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Abstract

Recently there has been much interest in polynomial threshold functions in the con-
text of learning theory, structural results and pseudorandomness. A crucial ingredient
in these works is the understanding of the distribution of low-degree multivariate poly-
nomials evaluated over normally distributed inputs. In particular, the two important
properties are exponential tail decay and anti-concentration.

In this work we study the latter property. The important work in this area is by
Carbery and Wright, who gave a tight bound for anti-concentration of polynomials in
normal variables. However, the proof of their result is quite complex. We give a weaker
anti-concentration result which has an elementary proof, based on some convexity
arguments, simple analysis and induction on the degree. Moreover, our proof technique
is robust and extends to other distributions.

1 Introduction

There has been much interest recently in linear and polynomial threshold functions in the
contexts of learning theory, structural results and pseudorandomness [BELY09, DHK+10,
DRST09, DSTW10, DGJ+09, HKM09, Kan10, MZ10]. A crucial ingredient in the analy-
sis of all these works is the understanding of the distribution of a low-degree multivariate
polynomial evaluated over normally distributed inputs. The distribution of polynomials in
normal variables has two important properties: on the one hand, their tails decay exponen-
tially fast, while on the other hand these distributions are not too concentrated around any
specific value.
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This paper studies the latter property of anti-concentration of polynomials in normal
variables. Let f(x) = f(x1, . . . , xn) be a polynomial of degree d, and assume it is normalized
to have Var[f ] = 1 under the normal distribution. The main result in this area is a theorem
of Carbery and Wright [CW01] that shows that for any t ∈ R and ε > 0,

Pr
x∼Nn

[|f(x)− t| ≤ ε] ≤ O(d) · ε1/d, (1)

where N = N (0, 1) is a standard normal variable. This result is tight up to the hidden
constant. The only major caveat with the result of Carbery and Wright is that its proof
is quite complicated. The goal of this note is to demonstrate that a weaker version of an
anti-concentration result has an elementary proof, based only on some convexity arguments,
simple analysis and induction on the degree.

Theorem 1.1. Let f(x) = f(x1, . . . , xn) be a degree d polynomial, normalized to have
Var[f ] = 1. Then for any t ∈ R and ε > 0,

Pr
x∼Nn

[|f(x)− t| ≤ ε] ≤ Cd · ε1/cd ,

where Cd = O(d)d and cd = O(d · 4d).

Our proof technique is robust and extends to other distributions. Let D be a distribution
over R. We will require the distribution to have some anti-concentration property. Specif-
ically, we require anti-concentration for quadratic polynomials which come from positive
semi-definite matrices.

Definition 1 (PSD anti-concentration property). A distributionD has PSD anti-concentration
if there exist C, c > 0 such that the following holds. Let A be an n×n positive semi-definite
matrix with Tr(A) = 1. Then for any ε > 0,

Pr
x∈Dn

[xtAx ≤ ε] ≤ C · εc.

For example, the normal distribution has PSD anti-concentration with c = 1/2 (see
Claim 4.2). Define dD := D+ . . .+D to be the distribution of the sum of d independent ele-
ments sampled from D, and D−D to be the distribution of the difference of two independent
elements sampled from D.

Theorem 1.2. Let D be a distribution over R such that D−D has PSD anti-concentration.
Then there exist Cd, cd > 0 such that the following holds. Let f(x) = f(x1, . . . , xn) be a
degree d polynomial, normalized to have Var(dD)n [f ] = 1. Then for any t ∈ R and ε > 0,

Pr
x∼(dD)n

[|f(x)− t| ≤ ε] ≤ Cd · ε1/cd ,

where cd = O(d · 2O(d)).

In particular, Theorem 1.1 is an instance of Theorem 1.2 for D = N (0, 1/d) such that
dD = N (0, 1) and D −D = N (0, 2/d).
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1.1 Proof overview

We sketch the proof for normal variables. Let f(x) = f(x1, . . . , xn) be a degree d polynomial
with Var[f ] = 1. Assume for now for the simplicity of the exposition that f is multilinear
and homogeneous of degree d. That is,

f(x) =
∑

I⊂[n]:|I|=d

fI
∏
i∈I

xi,

where
∑
|fI |2 = Var[f ] = 1.

The proof is established by first reducing to the special family of set-multilinear poly-
nomials. Let y1, . . . ,yd ∈ Rn be d sets of variables, where yj = (yj1, . . . , y

j
n). A polynomial

g(y1, . . . ,yd) is set-multilinear of degree d if

g(y1, . . . ,yd) =
∑

I=(i1,...,id)∈[n]d
gI

d∏
j=1

yjij ,

that is, any monomial of g contains exactly one variable from each one of y1, . . . ,yd. The
advantage of reducing to set-multilinear polynomials is that bounds for such polynomials are
amenable to induction on the degree.

1.1.1 Reduction to set-multilinear polynomials

The reduction uses directional derivatives. For y ∈ Rn define the derivative of f in direction
y to be (∆yf)(x) := f(x+y)−f(x). We define iterated derivatives in directions y1, . . . ,yk ∈
Rn by ∆y1,...,ykf = ∆y1 . . .∆ykf . It is not hard to verify (Claim 3.2) that as f is a degree d
polynomial, if we derive it in directions y1, . . . ,yd we get

∆y1,...,ydf(x) =
∑

I=(i1,...,id)∈[n]d
fI

d∏
j=1

yjij , (2)

where fI denotes the corresponding coefficient of f for the (unordered) set I. In particular,
∆y1,...,ydf is a constant function (i.e. it does not depend on x), and is a set-multilinear
polynomial of degree d.

The next ingredient is a convexity argument. Fix a distribution D over Rn. Let {X i,j ∈
D}i∈[d],j∈{0,1} be independently chosen, and for each I ∈ {0, 1}d define a random variable

XI =
∑
i∈[d]

X i,Ii .

Let also W 1, . . . ,W d ∼ D be independently chosen. An iterated application of the Cauchy-
Schwarz inequality (Claim 3.3) shows that for any subset S ⊂ Rn we have

Pr[∀I ∈ {0, 1}d, XI ∈ S] ≥ Pr[W 1 + . . .+W d ∈ S]2
d

. (3)
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We now apply these as follows. Let S = {x ∈ Rn : |f(x) − t| ≤ ε}. Let D = N (0, 1/d) so
that XI ∼ N (0, 1) for all I ∈ {0, 1}d, and also W 1 + . . .+W d ∼ N (0, 1). We thus have

Pr
X∈Nn

[|f(X)− t| ≤ ε] ≤ Pr[∀I ∈ {0, 1}d, |f(XI)− t| ≤ ε]1/2
d

.

Define a polynomial h({X i,j}) :=
∑

I∈{0,1}d(−1)|I|f(XI). Note that if |f(XI)− t| ≤ ε for all

I ∈ {0, 1}d, then |h({X i,j})| ≤ 2dε. We thus get

Pr
X∈Nn

[|f(X)− t| ≤ ε] ≤ Pr[|h({X i,j})| ≤ 2dε]1/2
d

. (4)

We now study the structure of h. Define X ′ :=
∑d

i=1X
i,0 and Y i := X i,1 − X i,0. It is not

hard to verify that

h({X i,j}) = (∆Y 1,...,Y df)(X ′) = g(Y 1, . . . , Y d).

Moreover, note that Y 1, . . . , Y d ∈ N (0, 2/d) and are independent. Thus, we obtained the
bound

Pr
X∈Nn

[|f(X)− t| ≤ ε] ≤ Pr
Y 1,...,Y d∈N (0,2/d)n

[|g(Y 1, . . . , Y d)− t| ≤ 2dε]1/2
d

= Pr
Z1,...,Zd∈Nn

[|g(Z1, . . . , Zd)− t(d/2)d/2| ≤ (2d)d/2ε]1/2
d

, (5)

where the last equality follows from the multilinearity of g. We thus reduced an anti-
concentration bound for f to that of a set-multilinear polynomial g (with the same degree
and somewhat worse parameters). We note that the analysis presented in this overview is
for multilinear f ; for general f the analysis is somewhat more complicated. One needs to
study f in the basis of the Hermite polynomials, which are the orthogonal polynomials under
the normal distribution. Also, one needs to handle the scenario where most of the mass of
the coefficients of f belongs to monomials of degree less than d, which causes some further
complications.

1.1.2 A bound for set-multilinear polynomials

Let BML
d (ε) denote the maximal probability that a set-multilinear polynomial of degree d and

variance 1 lies in an interval (t− ε, t+ ε). We prove a bound for set-multilinear polynomials
by induction on the degree.

Let g(x1, . . . ,xd) =
∑

I∈[n]d gI
∏d

j=1 x
j
ij

be a set-multilinear polynomial of degree d. We

consider fixings of the last variable xd = z. Define

gz(x
1, . . . ,xd−1) = g(x1, . . . ,xd−1, z).

For every z ∈ Rn the function gz is a set-multilinear polynomial of degree d − 1, and of
variance Var[gz] =

∑
i1,...,id−1∈[n] |

∑
id∈[n] gi1,...,idzid|

2. Denote ‖gz‖2 =
√

Var[gz] and note
that we have by the induction hypothesis that

Pr
x1,...,xd−1∈Nn

[|gz(x1, . . . ,xd−1)− t| ≤ ε] ≤ BML
d−1(ε/‖gz‖2).
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We now average over z ∈ N n. If ‖gz‖2 ≤
√
ε we use the bound guaranteed by BML

d−1(·);
otherwise we use the trivial bound 1. We thus get that

Pr[|g(x1, . . . ,xd)− t| ≤ ε] = Ez∈Nn [Pr[|gz(x1, . . . ,xd−1)− t| ≤ ε]]

≤ BML
d−1(
√
ε) + Pr

z∈Nn
[‖gz‖2 ≤

√
ε]. (6)

Thus, to finish the proof we simply need to bound the probability that Var[gz] ≤ ε. Note
that Var[gz] is a quadratic polynomial in z which additionally is positive semi-definite. Using
standard techniques we show (Claim 4.2) that for every δ > 0,

Pr
z∈Nn

[‖gz‖2 ≤ δ] ≤ 2δ, (7)

which concludes the proof.

2 Preliminaries

Notations We denote by N := {0, 1, 2, . . .} the set of nonnegative numbers. Let [n] :=
{1, . . . , n} and [n]d = {(i1, . . . , id) : i1, . . . , id ∈ [n]}.

Normal distribution Let N (µ, σ2) denote the normal distribution with mean µ and
variance σ2, and let N := N (0, 1) denote a standard normal variable. We denote by X ∼ N
a normally distributed variable, and by X = (X1, . . . , Xn) ∼ N n a random variable where
X1, . . . , Xn are i.i.d normally distributed.

The (normalized) Hermite polynomials are univariate polynomials which form an orthog-
onal polynomial sequence under the normal distribution. That is, Hk(x) is a degree k poly-
nomial such that EX∼N [Hk(X)2] = 1 and EX∼N [Hk(X)H`(X)] = 0 for any k 6= `. The first
Hermite polynomials are H0(x) = 1, H1(x) = x,H2(x) = 1√

2
(x2−1), H3(x) = 1√

6
(x3−x), . . ..

The coefficient of xk in Hk(x) is 1/
√
k!.

Multivariate polynomials A function f : Rn → R is a degree d polynomial if it can
be represented as the sum of monomials of total degree at most d. It will be convenient
to us to represent a polynomial f in two basis: the usual monomial basis, and the Hermite
polynomials basis. Let e ∈ Nn. We denote by |e| =

∑
i ei the hamming weight of e. We

represent f in the monomial basis as

f(x) =
∑

e∈Nn:|e|≤d

fMe

n∏
i=1

xeii ,

where the superscript M denotes that coefficient are in the monomial basis. We will denote
by fM ;k the part of f which is homogeneous of degree k. That is, f =

∑d
k=0 f

M ;k where

fM ;k(x) :=
∑

e∈Nn:|e|=k

fMe

n∏
i=1

xeii .
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We also represent f in the basis of the Hermite polynomials,

f(x) =
∑

e∈Nn:|e|≤d

fHe

n∏
i=1

Hei(xi).

We denote by fH;k the homogeneous Hermite part of degree k. That is, f =
∑d

k=0 f
H;k

where

fH;k(x) :=
∑

e∈Nn:|e|=k

fHe

n∏
i=1

Hei(xi).

We note that the coefficients of f in the monomial basis {fMe } and in the Hermite basis
{fHe } are related by an invertible linear transformation. In particular, for |e| = d this relation
is particularly simple.

Claim 2.1. Let f be a degree d polynomial. Then for every e ∈ Nn with |e| = d we have

fMe =

(
n∏
i=1

1√
ei!

)
fHe .

The importance of the Hermite basis is that in this basis, the expected value and variance
of f under normal variables have a simple expression: E[f ] := fH0n and E[f 2] =

∑
e |fHe |2.

We further denote ‖f‖2 =
√
E[f 2] and Var[f ] = E[f 2] − E[f ]2. We denote by Polyn,d the

family of polynomials f(x1, . . . , xn) of degree d with Var[f ] = 1.

Set-multilinear polynomials A function g : (Rn)d → R is a set-multilinear polynomial
of degree d if it has the following form. Let x1, . . . ,xd ∈ Rn be variables, where xj =
(xj1, . . . , x

j
n). Then,

g(x1, . . . ,xd) =
∑

I=(i1,...,id)∈[n]d
gI

d∏
j=1

xjij .

We have E[g] = 0 and E[g2] =
∑

I∈[n]d |gI |2 under the normal distribution. Analogously, let

‖g‖2 =
√
E[g2] and Var[g] = E[g2]−E[g]2. We denote by PolyML

n,d the family of set multilinear
polynomials g of degree d with Var[g] = 1.

3 Reduction to set-multilinear polynomials

Fix n ∈ N. Let Bd(ε) denote the maximal probability that a degree d multivariate polyno-
mial, evaluated over normal variables, lies in some interval (t− ε, t+ ε), that is

Bd(ε) := sup
{

Pr
X∼Nn

[|f(X)− t| ≤ ε] : f ∈ Polyn,d, t ∈ R
}
.

The goal of this work is to provide bounds on Bd(ε). We do so in two steps: we first relate
it to a related quantity for set-multilinear polynomials, which then follow to prove bounds
for set-multilinear polynomials.
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We denote by BML
d (ε) the maximal probability that a set-multilinear degree d polynomial,

evaluated over normal variables, lies in some interval (t− ε, t+ ε), that is

BML
d (ε) := sup

{
Pr

x1,...,xd∼Nn
[|g(x1, . . . ,xd)− t| ≤ ε] : g ∈ PolyML

n,d , t ∈ R
}
.

The main result we prove in this section is the following lemma.

Lemma 3.1. Bd(ε) ≤
(
BML
d (ε1/4d)

)1/2d
+ 16(2d)d · ε1/2d.

The first step in the proof is to reduce polynomials to set-multilinear polynomials via
iterated directional derivatives. The directional derivative of f(x) in direction y ∈ Rn is
defined as

(∆yf)(x) := f(x + y)− f(x),

and iterated derivatives as

(∆y1,...,ykf)(x) := (∆y1 . . .∆ykf)(x) =
∑
I⊆[k]

(−1)k−|I|f(x +
∑
i∈I

yi).

An important property of directional derivatives is that they reduce degrees. That is, if f is
a degree d polynomial then ∆yf is a polynomial of degree at most d− 1 for any y ∈ Rn, and

deg(∆y1,...,yk
f) ≤ d− k (8)

for any y1, . . . ,yk ∈ Rn. In particular, if f is a degree d polynomial, then fy1,...,yd
(x) is a

function of degree at most 0, i.e. a constant function, whose value depends only on y1, . . . ,yd
and not on x. The next claim establishes that this is in fact a set-multilinear polynomial in
y1, . . . ,yd.

Claim 3.2. Let f(x) be a degree d polynomial. Consider the polynomial

g(x,y1, . . . ,yd) := (∆y1,...,ydf)(x).

For I = (i1, . . . , id) ∈ [n]d let e(I) ∈ Nn be defined as e(I)k = |{j : ij = k}|. Let gI :=
fMe(I) ·

∏n
k=1(e(I)k!). Then

g = g(y1, . . . ,yd) =
∑
I∈[n]d

gI

d∏
j=1

yjij .

In particular, g(y1, . . . ,yd) is set-multilinear of degree d and

‖g‖2 ≥ ‖fH;d‖2,

where fH;d is the homogeneous part of f of degree d in the Hermite basis.
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Proof. We start by arguing about the structure of g. It will suffice to show it for each
monomial of f and then extend by linearity of the derivative operator. Let m(x) = xi1 . . . xik
be a monomial where k ≤ d. If k ≤ d − 1 we have ∆y1,...,ydm ≡ 0 as the x degree reduces
below zero. Thus is suffices to study monomials of degree d. Let m(x) = xi1 . . . xid where
i1, . . . , id are not necessarily distinct. It is a routine calculation to verify that

∆y1,...,ydm =
∑
σ∈Sd

y
σ(1)
i1

. . . y
σ(d)
id

, (9)

where Sd is the group of permutations on [d]. Let I = (i1, . . . , id). Each monomial y1i1 . . . y
d
id

appears
∏n

k=1(e(I)k!) times in (9). Hence we get the formula

gI := fMe(I) ·
n∏
k=1

(e(I)k!).

We next lower bound ‖g‖2. We have ‖g‖22 =
∑

e∈Nn:|e|=d |fMe |2 · (
∏n

i=1 ei!)
2. By Claim 2.1

we have for all e ∈ Nn with |e| = d that

fMe =

(
n∏
i=1

1√
ei!

)
fHe .

Substituting we get the bound

‖g‖22 ≥
∑

e∈Nn:|e|=d

|fHe |2 = ‖fH;d‖22.

The next claim bounds the probability that f(x) is concentrated by the probability that
g(y1, . . . ,yd) = ∆y1,...,ydf is concentrated.

Claim 3.3. Let D be a distribution over Rn. Let {X i,j ∼ D}i∈[d],j∈{0,1} be 2d independent
random variables. For all I ∈ {0, 1}d define random variables

X
I

:=
d∑
i=1

X i,Ii .

Let W 1, . . . ,W d ∼ D be another collection of independent random variables. Then for any
measurable set S ⊂ Rn we have

Pr
[
∀I ∈ {0, 1}d, XI ∈ S

]
≥ Pr

[
W 1 + . . .+W d ∈ S

]2d
.

Proof. Let f(x) = 1x∈S be the indicator function of S. For 0 ≤ k ≤ d define

Ek := E

 ∏
I∈{0,1}k

f

(
k∑
i=1

X i,Ii +
d∑

j=k+1

W j

) ,
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where E0 := E[f(W 1 + . . . + W d)]. We need to show that Ed ≥ (E0)
2d . We will do so by

showing that Ek ≥ E2
k−1 for all 1 ≤ k ≤ d. To this end, we have

E2
k−1 =

E{Xi,j},Wk+1,...,W dEWk

 ∏
I∈{0,1}k−1

f

(
k−1∑
i=1

X i,Ii +
d∑
j=k

W j

)2

≤ E{Xi,j},Wk+1,...,W d

EWk

 ∏
I∈{0,1}k−1

f

(
k−1∑
i=1

X i,Ii +
d∑
j=k

W j

)2

,

where the inequality follows from the Cauchy-Schwarz inequality. Opening brackets, we have
two identical copies W k,0,W k,1 for W k, which gives

E2
k−1 ≤ E{Xi,j},Wk+1,...,W dEWk,0,Wk,1

 ∏
`∈{0,1}

∏
I∈{0,1}k−1

f

(
k∑
i=1

X i,Ii +W k,` +
d∑

j=k+1

W j

)
= Ek.

where the last equality follows by definition (simply rename W k,0,W k,1 to Xk,0, Xk,1).

We next use Claim 3.3 to bound the probability that |f(x) − t| ≤ ε by BML
d (·), as long

as ‖fH;d‖2 is not too small.

Claim 3.4. Let f(x) be a degree d polynomial. Then for any t ∈ R and any ε > 0,

Pr
X∈Nn

[|f(X)− t| ≤ ε] ≤ BML
d

(
ε · (2d)d/2

‖fH;d‖2

)1/2d

.

Proof. Let f(x) = f(x1, . . . , xn) be a degree d polynomial with Var[f ] = 1, and let t ∈ R and
ε > 0. Define S ⊂ Rn by S := {x ∈ Rn : |f(x)− t| ≤ ε}. Our goal is to bound the measure
of S under the normal distribution. Let {X i,j ∼ N (0, 1/d)n}i∈[d],1≤j≤{0,1} be 2d independent

random variables. For all I ∈ {0, 1}d define new random variables XI :=
∑d

i=1X
i,Ii . Note

that for any I ∈ {0, 1}d we have XI ∼ N n since X i,j ∼ N (0, 1/d). By Claim 3.3 we have

Pr
X∈Nn

[X ∈ S] ≤
(
Pr
[
∀I ∈ {0, 1}d, XI ∈ S

])1/2d
. (10)

We now bound the latter term. Define h : (Rn)2d → R by

h({X i,j}) :=
∑

I∈{0,1}d
(−1)d−|I|f(XI),

where |I| = I1 + . . . + Id is the hamming weight of I. Assume that indeed XI ∈ S for all
I ∈ {0, 1}d. That is, we have |f(XI) − t| ≤ ε for all I ∈ {0, 1}d. In particular, we get that
|h({X i,j})| ≤ 2dε. We thus have

Pr[∀I ∈ {0, 1}d, XI ∈ S] ≤ Pr[|h({X i,j})| ≤ 2dε]. (11)
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We next turn to study the function h. Define X ′ :=
∑d

i=1X
i,0 and Y i := X1,i −X0,i. It is

simple to verify that
h({X i,j}) = ∆Y 1,...,Y df(X ′).

Thus, by claim 3.2, h({X i,j}) = g(Y 1, . . . , Y d) where g is a set-multilinear polynomial of
degree d with ‖g‖2 ≥ ‖fH;d‖2. Moreover, Y 1, . . . , Y d ∼ N (0, 2/d) are independent. Recalling
that g is multilinear, we have

Pr
Y 1,...,Y d∈N (0,2/d)n

[|g(Y 1, . . . , Y d)| ≤ 2dε]

= Pr
Z1,...,Zd∈Nn

[|g(
√

2/d · Z1, . . . ,
√

2/d · Zd)| ≤ 2dε]

= Pr
Z1,...,Zd∈Nn

[|g(Z1, . . . , Zd)| ≤
(√

d/2
)d

2dε] (12)

≤ BML
d

(
ε · (2d)d/2/‖g‖2

)
. (13)

and the claim follows since ‖g‖2 ≥ ‖fH;d‖2.

We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. Let f(x) be a degree d polynomial with Var[f ] = 1. Let fH;k, k ∈ [d]
be the homogeneous parts of f in the Hermite basis. By the orthogonality of the Hermite
polynomials we have E[f (H;k)] = 0 and

d∑
k=1

‖f (H;k)‖22 = Var[f ] = 1.

Let 0 < η ≤ 1/2 to be determined later, and let ` ∈ [d] be maximal such that ‖fH;`‖2 ≥ η`

(note there must exist such `). Decompose f = f1 + f2 where f1 =
∑`

k=1 f
H;k and f2 =∑d

k=`+1 f
H;k. Let c > 1 be a parameter to be determined later. We will bound

Pr
X∈Nn

[|f(X)− t| > ε] ≤ Pr
X∈Nn

[|f1(X)− t| ≤ (c+ 1)ε] + Pr
X∈Nn

[|f2(X)| ≥ cε].

We will establish the claim by bounding both terms for appropriate choices of η, c.
We start by bounding Pr[|f1(X)− t| ≥ (c+ 1)ε]. Note that f1 is a polynomial of degree

`, and fH;`
1 = fH;`. In particular ‖fH;`

1 ‖2 ≥ η`. Applying Claim 3.4 we get that

Pr
X∈Nn

[|f1(X)− t| ≤ (c+ 1)ε] ≤ BML
`

(
(c+ 1)ε · (2`)`/2

η`

)1/2`

≤ BML
d

(
ε(2d)d/2 · 2c

η`

)1/2d

,

where the second inequality follows from the monotonicity of BML and since c > 1.
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We now turn to bound Pr[|f2(X)| ≤ cε]. We have E[f2] = 0 and E[f 2
2 ] =

∑d
k=`+1 η

2k ≤
2η2(`+1). Applying Chebychev’s inequality we get

Pr
X∈Nn

[|f2(X)| ≥ cε] ≤ Var[f2]

(cε)2
≤
(

2η`+1

cε

)2

.

We now set parameters. Set η = ε1/2d and c := (2d)−d/2η`+1/2

2ε
. Assuming that c ≥ 1, we have

Pr
X∈Nn

[|f1(X)− t| ≤ (c+ 1)ε] ≤ BML
d (
√
η)1/2

d

= BML
d (ε1/4d)1/2

d

and
Pr

X∈Nn
[|f2(X)| ≥ cε] ≤ 16η(2d)d = 16ε1/2d(2d)d.

Note that if 16ε1/2d(2d)d ≥ 1 then the bound is trivial; we can thus assume that 16ε1/2d(2d)d ≤
1, in which case c > 1 as required.

4 A bound for set-multilinear polynomials

We prove in this section the following result.

Lemma 4.1. For every d ≥ 2,

BML
d (ε) ≤ BML

d−1(
√
ε) + 2

√
ε.

In particular,
BML
d (ε) ≤ 2d · ε1/2d−1

.

The conclusion of Lemma 4.1 follows immediately from the reduction from BML
d to BML

d−1
and by standard estimates for normal variables for the case of d = 1. Let f(x1, . . . ,xd) be a
set-multilinear polynomial of degree d with Var[f ] = 1. Fix t ∈ R and ε > 0. We will derive
bounds on Pr[|f(x1, . . . ,xd) − t| ≤ ε]. Consider fixings of xd. For z = (z1, . . . , zn) ∈ Rn

denote fz(x
1, . . . ,xd−1) := f(x1, . . . ,xd−1, z). Note that fz ∈ PolyML

d−1 and that

‖fz‖22 =
∑

i1,...,id−1∈[n]

(∑
id

fi1,...,idzid

)2

. (14)

We can bound

Pr
x1,...,xd∈Nn

[
|f(x1, . . . ,xd)− t| ≤ ε

]
= Ez∈Nn Pr

x1,...,xd−1∈Nn

[
|fz(x1, . . . ,xd−1)− t| ≤ ε

]
≤ Ez∈Nn [min(BML

d−1(ε/‖fz‖2), 1)]. (15)

Set δ =
√
ε. We can condition on whether ‖fz‖2 ≥ δ or not. That it,

Ez∈Nn [min(BML
d−1(ε/‖fz‖2), 1)] ≤ BML

d−1(ε/δ) + Pr
z∈Nn

[‖fz‖2 ≤ δ].

We conclude the proof by showing that with high probability ‖fz‖2 is not too small.
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Claim 4.2. For any δ > 0,
Pr

z∼Nn
[‖fz‖2 ≤ δ] ≤ 2δ.

Proof. We first claim that there exists an m × n real matrix A such that ‖fz‖2 = ‖Az‖2
and such that ‖A‖F :=

√∑
i,j A

2
i,j = 1. To see that, identify [m] = [n]d−1 and for each

i1, . . . , id−1 ∈ [n] define the (i1, . . . , id−1) row of A as A(i1,...,id−1),j = ci1,...,id−1,j.
Let B := AtA. Note that ‖fz‖22 = ztBz and that B is an n×n real symmetric matrix. Let

u1, . . . , un ∈ Rn be the eigenvectors of B with corresponding real eigenvalues λ1, . . . , λn ≥ 0.
We have

∑
λi = Tr(B) = ‖A‖2F = 1. As B is symmetric, we can assume that u1, . . . , un

form an orthonormal basis of Rn. Define yi := 〈ui, z〉, and note that y = (y1, . . . , yn) ∼ N n

since the normal distribution remains invariant under an orthogonal transformation. Thus
we have

‖fz‖22 =
n∑
i=1

λi 〈ui, z〉2 =
n∑
i=1

λiy
2
i .

We thus need to bound Pry∈Nn [
∑n

i=1 λiy
2
i ≤ δ2]. By Markov’s inequality we have

Pr
y∼Nn

[
n∑
i=1

λiy
2
i ≤ δ2] = Pr

y∼Nn
[e−

∑n
i=1(λi/δ

2)y2i ≥ e−1] ≤ E[e−
∑n

i=1(λi/δ
2)y2i ]

e−1
= e ·

n∏
i=1

E[e−(λi/δ
2)y2i ].

Using the simple fact that E[e−αy
2
] = 1/

√
2α + 1 we get that

Pr
y∼Nn

[
n∑
i=1

λiy
2
i ≤ δ2] ≤ e√∏n

i=1(1 + 2λi/δ2)
.

We next apply the inequality (1 + xλ) ≥ (1 + x)λ which holds for any x > 0 and 0 ≤ λ ≤ 1
(this follows from the fact that the function (1 + x)1/x is monotone decreasing). We thus
conclude as

Pr
y∼Nn

[
n∑
i=1

λiy
2
i ≤ δ2] ≤ e

(
√

1 + 2/δ2)
∑
λi

=
e√

1 + 2/δ2
≤ (e/

√
2)δ ≤ 2δ

as claimed.

5 A bound for general distributions

We sketch in this section the proof of Theorem 1.2. The proof is identical to that of Theo-
rem 1.1 except that we do not get explicit constants.

The reduction from general polynomials to set-multilinear polynomials is done in the
same way as in Lemma 3.1. Let BdD,d(·) be a bound for for general degree d polynomial
under the distribution dD, and BML

D−D,d(·) be a bound for set-multilinear degree d polynomials
under the distribution D −D. Following exactly the same proof of Lemma 3.1, we get

BdD,d(ε) ≤ BML
D−D,d(Cd · ε1/2d)1/2

d

+ Cd · ε1/2d, (16)
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where the value of Cd > 0 depends on the distribution D (in particular, it depends on the
coefficients of the orthogonal polynomials under D).

The proof of Lemma 4.1 can similarly be extended to general distributions. Assume
D−D has PSD anti-concentration with constants c, C. Then the proof of Lemma 4.1 yields

BML
D−D,d(ε) ≤ O(Cε(c/2)

d

). (17)

Combining (16) and (17) yield Theorem 1.2.
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