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Abstract

The Unique Games conjecture (UGC) has emerged in recent years as the starting point for
several optimal inapproximability results. While for none of these results a reverse reduction
to Unique Games is known, the assumption of bijective projections in the Label Cover instance
seems critical in these proofs. In this work we bypass the UGC assumption in inapproximabil-
ity results for two geometric problems, obtaining a tight NP-hardness result in each case.

The first problem known as the Lp Subspace Approximation is a generalization of the classic
least squares regression problem. Here, the input consists of a set of points S = {a1, . . . , am} ⊆
Rn and a parameter k (possibly depending on n). The goal is to find a subspace H of Rn

of dimension k that minimizes the sum of the pth powers of the distances to the points. For
p = 2, k = n− 1, this reduces to the least squares regression problem, while for p = ∞, k = 0 it
reduces to the problem of finding a ball of minimum radius enclosing all the points. We show
that for any fixed p (2 < p < ∞) it is NP-hard to approximate this problem to within a factor
of γp −ε for constant ε > 0, where γp is the pth moment of a standard Gaussian variable. This
matches the factor γp approximation algorithm obtained by Deshpande, Tulsiani and Vishnoi
[12], who also showed the same hardness result under the UGC.

The second problem we study is the related Lp Quadratic Grothendieck Maximization
Problem, considered by Kindler, Naor and Schechtman [29]. Here, the input is a multilin-
ear quadratic form ∑

n
i, j=1 ai jxix j and the goal is to maximize the quadratic form over the `p

unit ball, namely all x with ∑
n
i=1 |xi|p = 1. The problem is polytime solvable for p = 2. We

show that for any constant p (2 < p < ∞), it is NP-hard to approximate Valp(A) to within a
factor of γ2

p −ε for any ε > 0. The same hardness factor was shown under the UGC in [29]. We
also obtain a γ2

p-approximation algorithm for the problem using the convex relaxation of the
problem defined by [29]. A γ2

p approximation algorithm has also been independently obtained
by Naor and Schechtman [33].

These are the first approximation thresholds, proven under P 6= NP, that involve the Gaus-
sian random variable in a fundamental way. Note that the problem statements themselves
have no mention of Gaussians.
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1 Introduction

The Unique Games Conjecture of Khot [22] asserts that a certain binary constraint satisfaction
problem is hard to approximate over a large enough alphabet. The conjecture has been shown to
imply optimal hardness results for various important combinatorial optimization problems such
as MaxCut [23], Vertex Cover [24] and more generally, constraint satisfaction problems [36]. How-
ever, arguably there has been little progress towards proving the conjecture. On the contrary,
recent algorithmic results have disproved some stronger variants of the conjecture, and solved
the Unique Games problem on special classes of instances like expanders [5, 3]. Moreover, while
the Unique Games Conjecture is known to imply optimal inapproximability results for MaxCut
and Vertex Cover, the converse is unknown. In other words, this leaves open the possibility that
while the implications of the conjecture are true, the conjecture itself is false. For all these reasons,
it is a worthwhile endeavor to investigate if the optimal inapproximability results obtained via
the Unique Games Conjecture can be shown without appealing to the conjecture. In this work,
we consider two geometric problems for which optimal inapproximability results based on the
Unique Games Conjecture have been shown previously, and obtain the same hardness results
unconditionally, i.e., without appealing to the conjecture.

Lp Subspace Approximation Problem. The first problem we consider is the Lp Subspace Ap-
proximation Problem for 2 6 p < ∞ – a natural generalization of the least squares regression
problem, the low rank matrix aproximation problem and the problem of computing radii of point
sets. Here the input consists of a set of points S = {a1, . . . , am} ⊆ Rn, and an integer 1 6 k 6 n.
The goal is to find a k-dimensional subspace H of Rn that minimizes the sum of the pth powers of
the distances to the points in S. Formally, the goal is to compute:

Subp(S, k) = min
H⊆Rn :dim(H)=k

(
m

∑
i=1

dist(H, ai)
p

)1/p

, (1)

where dist(, ) is the usual `2 distance between a subspace and a point. Informally, it is the prob-
lem of determining how close a given set of points is from lying in a smaller subspace, where the
measure of closeness to a subspace is the `p norm of the tuple of Euclidean distances of the set of
points from the subspace. Such problems arise naturally in classification of large data sets for ap-
plications in machine learning and data mining. As an algorithmic question, it is a generalization
of various special cases for different values of p such as Low rank matrix approximation (p = 2) or
Computing the radii of point sets (p = ∞). We refer the reader to [12] for a more comprehensive
discussion of these connections.

In this work we focus on the hardness of approximating the Lp Subspace Approximation Prob-
lem for the case when k = n− 1, i.e., the problem of finding a hyperplane that is closest to the set of
points in the measure defined above. Let γp denote the pth moment of a normal random variable.
Recently, Deshpande, Tulsiani and Vishnoi [12] obtained a γp approximation for the problem, and
showed a matching hardness assuming the Unique Games Conjecture. Bypassing the need for the
UGC, we obtain a γp hardness of approximation unconditionally.

Theorem. For any given p (2 < p < ∞) the Lp Subspace Approximation Problem is NP-hard to approx-
imate within a factor of (1−ε)γp for any ε > 0.
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Lp Grothendieck Problem. The second problem we consider is that of maximizing a multilinear
quadratic form over the unit `p ball in Rn for constant p, 2 6 p < ∞. Formally, the input to the
problem is a symmetric n× n matrix A = (ai j) with zero diagonal entries, the goal is to compute
the following quantity,

Valp(A) := max

{
n

∑
i, j=1

ai jxix j | ∑
i
|xi|p 6 1

}
, (2)

We shall refer to this problem as the Lp Quadratic Grothendieck Maximization Problem. In the
case where p = 2, Val2(A) is nothing but the maximum eigenvalue of the matrix A and hence is
computationally tractable. The case p = ∞ is commonly referred to as the Grothendieck problem
and has been extensively studied in mathematics and computer science for its applications to
combinatorial optimization, graph theory and correlation clustering [34, 2, 1, 11]. The case when
2 < p < ∞ has applications towards studying spin glass systems in physics (See Section 2.2)

Kinder, Naor and Schectman [29] obtained a (γ2
p−ε)-hardness for everyε for the Lp-Grothendieck

problem assuming the UGC, and also exhibited an almost matching p
e + 30 log p-approximation al-

gorithm. Bypassing the Unique Games Conjecture, we obtain a γ2
p hardness unconditionally for

the problem.

Theorem. For any constant p > 2, it is NP-hard to approximate Valp(A) to within γ2
p−ε for anyε > 0.

Furthermore, we also obtain an approximation algorithm that exactly matches the above hard-
ness result for every p.

Theorem. There is a polynomial time algorithm to approximate Valp(A) to within γ2
p for any symmetric

matrix A with all diagonal entries equal to zero.

A γ2
p approximation for Valp(A) has also been independently obtained by Naor and Schecht-

man [33] as part of a more general result.

The above mentioned NP-hardness results are noteworthy for a couple of reasons. First, the
inapproximability factors for both the problems are irrational numbers arising from the Gaussian
distribution, although neither of the problems involve the Gaussian distribution directly. Inap-
proximability factors arising from properties of the Gaussian distribution have previously been
obtained for other problems — such as Maximum Cut [23] — using the Unique Games Conjec-
ture, reductions based on which naturally involve the Gaussian distribution via analytic tools such
as the Invariance Principle [32].

Second, the inapproximability factors obtained in each case arise directly from a semidefinite
program for the problem. Again, the optimality of semidefinite programs has been a recurring
theme in UGC hardness results, while this result is among the few NP-hardness results that high-
light this phenomenon.

Third, the reductions in this work are based on a dictatorship test which quantitatively utilizes
the Central Limit Theorem, i.e. the distribution of a sum of significant number of independent
Bernoulli random variables is close to a Gaussian distribution. This is precisely the reason for the
appearance of the Gaussian distribution. A key ingredient in our reductions is the smooth version
of Label Cover which enables us to devise a more sophisticated decoding procedure which can be
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combined with the dictatorship test. It is pertinent to note that a couple of the (few) previous
results using smooth versions of Label Cover, on hardness of learning intersection of halfspaces
[26] and monomials [16], have also used analysis based on versions of the Central Limit Theorem.
This work suggests the possibility of obtaining optimal NP-hardness results for other combinato-
rial optimization problems using reductions based on smooth versions of Label Cover.

2 Motivation and Related Work

2.1 Lp Subspace Approximation Problem

Algorithmically various special cases of this problem have been well studied. For p = 2 it reduces
to the problem of determining a rank k approximation B to an n × m matrix A with respect to
the Frobenius norm, which can be computed in polynomial time by using Singular Value Decom-
position of A [17]. Efficient (1 + ε) approximations have been given various cases such as: for
p = 1 and constant k by Feldman et al. [15]; p = ∞ and constant k by Har-Peled and Varadarajan
[20]; and for general p and constant k by Shyamalkumar and Varadarajan [38] and Deshpande and
Varadarajan [13]. On the other hand, the problem can be approximated to within O(

√
log m) for

any value of k for p = ∞ as shown by Varadarajan et al. [40] building on the work of Nemirovski
et al. [34].

On the complexity front, Brieden, Gritzman and Klee [9] showed that the problem is NP-hard
to solve optimally for k = n− 1 and p = ∞. Subsequently, the problem was shown to be NP-hard
to approximate within (log m)δ for k 6 n− nε for any 0 < ε < 1 and p = ∞ [40].

In more recent work, Deshpande,Tulsiani and Vishnoi [12] gave a
√

2γp approximation for this
problem for any k and any p > 2, and a γp approximation factor when k = n− 1. Assuming the
Unique Games Conjecture they also prove that the problem is hard approximate within a factor of
(1−ε)γp.

2.2 Lp Quadratic Grothendieck Maximization Problem

The special case of the problem when p = ∞ (maximizing over the hypercube), has been exten-
sively studied. The problem is known to admit an O(log n) approximation [35, 34, 31, 11]. On the
other hand, it was shown to be NP-hard to approximate within some constant factor in [2] and
[11]. In [4], Arora et al. gave the best known inapproximability factor of (log n)c for some c > 0
for this problem.

The Lp Quadratic Grothendieck Maximization Problem for constant p such that 2 < p < ∞
has received attention more recently in the work of Kindler, Naor and Schechtman [29]. They
exhibit an algorithm to approximate Valp(A) to within a factor of p

e + 30 log p and also show a
Unique Games Conjecture [22] based inapproximability factor of γ2

p − ε for all ε > 0. Here γp
denotes the pth moment of a standard Gaussian variable. Note that while asymptotically (i.e. as
p→ ∞) the upper and lower bounds both tend to p

e (1 + o(1)), for a fixed constant p (2 < p < ∞),
there remained a gap between them.

The Lp Grothendieck problem for 2 < p < ∞ has application towards computing the ground
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states of spin glasses in a hard potential well. In the spin glass physical model, the spin of par-
ticles in certain physical systems are represented by variables xi for the ith particle. Any pair of
particles, say i and j, have an energy proportional to their product i.e. xix j. Given a symmetric
matrix A = (ai j) of pairwise coefficients the total energy of the system is ∑

n
i, j=1 ai jxix j. The system

is additionally constrained by external factors to force the vector (x1, . . . , xn) to be within (say) a
convex body. Thus the problem of minimizing the total energy of the system boils down to com-
puting Valp(−A) if the convex body is the `p unit ball. For more details on the connections to
physics we refer the reader to [29].

More generally, the problem of maximizing a multilinear quadratic form over a given con-
vex set of Rn has numerous applications. For instance, the special case when the convex set is a
polytope, lies at the core of non-linear optimization and has been studied for its applications in
operations research and economics [8]. The special case of the problem where the convex set is a
simplex arises in computational biology for analyzing genomic frequencies from incomplete data
[19].

2.3 Bypassing the Unique Games Conjecture

The Unique Games Conjecture of Khot [22] states that a special type of two variable constraint
satisfaction problem over a large enough label set – which we shall refer to as an instance of
Unique Games – is hard to approximate within any constant factor, even when almost all of the
constraints are satisfiable. Each of the two variable constraints of Unique Games is such that for
every assignment of a label to one variables, there is a unique label that can be assigned to the
other variable to satisfy the constraint. The conjecture has been used to prove several hardness of
approximation results, many of them optimal, for a large class of CSPs [36] including Maximum
Cut [23], covering problems such as Vertex Cover [24] and scheduling problems [6, 7] among
others. It has also inspired unconditional results in integrality gap constructions and lower bounds
in metric embedding, most notably in the work of Khot and Vishnoi [28] and subsequent related
works [14, 27, 37]. On the algorithmic side several approximation algorithms have been given
for Unique Games [22, 39, 18], with the ones given by Charikar, Makarychev and Makarychev [10]
being optimal in the sense that improving them slightly would disprove the conjecture. Subsequent
work by Arora et al. [5] showed that Unique Games is tractable when the constraint graph is an
expander.

The above algorithms were based on rounding the solution of linear programming (LP) or
semi-definite programming (SDP) relaxations. In more recent work Kolla [30] gave an approxima-
tion algorithm for Unique Games based purely on spectral techniques. Using a similar approach,
Arora, Barak, and Steurer [3] have recently obtained a 2O(nε) time constant factor approximation
for Unique Games instances in which 1 − ε fraction of constraints are satisfiable. While the al-
gorithm is not polynomial time, it does imply that for the conjecture to be true, any polynomial
time reduction from 3-SAT to Unique Games must increase the instance size substantially, unless
3-SAT has subexponential time algorithms.

On the complexity side however, there has been little progress in proving the Unique Games
Conjecture. In light of this lack of progress in proving the conjecture, we believe that it is a worth-
while goal to investigate whether various hardness results based on Unique Games Conjecture do
indeed require its assumption.
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2.4 Overview of the techniques

In the next few paragraphs we give an informal description of the techniques used in proving the
results of the paper and the new ingredients employed to build upon the work of [29] and [12].

2.4.1 NP-Hardness Reductions

Our hardness of approximation results for both the Lp Quadratic Grothendieck Maximization
Problem and the Lp Subspace Approximation Problem are via reductions from an instance of
Smooth Label Cover which is two variable CSP and a variant of the commonly known Label Cover
problem. It was first introduced in [21] for proving hardness results in hypergraph coloring and
subsequently utilized for other applications in [25] [26] and [16].

For the Lp Quadratic Grothendieck Problem our overall approach is similar to that of [29]:
use the quadratic form to simulate a long code test on the vertices of the Smooth Label Cover (or
Unique Games in [29]). As before, the coordinates are the union of long codes for each vertex of
Smooth Label Cover instance. The quadratic form is given in terms of the Fourier coefficients of
the various long codes. In our case however, the quadratic form differs from that of [29] in order
to avoid the usage of the Cauchy-Schwarz inequality in analyzing the long code test as it requires
the uniqueness property of the constraints afforded by an instance of Unique Games. More specif-
ically, the quadratic form in our construction simulates the so-called dictatorship and consistency
tests on the long codes. The dictatorship test yields a small set each of influential labels for a signif-
icant fraction of vertices. This is combined with the consistency test to obtain a good labeling to the
instance of Smooth Label Cover. Our analysis crucially depends on the smoothness property of the
constraints of the instance which roughly stated is: for any vertex, given a small set of labels, most
of the constraints involving the vertex restricted to that set of labels appear structurally similar to
constraints of an instance of Unique Games. In some sense the constraints incident on any given
vertex of the Smooth Label Cover are locally unique for any given small set of labels. This enables
us to design a two step decoding procedure which extracts the aforementioned good labeling to
the instance.

The reduction for the Lp Subspace Approximation Problem also follows a similar approach.
Analogous to the construction of [12], there is a coordinate for every label of every vertex of the
Smooth Label Cover instance. The point sets simulate the dictatorship test on the vertices. How-
ever, unlike in [12] we utilize the method of folding to automatically ensure consistency. This
involves a change of basis and subsequently projecting the instance on a smaller subspace which
depends on the constraints of the instance. This is not applicable to the Unique Games Conjecture
based reduction of [12] as it lacks perfect completeness. This method of folding is also not applicable
to the reduction for the Lp Quadratic Grothendieck Maximization Problem since in that case the
`p norms are not preserved under basis transformations. The rest of the analysis including the
two step decoding procedure to obtain a good labeling to the instance of Smooth Label Cover is
similar to that for the Lp Quadratic Grothendieck Maximization Problem.
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2.4.2 Approximating the Lp Quadratic Grothendieck Maximization Problem

Our algorithm is essentially a simplification of the techniques in [29]. We define the following
convex relaxation for Valp(A):

Vecp(A) = max

{
n

∑
i, j=1

ai j〈vi, v j〉 : {v1, . . . , vn} ⊆ L2,
n

∑
i=1
‖vi‖

p
2 6 1

}
. (3)

As observed in [29] the above convex program can be solved in polynomial time to arbitrary
small precision. We directly show that Vecp(A) is a γ2

p approximation to Valp(A). This can be
easily derived from the following fact: there exist mean zero Gaussian random variables hi for
i = 1, . . . , n such that E[hih j] = 〈vi, v j〉. Writing Vecp(A) as E

[
∑

n
i, j=1 ai jhih j

]
and normalizing

each variable by (∑n
k=1 |hk|p)1/p yields the desired approximation.

A simple proof with the details is given in Section 6. This differs from the proof of [29] which
obtains a slightly weaker approximation via a truncation based rounding algorithm. A general-
ization of our approximation for convex bodies has been obtained independently by Naor and
Schechtman [33] and for the unit `p (p > 2) ball it essentially gives the same result as ours. Our
proof also yields a polynomial time rounding algorithm to compute a solution {xi}n

i=1 which ap-
proximates Valp(A) to within a factor of γ2

p(1 + δ) for arbitrarily small δ > 0.

3 Preliminaries

We begin this section by first formally defining the two problems that we study.

Definition 3.1. The Lp Subspace Approximation Problem, which we denote by Subspace(k, p) where
k is a parameter (possibly depending on n) is: given a set of points S = {a1, . . . , am} ⊆ Rn, to compute the
following quantity,

Subp(S, k) = min
H⊆Rn :dim(H)=k

(
m

∑
i=1

dist(H, ai)
p

)1/p

, (4)

where the minimum is taken over all k-dimensional subspaces of Rn and dist(H, a) is the minimum Eu-
clidean distance between a and any point in H.

Definition 3.2. The Lp Quadratic Grothendieck Maximization Problem which we denote as QM(p)
for 1 6 p < ∞ is: given a symmetric matrix A ∈ Rn×n with diagonal entries all zero, to compute the
following quantity,

Valp(A) := max

{
n

∑
i, j=1

ai jxix j |
n

∑
i=1
|xi|p 6 1

}
. (5)

We shall denote by γp the pth moment of a standard Gaussian random variable. Formally,for
any p > 0,

γp := (E[|g|p])1/p,

where g is a Gaussian random variable with mean 0 and variance 1.
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The analysis of the dictatorship tests in our reductions, requires lower bounds on the moments
of sums of independent Bernoulli variables. The following lemma, proved in [29] (as Lemma 2.5)
gives us the required bound.

Lemma 3.3. Let X1, . . . , Xn be independent Bernoulli random variables such that E[Xi] = 0 for all 1 6
i 6 n and ∑

n
j=1 E[X2

j ] = 1. Assume that for some τ ∈ (0, e−4), we have ∑
n
j=1 E[|X j|3] 6 τ . Then for

every p > 1, (
E
[∣∣∣∣∣ n

∑
j=1

X j

∣∣∣∣∣
p])1/p

> γp ·
(

1− 4τ(log(1/τ))p/2
)

.

3.1 Smooth Label Cover

Our reductions require a special variant of the usual Label Cover problem, which is formally
defined as follows.

Definition 3.4. An instance of Smooth Label Cover L(G(V, E), N, M, {πv,e|e ∈ E, v ∈ e}) consists of
a regular connected (undirected) graph G(V, E) with vertex set V and edge set E. Every edge e = (v1, v2)
is associated with projection functions {π e,vi}2

i=1 where π e,vi : [M]→ [N]. A vertex labeling is a mapping
defined on L : V → [M]. A labeling L satisfies edge e = (v1, v2) if π e,v1(L(vi)) = π e,v2(L(v j))). The
goal is to find a labeling which satisfies the maximum number of edges.

The following theorem states the hardness of approximation for the Smooth Label Cover prob-
lem and also describes the various structural properties, including smoothness, that are satisfied by
the hard instances. The proof of the theorem appears in [16] and we omit it.

Theorem 3.5. There exists a constant c0 > 0 such that for any constant integer parameters J, u >
1, it is NP-hard to distinguish between the following two cases for a Smooth Label Cover instance
L(G(V, E), N, M, {πv,e|e ∈ E, v ∈ e}) with M = 7(J+1)u and N = 2u7J :

• (YES Case). There is a labeling that satisfies every edge.

• (NO Case). There is no labeling that satisfies 2−c0u fraction of the edges.

In addition, the instance L satisfies the following properties:

• (Smoothness) For any vertex w ∈ V,

∀i, j ∈ [M], Pr [πw,e(i) = πw,e( j)] 6 1/J,

where the probability is over a randomly chosen edge incident on w.

• The degree of the (regular) graph G, which we denote by d is a constant depending only on u and J.

• For any vertex v, edge e incident on v, and any element i ∈ [N], we have |(π e,v)−1(i)| 6 t := 4u;
i.e., there are at most t = 4u elements in [M] that are mapped to the same element in [N].

• (Weak Expansion)For any δ > 0, let V′ ⊆ V and |V′| = δ · |V|, then the number of edges among
the vertices in |V′| is at least (δ2/2)|E|.
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3.2 Statement of results

We conclude this section by formally stating as theorems the results we prove in the following
sections.

Theorem 3.6. For any fixed p > 2 and constant ε > 0, there is a polynomial time reduction from an
instance L of Smooth Label Cover with appropriately chosen parameters J and u to an instance A of
QM(p) such that,

• (Completeness) If L is a YES instance, then Valp(A) = 1.

• (Soundness) If L is a NO instance, then Valp(A) 6 γ−2
p (1 +ε).

The above implies that it is NP-hard to approximate QM(p) within a factor of (1−ε)γ2
p for all ε > 0.

The above theorem is proved in Section 5. The following theorem, proved in Section 6, shows
that Theorem 3.6 is essentially tight.

Theorem 3.7. For any fixed p > 2, Vecp(A) 6 γ2
p ·Valp(A) for any instance A of QM(p). This implies

a polynomial time γ2
p approximation for QM(p).

Furthermore, there is a polynomial time (randomized) rounding procedure that rounds the solution to
Vecp(A) to obtain a (1 +ε)γ2

p approximate solution to Valp(A).

Theorems 3.6 and 3.7 together give the results for the Lp Quadratic Grothendieck Maximization
Problem obtained in this paper.

For the Lp Subspace Approximation Problem, the following theorem proved in Section 4 yields
the desired hardness of approximation.

Theorem 3.8. For any fixed p > 2 and ε > 0, there is polynomial time reduction from an instance L
of Smooth Label Cover with appropriately chosen parameters J and u to a set of points S ⊆ Rn as an
instance of Subspace(n− 1, p) such that,

• (Completeness) If L is a YES instance, then Subp(n− 1, S) = 1.

• (Soundness) If L is a NO instance, then Subp(n− 1, S) > γp(1−ε).

The above implies that it is NP-hard to approximate Subspace(n− 1, p) within a factor of (1−ε)γp for
all ε > 0.

Note on notation. In the following sections, the parameter n need not denote the size of the instances
of QM(p) or Subspace(k, p) and its definition shall be made clear at the beginning of each section.

4 Hardness reduction for Subspace(k, p)

In this section we shall describe the NP-hardness reduction from Smooth Label Cover to the Lp
Subspace Approximation Problem for a fixed p > 2. Let the Smooth Label Cover instance be
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L(G(V, E), N, M, {πv,e|e ∈ E, v ∈ e}). We shall choose the parameters J and u as part of the analy-
sis in Section 4.4. For convenience let n := |V|. Note that n does not correspond to the dimension
of the point set constructed in the reduction. We shall not explicitly calculate the dimension,
but shall use the notation dim to denote it. The set of points constructed shall be an instance of
Subspace(dim− 1, p). The Euclidean distance of a point from a dimension (dim− 1) subspace,
or a hyperplane through origin, is same as the magnitude of the dot product of that point with
the unit normal vector. Therefore the problem Subspace(dim − 1, p) is same as computing the
unit normal vector which minimizes the sum of the pth powers of the dot products of the given
points with the vector. Our reduction will follow this formulation, with the goal being to compute
such a unit normal vector. The reduction proceeds in two steps: the first step yields a preliminary
instance consisting of a set of points and the second step applies a folding operation to generate
the final instance.

For notational convenience, in this section vectors shall be represented as boldface characters.

4.1 Step 1: Preliminary Instance Aprel

We begin by constructing the set of coordinates over which the instance is defined. For any vertex
v ∈ V, letMv be the set of coordinates {(v, i) | i ∈ [M]}, andM = ∪v∈VMv. In other words,
M contains a coordinate for every label of every vertex. The instance Aprel shall be over the space
RM consisting of points constructed as follows.

For every vertex v ∈ V, let the set Xv be the set of all points in RM which are zero in the
coordinates not corresponding to v i.e.M\Mv and take the values {−1, 1} in the M coordinates
Mv corresponding to v. More formally,

Xv := {x ∈ RM | ∀i ∈ [M], x(v′, i) ∈ {−1, 1} if v′ = v and 0 otherwise}.

The instance Aprel consists of the point set X := ∪v∈V Xv.

Consider a vector b ∈ RM. For any vertex v ∈ V, define bv to be the vector which is
same as b in the M coordinates Mv and zero in rest of the coordinates. Define the function
fbv over {−1, 1}Mv as fbv(x) := 〈bv, x〉 for all x ∈ {−1, 1}Mv . Define the q-norm ‖ fbv‖q :=(
Ex∈{−1,1}Mv [| fbv(x)|q]

)1/q
for all q > 1. It is easy to see that ‖ fbv‖2

2 = ‖bv‖2
2 := ∑

M
j=1 b(v, i)2.

Using the above definitions, given Aprel as an instance, the problem of Subspace(dim− 1, k)
is equivalent to computing a a unit normal vector b that minimizes Ev∈V

[
‖ fbv‖

p
p
]
. More formally,

Aprel as an instance of Subspace(dim− 1, k) is equivalent to the following optimization problem:

min
(
Ev∈V

[
‖ fbv‖

p
p
])1/p

subject to Ev∈V
[
‖bv‖2

2
]
= 1

In the next step we shall use folding to implicitly induce additional constraints on the structure
of the vector b, which incorporates the projection constraints of the edges and enables a “good”
solution b to be decoded into a “good” labeling of the Smooth Label Cover instance L.

11



4.2 Step 2: Folding and Final Instance A f inal

For any edge e = (u, v) and element j ∈ [N], define the vector he
j as follows,

he
j(w, i) =


1 if w = u and i ∈ (π e,u)−1( j)
−1 if w = u and i ∈ (π e,v)−1( j)
0 otherwise.

The above implies that for any vector b ∈ RM,

∀e = (u, v) ∈ E, j ∈ [N], b ⊥ he
j ⇔ ∑

i∈(π e,u)−1( j)
b(u, i) = ∑

i′∈(π e,v)−1( j)
b(v, i′) (6)

We now define the subspace H of RM as,

H := span
(
{he

j | e ∈ E, j ∈ [N]}
)

.

Let RM = F
⊕

H where F ⊥ H is a subspace of RM. The point set X constructed in Step 1 is
folded over H, i.e. each point in X is replaced (with multiplicity) with its orthogonal projection
on F. Let the resultant set of points be X, which constitutes the final instance A f inal which is in
the real space F. The point set can be written in some orthonormal basis for F and the expected
solution, say b is also expected to lie in F.

Let x ∈ X be the orthogonal projection of a point x ∈ X onto the subspace F, and let b ∈ F be
any vector. Clearly we have,

〈b, x〉 = 〈b, x〉. (7)

Also, since b ⊥ H, we have from Equation 6,

∀e = (u, v) ∈ E, j ∈ [N], ∑
i∈(π e,u)−1( j)

b(u, i) = ∑
i′∈(π e,v)−1( j)

b(v, i′). (8)

We note that the objective value, which can be written as Ex∈X[|〈b, x〉|p], is unchanged under
transformation of orthonormal basis since it is a function of inner product of vectors. Similarly, the
condition that Ev[‖bv‖2

2] = Ev[‖ fbv‖2
2] = 1 is unchanged as well. Therefore, the folding operation

only ensures that the constraints given by Equation 8 are satisfied. Therefore, the instanceA f inal of
Subspace(dim− 1, p) is equivalent to the following optimization problem over solutions b ∈ RM:

min
(
Ev∈V

[
‖ fbv‖

p
p
])1/p

(9)
subject to ,

Ev∈V
[
‖bv‖2

2
]
= 1, (10)

and ∀e = (u, v) ∈ E, j ∈ [N],

∑i∈(π e,u)−1( j) b(u, i) = ∑i′∈(π e,v)−1( j) b(v, i′). (11)

Note that the last condition is equivalent to b ⊥ H.
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4.3 Completeness.

If the instance L of Smooth Label Cover is a YES instance then there is a labeling L of the vertices
of L that satisfies all the edges. Using this we shall construct a solution b∗ to the instanceA f inal as
follows: for any vertex v ∈ V and element i ∈ M, b∗(v, i) is 1 if L(v) = i and 0 otherwise.

Since L satisfies all edges, π e,u(L(u)) = π e,v(L(v)) for all edges e = (u, v). Therefore it is easy
to see that b ⊥ H. Moreover, since there is exactly one nonzero coordinate corresponding to each
vertex on which b∗ is 1, we have

‖b∗v‖2 = ‖ fb∗v‖p = 1,

for all v ∈ V. Therefore, b∗ is a valid solution for A f inal with objective value 1.

4.4 Soundness

For a contradiction assume that b ∈ RM is a solution to the instance A f inal such that,

Ev∈V
[
‖ fbv‖

p
p
]
6 γ

p
p(1− η), (12)

where η > 0 is a positive constant. We begin with a lemma upper bounding the `2
2 mass of blocks

of coordinates in b corresponding to small sets of vertices.

Lemma 4.1. Let S ⊆ V be a set of size θ|V| = θn for some 0 < θ < 1. Then,

∑
v∈S
‖bv‖2

2 6 γ2
pθ

1−2/pn. (13)

Proof. We need to upper bound β where,

∑
v∈S
‖bv‖2

2 = βn.

Note that the above implies that,

Ev∈S

[
‖bv‖2

2

]
=

β

θ
. (14)

We know from our assumption that Ev∈V
[
‖ fbv‖

p
p
]
6 γ

p
p . This implies,

γ
p
p > Ev∈V

[
‖ fbv‖

p
p
]

> Ev∈V
[
‖ fbv‖

p
2

]
(since ‖ f ‖p > ‖ f ‖2)

> Ev∈V
[
‖bv‖p

2

]
(since ‖ fbv‖2 = ‖bv‖2)

> θEv∈S
[
‖bv‖p

2

]
(by averaging)

> θ
(
Ev∈S

[
‖bv‖2

2
]) p

2 (by Jensen’s Inequality)

= θ
(
β
θ

) p
2

(by Equation 14).

Therefore, β 6 γ2
pθ

1−2/p which completes the proof of the lemma.
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We next introduce the notion, similar to the one used in Section 5.2, of an irregular vertex : v
is said to be irregular if there is a coordinate (v, i) for some i ∈ [M] such that the value |b(v, i)| is
large as compared to ‖bv‖2. Formally we have the following definition.

Definition 4.2. (τ-irregular vertex) A vertex v ∈ V is said to be τ-irregular if there exists i ∈ [M] such
that |b(v, i)| > τ‖bv‖2. If not, the vertex is referred to as τ-regular.

The following lemma follows from Lemma 2.5 of [29] in an analogous manner to Lemma 5.2.
We shall therefore omit the proof.

Lemma 4.3. For an appropriately small choice of τ > 0 depending on p the following holds. If v ∈ V
τ-regular then,

‖ fbv‖
p
p > γ

p
p‖bv‖p

2

(
1−
√
τ
)

. (15)

Our next goal is to show that for small enough τ (to be set later in terms of η and p), there is a
significant fraction of vertices that are τ-irregular. Let Sirr be the set of vertices that are τ-irregular
and let |Sirr| = θn. By Lemma 4.1 we have,

∑
v∈Sirr

‖bv‖2
2 6 γ2

pθ
1−2/pn

⇔ ∑
v∈V\Sirr

‖bv‖2
2 > n

(
1−γ2

pθ
1−2/p

)
(16)

Also, from our initial assumption on the objective value of b given by Equation 12 we have,

γ
p
p(1− η)n > ∑

v∈V
‖ fbv‖

p
p

> ∑
v∈V\Sirr

‖ fbv‖
p
p

> γ
p
p(1−

√
τ) ∑

v∈V\Sirr

‖bv‖p
2 (by Lemma 4.3)

> γ
p
p(1−

√
τ)

(
∑

v∈V\Sirr

‖bv‖2
2

) p
2

(by Jensen’s Inequality)

> γ
p
p(1−

√
τ)n

(
1−γ2

pθ
1−2/p

)
(by Equation 16)

(17)

From the above, choosing 0 < τ 6 η6, we obtain that θ > 0 is a constant depending only on
η and p. Therefore, at least θ > 0 fraction of the vertices are τ-irregular where 0 < τ 6 η6

and θ = θ(η, p). To complete the analysis of the soundness we shall show that the vector b can
be decoded into a labeling for L that satisfies a significant fraction of the its edges, which shall
contradict the soundness property of Theorem 3.5.

Constructing a good labeling for L

The vector b shall be decoded into a labeling for the set of τ-irregular vertices Sirr. Observe that
since |Sirr| > θn, by the Weak Expansion property of Theorem 3.5,

|E(Sirr)| > (θ2/2)|E|, (18)
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where E(Sirr) is the set of edges induced by Sirr. For every vertex v ∈ Sirr, define,

Γ0(v) :=
{

i ∈ [M] | |b(v, i)| > τ

2
‖bv‖2

}
and,

Γ1(v) :=
{

i ∈ [M] | |b(v, i)| > τ

10t
‖bv‖2

}
,

where t = 4u is the parameter from Theorem 3.5. Clearly, for every vertex v ∈ Sirr:

∅ 6= Γ0(v) ⊆ Γ1(v), |Γ0(v)| 6
4
τ2 , and |Γ1(v)| 6

100t2

τ2 . (19)

Let v be any vertex in Sirr. Call an edge e incident on v to be “good” for v if π e,v maps the set
Γ1(v) injectively (one to one) into [N]. Using the smoothness property of Theorem 3.5 yields the
following bound on the probability that a random edge incident on v is “good”:

Pre3v [e is “good” for v] > 1− |Γ1(v)|2
J

> 1− 10000t4

τ2 J
=: 1−ζ . (20)

Since the graph of L is regular, this implies that the total number of edges induced by Sirr that are
not “good” for at least of the end points in Sirr is at most 2ζ |E|. Let E′ ⊆ E(Sirr) be the set of edges
induced by Sirr that are “good” for both endpoints. The above bounds combined with Equation
18 imply,

|E′| >
(
θ2

2
− 2ζ

)
|E|. (21)

The following lemma shows that the folding constraints enforce a structural property on the sets
Γ0(v) with respect to the edges in E′.

Lemma 4.4. Let e = (u, v) be any edge in E′. Then π e,u(Γ0(u)) ∩ π e,v(Γ0(v)) 6= ∅.

Proof. Clearly, u and v are τ-irregular. Without loss of generality assume that ‖bu‖2 > ‖bv‖.
Since u is τ-irregular, there is a coordinate (u, iu) (iu ∈ [M]) such that |b(u, iu)| > τ‖bu‖2. By
construction iu ∈ Γ0(u).

Let j0 := π e,u(iu). Since e ∈ E′, (πu,e)−1( j0) ∩ Γ1(u) = {iu}. This implies that for all i ∈
(πu,e)−1( j0) and i 6= iu, |b(u, i)| < τ

10t‖bu‖2. Moreover, from Theorem 3.5 |(πu,e)−1( j0)| 6 d.
Combining these observations yields,∣∣∣∣∣∣ ∑

i∈(πu,e)−1( j0)

b(u, i)

∣∣∣∣∣∣ >
(
τ − t

( τ

10t

))
‖bu‖2 =

(
9τ
10

)
‖bu‖2. (22)

We shall now show that (πv,e)−1( j0) ∩ Γ0(v) 6= ∅, which would imply that j0 ∈ π e,u(Γ0(u)) ∩
π e,v(Γ0(v)) thus completing the proof of the lemma.

For a contrapositive assume that (πv,e)−1( j0)∩ Γ0(v) = ∅. Moreover, since e ∈ E′, (πv,e)−1( j0)∩
Γ1(v) 6 1. This yields the following bound,∣∣∣∣∣∣ ∑

i′∈(πv,e)−1( j0)

b(v, i′)

∣∣∣∣∣∣ 6
(τ

2
+ t
( τ

10t

))
‖bv‖2 = 0.51τ‖bv‖2. (23)
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However, the folding constraints (Equation 8) imply that,

∑
i∈(πu,e)−1( j0)

b(u, i) = ∑
i′∈(πv,e)−1( j0)

b(v, i′),

which is a contradiction to Equations 22 and 23 combined with ‖bu‖2 > ‖bv‖2 > 0 (by the defini-
tion of Sirr). This completes the proof of the lemma.

Let L∗ be a labeling to the vertices in Sirr constructed by independently and uniformly at ran-
dom choosing a label from the set Γ0(v) for every vertex v ∈ Sirr. By Lemma 4.4, every edge
e = (u, v) ∈ E′ is satisfied with probability at least 1

|Γ0(u)||Γ0(v)| >
τ4

16 (by Equation 19). Therefore, in
expectation the total fraction ∆ of edges satisfied is bounded by,

∆ >
(
τ4

16

)(
θ2

2
− 2ζ

)
.

Choosing J > (4u)5 and u � 1 large enough (depending on η) so that ζ � θ one can ensure that
∆ > 2−c0u thereby yielding a contradiction to the soundness of Theorem 3.5. This completes the
analysis of the NO case.

5 Hardness Reduction for QM(p)

In this section we shall describe the NP-hardness reduction from Smooth Label Cover to the Lp
Quadratic Grothendieck Maximization Problem QM(p). The instance of QM(p) in our reduction
is not explicitly given as a matrix. Instead we construct a set of coordinates and a quadratic form
over any mapping from the set of coordinates to real numbers. A solution to this instance of
QM(p) would be a mapping that maximizes the value of the quadratic form subject to the appro-
priate bound on the pth norm of the mapping. While the initial construction would not ensure
that the diagonal terms of the quadratic form are all 0, our analysis shall prove that setting them
to zero would not change the optimum of the instance significantly.

We start with an instance of Smooth Label Cover L(G(V, E), N, M, {πv,e|e ∈ E, v ∈ e}) as given
in Theorem 3.5. The parameters J and u shall be chosen appropriately for the soundness analysis
of the reduction in Section 5.2. Let n := |V|. Define the parameters B and D as follows:

D := d · n12 · |E|2 · 2M and B := n10 · |E|2 · 2M, (24)

where d is the degree of the (regular) graph G of the instance L as given in Theorem 3.5. The first
step of our construction is to define the coordinates.

Coordinates. For each vertex v ∈ V there are D sets of coordinates C j
v for j = 1, . . . , D. Each set

C j
v consists of 2M coordinates indexed by all elements of {−1, 1}M, and we denote the coordinate

corresponding to x ∈ {−1, 1}M by C j
v(x). Let,

C :=
⋃

v∈V

⋃
j∈D

⋃
x∈{−1,1}M

C j
v(x)
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denote the set of all coordinates.

Let F : C 7→ R be a mapping from the set of coordinates to real numbers. The quadratic
form we construct shall be defined over F. Before we do so, we need to define some additional
quantities. Given F we define f j

v , fv : {−1, 1}M 7→ R for all v ∈ V and j ∈ [D] by setting,

f j
v(x) = F(C j

v(x)) and, (25)

fv(x) = E j∈[D][ f
j

v(x)] ∀x ∈ {−1, 1}M. (26)

In other words, fv is a point-wise average of f j
v over all j ∈ [D]. The Lq norm of F for q > 1 is

given by:

‖F‖q :=
(
Ev∈VE j∈[D]

[
‖ f j

v‖
q
q

])1/q
, (27)

where ‖ f j
v‖q =

(
Ex∈{−1,1}M | f j

v(x)|q
)1/q

. Now, since ‖ f ‖q
q is a convex function for q > 1, we have

by Jensen’s inequality,

‖F‖q >
(
Ev∈V‖ f ‖q

q
)1/q

. (28)

We note that the functions fv (v ∈ V) can be written in their Fourier expansion with the basis
functions χS (S ⊆ [M]) with Fourier coefficients f̂v(S). Note that the Fourier coefficients are linear
forms on the values of the function fv. In our construction the quadratic form for F shall be de-
fined as a quadratic form over the Fourier coefficients. For convenience, we shall abuse notation
to denote the Fourier coefficients corresponding to singleton sets {i} (i ∈ [M]) by f̂v(i).

The Quadratic Form. We define quadratic forms on F : Acons(F), Adict(F) and Aprel(F) in terms of
the Fourier coefficients of the functions fv (v ∈ V) as follows.

Acons(F) := −BEe=(u,w)

 ∑
i∈[M]

 ∑
j∈π−1

e,u (i)

f̂u( j)− ∑
j′∈π−1

e,w(i)

f̂w( j′)

2


−BEv∈V

 ∑
S⊆[M]
|S|6=1

f̂v(S)2

 , (29)

Adict(F) = Ev∈V

[
∑

j∈[M]

f̂u( j)2

]
, (30)

and,
Aprel(F) = Acons(F) + Adict(F). (31)

In our reduction F denotes a solution to our instance of QM(p) over which the quadratic form is
defined. Therefore, F satisfies the bound on its p-norm: ‖F‖p = 1.
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We shall prove the completeness and soundness claims for the quadratic form Aprel(F). How-
ever, we note that the Aprel(F) may have non-zero diagonal terms. We address this issue in Sec-
tion 5.3 wherein we show the existence of another quadratic form A f in(F) such that |A f in(F) −
Aprel(F)| 6 100/n for all F, which then suffices to prove Theorem 3.6.

Before we proceed, we state the instance of QM(p) as an optimization problem. The objective
is to compute:

max
F:C 7→R

Aprel(F) (32)

s.t. ‖F‖p = 1. (33)

5.1 Completeness

Suppose the Smooth Label Cover instance L has a labeling σ : V 7→ [M] that satisfies all edges.
Then construct the vector F by defining f j

v , for all v ∈ V, j ∈ [D], as follows:

f j
v(x) = x(σ(v)), ∀x ∈ {−1, 1}M.

The above also implies that fv(x) = x(σ(v)) for all x ∈ {−1, 1}M, i.e. fv is the ‘dictator’ function
given by the σ(v)-th coordinate. Therefore, we obtain f̂v(σ(v)) = 1 and f̂v(S) = 0 for all S 6=
{σ(v)}. Clearly, ‖F‖p = 1 since F is either 1 or −1 at any coordinate.

To analyze the value of Aprel(F) we observe that πe,u(σ(u)) = πe,w(σ(w)) for all edges e =
(u, w), which along with the fact that fu(x) = x(σ(u)) and fw(x) = x(σ(w)) implies that Acons(F) =
0. Also, Adict(F) = 1, which gives us that Aprel(F) = 1.

5.2 Soundness

For a contradiction we assume that there is a vector F such that Aprel(F) > γ−2
p (1 + η) for some

constant η > 0. We shall show that this implies the existence of a labeling to L that satisfies a
significant fraction of edges depending only on η.

The following is a straightforward upper bound on Adict(F):

Adict(F) = Ev∈V

[
∑

i∈[M]

f̂v(i)2

]
6 Ev∈V

[
‖ fv‖2

2

]
6

(
Ev∈V

[
‖ fv‖p

2

])2/p
(By Jensen’s Inequality)

6
(
Ev∈V

[
‖ fv‖p

p
])2/p

(since ‖ f ‖p > ‖ f ‖2)

6 ‖F‖2
p 6 1. (34)

For every v ∈ V define: av
1 := ∑|S|6=1,S⊆[M] | f̂v(S)| and av

2 :=
(

∑|S|6=1,S⊆[M] | f̂v(S)|2
)1/2

. Clearly,
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av
1 6 2M/2av

2. Moreover, since Aprel(F) > 0, Equations 29, 31 and 34 yield the following:

1
B

> Ev∈V

[
(av

2)
2
]

> (Ev∈V [av
2])

2

>
(
Ev∈V

[
2−M/2av

1

])2

⇒
(

2M

B

)1/2

> Ev∈V [av
1]

⇒
(

n22M

B

)1/2

> max
v∈V

av
1 =: amax (35)

For the remainder of the analysis our focus shall be on the degree one Fourier spectrum of the
functions fv. Define, for every vertex v: f=1

v := ∑i∈[M] f̂v(i)χ{i}, i.e. the function obtained by
taking only the degree one Fourier spectrum of fv. Clearly, we have | fv(x)− f=1

v (x)| 6 amax for
all x ∈ {−1, 1}M and v ∈ V. By the triangle inequality for Lq, L′q norms (for q, q′ > 1) this implies,∣∣∣‖ fv‖q − ‖ f=1

v ‖q

∣∣∣ 6 amax ∀v ∈ V (36)

and,
∣∣∣∣(Ev∈V

[
‖ fv‖q′

q

])1/q′
−
(
Ev∈V

[
‖ f=1

v ‖
q′
q

])1/q′
∣∣∣∣ 6 amax. (37)

By our setting of B, amax is at most 1/n4. Since p > 2 is a fixed constant, setting q = q′ = p in
Equation 37 implies (for large enough n),

Ev∈V

[
‖ f=1

v ‖
p
p

]
6 Ev∈V

[
‖ fv‖p

p
]
+ 1/n3 6 ‖F‖p

p + 1/n3 6 1 + 1/n3. (By Equations 28, 33) (38)

Similarly, using q = p and q′ = 2 in Equation 37 yields,

Ev∈V

[
‖ f=1

v ‖2
p

]
6 1 + 1/n3. (39)

Using the above we obtain the following upper bound on the sum of the values ‖ f=1
v ‖2

2 for small
sets of vertices.

Lemma 5.1. Let S ⊆ V be a set of size θ|V| = θn for some 0 < θ < 1. Then,

∑
v∈S
‖ f=1

v ‖2
2 6 θ1−2/pn(1 + 1/n3). (40)

Proof. We need to upper bound β where,

∑
v∈S
‖ f=1

v ‖2
2 = βn.

Note that the above implies that,

Ev∈S

[
‖ f=1

v ‖2
2

]
=

β

θ
. (41)
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Equation 38 yields Ev∈V
[
‖ f=1

v ‖
p
p
]
6 1 + 1/n3. This implies,

1 + 1/n3 > Ev∈V
[
‖ f=1

v ‖
p
2

]
(since ‖ f ‖p > ‖ f ‖2)

> θEv∈S
[
‖ f=1

v ‖
p
2

]
(by averaging)

> θ
(
Ev∈S

[
‖ f=1

v ‖2
2
]) p

2 (by Jensen’s Inequality)

= θ
(
β
θ

) p
2

(by Equation 41).

Therefore, β 6 θ1−2/p(1 + 1/n3)2/p 6 θ1−2/p(1 + 1/n3), (since p > 2) which completes the proof
of the lemma.

Before proceeding we choose a parameter τ > 0 which we shall later fix appropriately to de-
pend only on η and p. We now define the following set V′ ⊂ V of vertices which have significantly
large “mass” as follows.

V′ := {v ∈ V | ‖ f=1
v ‖2

2 > 1/n3} (42)

Further, define a subset Sirr ⊆ V′ as:

Sirr := {v ∈ V′ | ∃i ∈ [M] s.t. | f̂=1
v (i)| > τ‖ f=1

v ‖2} (43)

We shall refer to Sirr as the set of τ-irregular vertices. Reusing notation for convenience, we assume
that |Sirr| = θn. Our goal is to show that θ is a significantly large constant depending on η and p
(for an appropriate choice of τ , again depending on η and p). Lemma 5.1 applied to Sirr directly
gives the following:

∑
v∈Sirr

‖ f=1
v ‖2

2 6 θ1−2/pn(1 + 1/n3). (44)

We also note that since Acons(F) 6 0 by definition, Aprel(F) 6 Adict(F) = Ev∈V
[
‖ f=1

v ‖2
2
]
. There-

fore,

γ−2
p (1 + η)n 6 ∑

v∈V
‖ f=1

v ‖2
2

= ∑
v∈V′\Sirr

‖ f=1
v ‖2

2 + ∑
v∈Sirr

‖ f=1
v ‖2

2 + ∑
v∈V\V′

‖ f=1
v ‖2

2

6 ∑
v∈V′\Sirr

‖ f=1
v ‖2

2 +θ1−2/pn(1 + 1/n3) + 1/n2,

where we used Equation 44 along with the bound ∑v∈V\V′ ‖ f=1
v ‖2

2 6 n · (1/n3) = 1/n2. Rearrang-
ing the above we obtain,

∑
v∈V′\Sirr

‖ f=1
v ‖2

2 > γ−2
p (1 + η)n−θ1−2/pn(1 + 1/n3)− 1/n2. (45)

To show that θ is large, we need to upper bound the LHS of the above equation. For this we use
the following lemma which follows from Lemma 3.3.

Lemma 5.2. For an appropriately small choice of τ > 0 depending on p the following holds. For all vertices
v ∈ V′ \ Sirr,

‖ f=1
v ‖2

p > γ2
p‖ f=1

v ‖2
2
(
1−
√
τ
)

. (46)
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Proof. We consider probability space given by the uniform distribution over x ∈ {−1, 1}M. Defin-

ing Xi := xi

(
f̂v(i)
‖ f=1

v ‖2

)
we observe Xi are Bernoulli variables with E[Xi] = 0 for all 1 6 i 6 n

and ∑
n
j=1 E[X2

j ] = 1. Moreover, since v ∈ V′ \ Sirr, ∑
n
j=1 E[|X j|3] 6 τ . Applying Lemma 3.3 and

observing that for small enough τ > 0 depending on p, (1− 4τ(log(1/τ))p/2)2 > (1−
√
τ), we

obtain the desired bound.

The above analysis yields the following sequence of inequalities which gives us a lower bound
on θ depending on η.

(1 + 1/n3)n > ∑
v∈V
‖ f=1

v ‖2
p (By Equation 39)

> ∑
v∈V′\Sirr

‖ f=1
v ‖2

p

> γ2
p
(
1−
√
τ
)

∑
v∈V′\Sirr

‖ f=1
v ‖2

2 (By Lemma 5.2)

>
(
γ2

p
(
1−
√
τ
)) (

γ−2
p (1 + η)n−θ1−2/pn(1 + 1/n3)− 1/n2

)
= n(1−

√
τ)
(

1 + η−γ2
pθ

1−2/p(1 + 1/n3)−γ2
p/n
)

Choosing 0 < τ 6 η6 in the above inequality, and using the fact that p > 2 is a fixed constant,
for large enough n, we obtain that θ > 0 is (at least) a positive constant depending on η and p.
Therefore, Sirr contains at least a constant fraction of vertices in V. To complete the soundness
analysis we shall use this to obtain a substantially good labeling to the instance L.

5.2.1 Recovering a good labeling to L

F shall be decoded into a labeling for the set of τ-irregular vertices Sirr. Observe that since |Sirr| >
θn, by the Weak Expansion property of Theorem 3.5,

|E(Sirr)| > (θ2/2)|E|, (47)

where E(Sirr) is the set of edges induced by Sirr. For every vertex v ∈ Sirr, define,

Γ0(v) :=
{

i ∈ [M] | | f̂=1
v (i)| > τ

2
‖ f=1

v ‖2

}
and,

Γ1(v) :=
{

i ∈ [M] | | f̂=1
v (i)| > τ

10t
‖ f=1

v ‖2

}
,

where t = 4u is the parameter from Theorem 3.5. Clearly, for every vertex v ∈ Sirr:

∅ 6= Γ0(v) ⊆ Γ1(v), |Γ0(v)| 6
4
τ2 , and |Γ1(v)| 6

100t2

τ2 . (48)

Let v be any vertex in Sirr. Call an edge e incident on v to be “good” for v if π e,v maps the set
Γ1(v) injectively (one to one) into [N]. Using the smoothness property of Theorem 3.5 yields the
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following bound on the probability that a random edge incident on v is “good”:

Pre3v [e is “good” for v] > 1− |Γ1(v)|2
J

> 1− 10000t4

τ4 J
=: 1−ζ . (49)

Since the graph of L is regular, this implies that the total number of edges induced by Sirr that are
not “good” for at least one of the end points in Sirr is at most 2ζ |E|. Let E′ ⊆ E(Sirr) be the set
of edges induced by Sirr that are “good” for both endpoints. The above bounds combined with
Equation 47 imply,

|E′| >
(
θ2

2
− 2ζ

)
|E|. (50)

The following lemma shows that the constraints given by Equation 29 enforce a structural prop-
erty on the sets Γ0(v) with respect to the edges in E′.

Lemma 5.3. Let e = (u, v) be any edge in E′. Then π e,u(Γ0(u)) ∩ π e,v(Γ0(v)) 6= ∅.

Proof. Clearly, u and v are in Sirr. Without loss of generality assume that ‖ f=1
u ‖2 > ‖ f=1

v ‖ > 1/n3

where the lower bound is because Sirr is a subset of V′. Since u is τ-irregular, there is exists
iu ∈ [M] such that | f̂=1

u (iu)| > τ‖ f=1
u ‖2. By construction iu ∈ Γ0(u).

Let j0 := π e,u(iu). Since e ∈ E′, (πu,e)−1( j0) ∩ Γ1(u) = {iu}. This implies that for all i ∈
(πu,e)−1( j0) and i 6= iu, | f̂=1

u (i)| < τ
10t‖ f=1

u ‖2. Moreover, from Theorem 3.5 |(πu,e)−1( j0)| 6 t.
Combining these observations yields,∣∣∣∣∣∣ ∑

i∈(πu,e)−1( j0)

f̂=1
u (i)

∣∣∣∣∣∣ >
(
τ − t

( τ

10t

))
‖ f=1

u ‖2 =

(
9τ
10

)
‖ f=1

u ‖2. (51)

We shall now show that (πv,e)−1( j0) ∩ Γ0(v) 6= ∅, which would imply that j0 ∈ π e,u(Γ0(u)) ∩
π e,v(Γ0(v)) thus completing the proof of the lemma.

For a contrapositive assume that (πv,e)−1( j0)∩ Γ0(v) = ∅. Moreover, since e ∈ E′, (πv,e)−1( j0)∩
Γ1(v) 6 1. This yields the following bound,∣∣∣∣∣∣ ∑

i′∈(πv,e)−1( j0)

f̂=1
v (i′)

∣∣∣∣∣∣ 6
(τ

2
+ t
( τ

10t

))
‖ f=1

v ‖2 = 0.51τ‖ f=1
v ‖2 6 0.51τ‖ f=1

u ‖2. (52)

Noting that for any vertex w ∈ V and i ∈ [M], f̂=1
w (i) = f̂w(i), the constraints given by Equation

29 imply, ∣∣∣∣∣∣ ∑
i∈(πu,e)−1( j0)

f̂=1
u (i) − ∑

i′∈(πv,e)−1( j0)

f̂=1
v (i′)

∣∣∣∣∣∣ 6 |E|√B
6

1
n5 ,

by our setting of B. Since τ > 0 is a constant, this is a contradiction to Equations 51 and 52
combined with ‖ fu‖2 > 1/n3, for large enough n. This completes the proof of the lemma.
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Let L∗ be a labeling to the vertices in Sirr constructed by independently and uniformly at ran-
dom choosing a label from the set Γ0(v) for every vertex v ∈ Sirr. By Lemma 5.3, every edge
e = (u, v) ∈ E′ is satisfied with probability at least 1

|Γ0(u)||Γ0(v)| >
τ4

16 (by Equation 48). Therefore, in
expectation the total fraction ∆ of edges satisfied is lower bounded by,

∆ >
(
τ4

16

)(
θ2

2
− 2ζ

)
.

Choosing J > (4u)5 and u � 1 large enough (depending on η) so that ζ � θ one can ensure that
∆ > 2−c0u thereby yielding a contradiction to the soundness of Theorem 3.5. This completes the
analysis of the soundness case.

5.3 Removing the diagonal terms

In this section we show that there is a quadratic form A f in(F) with no diagonal entries, such
|A f in(F)− Aprel(F)| 6 1/n for F such that ‖F‖p = 1. Our reduction would output a slightly scaled
version of A f in(F) as the quadratic form to ensure that in the completeness case of Theorem 3.6
the optimum is at least 1. Since the scaling is by at most a factor of (1 + 1/n) the error induced
in the soundness case can be absorbed in the constant ε > 0 of Theorem 3.6, thus completing its
proof. The rest of this section is devoted to computing A f in(F).

We first note that the source of the diagonal terms in Aprel(F) are terms of the form f̂v(S)2.
Moreover, for any vertex v ∈ V and set S ⊆ [M] we have,

f̂v(S)2 =

(
E j∈[D]

[
f̂ j
v(S)

])2

=
1

D2 · ∑
j1 , j2∈[D]

f̂ j1
v (S) f̂ j2

v (S)

=
1

D2 · ∑
j1 , j2∈[D]

j1 6= j2

f̂ j1
v (S) f̂ j2

v (S) +
1

D2 · ∑
j∈[D]

f̂ j
v(S)2. (53)

Note that the diagonal terms are a consequence of only the second term in the expression in Equa-
tion 53. Therefore, the quadratic form f̂v(S)2 − Tv(S) has no diagonal terms where,

Tv(S) :=
1

D2 · ∑
j∈[D]

f̂ j
v(S)2, (54)
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for v ∈ V and S ⊆ [M]. Note that Tv(S) > 0. In addition we have,

Ev∈V

[
∑

S⊆[M]

Tv(S)

]
= Ev∈V

[
∑

S⊆[M]

1
D2 · ∑

j∈[D]

f̂ j
v(S)2

]

= Ev∈V

[
1

D2 ∑
j∈[D]

∑
S⊆[M]

f̂ j
v(S)2

]

=
1
D

(
Ev∈VE j∈[D]

[
∑

S⊆[M]

f̂ j
v(S)2

])

=
1
D

(
Ev∈VE j∈[D]

[
‖ f j

v‖2
2

])
=

1
D
‖F‖2

2 6
1
D
‖F‖2

p =
1
D

. (55)

Observing that the graph of L is regular, it can be seen that Acons(F) can be written as,

Acons(F) = −BEv∈V

2 · ∑
i∈[M]

f̂v
2
(i) + ∑

S⊆[M]
|S|6=1

f̂v(S)2

+ Across(F)

where Across(F) is a quadratic form involving terms of the type f̂u(i) f̂w( j) where u, w ∈ V, u 6= w
and i, j ∈ [M], and therefore does not contribute any diagonal terms. Defining A∗cons(F) as,

A∗cons(F) = Acons(F) + BEv∈V

2 · ∑
S′⊆[M]
|S′|=1

Tv(S′) + ∑
S⊆[M]
|S|6=1

Tv(S)

 (56)

we see that A∗cons(F) does not contain any diagonal terms. Similarly, defining A∗dict(F) as,

A∗dict(F) = Adict(F)−Ev∈V

 ∑
S′⊆[M]
|S′|=1

Tv(S′)

 (57)

it can be seen that A∗dict(F) does not contain any diagonal terms. Let A f in(F) = A∗cons(F)+ A∗dict(F).
Using Equations 55, 56 and 57 it is easy to see that,

|A∗cons(F)− Acons(F)| 6 2B
D

and |A∗dict(F)− Adict(F)| 6 1
D

.

Therefore we obtain the desired bound,∣∣A f in(F)− Aprel(F)
∣∣ 6 2B + 1

D
6 1/n, (58)

by our setting of B and D.
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6 Approximation for QM(p)

Let A = (ai j)
n
i, j=1 be an n× n symmetric matrix with diagonal entries all zero, given as an instance

of QM(p) for a fixed p > 2. We have,

Valp(A) = max

{
n

∑
i, j=1

ai jxix j : {x1, . . . , xn} ⊆ R,
n

∑
i=1
|xi|p 6 1

}
. (59)

As shown in Kindler et al. the above can be relaxed to the following convex program,

Vecp(A) = max

{
n

∑
i, j=1

ai j〈ui, u j〉 : {u1, . . . , un} ⊆ L2,
n

∑
i=1
‖ui‖

p
2 6 1

}
. (60)

Let v1, . . . , vn denote an optimal solution to the above convex program. Let h1, . . . , hn be mean
zero Gaussian random variables obtained by defining hi := 〈G, vi〉 (1 6 i 6 n), where G is a
random Gaussian vector in the space spanned by v1, . . . , vn. It is easy to see that the following
properties are satisfied.

n

∑
i=1

(
E[h2

i ]
)p/2

6 1 and E
[

n

∑
i, j=1

ai jhih j

]
= Vecp(A). (61)

Now we simply note that,

Vecp(A) = E
[

n

∑
i, j=1

ai jhih j

]

= E

( n

∑
k=1
|hk|p

)2/p [
∑

i, j=1
ai j

(
hi

(∑n
k=1 |hk|p)1/p

)(
h j

(∑n
k=1 |hk|p)1/p

)]
6 E

( n

∑
k=1
|hk|p

)2/p

· Valp(A)

 (By Definition of Valp(A))

6

(
n

∑
k=1

E [|hk|p]
)2/p

Valp(A) (By Jensens Inequality and since p > 2)

=

(
n

∑
k=1

γ
p
p

(
E
[

h2
k

])p/2
)2/p

Valp(A) (By Definition of γp and since hk is Gaussian)

6 γ2
pValp(A) (By Equation 61)

which is the upper bound we wanted. Note that the upper bound is obtained directly without
rounding the vectors. To complete the proof of Theorem 3.7 we need to demonstrate a polynomial
time rounding algorithm that extracts a γ2

p(1+ δ) approximate solution x∗1 , . . . , x∗n to Valp(A) from
the vectors v1, . . . , vn for any constant δ > 0. This shall be our goal in the remainder of the section.

Before we do so we can first assume without the loss of generality that

|a12| = 1 = max
16i, j6n

|ai j|, (62)
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by appropriately relabeling the entries of the matrix A and scaling them. Setting x1 = 1/2 and
x2 = a12/|a12| and x3, . . . , xn = 0 we obtain that

Vecp(A) > Valp(A) > 1/4. (63)

The following is the rounding algorithm that we shall analyze.

Algorithm Round(A, {v1, . . . , vn}):

1. Let T := n22. Sample T random Gaussian vectors G1, . . . , GT in the span of v1, . . . , vn.

2. Define random variables z(t)i := 〈Gt, vi〉 for all 1 6 t 6 T and 1 6 i 6 n. In addition define

x(t)i :=
z(t)i(

∑
n
k=1 |z

(t)
j |p

)1/p
,

and,

∆t :=
n

∑
i, j=1

ai jx
(t)
i x(t)j .

3. Let t∗ ∈ {1, . . . , T} be such that ∆t∗ = max16t6T ∆t. Output x∗1 , . . . , x∗n as the solution where
x∗i = x(t

∗)
i for 1 6 i 6 n.

Let Et denote the expectation over the uniformly at random choice of t from 1, . . . , T. We begin
with the following lemma.

Lemma 6.1. Given the random variables constructed in the procedure Round(A, {v1, . . . , vn}), with
probability at least 1− 1/n8 over the choice of G1, . . . , GT the following inequality holds,

n

∑
i, j=1

ai jEt[z
(t)
i z(t)j ] > (1− 8/n2)Vecp(A). (64)

Proof. We begin by ignoring the terms corresponding to pairs i, j (1 6 i, j 6 n) such that 〈vi, v j〉 is
very small. Formally, Let R := {(i, j) ∈ [n]× [n] |

〈
vi, v j〉

∣∣ > 1/n4}. We have,∣∣∣∣∣ ∑
(i, j)∈R

ai j〈vi, v j〉 −
n

∑
i, j=1

ai j〈vi, v j〉
∣∣∣∣∣ 6 ∑

(i, j) 6∈R

∣∣ai j〈vi, v j〉
∣∣

6 ∑
(i, j) 6∈R

|ai j|
(

1
n4

)
6 n2

(
1
n4

)
= 1/n2. (By Equation 62) (65)

Now consider any (i, j) ∈ R. As before, we have Gaussian random variables hi and h j such
that E[hih j] = 〈vi, v j〉. Moreover, since (i, j) ∈ R, |E[hih j]| > 1/n4. We also need a bound on the
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variance of hih j. Clearly, Var[hih j] 6 E[h2
i h2

j ]. Also, from Equation 61 we have that E[h2
i ],E[h2

j ] 6

1. Therefore, E[h2
i h2

j ] is upper bounded by E[g4] = 3 where g is a standard Gaussian variable with

variance 1. We note that over the choice of G1, . . . , GT, the random variables z(t)i z(t)j are identically
distributed as hih j for all 1 6 t 6 T. Moreover, since G1, . . . , GT are independent Gaussian vectors,

the random variables z(t)i z(t)j are also independent for 1 6 t 6 T. Therefore,

Var
[
Et[z

(t)
i z(t)j ]

]
6

Var[hih j]

T
6

1
n20 , (66)

by our choice of T and where the variance is over the choice of G1, . . . , GT. Moreover, since
E
[
Et[z

(t)
i z(t)j ]

]
= E[hih j], we have the following bound using Chebyshev’s inequality.

Pr
[∣∣∣Et[z

(t)
i z(t)j ]−E[hih j]

∣∣∣ > 1/n5
]
6 1/n10. (67)

Since the above analysis holds for all pairs (i, j) ∈ R, using a union bound over all pairs the
above implies that with probability at least 1− 1/n8, the following holds,∣∣∣∣∣ ∑

(i, j)∈R
ai jEt[z

(t)
i z(t)j ]− ∑

(i, j)∈R
ai jE[hih j]

∣∣∣∣∣ 6 (1/n5) ∑
(i, j)∈R

ai j 6 1/n3, (68)

where the final inequality is obtained using Equation 62. Combining the above with Equation 65
implies that the following holds with probability at least 1− 1/n8,∣∣∣∣∣ n

∑
i, j=1

ai jEt[z
(t)
i z(t)j ]−

n

∑
i, j=1

ai j〈vi, v j〉
∣∣∣∣∣ 6 1/n2 + 1/n3 6 2/n2

This implies that with probability at least 1− 1/n8,

n

∑
i, j=1

ai jEt[z
(t)
i z(t)j ] > Vecp(A)− 2/n2 > (1− 8/n2)Vecp(A),

where the last inequality follows from Equation 63. This completes the proof of the lemma.

The next lemma also proves a similar bound for the pth moments of the variables Gaussian
variables hi.

Lemma 6.2. With probability at least 1− 1/n8 over the choice of G1, . . . , GT the following holds for every
i = 1, . . . , n. ∣∣∣Et[|z(t)i |

p]−E[|hi|p]
∣∣∣ 6 1/n4. (69)

Proof. Let us fix i ∈ {1, . . . , n} for the moment. As noted before, over the choice of G1, . . . , GT the
random variables z(t)i , 1 6 t 6 T, are independent random variables distributed identically to hi.
Now we have,

Var[|hi|p] 6 E[|hi|p] 6 γ
p
p(E[|h2

i |])2/p 6 γ
p
p ,
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where the second last inequality is by the definition of γp and the last inequality uses Equation 61.

Since z(t)i are independent for 1 6 t 6 T, this implies,

Var
[
Et[|z(t)i |

p]
]
6

Var[|hi|p]
T

6
γ

p
p

n22 6
1

n20 , (70)

for large enough n. Therefore, by Chebyshev’s inequality we obtain,

Pr
[∣∣∣Et[|z(t)i |

p]−E[|hi|p]
∣∣∣ > 1/n5

]
6 1/n10. (71)

Taking a union bound over all i = 1, . . . , n and rearranging Equation 71 proves the lemma.

We are now ready to prove the desired bounds on the performance of the rounding algorithm
Round(A, {v1, . . . , vn}). For this we need to prove a upper bound on Vecp(A) in terms of ∆∗. This
is shown through the following series of inequalities implied by the two previous lemmas whose
conditions hold with probability at least 1− 2/n8.

(1− 8/n2)Vecp(A) 6 Et

[
n

∑
i, j=1

ai jz
(t)
i z(t)j

]
(By Lemma 6.1)

6 Et

( n

∑
k=1
|z(t)k |

p)2/p
n

∑
i, j=1

ai j

(
z(t)i

(∑n
k=1 |z

(t)
k |p)1/p

) z(t)j

(∑n
k=1 |z

(t)
k |p)1/p


6 Et

[
(

n

∑
k=1
|z(t)k |

p)2/p∆∗
]

(By the definition of ∆∗)

6

(
n

∑
k=1

Et[|z(t)k |
p]

)2/p

∆∗ (By Jensen’s inequality sincep > 2)

6

(
n

∑
k=1

[
E[|hk|p] + 1/n4

])2/p

∆∗ (By Lemma 6.2)

=

(
n

∑
k=1

[
γ

p
p(E[|hk|2])p/2 + 1/n4

])2/p

∆∗ (By Defintion of γp)

6 γ2
p

(
1 + 1/n3

)2/p
∆∗. (By Equation 61)

Since the parameter n is large enough the above analysis proves the approximation achieved by
the rounding algorithm. This completes the proof of Theorem 3.7 and concludes this section.
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