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Abstract

This paper studies a generalization of multi-prover interactive proofs in which a verifier interacts with
two competing teams of provers: one team attempts to convince the verifier to accept while the other
attempts to convince the verifier to reject. Each team consists of two provers who jointly implement a no-
signaling strategy. No-signaling strategies are a curious class of joint strategy that cannot in general be
implemented without communication between the provers, yet cannot be used as a black box to establish
communication between them. Attention is restricted in this paper to two-turn interactions in which the
verifier asks questions of each of the four provers and decides whether to accept or reject based on their
responses.

We prove that the complexity class of decision problems that admit two-turn interactive proofs with
competing teams of no-signaling provers is a subset of PSPACE. This upper bound matches existing
PSPACE lower bounds on the following two disparate and weaker classes of interactive proof:

1. Two-turn multi-prover interactive proofs with only one team of no-signaling provers.

2. Two-turn competing-prover interactive proofs with only one prover per team.

Our result implies that the complexity of these two models is unchanged by the addition of a second
competing team of no-signaling provers in the first case and by the addition of a second no-signaling
prover to each team in the second case. Moreover, our result unifies and subsumes prior PSPACE upper
bounds on these classes.

1 Introduction

Interactive proofs were introduced in the mid-1980’s as a generalization of the concept of efficient proof
verification and the complexity class NP [Bab85, BM88, GMR89]. Informally speaking, an interactive
proof is a conversation between a randomized polynomial-time verifier and a computationally unbounded
prover regarding some common input string x. A decision problem L is said to admit an interactive proof
if there exists a verifier such that (i) if x is a yes-instance of L then there is a prover who can convince the
verifier to accept x with high probability, and (ii) if x is a no-instance of L then no prover can convince
the verifier to accept x except with small probability. In a dramatic testament to the surprising power of
randomization and interaction, it was soon discovered that every problem in PSPACE admits an interactive
proof, yielding the well-known identity IP = PSPACE [LFKN92, Sha92].
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Multi-prover interactive proofs, no-signaling provers

The fruitful study of interactive proofs has prompted further generalization of the model. One such gener-
alization is the multi-prover interactive proof model of Ben-Or et al. [BOGKW88] wherein several provers
cooperate in their attempt to convince the verifier to accept the input string x. The key aspect that sets
this model apart from single-prover interactive proofs is the fact that the provers cannot communicate with
one another during the protocol. Amazingly, this small distinction is enough to increase the power of the
model from PSPACE all the way up to NEXP [BFL91, FRS94], even when the interaction is restricted to
only two turns with only two provers [FL92]. In terms of complexity classes, the corresponding identity is
MIP = NEXP.

Intermediate classes of multi-prover interactive proofs are obtained by tinkering with the set of strategies
available to the provers. Consider, for example, a joint strategy where the distribution of answers from
one prover is independent of the question asked of the other prover—these are the no-signaling strategies.
Clearly, such a strategy cannot be used in a black-box fashion by the provers to establish communication.
At first glance it may seem that the no-signaling condition is equivalent to the standard definition of a multi-
prover interactive proof. However, there exist no-signaling strategies that cannot be implemented without
communication between the provers, suggesting that this model might be a nontrivial intermediary between
single- and multi-prover interactive proofs.

Indeed, it was established by Ito, Kobayashi, and Matsumoto [IKM09] that the two-turn, two-prover
protocol for PSPACE of Cai, Condon, and Lipton [CCL94] is sound even against no-signaling provers. By
contrast, PSPACE is known not to admit two-turn single-prover interactive proofs unless the polynomial
hierarchy collapses and PSPACE = AM [Bab85, GS89]. A converse result was proven by Ito, who showed
that every problem that admits a two-turn interactive proof with two no-signaling provers is also in PSPACE
[Ito10]. Thus, the interactive proof model is even more sensitive to change than suggested by the difference
between single- and multi-prover interactive proofs, as even the smaller difference between no-signaling
and standard multi-prover interactive proofs is sufficient to make the jump from PSPACE up to NEXP (at
least in the case of two turns and two provers).

In addition to this prior work, parallel repetition results for multi-prover interactive proofs with no-
signaling provers were established in Refs. [Hol09, KR10]. The reader is referred to Ito [Ito10] for more
detailed history and references, as well as a discussion of the role of quantum information in motivating the
study of no-signaling provers.

Interactive proofs with competing provers

Another generalization of the single-prover model is an interactive proof with competing provers, in which
one prover tries to convince the verifier to accept the input string x while the other prover tries to convince
the verifier to reject x. One may consider proofs in which all messages are known to all provers (complete
information) or in which each prover sees only the messages he exchanges with the verifier (incomplete
information). These two forms of competing-prover interactive proofs were studied by several authors in
the 1990’s [FST90, FS92, FKS95, FK97]. But for our purpose in this paper it only makes sense to consider
protocols with incomplete information.

In the jargon of game theory, interactive proofs with competing provers are zero-sum games, about
which there exists a vast body of literature in computer science, economics, and other disciplines. For
instance, fast algorithms for zero-sum games of incomplete information in extensive form imply that the
complexity class RG of problems that admit interactive proofs with competing provers is a subset of EXP
[KM92, KMvS94]. Feige and Kilian proved the reverse containment [FK97], yielding the competing-prover
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analogy RG = EXP of the aforementioned identity IP = PSPACE for single-prover interactive proofs.
Feige and Kilian also studied two-turn interactive proofs with competing provers, providing a matching

upper and lower bound of PSPACE on the complexity of this model [FK97]. The complexity of k-turn
interactive proofs with competing provers for constants k ≥ 3 is an open question of interest to both com-
plexity theorists and game theorists alike.

Interactive proofs with competing teams of provers, our result

Multi-prover interactive proofs and interactive proofs with competing provers are two distinct generaliza-
tions of the single-prover model. The next logical step is to unify these two generalizations in the obvious
way via interactive proofs with competing teams of provers. Combining established naming conventions
for complexity classes based on interactive proofs, we let MRG denote the class of decision problems that
admit interactive proofs with competing teams of provers.

To the author’s knowledge, this model was considered prior to the present work only by Feigenbaum,
Koller, and Shor [FKS95]. Those authors studied this class under the game-theoretic guise of zero-sum
games of imperfect recall and proved the containments

EXPNP ⊆ MRG ⊆ ΣEXP
2 ∩ΠEXP
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where ΣEXP
2 and ΠEXP

2 are classes in the second level of the exponential hierarchy, which is the exponential-
time version of the familiar polynomial hierarchy.

In this paper, we consider interactive proofs with competing teams of no-signaling provers. Our main
result is as follows.

Theorem 1. Every decision problem that admits a two-turn interactive proof with competing teams of two
no-signaling provers per team is also in PSPACE.

This upper bound matches the aforementioned PSPACE lower bounds on the following two disparate
and weaker classes of interactive proof:

1. Two-turn multi-prover interactive proofs with only one team of no-signaling provers [CCL94, IKM09].

2. Two-turn competing-prover interactive proofs with only one prover per team [FK97].

Our result implies that the complexity of these two models is unchanged by the addition of a second com-
peting team of no-signaling provers in the first case and by the addition of a second no-signaling prover to
each team in the second case. Moreover, our result unifies and subsumes prior PSPACE upper bounds on
these classes [Ito10, FK97].

Techniques

Theorem 1 is proven by means of an efficient parallel algorithm that, given an explicit description of a
verifier and an accuracy parameter δ, finds no-signaling strategies for the teams that are within δ of optimal.
Containment in PSPACE then follows in the usual way by observing that the description of the verifier has
size exponential in the length of the input string x and then employing the fact that a parallel algorithm with
succinct input can be simulated in polynomial space [Bor77].

Our algorithm is an example of the multiplicative weights update method (MWUM) as discussed in the
survey paper [AHK05] and in the PhD thesis of Kale [Kal07]. In its simplest form, the MWUM solves
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a min-max optimization problem on probability distributions. In the present paper we use the MWUM to
optimize not just a single distribution, but many distributions simultaneously in the form of a stochastic
matrix that represents a strategy for one of the teams. This trick seems to work only for two-turn protocols,
as otherwise it is not clear how to ensure sufficient accuracy.

Let us compare our algorithm to the two previous algorithms it subsumes:

• The polynomial-space algorithm of Feige and Kilian for two-turn interactive proofs with compet-
ing provers [FK97] is a complicated and highly specialized precursor to the MWUM that, like our
algorithm, optimizes over stochastic matrices that represent strategies for the provers.

Their algorithm works by nondeterministically guessing the entries of the matrix and scanning them
in a read-once fashion. This approach cannot be extended to optimize over no-signaling strategies, as
the read-once model does not allow verification of the no-signaling condition.

• The parallel algorithm of Ito for two-turn, two-prover interactive proofs with no-signaling provers
[Ito10] is essentially a reduction to the mixed packing and covering problem, which is a special type
of linear program that is known to admit an efficient parallel algorithm [You01].

This approach, too, cannot be extended to competing teams of no-signaling provers, as any linear
programming formulation of the protocol is unlikely to be a mixed packing and covering problem.

Though the present paper contains no formal discussion of quantum information, we benefit nonetheless
from the valuable experience of recent applications of the MWUM to parallel algorithms for quantum com-
plexity classes [JW09, JUW09, JJUW10, Wu10, GW10]. Indeed, we follow the same high-level approach
as the very recent proof of SQG = PSPACE [GW10]. Namely,

• The domain of admissible (no-signaling) strategies is a strict subset of the “natural” domain (stochastic
matrices) for the MWUM.

• To get around this problem, the strategy domain is extended to all the stochastic matrices and a
penalty term is introduced so as to remove any incentive for a team to use an inadmissible strategy.
(See Section 3).

• Finally, one must prove a “rounding” theorem (Corollary 4.1), which establishes that near-optimal,
fully-admissible strategies can be obtained from near-optimal strategies in the extended domain with
penalty term.

2 Preliminaries

2.1 Definition of two-turn interactive proofs with competing teams of provers

In this paper we are concerned with decision problems that admit two-turn interactive proofs with competing
teams of no-signaling provers. Let us clarify this concept. A two-turn verifier is a randomized polynomial-
time algorithm that, given an input string x, produces questions i, j for the two teams of provers. Once the
verifier has received answers k, l from the teams, he accepts or rejects the input x according to some boolean
function of i, j, k, l. For convenience, the teams shall be called Team Alice and Team Bob. It is the goal of
Team Alice to convince the verifier to accept the input string x, while Team Bob’s goal is to convince the
verifier to reject x.
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Figure 1: A two-turn interactive proof with competing teams of two no-signaling provers per team.

In the protocols we consider each team consists of two provers. The provers of Team Alice shall be
called Alice0 and Alice1, while the provers of Team Bob shall be called Bob0 and Bob1. Each individual
prover on each team receives his or her own private question and supplies his or her own separate answer to
the verifier. In particular, the question i asked of Team Alice is actually a pair i = (i0, i1) with question ic
going to prover Alicec for both values of the bit c ∈ {0, 1}. Similarly, the question j asked of Team Bob
is also a pair j = (j0, j1) with question jc going to prover Bobc. The answers k, l received from the two
teams are also pairs k = (k0, k1) and l = (l0, l1) with answers kc and lc coming from Alicec and Bobc,
respectively. The entire interaction is illustrated in Figure 1.

Each team may jointly implement any no-signaling strategy in order to produce its answers. Briefly, a
strategy for, say, Team Alice is no-signaling if the marginal distribution on answers kc from Alicec does
not depend upon the question ic asked of Alicec. No-signaling strategies are discussed in greater detail in
Section 2.5.

A decision problem L is said to admit a two-turn interactive proof with competing teams of no-signaling
provers with completeness c and soundness s if there exists a fixed two-turn verifier with the following
properties:

Completeness. If the input string x is a yes-instance of L then there exists a no-signaling strategy for Team
Alice that convinces the verifier to accept x with probability at least c, regardless of the no-signaling
strategy employed by Team Bob.

Soundness. If the input string x is a no-instance of L then there exists a no-signaling strategy for Team Bob
that convinces the verifier to reject x with probability at least 1 − s, regardless of the no-signaling
strategy employed by Team Alice.

The completeness and soundness parameters need not be fixed constants. Rather, they may vary as a function
of the input string x. The complexity class MRGns(2, 2) consists of all decision problems that admit two-
turn interactive proofs with competing teams of two no-signaling provers per team with completeness c and
soundness s such that there exists a fixed polynomial-bounded function p on strings with c − s ≥ 1/p.
(The first parameter of the class MRGns(2, 2) denotes the number of provers per team, the second denotes
the number of turns in the protocol. It is also common to parameterize interactive proof classes according
to the number of rounds of communication, rather than the number of turns. Under this scheme, the class
MRGns(2, 2) might be called MRGns(2, 1) by some authors.)
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In this paper we prove MRGns(2, 2) ⊆ PSPACE. It then follows from existing lower bounds on weaker
classes [Ito10, FK97] that

MRGns(2, 2) = PSPACE.

2.2 Notation, the Kronecker product

To each interactive proof with input x we associate eight distinct finite-dimensional real Euclidean spaces—
four question spaces and four answer spaces. These spaces are denoted as follows for both c ∈ {0, 1}:

Sc The question space for prover Alicec Ac The answer space for prover Alicec

Tc The question space for prover Bobc Bc The answer space for prover Bobc

The dimension of each space is the number of distinct questions or answers available to that prover. (For
example, prover Alice0 can be asked any of dim(S0) distinct questions and may respond with any of
dim(A0) distinct answers.) Individual questions or answers are indexed by positive integers denoted for
both c ∈ {0, 1} as follows:

Questions for Alicec : ic = 1, . . . ,dim(Sc)
Questions for Bobc : jc = 1, . . . ,dim(Tc)

Answers from Alicec : kc = 1, . . . ,dim(Ac)
Answers from Bobc : lc = 1, . . . ,dim(Bc)

Since the verifier acts in polynomial time, the bit length of the questions and answers is at most a polynomial
in the bit length |x| of the input string x. Since n bits suffice to encode 2n distinct questions or answers, the
dimension of the spaces Sc, Tc,Ac,Bc can be exponential in |x|.

The Kronecker product (or tensor product) of two spacesX ,Y is another space with dimension dim(X ) dim(Y).
This product space is typically denoted by X ⊗Y , which we abbreviate to XY . Kronecker products involv-
ing the eight spaces Sc, Tc,Ac,Bc are further abbreviated so that

S01 = S0S1 = S0 ⊗ S1

and so on. The Kronecker product extends in a natural way to vectors and linear operators. In this paper
each vector or linear operator is implicitly associated with its representation as a column or a matrix, for
which the Kronecker product is given by a straightforward formula. For example, if A,B are 2× 2 matrices
given by

A =
[

a b
c d

]
, B =

[
p q
r s

]
then the Kronecker product A⊗B is given by

A⊗B =
[

aB bB
cB dB

]
=

 a

[
p q
r s

]
b

[
p q
r s

]
c

[
p q
r s

]
d

[
p q
r s

]
 =


ap aq bp bq
ar as br bs
cp cq dp dq
cr cs dr ds

 .

This definition extends in the obvious way to arbitrary matrices of any dimension, including column vectors
and other non-square matrices.

We also make use of the following symbols:
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eX The all-ones vector of dimension dim(X ).
IX The identity matrix acting on X .
M∗ The adjoint of a linear mapping M . If M is a matrix or column vector then M∗ is simply the

transpose of M .
〈A,B〉 The matrix inner product, defined as Tr(A∗B). This inner product is defined only when the

dimensions of A,B are equal. If A,B are vectors then 〈A,B〉 is called the vector inner product.
≤,≥ Matrix inequalities are entrywise.
c Given a bit c ∈ {0, 1}, the compliment c is given by c = 1 if c = 0, otherwise c = 0.

2.3 Min-max formalism for interactive proofs with competing provers

Given a fixed two-turn verifier and a fixed input string x, let πi,j denote the probability with which the
verifier asks questions i = (i0, i1) to Team Alice and j = (j0, j1) to Team Bob. For each 4-tuple (i, j) of
questions to the provers let vi,j ∈ A01B01 denote the 0-1 vector of payouts to Team Bob. That is, for each
k = (k0, k1) and each l = (l0, l1) the (k, l)th entry of vi,j is either zero or one according to whether the
verifier accepts or rejects x in the event that the verifier asks questions (i, j) to the teams and they respond
with answers (k, l). Consider the entrywise nonnegative matrix

V : S01T01 → A01B01

whose (i, j)th column is πi,jvi,j . This matrix uniquely specifies the actions of the verifier.
Strategies for the teams are specified as follows. For each pair i of questions let ai ∈ A01 denote the

probability vector of Team Alice’s responses to i. That is, for each pair k of answers the kth entry of ai

denotes the probability with which Team Alice replies with answers k given that questions i were asked.
Thus, the actions of Team Alice are uniquely specified by the stochastic matrix

A : S01 → A01

whose ith column is ai. Similarly, for each pair j of questions let bj ∈ B01 denote the probability vector of
Team Bob’s responses to j. The actions of Team Bob are uniquely specified by the stochastic matrix

B : T01 → B01

whose jth column is bj . Not every stochastic matrix denotes a valid no-signaling strategy for the teams.
Criteria for no-signaling strategies are discussed in Section 2.5. For now, it suffices to note that the set of all
strategies available to each team is a compact convex subset of stochastic matrices.

Conditioned on the verifier asking questions (i, j), it is clear that the probability of rejection is given by
the vector inner product

〈vi,j , ai ⊗ bj〉 .

It follows that the probability of rejection—taken over all questions (i, j)—given strategies A for Team
Alice and B for Team Bob is given by the matrix inner product

Pr[V rejects x | A,B] = 〈V,A⊗B〉 =
∑
i,j

πi,j 〈vi,j , ai ⊗ bj〉 .

Of course, Team Bob wishes to maximize this quantity while Team Alice wishes to minimize this quan-
tity. Given that the above inner product is bilinear in (A,B) and that the sets of admissible strategies for the
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two teams are compact and convex, it follows from standard min-max theorems that every interactive proof
with verifier V has an equilibrium value, which we denote by λ(V ), given by

λ(V ) = min
A

max
B
〈V,A⊗B〉 = max

B
min

A
〈V,A⊗B〉

where the minimum is over all no-signaling matrices A : S01 → A01 and the maximum is over all no-
signaling matrices B : T01 → B01. In particular, for every protocol there exists at least one equilibrium
point (A?, B?) with the property that

〈V,A? ⊗B〉 ≤ λ(V ) for all B,

〈V,A⊗B?〉 ≥ λ(V ) for all A.

Thus, the strategy B? always ensures maximum likelihood of rejection, while A? always ensures minimum
likelihood of rejection.

This min-max theorem applies to every min-max expression considered throughout this paper. Hence-
forth we do not bother to explicitly remark upon this fact. Here and throughout the paper we adopt the
convention that for any min-max problem of the form

ν(g) = min
a∈A

max
b∈B

g(a, b)

elements ã ∈ A and b̃ ∈ B are δ-optimal if

g(ã, b) ≤ ν(g) + δ for all b ∈ B,

g(a, b̃) ≥ ν(g)− δ for all a ∈ A.

Elements that are 0-optimal—such as A?, B? above—are simply called optimal.

2.4 Notation for marginal distributions

Before we discuss no-signaling strategies in detail it is beneficial to introduce notation for marginal prob-
ability distributions that will be used throughout the remainder of this paper. Suppose, for instance, that
a ∈ A01 is a probability vector of answers from Team Alice to some question from the verifier. We let
marA1(a) ∈ A0 denote the probability vector for the marginal distribution on answers from the prover
Alice0. Basic probability theory dictates that the mapping marA1 satisfy

k0th entry of marA1(a) ≡
dim(A1)∑

k1=1

(k0, k1)th entry of a.

Of course, this mapping may be extended to arbitrary real vectors. For arbitrary spaces X ,Y the linear
mapping marY is defined by

marY : XY → X : x⊗ y 7→ 〈eY , y〉x.

(The matrix representation of marY is e∗Y⊗IX .) While this mapping is primarily intended to denote marginal
probability distributions, we will have occasion to use it on non-probability vectors in this paper.

The mapping marY is to vectors as the partial trace is to square matrices. Readers familiar with quantum
information know that the state of a quantum register can be computed from a joint state of several registers
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via the partial trace. So too with probability distributions: the distribution on states of a classical register
can be computed from a joint distribution on states of several registers via marY .

The mapping marY extends naturally from vectors to matrices by applying marY to each column:

ith column of marY(A) ≡ marY (ith column of A) .

So, for example, if Team Alice acts according to the stochastic matrix A then the stochastic matrix

marA1(A) : S01 → A0

describes the “marginal” strategy for prover Alice0. That is, the (i0, i1)th column of marA1(A) is the
distribution on answers k0 from Alice0 given questions (i0, i1) from the verifier.

2.5 Characterization of no-signaling strategies

Recall that a strategy for Team Alice is no-signaling if for both values of the bit c ∈ {0, 1} the marginal
distribution on answers kc from Alicec does not depend on the question ic asked of Alicec.

In terms of Team Alice’s stochastic matrix A, this condition means that for each ic the (i0, i1)th column
of marAc(A) is identical for all subindices ic. Letting aic denote this fixed probability vector and letting
Ac : Sc → Ac denote the stochastic matrix whose columns are aic , the above condition can be written as

marAc(A) = Ac ⊗ e∗Sc
.

We have just proven the following simple proposition.

Proposition 2 (Characterization of no-signaling strategies). A stochastic matrix A : S01 → A01 denotes
a no-signaling strategy for Team Alice if and only if for both values of the bit c ∈ {0, 1} there exists a
stochastic matrix Ac : Sc → Ac such that

marAc(A) = Ac ⊗ e∗Sc
.

A similar characterization holds for Team Bob.

Stochastic matrices A meeting this condition are called no-signaling matrices. The matrices Ac are said
to witness the fact that A is a no-signaling matrix. It follows immediately from Proposition 2 that the set of
all no-signaling strategies available to each team is compact and convex—a fact already used in Section 2.3
to assert the existence of optimal strategies for the teams.

3 A relaxed min-max problem with penalties

As mentioned in the introduction, the MWUM in its simplest form solves min-max optimization problems
over probability vectors. We optimize over stochastic matrices for the teams by using the MWUM simulta-
neously on each column of these matrices—a trick that works only for two-turn protocols, as we shall soon
see.

We noted in Section 2.5 that the no-signaling matrices available to the teams form a strict subset of the
stochastic matrices. In order to optimize only over no-signaling matrices, in this section we specify a new
min-max optimization problem µ(V ) in which the teams may use arbitrary strategies but pay a penalty for
strategies that violate the no-signaling condition. By a careful choice of penalty, we remove the incentive
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of the teams to select inadmissible strategies without ruining the precarious convergence properties of the
MWUM.

Some preliminary observations are given in Section 3.1 before the formal definition of the new min-max
problem µ(V ) in Section 3.2. Equivalence of µ(V ) and λ(V ) is proven in Section 3.3 with proofs of some
lemmas in Section 3.4.

3.1 Bounds on two-turn verifiers

First, for ease of notation we let ΦV denote the unique linear transformation satisfying

〈V,A⊗B〉 = 〈ΦV (A), B〉 = 〈A,Φ∗
V (B)〉

for all matrices A,B. Though a precise formula for ΦV is of little use in this paper, for completeness we
note that

ΦV (A) = TrS01 ((A∗ ⊗ IB01) V )
Φ∗

V (B) = TrT01 ((IA01 ⊗B∗) V )

where TrS01 and TrT01 denote partial trace transformations. At the risk of hijacking terminology from
functional analysis, the matrix ΦV (A) can be viewed as a partial inner product between V and A. This
matrix can also be viewed as a new two-turn verifier for Team Bob obtained by “hard-wiring” Team Alice’s
strategy A into the original verifier V .

Next, let p ∈ S01T01 denote the probability vector for the distribution on questions asked by the verifier.
In the notation of Section 2.3, the (i, j)th entry of p is πi,j—the probability with which the verifier asks
questions i to Team Alice and j to Team Bob. Let pAlice ∈ S01 denote the marginal distribution

pAlice = marT01(p)

on questions to Team Alice, so that the ith entry of pAlice is
∑

j πi,j . It is not hard to see that

V ≤ eA01B01p
∗

with equality achieved in the extreme case that each of the verifier’s payout vectors vi,j is equal to the all-
ones vector eA01B01 . Similarly, it is easy to prove analogous inequalities for ΦV (A),Φ∗

V (B). For example:

Proposition 3. For any stochastic matrix B : T01 → B01 it holds that Φ∗
V (B) ≤ eA01p

∗
Alice.

Proof. Let A : S01 → A01 be any nonnegative matrix and let ai, bj denote the columns of A,B, respectively.
Then

〈A,Φ∗
V (B)〉 = 〈V,A⊗B〉 ≤ 〈eA01B01p

∗, A⊗B〉 =
∑
i,j

πi,j 〈eA01 , ai〉 〈eB01 , bj〉

As B is stochastic it must be that 〈eB01 , bj〉 = 1 for each j. The above expression then simplifies to

∑
i

∑
j

πi,j

 〈eA01 , ai〉 = 〈eA01p
∗
Alice, A〉 .

As this inequality holds for all nonnegative matrices A it must be that Φ∗
V (B) ≤ eA01p

∗
Alice as claimed.
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3.2 Definition of the relaxed min-max problem

The relaxation µ(V ) of λ(V ) is defined by

µ(V ) = min
(A,A0,A1)

max
(B,Π0,Π1)

〈fV (A,A0, A1), (B,Π0,Π1)〉

where the triples (A,A0, A1) and (B,Π0,Π1) have the form

A : S01 → A01 any stochastic

Ac : Sc → Ac any stochastic c ∈ {0, 1}
B : T01 → B01 no-signaling only

Πc : S01 → Ac 0 ≤ Πc ≤ eAcp
∗
Alice c ∈ {0, 1}.

The linear mapping fV appearing in the inner product (and its adjoint) is defined by

fV : (A,A0, A1) 7→
(
ΦV (A) , marA1(A)−A0 ⊗ e∗S1

, marA0(A)−A1 ⊗ e∗S0

)
f∗V : (B,Π0,Π1) 7→ (Φ∗

V (B) + eA1 ⊗Π0 + eA0 ⊗Π1 , −Π0 (IS0 ⊗ eS1) , −Π1 (IS1 ⊗ eS0))

so that

〈fV (A,A0, A1), (B,Π0,Π1)〉 = 〈V,A⊗B〉+
∑

c∈{0,1}

〈
marAc(A)−Ac ⊗ e∗Sc

,Πc

〉
for all (A,A0, A1) and all (B,Π0,Π1). (The adjoint mapping f∗V is not used until the algorithm of Figure 2
and its proof of correctness in Proposition 8.)

Intuition

Some explanation is in order. As with the original min-max problem λ(V ), the matrices A and B represent
the strategies employed by the teams. Note, however, that in the definition of µ(V ) Team Alice is now
free to choose among arbitrary stochastic matrices for its strategy. The matrices A0, A1 for Team Alice are
purported witnesses to the claim that A is a valid no-signaling matrix.

For the moment, we are concerned with relaxing the domain only of Team Alice’s strategies, so Bob’s
strategy B must still be no-signaling. Bob’s strategies will be addressed in Section 4.2. The matrices Π0,Π1

for Team Bob are penalty matrices—they are the means by which Team Bob penalizes Team Alice according
to the extent that A0, A1 are false witnesses to the claim that A is no-signaling.

The new objective function 〈fV (A,A0, A1), (B,Π0,Π1)〉 equals the old objective function 〈V,A⊗B〉
plus two penalty terms. If A is not a no-signaling matrix then the difference matrix

∆c ≡ marAc(A)−Ac ⊗ e∗Sc

must be nonzero for at least one c. In this case, Bob selects Πc to pick out the positive entries of ∆c, which
are then added the verifier’s probability of rejection.

Let us informally explain why the restriction 0 ≤ Πc ≤ eAcp
∗
Alice on penalty matrices is sufficient to

remove Team Alice’s incentive to cheat. Suppose the kcth entry of the ith column of the difference matrix
∆c is a positive real number δ > 0 and suppose that A′ is a valid no-signaling matrix witnessed by A0, A1.
Since the verifier asks questions i of Team Alice with probability πi, it must be that, when selecting the
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probability with which to answer kc, the advantage gained by Team Alice from using the inadmissible
strategy A instead of the no-signaling strategy A′ is at most δπi. By selecting a penalty matrix Πc so that the
kcth entry of the ith column of Πc is equal to πi, Team Bob adds precisely the quantity δπi to the verifier’s
probability of rejection, thus eliminating the advantage obtained by Team Alice in acting according to A
instead of A′ for this particular choice of questions i and answer kc from Alicec.

Repeating this logic for all entries (i, kc) of ∆c, we find that Team Bob should select the penalty matrix
Πc so that the (i, kc)th entry is either zero or πi according to whether the corresponding entry of ∆c is
nonpositive or positive. A penalty matrix of this form is called optimal for (A,A0, A1) and satisfies

〈∆c,Πc〉 =
〈
∆+

c , eAcp
∗
Alice

〉
where ∆+

c is the positive part of ∆c. (Here the positive part of a real matrix X is the matrix X+ with the
property that if x is any entry of X then the corresponding entry of X+ is max{0, x}.)

3.3 Equivalence of the two min-max problems

We are now ready to prove the desired “rounding theorem” mentioned in the introduction, a corollary of
which is the equivalence of the min-max problems µ(V ) and λ(V ) (Corollary 4.1). The theorem employs
two lemmas and their corollaries, the proofs of which appear below in Section 3.4.

Theorem 4 (Rounding theorem). Let (A,A0, A1) be a feasible solution for µ(V ) and let ΠA
0 ,ΠA

1 be optimal
penalties for (A,A0, A1). There exists a no-signaling matrix Ans witnessed by A0, A1 such that for all
stochastic matrices B it holds that

〈V,Ans ⊗B〉 ≤
〈
fV (A,A0, A1), (B,ΠA

0 ,ΠA
1 )

〉
.

Moreover, Ans can be computed efficiently in parallel given (A,A0, A1).

Proof. For both c ∈ {0, 1} let ∆+
c be the positive part of marAc(A)−Ac ⊗ e∗Sc

and observe that

∆+
c ≤ marAc(A).

By Corollary 5.1 below there exists a preimage D+
0 ≥ 0 of ∆+

0 with

A−D+
0 ≥ 0

marA1(D
+
0 ) = ∆+

0 .

Let Γ+
1 be the positive part of marA0

(
A−D+

0

)
−A1 ⊗ e∗S0

. As with ∆c above, observe that

Γ+
1 ≤ marA0

(
A−D+

0

)
.

(Moreover, it is easy to see that Γ+
1 ≤ ∆+

1 —a fact we employ later in this proof.) Apply Corollary 5.1 again
to obtain a preimage C+

1 ≥ 0 of Γ+
1 with

A−D+
0 − C+

1 ≥ 0
marA0(C

+
1 ) = Γ+

1 .

Thus, we have a matrix A−D+
0 − C+

1 ≥ 0 such that for both c ∈ {0, 1} it holds that

marAc

(
A−D+

0 − C+
1

)
≤ Ac ⊗ e∗Sc

.

12



Hence there exist nonnegative matrices Tc : S01 → Ac with

marAc

(
A−D+

0 − C+
1

)
+ Tc = Ac ⊗ e∗Sc

.

Applying marAc to both sides of this equation we see that marA0(T0) = marA1(T1). By Corollary 6.1
below there exists a nonnegative matrix T : S01 → A01 with marAc(T ) = Tc for both c ∈ {0, 1}. The
desired no-signaling matrix Ans is given by

Ans = A−D+
0 − C+

1 + T.

As D+
0 , C+

1 , and T can be computed efficiently in parallel, so too can Ans. To see that Ans is a no-signaling
matrix witnessed by A0, A1 it suffices to observe that

marAc(Ans) = marAc

(
A−D+

0 − C+
1

)
+ Tc = Ac ⊗ e∗Sc

.

It remains only to verify the stated inequality. To this end, we have

〈V,Ans ⊗B〉 = 〈A, Φ∗
V (B)〉 −

〈
D+

0 + C+
1 ,Φ∗

V (B)
〉

+ 〈T,Φ∗
V (B)〉

≤ 〈A, Φ∗
V (B)〉+ 〈T,Φ∗

V (B)〉
≤ 〈A,Φ∗

V (B)〉+ 〈T, eA01p
∗
Alice〉

As Ans and A are both stochastic matrices, it must be that D+
0 +C+

1 and T have the same column sums. As
〈T, eA01p

∗
Alice〉 equals the sum of the column sums of T weighted according to pAlice, the matrix T can be

replaced by D+
0 + C+

1 without affecting this inner product. That is

〈T, eA01p
∗
Alice〉 = 〈D+

0 + C+
1 , eA01p

∗
Alice〉.

Expanding the right side of this equality we obtain〈
marA1(D

+
0 ), eA0p

∗
Alice

〉
+

〈
marA0(C

+
1 ), eA1p

∗
Alice

〉
=

〈
∆+

0 , eA0p
∗
Alice

〉
+

〈
Γ+

1 , eA1p
∗
Alice

〉
.

As Γ+
1 ≤ ∆+

1 this quantity is at most〈
∆+

0 , eA0p
∗
Alice

〉
+

〈
∆+

1 , eA1p
∗
Alice

〉
.

Putting everything together, we have

〈V,Ans ⊗B〉 ≤ 〈A,Φ∗
V (B)〉+

〈
∆+

0 , eA0p
∗
Alice

〉
+

〈
∆+

1 , eA1p
∗
Alice

〉
= 〈A,Φ∗

V (B)〉+
〈
marA1(A)−A0 ⊗ e∗S1

,ΠA
0

〉
+

〈
marA0(A)−A1 ⊗ e∗S0

,ΠA
1

〉
=

〈
fV (A,A0, A1), (B,ΠA

0 ,ΠA
1 )

〉
.

as desired.

Corollary 4.1 (Equivalence of min-max problems). The following hold for any verifier V and any δ ≥ 0:

1. µ(V ) = λ(V ).

2. If (Bµ,Πµ
0 ,Πµ

1 ) is δ-optimal for µ(V ) then Bµ is δ-optimal for λ(V ).
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3. If (Aµ, Aµ
0 , Aµ

1 ) is δ-optimal for µ(V ) then there exists Ans such that Ans is δ-optimal for λ(V ) and
Ans can be computed efficiently in parallel given (Aµ, Aµ

0 , Aµ
1 ).

Proof. We begin with item 1. It is easy to prove λ(V ) ≥ µ(V ): let Aλ be optimal for λ(V ), let A0, A1

witness the fact that Aλ is no-signaling, and let (Bµ,Πµ
0 ,Πµ

1 ) be optimal for µ(V ). Then

λ(V ) ≥
〈
V,Aλ ⊗Bµ

〉
=

〈
fV (Aλ, A0, A1), (Bµ,Πµ

0 ,Πµ
1 )

〉
≥ µ(V ).

For the reverse inequality, let (Aµ, Aµ
0 , Aµ

1 ) be optimal for µ(V ), let ΠAµ

0 ,ΠAµ

1 be optimal penalties for
(Aµ, Aµ

0 , Aµ
1 ), and let Bλ be optimal for λ(V ). By Theorem 4 there exists a no-signaling matrix Ans

witnessed by Aµ
0 , Aµ

1 such that〈
V,Ans ⊗Bλ

〉
≤

〈
fV (Aµ, Aµ

0 , Aµ
1 ) ,

(
Bλ,ΠAµ

0 ,ΠAµ

1

)〉
.

The desired inequality λ(V ) ≤ µ(V ) follows from the fact that the left side is at least λ(V ) and the right
side is at most µ(V ). The proof of item 1 is complete.

Item 2 follows easily from item 1. Let A be a no-signaling matrix and let A0, A1 witness this fact. Then

λ(V )− δ = µ(V )− δ ≤ 〈fV (A,A0, A1), (Bµ,Πµ
0 ,Πµ

1 )〉 = 〈V,A⊗Bµ〉 .

As A was chosen arbitrarily, it follows that Bµ is δ-optimal for λ(V ).
For item 3, let B be any no-signaling matrix and let ΠAµ

0 ,ΠAµ

1 be optimal penalties for the given δ-
optimal solution (Aµ, Aµ

0 , Aµ
1 ). By Theorem 4 there exists a no-signaling matrix Ans witnessed by Aµ

0 , Aµ
1

such that

〈V,Ans ⊗B〉 ≤
〈
fV (Aµ, Aµ

0 , Aµ
1 ) ,

(
B,ΠAµ

0 ,ΠAµ

1

)〉
≤ µ(V ) + δ = λ(V ) + δ.

As B was chosen arbitrarily, it follows that Ans is δ-optimal for λ(V ).

3.4 Lemmas used in the rounding theorem

The lemmas used in the proof of Theorem 4 are not difficult. It is quite likely that some form of these
lemmas is part of computer science “folklore,” though our notation may be nonstandard.

Lemma 5 (Small marginals have small preimages). Let a ∈ A01 and ~δ ∈ A0 be nonnegative vectors with
~δ ≤ marA1(a). There exists a nonnegative vector d ∈ A01 with d ≤ a and marA1(d) = ~δ. Moreover, d can
be computed efficiently in parallel given a, ~δ.

Proof. Let a(k0,k1) and ~δk0 denote the nonnegative entries of a and ~δ, respectively. Let sk0 denote the k0th
entry of marA1(a) so that

sk0 =
dim(A1)∑

k1=1

a(k0,k1).

The desired vector d has entries d(k0,k1) given by

d(k0,k1) =

 ~δk0

a(k0,k1)

sk0

when sk0 6= 0

0 otherwise
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(Intuitively, the weight ~δk0 required of
∑

k1
d(k0,k1) is “spread out” over each d(k0,k1) proportionately ac-

cording to a(k0,k1).) It is clear that this construction can be implemented efficiently in parallel.
Let us verify that d ≤ a. Observe that for the case sk0 6= 0 the ratio ~δk0/sk0 is at most one because

~δ ≤ marA1(a). Then

d(k0,k1) = a(k0,k1)

~δk0

sk0

≤ a(k0,k1)

as desired. Of course, if sk0 = 0 then d(k0,k1) = 0 by definition and hence d(k0,k1) ≤ a(k0,k1) because a ≥ 0.
Let us verify that marA1(d) = ~δ. For the case sk0 6= 0 the k0th entry of marA1(d) is given by

dim(A1)∑
k1=1

d(k0,k1) =
~δk0

sk0

dim(A1)∑
k1=1

a(k0,k1) = ~δk0

as desired. As above, if sk0 = 0 then by definition d(k0,k1) = 0 for each k1 and hence
∑

k1
d(k0,k1) = 0. As

0 ≤ ~δk0 ≤ sk0 it must be that ~δk0 = 0, too.

Corollary 5.1. Let A : S01 → A01 and ∆ : S01 → A0 be nonnegative matrices with ∆ ≤ marA1(A).
There exists a nonnegative matrix D : S01 → A01 with D ≤ A and marA1(D) = ∆. Moreover, D can be
computed efficiently in parallel given A,∆.

Proof. Apply Lemma 5 to each of the columns of A,∆.

Lemma 6 (Disjoint marginals are always consistent). For both c ∈ {0, 1} let tc ∈ Ac be nonnegative
vectors whose entries sum to the same value. There exists a nonnegative vector t ∈ A01 with marAc(t) = tc
for both c ∈ {0, 1}. Moreover, t can be computed efficiently in parallel given t0, t1.

Proof. Let pk0 and qk1 be the nonnegative entries of t0 and t1, respectively. Let s denote the sum of the
entries of t0, t1 so that

s =
dim(A0)∑

k0=1

pk0 =
dim(A1)∑

k1=1

qk1 .

If s = 0 then it is clear that the desired vector t is the zero vector. For the remainder of the proof assume
that s 6= 0. The desired vector t has entries t(k0,k1) given by

t(k0,k1) =
pk0qk1

s

It is clear that this construction can be implemented efficiently in parallel.
Let us verify that marAc(t) = tc for both c ∈ {0, 1}. For the case c = 0 the k0th entry of marA1(t) is

given by
dim(A1)∑

k1=1

pk0qk1

s
=

pi,js

s
= pk0

as desired. The case c = 1 is handled similarly.

Corollary 6.1. For both c ∈ {0, 1} let Tc : S01 → Ac be nonnegative matrices with marA0(T0) =
marA1(T1). There exists a nonnegative matrix T : S01 → A01 with marAc(T ) = Tc for both c ∈ {0, 1}.
Moreover, T can be computed efficiently in parallel given T0, T1.

Proof. Apply Lemma 6 to each of the columns of T0, T1.

15



4 A parallel multiplicative weights algorithm

In this section we complete the proof of our main result—that every decision problem that admits a two-
turn interactive proof with competing teams of no-signaling provers is also in PSPACE. Most of the detail
appears in Section 4.1 wherein we present an efficient parallel oracle-algorithm based on the MWUM that
produces δ-optimal no-signaling strategies for the teams, given an oracle for “best responses” for Team Bob
to a given candidate strategy for Alice. We describe an efficient parallel implementation of the required
oracle in Section 4.2, from which the unconditional efficiency of our algorithm immediately follows. The
ensuing inclusion of MRGns(2, 2) inside PSPACE is discussed in Section 4.3.

4.1 The parallel algorithm

Precise statements of the problem solved by our algorithm and the oracle it requires are given below. All
input numbers are written as rational numbers in binary. For matrix inputs, each entry is written explicitly.

Problem 1 (Weak no-signaling equilibrium).
Input: A verifier matrix V : S01T01 → A01B01 and an accuracy parameter δ > 0.
Promise: δ = Ω(1/ polylog(dim(S01T01A01B01))).
Oracle: Weak no-signaling optimization. (See Problem 2 below.)

Output: δ-optimal no-signaling strategies Ã, B̃ for the min-max problem λ(V ).

Problem 2 (Weak no-signaling optimization).
Input: A verifier-Alice matrix S : T01 → B01 and an accuracy parameter δ > 0.
Promise: δ = Ω(1/ polylog(dim(T01B01))).

Output: A δ-optimal no-signaling strategy B̃ for Team Bob. (That is, a no-signaling matrix B̃ such
that 〈S, B̃〉 ≥ 〈S, B〉 − δ for all no-signaling matrices B.)

Given Corollary 4.1, it suffices to find δ-optimal solutions (Ã, Ã0, Ã1) and (B̃, Π̃0, Π̃1) for µ(V ) and
then convert these solutions into δ-optimal strategies for λ(V ). This method is codified in the algorithm of
Figure 2.

This algorithm is a straightforward modification of the standard multiplicative weights update method
for equilibrium problems. The precise formulation of the MWUM used in this paper is stated as Theorem
7. Our statement of this theorem is somewhat nonstandard: the result is usually presented in the form of
an algorithm, whereas our presentation is purely mathematical. However, a cursory examination of the
literature—say, Kale’s thesis [Kal07, Chapter 2]—reveals that our mathematical formulation is equivalent
to the more conventional algorithmic form.

Theorem 7 (Multiplicative weights update method—see Ref. [Kal07, Theorem 2]). Fix an ε ∈ (0, 1/2).
Let m1, . . . ,mT be arbitrary D-dimensional “loss” vectors whose entries mt

i lay in the interval [−α, α].
Let w1, . . . , wT be D-dimensional nonnegative “weight” vectors whose entries wt

i are given recursively via

w1
i = 1

wt+1
i = wt

i

(
1− εmt

i

)
.

Let p1, . . . , pT be probability vectors obtained by normalizing each w1, . . . , wT . For all probability vectors
p it holds that

1
T

T∑
t=1

〈
pt,mt

〉
≤

〈
p,

1
T

T∑
t=1

mt

〉
+ α

(
ε +

lnD

εT

)
.

16



Note that Theorem 7 holds for all choices of loss vectors m1, . . . ,mT , including the case in which each
mt is chosen adversarially based upon wt. This adaptive selection of loss vectors is typical in implementa-
tions of the MWUM.

Proposition 8. The algorithm presented in Figure 2 is an efficient parallel oracle-algorithm for the weak
no-signaling equilibrium problem (Problem 1).

Proof. For each pair i = (i0, i1) of questions let πi denote the probability with which the verifier asks
questions i to Team Alice. Let mt denote the ith column of M t for each t = 1, . . . , T . We argue that the
entries of mt lay in the interval [0, 3πi]. To this end, observe that the loss matrix M t is defined in Figure 2
via the adjoint mapping f∗V as

M t = Φ∗
V (Bt) + eA1 ⊗Πt

0 + eA0 ⊗Πt
1 ≤ 3eA01p

∗
Alice

where the inequality follows immediately from the bound Φ∗
V (B) ≤ eA01p

∗
Alice of Proposition 3 and the

restriction Πc ≤ eAcp
∗
Alice on penalty matrices. The desired bound on the entries of mt follows from the

observation that the ith column of 3eA01p
∗
Alice is the vector whose entries are all equal to 3πi.

Let at denote the ith column of At for t = 1, . . . , T . It is clear that the construction of the probability
vectors at in terms of the loss vectors mt presented in Figure 2 obeys the condition of Theorem 7. It therefore
follows that for any probability vector a ∈ A01 we have

1
T

T∑
t=1

〈
at,mt

〉
≤

〈
a,

1
T

T∑
t=1

mt

〉
+ 3πi

(
ε +

ln(dim(A01))
εT

)
.

Summing these inequalities over all columns i we find that for any stochastic matrix A it holds that

1
T

T∑
t=1

〈
At,M t

〉
≤

〈
A,

1
T

T∑
t=1

M t

〉
+ 3

(
ε +

ln(dim(A01))
εT

)
.

A similar bound on the stochastic matrices At
0, A

t
1 in terms of the loss matrices M t

0,M
t
1 can be derived

in much the same way. For completeness, let us make this argument explicit. For both c ∈ {0, 1} and for
each question ic let πic denote the probability with which the referee asks question ic to Alicec. Let mt

c

denote the icth column of M t
c for each t = 1, . . . , T . We argue that the entries of mt

c lay in the interval
[−πic , 0]. Recall the loss matrix M t

c is defined in Figure 2 via the adjoint mapping f∗V as

M t
c = −Πt

c (ISc ⊗ eSc) ≥ −eAc marSc(pAlice)∗

where the inequality follows immediately from the restriction Πc ≤ eAcp
∗
Alice on penalty matrices. The

desired bound on the entries of mt
c follows from the observation that the icth column of eAc marSc(pAlice)∗

is the vector whose entries are all equal to πic .
As above, let at

c denote the icth column of At
c for t = 1, . . . , T . It is clear that the construction of the

probability vectors at
c in terms of the loss vectors mt

c presented in Figure 2 obeys the condition of Theorem
7. It therefore follows that for any probability vector ac ∈ Ac we have

1
T

T∑
t=1

〈
at

c,m
t
〉
≤

〈
ac,

1
T

T∑
t=1

mt
c

〉
+ πic

(
ε +

ln(dim(Ac))
εT

)
.

17



1. Let ε = δ/10 and let T =
⌈

ln(dim(A01))
ε2

⌉
.

Let
(
W 1,W 1

0 ,W 1
1

)
denote the triple of all-ones matrices and let

(
A1, A1

0, A
1
1

)
denote the uniformly

random strategy for Alice obtained by normalizing the columns of
(
W 1,W 1

0 ,W 1
1

)
.

2. Repeat for each t = 1, . . . , T :

(a) Compute optimal penalties Πt
0,Π

t
1 for (At, At

0, A
t
1) as described in Section 3.2. Use the oracle

for Problem 2 to obtain a δ/2-best response Bt to the verifier-Alice matrix ΦV (At).

(b) Compute the loss matrices
(
M t,M t

0,M
t
1

)
= f∗V

(
Bt,Πt

0,Π
t
1

)
. Exit the loop now if t = T .

(c) Update the weight matrices according to the standard multiplicative weights update rule:

(
W t+1,W t+1

0 ,W t+1
1

)
=

(
W t,W t

0,W
t
1

)
�

(
W 1,W 1

0 ,W 1
1

)︸ ︷︷ ︸
all-ones matrices

−ε
(
M t,M t

0,M
t
1

)
where � denotes the (entrywise) matrix Schur product. (See Theorem 7.)

(d) Compute the updated triple (At+1, At+1
0 , At+1

1 ) of stochastic matrices for Team Alice by nor-
malizing the columns of (W t+1,W t+1

0 ,W t+1
1 ).

3. Compute

(Ã, Ã0, Ã1) =
1
T

T∑
t=1

(At, At
0, A

t
1) and (B̃, Π̃0, Π̃1) =

1
T

T∑
t=1

(Bt,Πt
0,Π

t
1)

both of which are δ-optimal for µ(V ). Compute the no-signaling matrix Ãns from (Ã, Ã0, Ã1) as
described in Corollary 4.1.

4. Return (Ãns, B̃) as the δ-optimal strategies of Team Alice and Team Bob for λ(V ).

Figure 2: Algorithm that finds δ-optimal solutions to the equilibrium problem λ(V ) for two-turn interactive
proofs with competing teams of no-signaling provers (Problem 1).
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Summing these inequalities over all columns ic we find that for any stochastic matrix Ac it holds that

1
T

T∑
t=1

〈
At

c,M
t
c

〉
≤

〈
Ac,

1
T

T∑
t=1

M t
c

〉
+ ε +

ln(dim(Ac))
εT

.

At this point we have derived three inequalities for three arbitrary stochastic matrices A,A0, A1. Sum-
ming these inequalities and substituting (M t,M t

0,M
t
1) = f∗V (Bt,Πt

0,Π
t
1) and the choices of ε, T listed in

Figure 2 we find that for any triple (A,A0, A1) of stochastic matrices it holds that

1
T

T∑
t=1

〈
fV (At, At

0, A
t
1), (B

t,Πt
0,Π

t
1)

〉
≤

〈
fV (A,A0, A1),

1
T

T∑
t=1

(Bt,Πt
0,Π

t
1)

〉
+ δ/2. (1)

The remainder of this proof is a straightforward adaptation of Kale’s analysis for the much simpler class
of two-player zero-sum games in normal form [Kal07, Section 2.3.1]. We argue that the triples (Ã, Ã0, Ã1)
and (B̃, Π̃0, Π̃1) appearing Figure 2 are δ-optimal for µ(V ). Let us begin with the triple (Ã, Ã0, Ã1). Choose
any (B,Π0,Π1) and let (A?, A?

0, A
?
1) be optimal for µ(V ). We have〈

1
T

T∑
t=1

fV (At, At
0, A

t
1), (B,Π0,Π1)

〉
≤ 1

T

T∑
t=1

〈
fV (At, At

0, A
t
1), (B

t,Πt
0,Π

t
1)

〉
+ δ/2

≤

〈
fV (A?, A?

0, A
?
1),

1
T

T∑
t=1

(Bt,Πt
0,Π

t
1)

〉
+ δ ≤ µ(V ) + δ

as desired. (The first inequality is because each (Bt,Πt
0,Π

t
1) is a δ/2-best response to (At, At

0, A
t
1); the

second is Eq. (1).)
To see that (B̃, Π̃0, Π̃1) is δ-optimal for µ(V ), let (A,A0, A1) be any triple of stochastic matrices. We

have〈
fV (A,A0, A1),

1
T

T∑
t=1

(Bt,Πt
0,Π

t
1)

〉
≥ 1

T

T∑
t=1

〈
fV (At, At

0, A
t
1), (B

t,Πt
0,Π

t
1)

〉
− δ/2 ≥ µ(V )− δ

as desired. (The first inequality is Eq. (1); the second is because each (Bt,Πt
0,Π

t
1) is a δ/2-best response to

(At, At
0, A

t
1).) Finally, it follows from Corollary 4.1 that Ãns and B̃ are δ-optimal strategies for λ(V ).

That the algorithm admits an efficient parallel implementation is straightforward. In each iteration com-
putations of optimal penalties, the loss matrices (via f∗V ), the multiplicative weights update rule, and normal-
ization are all simple operations involving only addition and multiplication of individual rational entries of
matrices that can easily be implemented in parallel. It follows from the promise on δ that the total number
of iterations is bounded by a polynomial in the logarithm of dim(S01T01A01B01), the size of the verifier
matrix.

4.2 Implementations of the best-response oracle for Team Bob

In order for the algorithm of Figure 2 to be unconditionally efficient, we require a parallel implementation
of the oracle for weak no-signaling optimization (Problem 2). Fortunately, all the work is already done:
Problem 2 is the optimization problem that arises naturally from two-turn, two-prover interactive proofs
with no-signaling provers. Thus, the parallel algorithm of Ito [Ito10] can be re-used to implement the oracle
in our algorithm without complication.
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In Ito’s terminology, the verifier-Alice matrix ΦV (A) specifies a game and the two no-signaling provers
comprising Team Bob are the players. Ito does not claim that an explicit strategy for the players can be
found efficiently in parallel. Rather, he claims only that the task of distinguishing high success probability
from low success probability admits a parallel algorithm, as this simpler task is sufficient to put MIPns(2, 2)
inside PSPACE. However, a cursory glance at the details of Ito’s proof reveals a parallel construction of
near-optimal no-signaling strategies for the players as required by Problem 2.

Alternatively, the oracle for weak no-signaling optimization (Problem 2) can be implemented by re-using
the algorithm for weak no-signaling equilibrium (Problem 1) listed in Figure 2 of the present paper. Indeed,
Problem 2 is a special case of Problem 1 in which one team has a trivial strategy space. In this special case
the required “oracle” demands only weak no-signaling optimization over a trivial strategy space, which of
course admits a trivial parallel implementation. In other words, the algorithm of Figure 2 can be used in a
two-level recursive fashion to give an unconditionally efficient parallel algorithm for Problem 1.

4.3 Containment in PSPACE

The desired containment of MRGns(2, 2) inside PSPACE now follows in the usual way:

Theorem 1. Every decision problem that admits a two-turn interactive proof with competing teams of two
no-signaling provers per team is also in PSPACE. Thus, we obtain the identity MRGns(2, 2) = PSPACE.

Proof. Let L be a decision problem in MRGns(2, 2) with completeness c and soundness s and let x be any
input string. Each entry of the exponential-size verifier matrix V : S01T01 → A01B01 induced by the verifier
on input x can be computed in space polynomial in |x| by simulating every choice of randomness for the
verifier. In order to distinguish whether x is a yes-instance or no-instance of L it suffices to find δ-optimal
strategies for the teams for δ = (c−s)/3, which is Ω(1/poly(|x|)). As the dimensions of V are exponential
in |x|, we have that δ = Ω(1/polylog(dim(S01T01A01B01))) as required by the promise of Problem 1. It
therefore follows from Proposition 8 and the discussion in Section 4.2 that the algorithm of Figure 2 can be
used to find δ-optimal strategies for the teams in parallel, and thus distinguish λ(V ) ≥ c from λ(V ) ≤ s.
This parallel algorithm can be simulated in space polynomial in |x| in the usual way [Bor77].

5 Open problems

We conclude with some open problems, some of which are also listed in Ito [Ito10]:

More than two turns, only one prover per team. Perhaps the most important open problem related to our
work is the complexity of k-turn interactive proofs with competing provers for constants k ≥ 3. This
problem, which dates back at least to 1997 [FK97], is still open even in the special case of only one
prover per team. With only one prover per team, the question is really a game-theoretic question with
a much wider application than just interactive proofs.

Our method fails for this case because we do not have a bound on the verifier matrix of the form
V ≤ eA01B01p

∗ such as that appearing in Proposition 3. Thus, we do not obtain a good enough bound
on the loss vectors appearing in our variant of the multiplicative weights update method.

More than two turns, only one team of no-signaling provers. The complexity of k-turn multi-prover in-
teractive proofs with two no-signaling provers is still open for k ≥ 3, even with only one team of
provers [Ito10]. For ordinary multi-prover interactive proofs—in which the provers are not allowed to
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implement arbitrary no-signaling strategies—it is known that a multi-turn protocol with any number
of provers can be simulated by another protocol with only two turns and two provers [FL92].

Our method fails here for the same reason as above—that we cannot bound the loss vectors in the
MWUM for a multi-turn verifier.

More than two provers, only one team of no-signaling provers. Similarly, the complexity of two-turn multi-
prover interactive proofs with more than two no-signaling provers is still open, even with only one
team of provers [Ito10]. As mentioned above, ordinary multi-prover interactive proofs require only
two provers [FL92].

Our method does not extend to this case either, as there is no known analogue of Lemma 6 for more
than two provers.

Ordinary multi-prover interactive proofs with competing teams of provers. In the introduction we noted
that Feigenbaum, Koller, and Shor [FKS95] proved

EXPNP ⊆ MRG ⊆ ΣEXP
2 ∩ΠEXP

2 .

Can the upper bound on MRG be tightened all the way to EXPNP?

Quantum verifier and/or provers. Even with two no-signaling provers, two turns of interaction, and only
one team of provers, it is still not known that the PSPACE upper bound holds when either the verifier
or provers can send quantum messages [Ito10]. Here the problem is that Lemma 6 does not hold for
quantum states.
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