector x ∈ Rn with at most
k = n/4D2 non-zero entries can be efficiently recovered from Ax via the “Base Pursuit” algorithm
which consists of solving the following linear program3

min ||y||1 subject to Ay = Ax.

[KT07] also prove that the Base Pursuit algorithm has the `1/`2 guarantee (when ∆1→2 (Ker(A)) ≤
D). Via a slight modification of the proof of [KT07], we show that for any p < 2, if ∆1→p (Ker(A)) ≤
D then A has the `1/`p guarantee for k = Ω(nDp/(1−p)) (for completeness, we give it in Appendix B).

Theorem 1.4. Let n, k ∈ Rn where k = Ω(n) and let p < 2. There exists a determinis-
tic, polynomial time algorithm which constructs a matrix A ∈ Rn×m with the following proper-
ties: First, m =

⌈
n · (k/n)Ω(2−p)⌉. Second, the number of non-zero entries in each row of A is

O
(
(k/n)2 log(n/k)

)
= O(1). Finally, the Base Pursuit algorithm (w.r.t. A) has the `1/`p guaran-

tee.

1.3 Our techniques

We find a subspace in which the ratio between the `p and `r norms4 of its vectors is the same
up to some multiplicative constant, for any 0 < r < p < 2. Specifically, for any vector x in the
subspace V ⊆ Rn we shall have ||x||r = Ω(n1/r−1/p||x||p). We note that by Hölder’s inequality,
||x||r ≤ n1/r−1/p||x||p. For simplicity we focus on the case where r = 1. Dealing with general r > 0
requires little additional effort.

Before describing the construction method, we give a useful notation. A vector x ∈ Rn is
said to be p-spread when no small set of its entries contain most of its `p mass. Another way to
define the property of p-spreadness is the following: A vector x is not p-spread iff it can be written
as x = y + z where y is sparse and ||y||p � ||z||p. It turns out that a vector x is p-spread iff
||x||1 = Ω(n1−1/p||x||p). In particular, if ||x||1 � n1−1/p||x||p then x = y + z where y is sparse
and ||y||p � ||z||p. The exact relation between the two notions is given in Section 3. We note
that the notion of spreadness was first introduced by [GLR08] for p = 2 (along with the mentioned
equivalence).

Our main result is a deterministic construction of an εn× n matrix A such that for any vector
x for which ||x||1 � n1−1/p||x||p, it holds that Ax 6= 0. As a corollary we get that Ker(A) is a
subspace of dimension (1− ε)n with constant distortion. To prove this property it suffices to prove
two other properties. The first is that A does not expand the `p norm of any vector. Namely,
||Ax||p = O(||x||p) for any x ∈ Rn. The second is that for any sufficiently sparse vector x, A is such
that ||Ax||p = Ω(||x||p). To see why these two properties derive the original one, assume that x is
such that ||x||1 � n1−1/p||x||p. Then x is not p-spread, meaning that it can be split into x = y + z
where y is sparse and ||y||p � ||z||p. Hence5, ||A(y + z)||p ≥ ||Ay||p − ||Az||p > 0 and x is not in
the kernel of A.

The question remains how to construct such an “`p-norm preserving” matrix. The construction
is done in several steps. First we construct a matrix A0 of dimension εn0/2 × n0 where n0 =
poly(ε−1) = O(1). A0 will have similar but much stronger properties than those we would like to
obtain for the final matrix A. We require A0 to preserve the norm of any slightly non p-spread
vector (as opposed to A which will preserve the norm of highly non p-spread vectors). Since

3Though it is not stated as a linear program, it can easily be transformed into one.
4We note that for 0 < r < 1, the function || · ||r is not a norm. However, it is still well defined.
5We note that in the case where p < 1 the inequality does not hold. However, it does hold that ||A(y + z)||p ≥

p||Ay||p − ||Az||p > 0 so the same arguments are still valid.
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the size of A0 is constant, we are able to use brute force methods in order to construct it (in
exp(poly(ε−1)) = O(1) time). We note that this is the point in which our construction fails for
p = 2 as the requirements of A0 can only hold for6 p < 2.

In the next step of the construction, we tensor A0 with the identity matrix, thus obtaining
a high dimension matrix (A1)′εn/2×n. Another way to think of the matrix A1 is as the following
linear operator. Consider a vector x ∈ Rn. Let I1, . . . , Im be the partition of [n] into m =
n/n0 equally sized consecutive intervals. Split x into m vectors of length n0 corresponding to
the intervals I1, . . . , Im: xI1 , . . . , xIm . Then A1x = (A0xI1 , . . . , A0xIm). Notice that A1 has the
following property: For a vector x ∈ Rn that is not p-spread within all of the intervals, ||A1x||p =
Ω(||xp||). In fact, for the condition to hold it suffices that a constant percentage of the weight of x
falls into non-spread intervals.

Clearly, not all sparse vectors have a constant fraction of their weight fall in non-spread intervals.
For example, consider the vector x = (1, . . . , 1, 0, . . . , 0) for which any xI is either a zero vector or
an all 1 vector. To overcome this difficulty and in order to deal with general sparse vectors we have
an additional step in our construction. We concatenate two copies of the matrix, where the second
copy has its rows permuted by some permutation, “uncorrelated” with the identity permutation.
Namely, our final matrix A will be such that Ax = (A1x,A1πx) where π is a permutation matrix.
π is uncorrelated with the identity matrix in the following sense: For a sparse vector x, it cannot
be the case that both x and πx are dense in many of the intervals I1, . . . , Im. This permutation can
be constructed from a bipartite constant degree unique neighbor expander. The details are given
in Section 4.

This concludes the construction of the matrix but not the proof of its “norm preserving” prop-
erty. The lack of correlation between the permutation π and the identity permutation ensures that
most of the entries of x turn out to be in sparse intervals (i.e., in intervals having few non-zero
entries). A sparse interval is also non-spread and thus its `p norm is preserved by the low dimension
operator A0. However, our difficulty that it might be the case that almost all of the weight of x
is located exactly on entries that end up in dense intervals. To prove that such an event cannot
occur we introduce the notion of doomed indices.

Consider the following partition of the (non-zero) entries of x: Assume w.l.o.g. that the lowest
absolute value of a non-zero entry in x is 1. For each power of7 2 we define Bj as the set of indices
in which 2j ≤ |xi|p < 2j+1. An entry i ∈ Bj is doomed when the interval in which it lies contains
too many entries from Bj . Namely, Let I` be the interval s.t. i ∈ I`. Then i is doomed if |I`∩Bj | is
too large. The properties of the permutation π ensure that for either x or πx, a constant fracture
of the weight lies in non-doomed entries. We will now show that a constant fracture of the weight
of non-doomed entries (and thus of all entries) end up in non-spread intervals (either in x or πx).
The conclusion would be that ||Ax||p = ||A1x||p + ||A1πx||p = Ω(||x||p) since A0 preserves the `p
norm of non-spread vectors. Consider an interval I that is p-spread (that is, an interval for which
xI p-spread). Via a simple combinatorial argument, we prove that this implies that most of the
weight of xI originates from doomed indices.

1.4 Organization

In Section 2 we give some preliminaries, including some background regarding expander graphs. In
Section 3 we formally explain the notion of well spread vectors and prove the equivalence between

6Specifically, for p < 2 we show that a random sign matrix A0 has the required properties w.h.p. and that is not
the case for p = 2.

7Actually we will eventually use a scaling factor of 4/3 and not 2.
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a vector x being spread and holding ||x||r = Θ(n1/r−1/p||x||p). In Section 4 we describe the con-
struction of the linear operator A : Rn → Rεn. In Section 5 we prove the required properties of the
mentioned permutation π. We prove a combinatorial weaker property in Section 5.1 and later the
required properties in Section 5.2.

2 Preliminaries

For n ∈ N denote [n] ∆= {1, . . . , n}. For a subset S ⊆ [n] denote by S̄ the complement of S, i.e.,
S̄

∆= [n] \ S. In a graph G with vertex set V , for any subset S ⊆ V of vertices we denote by ΓG(S)
the set of S’s neighbors. For x ∈ Rn and a subset S = {i1 < i2 < . . . < i|S|} ⊆ [n] define xS as

the restriction of x to the indices of S. That is, xS
∆= (xi1 , xi2 , . . . , xi|S|). For p > 0 and x ∈ Rn

we denote by ||x||p the `p norm (or semi-norm when p < 1) of x. Namely, ||x||p = (
∑n

i=1 |xi|p)
1/p .

Denote by `np the n-dimensional vector space over R, equipped with the `p-norm.

2.1 Expander Graphs

An undirected graph G = (V,E) is called an (n, d, λ)-expander if |V | = n, the degree of each node
is d and the second largest eigenvalue, in absolute value, of the adjacency matrix of G is λ. For
any d = p + 1, where p is a prime congruent to 1 modulo 4, there are explicit constructions for
infinitely many n of (n, d, λ)-expanders, where λ ≤ 2

√
d− 1 [Mar88, LPS88]. Expander graphs

have an important property guaranteed by the commonly known expander mixing lemma. The
expander mixing lemma states that, for any two subsets S, T of a regular expander graph G, the
number of edges between S and T (denoted by E(S, T )) is approximately what you would expect
in a random d-regular graph, i.e. d|S||T |/n. Formally put,

Lemma 2.1. [Expander Mixing Lemma] Let G = (V,E) be a d-regular graph with second-largest
eigenvalue λ (in absolute value). Then for any two subsets S, T ⊆ V , let E(S, T ) denote the number
of edges between S and T. We have∣∣∣∣E(S, T )− d|S||T |

n

∣∣∣∣ ≤ λ√|S||T |
We require a bipartite expander with very good expansion properties that is regular on both

sides. We obtain one by constructing the edge-vertex incidence graph of a spectral expander.
Namely, given a spectral regular expander G0 = (V, F ) with |V | = m and degree d, we construct
G1 = (L,R,E) in the following manner: L = [m] corresponds to the set of vertices ofG0. R = [nd/2]
corresponds to the set of edges of G0. Two vertices v ∈ L and e ∈ R are connected iff the edge e
connects vertex v in G0.

Lemma 2.2. Let G0 = (V, F ) be a regular spectral expander of degree d and second eigenvalue
λ. Let G1 = (L,R,E) be the edge vertex adjacency graph of G0. Let T ⊆ L. Denote by φ(T ) the
number of non-unique neighbors of T (i.e., the number of vertices in R with more than one neighbor
in T ). Then

φ(T ) ≤ d|T |
(

2|T |
|L|

+
2λ
d

)
.

Proof. Denote by ΓG1(T ) the set of T ’s neighbors in R. The set T can also be viewed as a subset
of V . Its neighbors in R (i.e., ΓG1(T )) correspond to the set of edges leaving the set T in G0.
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According to the expander mixing lemma (Lemma 2.1),

|ΓG1(T )| = d|T | − EG0(T, T )
E.M.L.
≥ d|T |

(
1− |T |

m
− λ

d

)
where EG0(T, T ) denotes the edges contained in the set T in G0. The claim follows.

3 Distortion and Well Spread Vectors

Let 0 < r < p < 2. By Hölder’s inequality, for any x ∈ Rn it holds that ||x||r ≤ n1/r−1/p||x||p.
Hence, to bound the distortion of a given subspace, it suffices to prove that for all of its vectors,
||x||r = Ω(n1/r−1/p||x||p). The following notion will ease us quantify this bound.

Definition 3.1. Let x ∈ Rn and let 0 < r < p.

∆p→r (x) ∆=
n1/r−1/p||x||p
||x||r

For briefness, for p > 1 we write ∆p(x) ∆= ∆p→1 (x).

Notice that ∆p→r (x) ≥ 1. Hence, ∆p→r (V ) ≤ maxx∈V {∆p→r (x)}. In particular, in a subspace
V where maxx∈V {∆p→r (x)} = O(1), the distortion is constant. We now give the formal definition
and prove the equivalence of p-spreadness and low ∆p→r (·) measure. We note that in [GLR08],
the equivalent lemma was proved for p = 2, r = 1.

Definition 3.2. Let p ≥ 1. A vector x ∈ Rn is (p, α, η)-spread when for every S ⊆ [n] with
|S| ≤ αn, we have ||xS̄ ||p ≥ η||x||p where S̄ = [n] \ S.

Lemma 3.3. Let x ∈ Rn and let 0 < r < p.

� If x is (p, α, η)-spread then ∆p→r (x) ≤ η−p/rα1/p−1/r.

� conversely, x is (p, 2(∆p→r (x))−rp/(p−r),∆p→r (x)−1 · (1− 21−r/p)1/r)-spread.

Proof. We first prove the first claim: Assume w.l.o.g. that |x1| ≥ |x2| ≥ . . . ≥ |xn| and that
||x||p = 1. For briefness, denote y = x[αn], z = x[αn+1...n]. According to our assumption, ||z||p ≥ η.
On the other hand, ||y||pp ≤ ||x||pp = 1, therefore |xαn|p ≤ (αn)−1 and thus ||z||∞ ≤ (αn)−1/p.

||x||rr ≥ ||z||rr ≥ ||z||pp · ||z||r−p∞ ≥ ηp(αn)(p−r)/p = (ηpα1−r/p) · n1−r/p

This proves the first part of the claim.
We now prove the second claim: Let ||x||p = 1 and α = 2(∆p→r (x))−rp/(p−r). Let S ⊆ [n],

|S| ≤ αn. By the definition of ∆p→r (·), ||x||rr ≥ n1−r/p∆p→r (x)−r. On the other hand,

||xS ||rr ≤ (αn)1−r/p||xS ||rp ≤ (αn)1−r/p ≤ n1−r/p∆p→r (x)−r 21−r/p

and

||xS̄ ||rr = ||x||rr − ||xS ||rr ≥
n1−r/p

∆p→r (x)r
(1− 21−r/p)

which implies ||xS̄ ||p ≥ ||xS̄ ||rn1/p−1/r ≥ ∆p→r (x)−1 (1− 21−r/p)1/r.
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For our construction we require a matrix A0, of constant dimensions, that preserves (up to some
non-trivial distortion) the `p norm of any non p-spread vector. It turns out that a random (scaled)
sign matrix has this property w.h.p.. As the dimensions of A0 are constant, a random construction
implies a deterministic one. The mentioned property can be verified by say, going over all the
vectors in some ε-net of the `p unit sphere. As the dimensions are constant, the running time
required for finding the matrix is also constant. We start with a formal definition of the required
properties of the matrix.

Definition 3.4. A matrix A of dimensions εn×n is called (p, α, β, τ)-norm preserving when it has
the following properties:

� For any vector x ∈ Rn, we have ||Ax||p ≤ τ ||x||p

� For any vector x ∈ Rn s.t. x is not (p, α, 0.9)-spread, ||Ax||p ≥ β||x||p.

The following Theorem states the existence of a norm preserving (scaled) sign matrix. Its proof
is quite technical so we defer it to Appendix A. In a nutshell, we prove by standard methods, that
a random sign matrix has some weaker norm preserving property for the `2 norm. We then show
that this implies the required result for the `p norm.

Theorem 3.5. Let 0 < ε, p < 2. There exists some α = εO((2−p)−1) and ninitial = ε−O((2−p)−1)

with the following properties: For any n ≥ ninitial, there exist a (scaled) sign matrix8 (A0)εn×n s.t.
A0 is (p, α, β, τ)-norm preserving for some β = n−O(1/p) and τ = nO(1/p).

4 The Construction and Some Immediate Properties

In this section we present, for any 0 < r < p < 2 and ε > 0, a deterministic construction for a
subspace V ⊆ `nr with constant `p distortion and dimension dim(V ) = (1 − ε)n. Specifically, for
any ε > 0, we construct a matrix A of dimensions εn×n whose kernel is a subspace in which the `p
distortion is ε−Op,r(1). We show that A preserves the `p norm of any sparse vector and prove this
property ensures its kernel has the required property.

Let 0 < ε < 1. Recall that Theorem 3.5 guarantees the existence of a matrix (A0)0.5εn0×n0 that
is (p, α, β, τ)-norm preserving, where 0 < β,α < 1, τ > 0 and n0 ∈ N are all functions of ε. This
matrix can be found via exhaustive search in time, dependent only on ε. Let

A1 = A0

⊗
I2n/n0×2n/n0

where
⊗

is the tensor product and n = n0m for some integer m. That is, for b < 0.5εn0, d < n0,

(A1)ab0.5εn0c+b,cn0+d
∆=
{

(A0)b,d a = c
0 otherwise

We shall later define a pair of permutation matrices of dimension n×n, denoted by π1, π2. The
matrix we work with (whose kernel is the required subspace) is defined as follows:

A
∆= A1 ·

(
π1

π2

)
.

Although we can assume w.l.o.g. that π1 is the identity permutation, it is more convenient (for
the purpose of the analysis) to discuss both permutations as arbitrary ones. As stated earlier, the
permutations should be “uncorrelated” from one and other. We now give a formal definition to our
requirements:

8If εn is not an integer, the number of rows is set to be bεnc
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Definition 4.1. Let n0,m ∈ N and let n = n0m. Let 0 < α, γ, δ < 1, 0 < p < 2.

� Let I1 = [1, n0], . . . , Im = [n− n0 + 1, n].

� For each permutation π, we define an induced partition (Dπ, D̄π) of the intervals according to
some fixed x ∈ Rn:

Dπ
∆= {I | (πx)I is (p, α, 0.9)−spread}

� Let Jπ =
⋃
I /∈Dπ I.

� a pair of permutations π1, π2 are called (p, n0, α, γ, δ)-spreading if for any x ∈ Rn that is
γ-sparse, it holds that

||(π1x)Jπ1
||pp + ||(π2x)Jπ2

||pp ≥ δ||x||pp.

The construction of the permutations is done via the following procedure: Let G0 be an ex-
pander graph with m vertices of degree 2n0 and second eigenvalue λ ≤ 2

√
2n0 − 1 < 3

√
n0 (see

Section 2.1)9. Let G1 = (L1, R,E1) be the edge-vertex adjacency graph of G0 where L1 = [m] is the
set of vertices and R = [n] is the set of edges. Define G2 = (L,R,E) as the following graph: each
vertex in L1 is split into n0 vertices. Every new vertex in L is connected to two edges (arbitrarily,
say by lexicographic order) that were previously connected to the corresponding vertex in L1. The
graph G2 = (L,R,E) is a bipartite graph where in each side the degree of the vertices is 2. Let π′1
be a subset of edges that is a perfect matching between both sides (its existence is guaranteed by
Hall’s theorem and it can be obtained using e.g. the classic algorithm for finding a perfect matching
in a bi-partite graph). Then π′2

∆= E \ π′1 must also be a perfect matching. Since |L| = |R| = n,
π′1, π

′
2 can be viewed as permutations over [n]. We denote these permutations as π1, π2.

Proving the spreading property of the permutations will be our main effort. We do so in Section
5. We now show that these properties indeed guarantee that the kernel of A has a low `p distortion.
First, we show that the operator A indeed preserves the `p norm of any sparse vector.

Lemma 4.2. Let ε > 0 and let A0, A1, A, π1, π2 be as defined above (A0 is (p, α, β, τ)-norm pre-
serving). Let γ > 0. Assume that π1, π2 are (p, n0, α, γ, δ)-spreading permutations.

� For any x ∈ Rn it holds that ||Ax||p ≤ 21/pτ ||x||p.

� Assume that x is γ-sparse. Namely that it has at most γn non-zero entries. Then ||Ax||p ≥
δ1/pβ||x||p.

Proof. The first part of the claim is trivial due to the definition of A and the norm preserving
properties of A0. To prove the second part of the claim, assume that x is γ-sparse. Since π1, π2 are
spreading permutations,

||(π1x)Jπ1
||pp + ||(π2x)Jπ2

||pp ≥ δ||x||pp
Hence, due to the properties of A0,

||Ax||pp = ||A1π1x||pp + ||A1π2x||pp ≥ δ · βp||xS ||pp.

9Notice that the mentioned expander graphs in Section 2.1 have particular restrictions regarding their degree (2n0)
and number of vertices (m). This does not undermine the correctness due to the following: First, the attributes we
require of n0 consist of a (constant) lower bound. Hence, the additional requirements of the expander construction can
be held. Second, for any fixed n0 and m where n0 satisfies all the needed requirements, there exists some m′ = Θ(m)
for which the required expander can be constructed. Hence, if one wishes some specific value of n, we construct the
matrix with some n′ ≥ n, n′ = O(n) (where the O() is also independent of ε) and ignore the n′ − n last columns of
the matrix. This leads to a matrix of size O(εn)× n and the analysis holds.
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Theorem 4.3. Let ε > 0 and let A0, A1, A, π1, π2 be as defined above (A0 is (p, α, β, τ)-norm
preserving). Let γ > 0. Assume that π1, π2 are (p, n0, α, γ, δ)-spreading permutations. Let p̃ =
min{p, 1} and let x ∈ Rn where

∆p→r (x) > γ1/p−1/r · p̃−p/rδ−1/rβ−p/r(p̃pδβp + 2τp)1/r.

Then Ax 6= 0.

Proof. ∆p→r (x) is sufficiently large so that x is not (p, γ, η)-spread for some η < p̃δ1/pβ(p̃pδβp +
2τp)−1/p (see Lemma 3.3). Assume w.l.o.g. that ||x||p = 1. Hence, there exist some subset S ⊆ [n],
|S| ≤ γn where ||xS̄ ||

p
p < ηp and ||xS ||pp > 1− ηp. Since π1, π2 are spreading permutations, we have

by Lemma 4.2 that

||Ax||pp ≥ p̃p||AxS ||pp − ||AxS̄ ||pp > p̃pδβp(1− ηp)− 2τpηp = p̃pδβp − ηp(p̃pδβp + 2τp) > 0

5 Analysis of the Permutations

5.1 Hashing Permutations

Before we prove the spreading properties of the permutations, we prove an easier combinatorial
property of them which suffices for the case of vectors in {−1, 0, 1}n.

Definition 5.1. Let n0,m ∈ N and let n = n0m. Let 0 < µ, γ, ζ < 1.

� Let I1 = [1, n0], . . . , Im = [n− n0 + 1, n].

� For each permutation π, we define an induced partition (Eπ, Ēπ) of the intervals according to
some x ∈ Rn:

Eπ
∆=
{
I | (πx)I contains at least µn0 non zero′s

}
� Let Kπ =

⋃
I /∈Eπ I.

� a pair of permutations π1, π2 are called (n0, µ, γ, ζ)-hashing if for any s-sparse vector x ∈ Rn

with s ≤ γn, it holds that (π1x)Kπ1
, (π2x)Kπ2

contain at least 2ζs non-zero entries (together).
Namely, ||(π1x)Kπ1

||0 + ||(π2x)Kπ2
||0 ≥ 2ζs (where ||y||0 denotes the number of non-zero

entries in y).

The following lemma essentially says that whenever γ = O(µ2) and n0 = Ω(µ−2), the permuta-
tions are hashing.

Lemma 5.2. Let n0 ∈ N and 0 < µ, γ, ζ < 1. Define ξ ∆= 16µ−2γ+ 12µ−1n
−1/2
0 . If 2ζ < 1− ξ then

π1, π2 are (n0, µ, γ, ζ)-hashing permutations.

Proof. Assume that π1, π2 are not hashing. We show that 1− 2ζ ≤ ξ. Let x ∈ Rn be a vector with
respect to which the permutations are not hashing. Let S ⊂ R (where |R| = n is the right set of
vertices of G1) be a set of size |S| ≤ γn containing the non zero entries of x. According to our (non
hashing) assumption, (π1x)Kπ1

, (π2x)Kπ2
contain less than 2ζ|S| non zero’s.

Let T1, T2 ⊆ L1 be defined as the sets corresponding to Eπ1 , Eπ2 (each interval is a left vertex
in G1). Define the following edge labelling in the graph G1: Any edge is either in π1 (viewed as
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a perfect matching) or π2. Label the edge by the number 1 or 2 accordingly. Also, let E`(T, S)
denote the set of edges connecting a set T ⊆ L1 to a set S ⊆ R labelled ` (` ∈ {1, 2}). Notice that
the vertices i ∈ S that are connected to T1 via an edge labelled 1 are exactly those not in Kπ1 (i.e.
in S \Kπ1). An analog can be said for Kπ2 . Hence,

|E1(T1, S)|+ |E2(T2, S)| ≥ (2− 2ζ)|S|.

Define T = T1 ∪ T2. We get that the total number of edges from T to S is at least (2− 2ζ)|S|.
As the right degree is 2, we get that (recall that φ(T ) denotes the number of non-unique neighbors
of T )

φ(T ) ≥ (1− 2ζ)|S|.

We now express this as a bound involving |T |. Later we will use the expansion of the graph to
upper bound φ(T ) and get the required inequality. For each element of T1, we have µn0 elements
of S that are “sent there” by the edges corresponding to π1. Hence, |T1| ≤ |S|

µn0
. The same can be

said for T2 and thus |T | ≤ 2|S|
µn0

. We get that T has at least

(1− 2ζ)|S| ≥ |T | · ((1− 2ζ)µn0/2) = 2n0|T |(1− 2ζ)µ/4

non-unique neighbors. On the other hand, by Lemma 2.2, T has at most

2n0|T |
(

2n0
|T |
n

+
λ

n0

)
≤ 2n0|T |

(
4µ−1γ + 3n−1/2

0

)
non-unique neighbors (since λ ≤ 3

√
n0 and |S| ≤ γn). By combining inequalities, we get the

required result.
1− 2ζ ≤ 16µ−2γ + 12µ−1n

−1/2
0 = ξ.

Corollary 5.3. Let 0 < µ < 1. There exist some ninitial = O(µ−2) and γinitial = Ω(µ−2) with the
following properties: For any γ ≤ γinitial and n0 ≥ ninitial, we have that π1, π2 are (n0, µ, γ, 1/3)-
hashing

5.2 The Proof

We proceed to prove the (p, n0, α, γ, δ)-spreading properties of π1, π2 for general vectors. The
parameters α > 0 and 0 < p < 2 will be fixed and the other parameters will be set according to
them. Let x ∈ Rn be a vector that is γ-sparse (the size restrictions of γ will be detailed later).
Assume also w.l.o.g. that ||x||p = 1. Recall that we defined a partition of the indices into the
intervals I1 = [1 . . . n0], . . . Im = [n− n0 + 1 . . . n]. We Define an additional partition of the indices
(containing non-zero elements) into blocks. This partition will be dependent on the vector x. The
granularity of the blocks shall depend on some q > 1 whose exact value will be given later.

Definition 5.4. Let i0 ∈ [n] be an entry in which |xi0 | is non-zero and minimal w.r.t. all other
absolute value of non-zero entries of x. Define for j ≥ 0,

Bj =
{
i
∣∣ |xi0 |pqj ≤ |xi|p < |xi0 |pqj+1

}

12



Definition 5.5. We say that a block Bj is ζ`-preserved by a permutation π` (` = 1, 2) if π`(xBj ) has

a ζ` percentage of its non-zero elements in α/r-sparse intervals (I1, . . . , Im), for10 r
∆=
⌈
logq(

(1−0.9p)n0

0.9p )
⌉
+⌈

1
1− 1

q

⌉
+ 2.

We require that γ = O
(
(α/r)2

)
and n0 = Ω

(
(α/r)−2

)
as in the requirements of Corollary 5.3

when applied for µ = α/r (notice that although r depends on n0, the dependence is logarithmic
so the requirements holds for sufficiently large n0). The following lemma is due to the hashing
properties of the permutations:

Lemma 5.6. Let B be some block that is ζ`-preserved by π`. It holds that

ζ1 + ζ2 ≥ 2/3.

Proof. Let y be the vector having the same entries as x in the indices of B and zero’s elsewhere.
Since x is γ-sparse, so is y. As γ is sufficiently small and n0 is sufficiently large, by corollary 5.3
π1, π2 are (n0, α/r, γ, 1/3)-hashing. The claim easily follows.

We now define the notion of doomed indices. Intuitively, these are indices that we are bound
to “lose” as an interval containing them might become spread. We note that the definition is
dependent on a specific vector x ∈ Rn.

Definition 5.7. Let x ∈ Rn, let i ∈ [n] be an index where xi 6= 0 and let ` ∈ [2]. Let B be the block
containing i and let I be the interval s.t. π`(i) ∈ I. The index i is called a doomed index w.r.t. π`
(and x) if I contains more than αn0/r indices from π`(B).

The following lemma is an easy property of doomed indices

Lemma 5.8. Let D` ⊆ [n] be the set of doomed indices w.r.t. π` (` ∈ [2]). Then∑
i∈D1

|xi|p +
∑
i∈D2

|xi|p ≤ 2− 2
3q
.

Proof. According to Corollary 5.3, each block has 2/3 of its indices in sparse intervals (when
counting each element 2 times, once in each permutation). In the worst case scenario, the indices
that where “lost” in each block were of the largest possible value in comparison to those “saved”.
Namely, their ratio is q. This proves the claim.

We now need to bound the weight of the non-doomed |xi|p’s in spread intervals. We do so by
proving that in an interval I that is well spread, the relative weight of the doomed indices must
be high. As the total weight of the doomed indices is bounded, we will get that the a constant
fraction of the weight is present in non spread intervals.

Lemma 5.9. Let π = π` be one of the permutations. Let I be an interval s.t. (πx)I is (p, α, 0.9)-
spread. Then

||(πx)I∩D` ||p ≥ 0.9||(πx)I ||p.
10The exact value of r comes from a calculation regarding the future equations. As q will be given a value

independent of the other parameters, we get that r = Θ(log(n0)).
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Proof. Assume w.l.o.g. that (πx)I = (y1, . . . , yn0) where |y1| ≥ |y2| ≥ . . . ≥ |yn0 |. For briefness,
define for each i ∈ [n0], zi = |yi|p. We first mention that

zαn0 >
0.9p

(1− 0.9p)n0
· z1. (1)

otherwise,

||(z1, . . . , zαn0)||1 ≥ z1 ≥ zαn0

(1− 0.9p)n0

0.9p
>

(1− 0.9p)||(zαn0+1, . . . , zn0)||1
0.9p

and ||(zαn0+1, . . . , zn0)||1 < 0.9p||(z1, . . . , zn0)||1, meaning that the interval is not (p, α, 0.9) spread.
We consider a block B to be doomed w.r.t. an interval I and a permutation π when at least αn0/r
of its indices are sent by π to I. Inequality 1 indicates that there are at most

logq

(
(1− 0.9p)n0

0.9p

)
+ 1 ≤ r −

⌈
1

1− 1
q

⌉
− 1

many non-doomed blocks w.r.t. π, I having their elements appear in {z1 . . . zαn0}. As z1, . . . , zαn
are all non-zero, it follows that at least

αn0 −

(
r −

⌈
1

1− 1
q

⌉
− 1

)
αn0

r
=
αn0

r

(⌈
1

1− 1
q

⌉
+ 1

)
elements of {z1, . . . , zαn} originate from a doomed index. Denote by dbig (gbig) the sum of zi’s
originating from doomed (non-doomed) indices in {z1 . . . zαn0} and by dsmall (gsmall) the sum of
zi’s originating from doomed (non-doomed) indices in {zαn0+1 . . . zn0}. We get that

dbig ≥
zαn0αn0

r

(⌈
1

1− 1
q

⌉
+ 1

)
.

Also,
gsmall ≤ zαn0 ·

αn0

r
· (2 + q−1 + q−2 + . . .) ≤ dbig.

This holds since: In the worst case scenario (i.e., gsmall gets the maximal value), the maximum
valued element in {zαn0+1 . . . zn0} has the value of zαn0 and appears 2αn0/r times (as the smallest
and largest element in two consecutive non-doomed blocks). After this, each element must be q
times smaller than the previous and may appear at most αn0

r times. Concluding, we get that

||(πx)I∩D` ||
p
p

||(πx)I ||pp
=
dsmall + dbig
||z||1

≥ dsmall + gsmall
||z||1

=

||(zαn0+1, . . . , zn0)||1
||z||1

≥ 0.9p.

By setting q = 4/3 we get the following corollary

Corollary 5.10. For ` = 1, 2, let (recall Definition 4.1) Dπ` be the set of intervals s.t. (π`x)I is
(p, α, 0.9)-spread. Then ∑

I∈Dπ1

||(πx)I ||pp +
∑
I∈Dπ2

||(πx)I ||pp ≤ 1.86||x||pp
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Proof. Assume w.l.o.g. that ||x||p = 1. By Lemma 5.8, the sum of doomed |xi|p’s (counting each i
twice, once for each π`) is at most 1.5. By Lemma 5.9 and p < 2 we have that,∑

I∈Dπ1

||(πx)I ||pp +
∑
I∈Dπ2

||(πx)I ||pp ≤
1.5
0.9p

< 1.86

Corollary 5.11. Let 0 < α < 1. Let n ∈ N be some sufficiently large integer. There exist
some ninitial = O(α−2 log2(α−1)) and γ = Ω(α2 log−2(α−1)) with the following properties: Let
n0 ≥ ninitial, and let π1, π2 be a pair of permutations constructed as in Section 4 w.r.t mentioned
parameters. Then π1, π2 are (p, n0, α, γ, 0.14)-spreading.

Theorem 1.2 easily follows from the above Corollary, Theorem 3.5 and Theorem 4.3.
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A A Low Dimension Norm Preserving Matrix

We start by presenting a Lemma showing that a random (scaled) sign matrix preserves the `2 norm
of any vector x with large ∆2→1 (·) measure. We shall then see that a vector x that is not p-spread
(as in the requirements of Theorem 3.5) has this property (for p < 2).

The following result is standard, given covering estimates of Schütt [Sch84]. In a nutshell, one
proves that a random (scaled) sign matrix of dimension εn × n preserves the norm of any fixed
vector of Rn with probability 1− exp(εn). One then proceeds to union bound over a net, covering
all vectors with large ∆2→1 (·) measure. For a complete proof see e.g. [LS08], Lemma B.

Lemma A.1. Let 0 < ε < 1. There exist some D = O(ε−1/2 log(ε−1)) and ninitial = ε−O(1) such
that for any n ≥ ninitial there exists a (scaled) sign matrix (A0)εn×n with the following properties:

1. For any vector x ∈ Rn s.t. ∆2→1 (x) > D, ||A0x||2 ≥ β′||x||2 for some β′ = Ω(1).

2. For any vector x ∈ Rn, ||A0x||2 ≤ τ ′||x||2 for some τ ′ = O(ε−1/2).

We now prove a connection between `p spreadness and `2 spreadness. As a corollary we get a
connection between the `p-spreadness and the ∆2→1 (·) measure.

Lemma A.2. Let 0 < p < 2. Let x ∈ Rn be some vector that is not (p, α, 0.9)-spread. Then x is
not (2,

√
α, 101/pα1/(2p)−1/4)-spread.

Proof. Assume w.l.o.g. that |x1| ≥ |x2| ≥ . . . ≥ |xn| and that ||x||pp/n = Ei∈[n][|xi|p] = 1. Let
0 < z < 1 be a parameter. First, notice that for any z > 0, |xαzn|p ≤ α−z. That is, |xαzn| ≤ α−z/p.
Now,

||x[αzn+1...n]||22 ≤ ||x[αzn+1...n]||2−p∞ · ||x[αzn+1...n]||pp ≤

α−(2−p)z/p · ||x[αn+1...n]||pp ≤ αz(1−2/p) · 0.9n.

On the other hand,

||x[αzn]||22 ≥ ||x[αn]||22 = αn · Ei∈[αn][x
2
i ] ≥ αn · (Ei∈[αn][|xi|p])2/p ≥
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αn

(
0.1n
αn

)2/p

≥ 0.011/pα1−2/pn.

By combining both equations we get

||x[αzn+1...n]||22
||x||22

≤
||x[αzn+1...n]||22
||x[αzn]||22

≤ 0.9αz(1−2/p)

0.011/pα1−2/p
≤ 1001/pα(2/p−1)(1−z)

and by setting z = 1/2 we get the required result.

The following is an immediate corollary of the above Lemma and Lemma 3.3.

Corollary A.3. Let 0 < p < 2, α > 0, and let x ∈ Rn be some vector that is not (p, α, 0.9)-spread.
Then ∆2→1 (x) ≥ α1/4−1/(2p)/(4 · 101/p).

Hence, by setting α = εO((2−p)−1) (so that α1/4−1/(2p)/(4 · 101/p) = D where D is as in
Lemma A.1), one can achieve a matrix A0 with the following properties: Let n, β′, τ ′ be as in
Lemma A.1 and let x ∈ Rn:

� ||A0x||2 ≤ τ ′||x||2.

� Assume ∆2→1 (x) ≥ α1/4−1/(2p)/(4 · 101/p). Then ||A0x||2 ≥ β′||x||2

We now prove that this matrix has the required properties of Theorem 3.5. Let x ∈ Rn. Then

||A0x||p ≤ (εn)1/p−1/2||A0x||2 ≤ (εn)1/p−1/2τ ′||x||2 ≤ (εn)1/p−1/2τ ′||x||p
∆= τ ||x||p.

Assume now that x is not (p, α, 0.9)-spread. Then by Corollary A.3, ∆2→1 (x) ≥ α1/4−1/(2p)/(4 ·
101/p) and

||A0x||p ≥ ||A0x||2 ≥ β′||x||2 ≥ β′n1/2−1/p||x||p
∆= β · ||x||p

Hence, A0 is (p, α, β, τ)-norm preserving for β = n−O(1/p), τ = nO(1/p) (as n ≥ ε−1).

B Proof of the `1/`p guarantee

Fix some 1 < p < 2. Let V ⊆ Rn be a subspace with ∆1→p (V ) ≤ D. Namely, for any x ∈ V it
holds that ||x||p ≤ n1−1/pD||x||1.

Lemma B.1. Let 0 6= x ∈ V . Then ||x||0 ≥ n/Dp/(p−1).

Proof. Let S ⊆ [n] be the set of non-zero indices of x. We have,

||x||1 =
∑
i∈S
|xi| ≤ |S|1−1/p

(∑
i∈S
|xi|p

)1/p

= |S|1−1/p||x||p ≤ |S|1−1/p
(
n1/p−1D||x||1

)
where the last equality holds since x ∈ V . As ||x||1 > 0 we get that |S| ≥ n ·Dp/(1−p).

Lemma B.2. Let 0 6= x ∈ V . Then for any S ⊆ [n] where |S| < n(2D)p/(1−p), ||xS ||1 < ||x||1/2.
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Proof. Similarly to the previous lemma,

||xS ||1 =
∑
i∈S
|xi| ≤ |S|1−1/p

(∑
i∈S
|xi|p

)1/p

= |S|1−1/p||xS ||p ≤

|S|1−1/p||x||p ≤ |S|1−1/p
(
n1/p−1D||x||1

)
< ||x||1/2

Lemma B.3. Suppose u ∈ Rn, ||u||0 < n(2D)p/(1−p). Then for any v = u+x, where x ∈ V , x 6= 0,

||v||1 > ||u||1

Proof. Let S be the set of indices in which u is non-zero. Then

||v||1 =
∑
i∈[n]

|ui + xi| ≥
∑
i∈S
|ui| − |xi|+

∑
i/∈S

|xi| = ||u||1 + ||x||1 − 2||xS ||1 > ||u||1

Recall that the “Base Pursuit” algorithm finds the vector u given Au (where Ker(A) = V ) via
the following linear program:

min ||y||1 s.t. Ay = Au.

The previous lemma guarantees that the output is exactly u provided ||u||0 < n(2D)p/(1−p). We
now prove the robustness (i.e., `1/`p guarantee) of the algorithm. Let u ∈ Rn be some vector and
let y be the solution of the above linear program. Notice that

y = u+ argminx∈V ||u+ x||1.

Theorem B.4. Let u ∈ Rn and let u′ be such that ||u′||1 ≤ ||u||1 and u − u′ ∈ V . Let k =⌊
(4D)p/(1−p)n

⌋
. Then,

||u− u′||1 ≤ 4σk(u)1

and
||u− u′||p ≤ k1/p−1σk(u)1

Proof. Since u − u′ ∈ V the second inequality stems from the first. Let S ⊆ [n] be of size |S| = k
containing the largest entries of u in absolute value. Let S̄ = [n] \ S. First,

σk(u)1 = ||u− uS ||1 = ||uS̄ ||1.

Now,
||u− u′||1 = ||(u− u′)S ||1 + ||(u− u′)S̄ ||1 ≤ ||(u− u′)S ||1 + ||uS̄ ||1 + ||(u′)S̄ ||1.

As ||u′||1 ≤ ||u||1,

||(u′)S̄ ||1 − ||uS̄ ||1 = ||u′||1 − ||u||1 − ||(u′)S ||1 + ||uS ||1 ≤ ||(u− u′)S ||1.

Hence,
||(u′)S̄ ||1 ≤ ||uS̄ ||1 + ||(u− u′)S ||1

and
||(u− u′)||1 ≤ 2||(u− u′)S ||1 + 2||uS̄ ||1
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As u− u′ ∈ V we get

||(u− u′)S ||1 ≤ |S|1−1/p||(u− u′)S ||p ≤ |S|1−1/p||u− u′||p ≤ |S|1−1/pn1/p−1D||u− u′||1.

Our assumption on |S| guarantees that |S|1−1/pn1/p−1D ≤ 1/4. It follows that

||u− u′||1 ≤ ||u− u′||1/2 + 2||uS̄ ||1

which gives
||u− u′||1 ≤ 4||uS̄ ||1 = 4σk(u)1

Corollary B.5. Let u ∈ Rn and let y be the output of the “Base Pursuit” algorithm. Let k =⌊
(4D)p/(1−p)n

⌋
. Then

||u− y||1 ≤ 4σk(u)1

and
||u− y||p ≤ k1/p−1σk(u)1
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