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Abstract

We continue the study of locally-computable pseudorandom generators (PRG) G : {0, 1}n →
{0, 1}m that each of their outputs depend on a small number of d input bits. While it is known
that such generators are likely to exist for the case of small sub-linear stretch m = n+ n1−δ, it
is less clear whether achieving larger stretch is possible. The existence of such PRGs, which was
posed as an open question in previous works (e.g., [Cryan and Miltersen, MFCS 2001], [Mossel,
Shpilka and Trevisan, FOCS 2003], and [Applebaum, Ishai and Kushilevitz, FOCS 2004]), has
recently gained an additional motivation due to several interesting applications.

We make progress towards resolving this question by obtaining several local constructions
based on the one-wayness of “random” local functions – a variant of an assumption made
by Goldreich (ECCC 2000). Specifically, we construct collections of PRGs with the following
parameters:

• Linear stretch m = n+ Ω(n) and constant locality d = O(1).

• Polynomial stretch m = n1+δ and any (arbitrarily slowly growing) super-constant locality
d = ω(1), e.g., log? n.

• Polynomial stretch m = n1+δ, constant locality d = O(1), and distinguishing advantage
bounded by 1/poly(n) (as opposed to the standard case of n−ω(1)).

Our constructions match the parameters achieved by previous “ad-hoc” candidates, and are the
first to do this under a one-wayness assumption. At the core of our results lies a new search-
to-decision reduction for random local functions. This reduction also shows that some of the
previous PRG candidates can be based on one-wayness assumptions. Altogether, our results
fortify the existence of local PRGs of long stretch.

As an additional contribution, we show that our constructions give rise to strong inapprox-
imability results for the densest-subgraph problem in d-uniform hypergraphs for constant d.
This allows us to improve the previous bounds of Feige (STOC 2002) and Khot (FOCS 2004)
from constant inapproximability factor to nε-inapproximability, at the expense of relying on
stronger assumptions.
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1 Introduction

The question of minimizing the parallel time complexity of cryptographic primitives has been the
subject of an extensive body of research [28, 41, 29, 37, 23, 17, 34, 36, 7, 39, 6, 8, 9, 10, 4, 16, 13]. In
this paper we study the complexity of generating a large number of pseudorandom bits. Formally,
a pseudorandom generator (PRG) f : {0, 1}n → {0, 1}m maps a random n-bit seed x = (x1, . . . , xn)
into a longer pseudorandom string y = (y1, . . . , ym) such that no polynomial-time adversary can
distinguish y from a truly random m-bit string with distinguishing advantage better than ε (by
default, ε is negligible n−ω(1)).

We are interested in highly-parallelizable PRGs: each output yi should depend only on a small
number of d input bits. Our goal is to gain many pseudorandom bits, i.e., maximize the stretch
m − n, while keeping the locality d as small as possible. Ultimately, d is a constant that does
not grow with the total input length or the level of security; In this case, the computation can be
carried in constant-parallel time, which is captured by the complexity class NC0.

This strong efficiency requirement seems hard to get as, at least intuitively, such form of locality
may lead to algorithmic attacks. Still, it was shown in [7] that, for the regime of sub-linear stretch
m = n + n1−δ, PRGs with constant locality exist under standard cryptographic assumptions.
Unfortunately, it is unknown how to extend this result to linear stretch (m > (1 + δ)n) or even
polynomial stretch (m > n1+δ).1 This raises the following question which was posed by several
previous works (e.g., [17, 36, 7, 8, 30]):

How long can be the stretch of a pseudorandom generator with locality d? How large
should d be to achieve linear or polynomial stretch?

Local PRGs with linear and polynomial stretch are qualitatively different than ones with sub-
linear stretch. For example, such PRGs lead to strong (average-case) inapproximability results for
constraint satisfaction problems such as Max3SAT under a natural distribution [8]: linear-stretch
PRGs (hereafter abbreviated by LPRGs) with constant locality rule out the existence of a PTAS,
whereas polynomial-stretch PRGs (hereafter abbreviated by PPRGs) yield tight bounds that match
the upper-bounds achieved by the simple “random assignment” algorithm.

Furthermore, as shown in [30], local PRGs with large stretch would also allow to improve the
sequential complexity of cryptography. Specifically, an LPRG with constant locality would lead
to implementations of primitives (e.g., public-key encryption, commitment schemes) with constant
computational overhead, and a PPRG with constant locality would lead to secure computation
protocols with constant computational overhead – a fascinating possibility which is not known to
hold under any other cryptographic assumption. Finally, from a practical point of view, large
stretch PRGs with low locality give rise to highly efficient stream-ciphers that can be implemented
by fast parallel hardware.

Although local LPRGs and PPRGs are extremely useful, their existence is not well established.
Specifically, no provably secure construction with polynomial or even linear stretch is currently
known even when d = O(log n) and ε = 1/n.2 Here the term “provably secure” refers to construc-

1In fact, for the special case of 4-local functions, there is a provable separation: such functions can compute
sub-linear PRGs [7] but cannot compute polynomial-stretch PRGs [17, 36]. For larger locality d ≥ 5, the best
upper-bound on m is nd/2 [36].

2To the best of our knowledge, even the class AC0 (which is strictly stronger than O(logn)-local functions) does
not contain any provably-secure large-stretch PRG, and only in TC0, which is strictly more powerful than AC0,
such constructions are known to exist [37].
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tions whose security can be reduced to some other cryptographic assumption, e.g., a one-wayness
assumption.

This state of affairs have lead to a more direct approach. Rather than trying to obtain PPRGs
or LPRGs based on standard assumptions, several researchers suggested concrete candidates for
LPRGs with constant locality and negligible distinguishing advantage [2, 8] and PPRGs with con-
stant locality and inverse polynomial distinguishing advantage [36, 4]. (A detailed account of
this line of works is given in Section 1.3.) All of these candidates are essentially based on what
we call random local functions, i.e., each output bit is computed by applying some fixed d-local
predicate Q to a randomly chosen d-size subset of the input bits. Formally, this can be viewed
as selecting a random member from a collection FQ,n,m of d-local functions where each member
fG,Q : {0, 1}n → {0, 1}m is specified by a d-uniform hypergraph G with n nodes and m hyperedges,
and the i-th output of fG,Q is computed by applying the predicate Q to the d inputs that are
indexed by the i-th hyperedge.

Remark 1.1 (Collection vs. Single function). The above construction gives rise to a collection of
local PRGs, where a poly-time preprocessing is used to publicly pick (once and for all) a random
instance f from the collection. The adversary is given the description of the chosen function, and
its distinguishing advantage is measured with respect to a random seed and a random member of the
family. (See Section 3 and [24, Sec. 2.4.2] for formal definitions). The use of collections is standard
in the context of parallel cryptography (e.g., in number-theoretic constructions preprocessing is used
to set-up the group or choose a random composite number [37, 18, 26]) and has no effect on the
applications, hence we adopt it as our default setting. (See [7, Appendix A] for detailed discussion.)
In our case the preprocessing typically has a parallel implementation in AC0.

1.1 Our constructions

The gap between the rich applications of large-stretch PRGs in NC0 and the lack of provable
constructions is highly unsatisfactory. Our goal in this paper is to remedy the situation by replacing
the ad-hoc candidates with constructions whose security can be based on a more conservative
assumption. Specifically, our results essentially show that in order to construct local PRGs with
output length m it suffices to assume that random local functions are one-way ; namely, that
it is hard to invert a random member of the collection FQ,n,m′ for m′ of the same magnitude
as m. This one-wayness assumption, originally made by Goldreich [23] and further established
in [38, 3, 16, 35, 13, 4, 14], is significantly weaker (i.e., more plausible) than the corresponding
pseudorandomness assumption (see Section 1.3 for discussion). Let us now state our main results,
starting with the case of linear stretch.

Theorem 1.2 (LPRG in NC0). If the d-local collection FQ,n,m is one-way for m > Ωd(n), then
there exists a collection of LPRGs with constant locality and negligible distinguishing advantage.

Theorem 1.2 is applicable for every choice of predicate Q, and it provides the first construction
of an LPRG in NC0 based on a one-wayness assumption. Moving to the case of polynomial stretch,
we say that the predicate Q is sensitive if some of its coordinates i has full influence (i.e., flipping
the value of the i-th variable always changes the output of Q).

Theorem 1.3 (weak-PPRG in NC0). Suppose that the d-local collection FQ,n,m is one-way,
where m > n1+δ for an arbitrary small constant δ > 0 and Q is sensitive. Then, for every constant
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b, there exists a weak collection of PPRGs of output length nb and distinguishing advantage at most
1/nb with constant locality d′ = d′(d, b). Furthermore, it is possible to achieve polynomial stretch
and negligible distinguishing advantage n−ω(1) at the expense of letting the locality d′ = ω(1) be an
(arbitrarily slowly) increasing function of n, e.g., d′ = log∗(n).

The PPRGs constructions of Theorem 1.3 are the first to achieve constant locality and inverse-
polynomial distinguishing advantage (resp., super-constant locality and negligible distinguishing
advantage) under a one-wayness assumption. These parameters also match the ones achieved by
known heuristic candidates for PPRGs.3 We mention that there are sensitive predicates (e.g.,
Q(x1, x2, x3, x4, x5) = x1 ∧x2⊕x3⊕x4⊕x5)for which FQ,n,m=n1+δ seems to be one-way [36, 16, 5].

Following the previous theorems, one may ask whether it is possible to show that FQ,n,m itself
is pseudorandom. We show that this is indeed the case:

Theorem 1.4 (Random local functions are weak-PRGs). The collection FQ,n,na is a weak-
PPRG with distinguishing advantage at most n−b, assuming that the collection FQ,n,n3a+2b is one-
way and that Q is sensitive.4

As a corollary, we reduce the pseudorandomness of some of the previous ad-hoc constructions to
a one-wayness assumption. We view Theorem 1.4 as one of the main conceptual contribution of this
work. The ensemble FQ,n,m is highly interesting for its own sake as it generalizes an important and
well-studied family of random constraint satisfaction problems (e.g., random planted 3-SAT [22,
15, 1]). Indeed, the problem of inverting a random member of the ensemble FQ,n,m boils down
to solving a system of m random d-local (non-linear) equations of the form yi = Q(xi,1, . . . , xi,d)
with a planted solution x. Theorem 1.4 yields an average-case search-to-decision reduction for this
problem. Combined with the results of [8], it follows that any non-trivial approximation of the
value of the system of equation allows to fully recover the planted solution.

1.2 New application: Hardness of the Densest-Subgraph Problem

We use Theorem 1.4 to derive new inapproximability results, continuing the line of research started
by Feige [20] in which inapproximability follows from average-case hardness. For a d-uniform
hypergraph G, we say that a set of nodes S contains an edge e = (v1, . . . , vd) if all the endpoints
of e are in S, i.e., v1, . . . , vd ∈ S. In the following think of d as a constant, n < m < poly(n),
and p ∈ (0, 1). In the p Densest-Sub-hypergraph Problem (p − DSH) we are given a d-uniform
hypergraph G with n nodes and m edges (hereafter referred to as an (n,m, d) graph) and should
distinguish between:

• No case (“Random”). Every set S of nodes of density p (i.e., size pn) in G contains at
most pd(1 + o(1)) fraction of the edges.

• Yes case (“Planted”). There exists a set S of nodes of density p in G that contains at
least pd−1(1− o(1)) fraction of the edges.

3In the heuristic constructions the dependencies graph G should satisfy non-trivial expansion properties [8], but
when m = n1+Ω(1) and d = O(1) it is unknown how to efficiently sample such a good expander with negligible failure
probability.

4Some assumption on the predicate is needed as it seems likely that for some unbalanced predicate Q one-wayness
may hold, whereas in this case the ensemble FQ,n,m cannot be pseudorandom. Still, we can show that one-wayness
with respect to a general predicate implies that the ensemble has large pseudoentropy in the sense of [27].
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Observe that a random graph is likely to be a No-instance. In the above, p is a single parameter
which controls both the approximation ratio and the gap-location (i.e., size of the dense subgraph).
This formulation of p−DSH was explicitly presented by Khot [33] (under the term “Quasi-random
PCP”), and was implicit in the work of Feige [20]. These works showed that for some constant d,
the problem is hard for p = 1

2 , assuming that NP cannot be solved in probabilistic sub-exponential
time. The constant p can be improved by taking graph products, however, this increases the degree
d. Hence, for a constant degree, the best known inapproximability ratio was constant. This is in
sharp contrast with the best known algorithm [12] which achieves approximation ratio no better
than Θ(n1/4) even in the simple case where d = 2 (which corresponds to the well known “Densest
Subgraph problem” [21]). Our next theorem partially closes this gap:

Theorem 1.5. Let d be a constant, Q be a d-ary predicate and m ≥ nc+3 where c > 0 is a constant.
If FQ,n,m is 1

n -pseudorandom, then for every n−c/2d ≤ p ≤ 1
2 the p-Densest-Subhypergraph problem

is intractable with respect to d-uniform hypergraphs.5

By taking p = 1
2 , we obtain the same parameters as in [20, 33]. We can obtain much stronger

inapproximability ratio of, say, p = n−1/(2d) for a fixed locality d, assuming that FQ,n,n4 is 1
n -

pseudorandom. As shown in Thm. 1.4, the latter assumption follows from the one-wayness of
Fn,m′,Q for sufficiently large polynomial m′(n).

Interestingly, Theorem 1.5 yields average-case hardness with respect to a “planted distribution”.
Namely, we show that it is hard to distinguish a random graph (which is likely to be a “No” instance)
from a random graph in which a dense random subgraph is planted. (Jumping ahead, the planted
subgraph essentially encodes a preimage of the pseudorandom generator.) We also mention that
such distributions are used by Arora et al. [11] to show that financial derivatives can be fraudulently
mispriced without detection.

1.3 Discussion and previous works

Pseudorandomness of FQ,n,m. Building on [36], the works of [4, 5] showed that for a proper
choices of the predicate Q, whp, a random member of FQ,n,m=n1+ε fools linear-tests over F2.
Alekhnovich [2] conjectured that the collection FQ=⊕p,n,m=Θ(n) is pseudorandom where ⊕p is a

randomized predicate which computes z1 ⊕ z2 ⊕ z3 and with some small probability p < 1
2 flips

the result. Although this construction does not lead directly to a local PRG (due to the use of
noise), it was shown in [8] that it can be derandomized and transformed into an NC0 construction
with linear stretch. (The restriction to linear stretch holds even if one strengthen Alekhnovich’s
assumption to m = poly(n).)

Finally, a recent transformation from one-wayness to weak pseudorandomness is given in [4] for
the special case of the noisy-linear predicate ⊕p. Specifically, it is shown that if F⊕p,n,m=O(n logn)

is one-way then F⊕p,n,m=O(n) is pseudorandom with distinguishing advantage ε = 1/n. We believe
that this result can be combined with the techniques of [8] to yield a local weak LPRG with
ε = 1/poly(n) based on the one-wayness of F⊕p,n,m=O(n logn). However, it falls short of providing
LPRG (i.e., with standard security) or weak PPRG. Our work is highly inspired by this result.
From a technical point of view, many of the ideas used in [4] heavily rely on the linear structure of
⊕p, and so part of the challenge in establishing our reductions is to find analogues which work in the

5We did not attempt to optimize the constraints and parameters and some of them can be improved.
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general case of arbitrary predicates. (See Section 2 for an overview of our proofs.) As a byproduct,
our techniques provide a simpler proof for the case of ⊕p with slightly better parameters.

One-wayness of FQ,n,m. The ensemble FQ,n,m was explicitly presented by Goldreich [23] who
conjectured one-wayness for the case of m = n and essentially every non-trivial predicate (e.g.,
non-linear and non-degenerate). In [23, 3, 16, 35, 19, 31] it is shown that a large class of algorithms
(including ones that capture DPLL-based heuristics) fail to invert FQ,n,m in polynomial-time. These
results are further supported by the experimental study of [38, 16] which employs, among other
attacks, SAT-solvers. Very recently, a strong self-amplification theorem was proved in [14] showing
that for m = Ωd(n) if FQ,n,m is hard-to-invert over tiny (sub-exponential small) fraction of the
inputs with respect to sub-exponential time algorithm, then the same ensemble is actually hard-
to-invert over almost all inputs (with respect to sub-exponential time algorithms). In addition, the
one-wayness of FQ,n,m is actively challenged by the theoretical and practical algorithmic study of
random constraint satisfaction problems (e.g., Random 3-SAT, see [22, 15, 1] for surveys). The fact
that this research falls short of inverting FQ,n,m provides a good evidence to its security.6

To summarize, when m is linear, i.e., m = cn for arbitrary constant c > 1, it is unknown how to
invert the function (with respect to a general predicate) in complexity smaller than 2Ω(n). It also
seems reasonable to assume that for every constant c > 1 there exists a sufficiently large locality d
and a predicate Q for which FQ,n,nc cannot be inverted in polynomial time.

The gap between one-wayness and pseudorandomness. The above works indicate that
one-wayness is much more solid than pseudorandomness. We wish to emphasize that this is true
even with respect to heuristic constructions. Indeed pseudorandomness is quite fragile, as with
low locality, even the task of avoiding simple regularities in the output is highly challenging.7 In
contrast, it seems much easier to find a “reasonable” candidate one-way functions (i.e., one that
resists all basic/known attacks). Moreover, it is not hard to come up with examples for local
functions whose one-wayness may be plausible but they fail to be pseudorandom (e.g., if the graph
happen to have the same hyperedge twice, or if the predicate is unbalanced). The proof of our
main theorems show that in this case, despite the existence of non-trivial regularities in the outputs,
random local one-way functions achieve some form of pseudoentropy (i.e., weak unpredictability).

More on DSH. DSH is a natural generalization of the notoriously hard Densest k-Subgraph
(DSG) problem (e.g., [21]) whose exact approximation ratio is an important open question. The
best known algorithm achieves O(n1/4)-approximation [12], while known hardness results only rule
out PTAS [33]. Naturally, DSH, which deals with hypergraphs, only seems harder. DSH has also
a special role as a starting point for many other inapproximability results for problems like graph
min-bisection, bipartite clique, and DSG itself [20, 33]. Recently, it was shown how to use the
average-case hardness of DSH to plant a trapdoor in FQ,n,m, and obtain public-key encryption
schemes [4]. This raises the exciting possibility that, for random local functions, there may be a
“path” from one-wayness to public-key cryptography: first assume one-wayness of FQ,n,m, then
use Thm. 1.4 to argue that this collection is actually pseudorandom, then employ Thm. 1.5 to

6This research have lead to non-trivial algorithms which allow to invert FQ,n,m=Ωd(n) when the predicate is
correlated with one or two of its inputs [13], however, these attacks do not generalize to other predicates.

7This even led to the belief that weak non-cryptographic forms of pseudorandomness, e.g., ε-bias, cannot be
achieved [17], which was refuted in a non-trivial way by [36].
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argue that DSH is hard over a planted distribution, and finally, use [4] to obtain a public-key
cryptosystem. Unfortunately, the parameters given in Thm. 1.5 do not match the ones needed
in [4]; still we consider the above approach as an interesting research direction.

2 Our Techniques

To illustrate some of our techniques, let us outline the proof of our main constructions.

2.1 Constructing Weak-PPRGs (Thms. 1.3 and 1.4)

Conceptually, we reduce pseudorandomness to one-wayness via the following idea: Suppose that
we have an adversary which breaks the pseudorandomness properties of the function fG,Q(x) with
respect to a random graph G, then we can collect information about x, and eventually invert the
function, by invoking the adversary multiple times with respect to many different graphs G1, . . . , Gt
which are all close variants of the original G. Details follow.

The basic procedure. Due to the known reduction from pseudorandomness to unpredictability
(aka Yao’s theorem [40]), it suffices to reduce the task of inverting FQ,n,m to the task of predicting
the next bit in the output of FQ,n,k with probability 1

2 + ε. Let us see how a prediction algorithm
can be used to recover some information on the input. Assume that the first input of Q has
full influence, and that we are given an ε-predictor P. This predictor is given a random (k, n, d)
graph G, whose hyperedges are labeled by the string y = fG,Q(x), and it should predict the label
yk = Q(xS) of the last hyperedge S = (i1, . . . , id). (We can assume that it predicts the last bit due
to the symmetry of random graphs.) Given such a pair (G, y), let us replace the first entry i1 of S
with a random index ` ∈ [n] (hereafter referred to as “pivot”), and then invoke P on the modified
pair. If the predictor succeeds and outputs Q(xS′), then, by comparing this value to yk, we get to
learn whether the input bits x` and xi1 are equal. Since the predictor may err, we can treat this
piece of information as a single 2-LIN noisy equation of the form x` ⊕ xi1 = b where b ∈ {0, 1}.

Collecting many 2-LIN equations. In order to recover x, we would like to collect many such
equations and then solve a Max-2-LIN problem. To this end, we may partition the graph G and
the output string y to many blocks (G(i), y(i)) of size k each, and then apply the above procedure
to each block separately. This gives us a highly-noisy system of 2-LIN equations with a very large
noise rate of 1

2 − ε where ε < 1/k < 1/n corresponds to the quality of prediction. (This value of ε
is dictated by Yao’s theorem, which cannot be used with larger ε.)

How to purify the noise? One may try to “purify” the noise by collecting many (say n2/ε2)
equations, and correcting the RHS via majority vote, however, this approach is doomed to fail as
the noise is not random, and can be chosen arbitrarily by the adversary in a way that depends on
the equations. To see this, consider the trivial predictor which predicts well only when the output
depends on x1, and otherwise outputs a random guess. This predictor satisfies our condition (i.e.,
its prediction advantage is 1/n) but it seems to be totally useless since it works only for equations
which involves x1. As a result, repetition will not decrease the noise.
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Partial re-randomization. We fix this problem by re-randomizing the blocks (G(i), y(i)). Specif-
ically, we will permute the nodes of each G(i) under a random permutation π(i) : [n] → [n], and
invoke our basic procedure on the pairs (π(i)(G(i)), y(j)). This is essentially equivalent to shuffling
the coordinates of x. Furthermore, this transformation does not affect the distribution of the graphs
since edges were chosen uniformly at random any way. As a result, the noise (i.e., the event that P
errs) becomes independent of the variables that participates in the equations, and the distribution
of the prediction errors is “flattened” over all possible hyperedges. This transformation also yields
a partial form of “random-self-reducibility”: the input x is mapped to a random input of the same
Hamming weight.

To show that the basic procedure succeeds well in each of the blocks, we would like to argue
that the resulting pairs (H(i), fH(i)(x(i)) are uniformly and independently distributed, where H(i)

(resp., x(i)) is the permuted graph π(i)(G(i)) (resp., string π(i)(x)). This is not true as all the
strings π(i)(x) share the same weight. Still we can show that this dependency does not decrease the
success probability too much. In fact, to reduce the overhead of the reduction, we introduce more
dependencies. For example, we always apply the basic procedure with the same “pivot” `. Again,
the random permutation ensures that this does not affect the quality of the output too much. This
optimization (and others) allow us to achieve a low overhead and take k = m · ε2. As a result, we
derive Theorem 1.4 and obtain a PPRG with constant locality, some fixed polynomial stretch and
polynomial distinguishing advantage. Standard amplification techniques now yield Theorem 1.3.

2.2 Constructing LPRGs

Let us move to the case of LPRGs (Thm. 1.2). We would like to use the “basic procedure” but our
predicate is not necessarily sensitive. For concreteness, think of the majority predicate. In this case,
when recovering a 2-LIN equation, we are facing two sources of noise: one due to the error of the
prediction algorithm, and the other due to the possibility that the current assignment xS is “stable”
– flipping its i-location does not change the value of the predicate (e.g., in the case of majority, any
assignment with less than bd/2c ones). Hence, this approach is useful only if the predictor’s success
probability is larger than the probability of getting a stable assignment. Otherwise, our predictor,
which may act arbitrarily, may decide to predict well only when the assignments are stable, and
make a random guess otherwise. Therefore, we can prove only ε-unpredictability for some constant
ε < 1

2 .8 This seems problematic as the transformation from unpredictability to pseudorandomness
(Yao’s theorem) fail for this range of parameters.

The solution is to employ a different transformation. Specifically, it turns out that the recent
transformation of [27] (HRV), which is based on randomness extractors, works well in this range of
parameters. The only problem is that, in general, one can show that it is impossible to compute
good randomness extractors with constant locality. Fortunately, it turns out that for the special
case of constant unpredictability and linear stretch, the HRV construction can be instantiated with
low-quality extractors for which there are (non-trivial) local implementations [36, 8]. This allows
us to transform any Ω(n)-long sequence with constant ε-unpredictability into an LPRG, while
preserving constant locality.

8We show that the actual bound on ε depends on a new measure of “matching” sensitivity µ(Q) defined as follows:
Look at the subgraph of the d-dimensional combinatorial hypercube whose nodes are the sensitive assignments of
Q (i.e., the boundary and its neighbors), let M be a largest matching in the graph, and let µ(Q) = |M |/2d. For
example, for majority with an odd arity d, it can be shown that all the assignments of Hamming weight dd/2e and
bd/2c are in the matching and so the matching sensitivity is exactly 2

(
d
bd/2c

)
/2d.
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Let us return to the first step in which prediction is used for inversion. In the LPRG setting
we would like to base our construction on one-wayness with respect to O(n) output-length (rather
than super-linear length). Hence, the overhead of the reduction should be small, and we cannot
apply the basic procedure to independent parts of the output as we did in the PPRG case. Our
solution is to iterate the basic procedure n times with the same graph G, hyperedge S, and m-bit
string y, where in each iteration a different pivot j ∈ [n] is being planted in S. We show that, whp,
this allows to find a string x′ which agrees with x on more than 1

2 of the coordinates. At this point
we employ the algorithm of [13] which recovers x given such an approximation x′ and fG,Q(x).

2.3 Hardness of DSH

We move on to Theorem 1.5 in which we show that the pseudorandomness of fG,Q(x) for a random
G implies strong inapproximability for the densest subhypergraph problem. Recall that one can
amplify the inapproximability gap at the expense of increasing the cardinality of the hyperedges by
taking graph product. In a nutshell, we show that the strong nature of pseudorandomness allows
to apply some form of product amplification for “free” without changing the graph.

Suppose that for a random graphG, the pair (G, y) is indistinguishable from the pair (G, fG,Q(x)),
where y is a random m-bit string and x is a random n-bit string. Assume, without loss of gen-
erality, that Q(1d) = 1. (Otherwise use its complement.) We define an operator ρ that given a
graph G and an m-bit string z, deletes the i-th hyperedge if zi is zero. It is not hard to see that
ρ maps the “random” distribution to a random graph with ∼ m/2 hyperedges which is likely to
be a No-instance of 1

2 − DSH. On the other hand, the pseudorandom distribution is mapped to a
graph with a planted dense subgraph of density ∼ 1

2 (i.e., “Yes” instance of 1
2 −DSH). Intuitively,

this follows by noting that the set of nodes which are labeled by ones under x does not lose any
hyperedge (as Q(1d) = 1), while roughly half of the hyperedges are removed. (Otherwise, one can
distinguish between the two distributions).

This leads to a basic hardness for p = 1
2 . Now, by a standard hybrid argument, one can

show that the graph – which is a public index – can be reused, and so the tuple (G, y(1), . . . , y(t))
is indistinguishable from the tuple (G, fG,P (x(1)), . . . , fG,Q(x(t))) where the y’s are random m-bit
strings and the x’s are random n-bit strings. Roughly speaking, each of these t copies allows us to
re-apply the mapping ρ and further improve the parameter p by a factor of 2. (See full proof in
Section 7.)

It is instructive to compare this to Feige’s refutation assumption. The above distributions can
be viewed as distributions over satisfiable and unsatisfiable CSPs where in both cases the graph G
is randomly chosen. In contrast, Feige’s refutation assumption is weaker as it essentially asks for
distinguishers that work well with respect to arbitrary (worst-case) distribution over the satisfiable
instances. Hence the graph cannot be reused and this form of amplification is prevented.

Organization. Some preliminaries are given in Section 3 including background on Goldreich’s
function and cryptographic definitions. Sections 4– 6 are devoted to the proofs of Thms. 1.2–
1.4, where Sections 4 and 5 describe the reductions from inversion to prediction (for the LPRG
setting and for the PPRG setting), and Section 6 completes the proofs based on additional generic
transformations. Finally, in Section 7, we prove Thm. 1.5.

8



3 Preliminaries

Basic notation. We let [n] denote the set {1, . . . , n} and [i..j] denote the set {i, i+ 1, . . . , j} if
i ≤ j, and the empty set otherwise. For a string x ∈ {0, 1}n we let x⊕i denote the string x with its
i-th bit flipped. We let xi denote the i-th bit of x. For a set S ⊆ [n] we let xS denote the restriction
of x to the indices in S. If S is an ordered set (i1, . . . , id) then xS is the ordered restriction of x,
i.e., the string xi1 . . . xid . The Hamming weight of x is defined by wt(x) = | {i ∈ [n]|xi = 1} |. The
uniform distribution over n-bit strings is denoted by Un.

Hypergraphs. An (n,m, d) graph is a hypergraph over n vertices [n] with m hyperedges each
of cardinality d. We assume that each edge S = (i1, . . . , id) is ordered, and that all the d members
of an edge are distinct. We also assume that the edges are ordered from 1 to m. Hence, we can
represent G by an ordered list (S1, . . . , Sm) of d-sized (ordered) hyperedges. For indices i ≤ j ∈ [m]
we let G[i..j] denote the subgraph of G which contains the edges (Si, . . . , Sj). We let Gn,m,d denote
the distribution over (n,m, d) graphs in which a graph is chosen by picking each edge uniformly

and independently at random from all the possible n(d) def
= n · (n − 1) · . . . · (n − d + 1) ordered

hyperedges.

Goldreich’s function. For a predicate Q : {0, 1}d → {0, 1} and an (n,m, d) graph G =
([n], (S1, . . . , Sm)) we define the function fG,Q : {0, 1}n → {0, 1}m as follows: Given an n-bit
input x, the i-th output bit yi is computed by applying Q to the restriction of x to the i-th hy-
peredge Si, i.e., yi = Q(xSi). For m = m(n), d, and a predicate Q : {0, 1}d → {0, 1}, we let
FQ,m : {0, 1}∗ → {0, 1}∗ be the mapping that for each length parameter n takes as an input a pair
of an (n,m, d) graph G and an n-bit string x, and outputs the pair (G, fG,Qn(x)).

Sensitivity and influence measures. Let Q : {0, 1}d → {0, 1} be a predicate. We associate
with Q a bipartite graph GQ = (V0∪V1, E) where Vb =

{
w ∈ {0, 1}d|Q(w) = b

}
and (u, v) ∈ V0×V1

is an edge if there exists an i ∈ [d] for which u = v⊕i. We define the following measures of Q. We
let ∂(Q) = Pr

w
R←{0,1}d

[w ∈ V1] denote the boundary of Q and let ∂̄(Q) = 1 − ∂(Q). A matching

M ⊆ V0 × V1 is a set of pair-wise distinct edges in GQ, i.e., for every pair (u, v) and (u′, v′) in M
we have u 6= u′ and v 6= v′. We will be interesting in the probability that a randomly selected node
lands inside a maximal matching:

Match(Q) = max
M

Pr
w
R←{0,1}d

[∃u s.t. (w, u) ∈M or (u,w) ∈M ] = max
M
|M |/2n−1,

where the maximum is taken over all matchings in GQ. The matching density Match(Q) will be used
to measure the “sensitivity” of Q. We also rely on more traditional measures of sensitivity as follows.
The influence of the i-th coordinate of Q is defined by Infi(Q) = Pr

w
R←{0,1}d

[Q(w) 6= Q(w⊕i)]. We

let Infmax(Q) denote the maximal influence of a single coordinate maxi∈[d] Infi(Q). The following
simple proposition relates the different sensitivity measures.

Proposition 3.1. For any predicate Q : {0, 1}d → {0, 1} we have:

Infmax(Q) ≤ Match(Q) ≤ 2 min(∂(Q), ∂̄(Q)) ≤
∑
i

Infi(Q) ≤ 2d∂(Q).
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Proof. Consider the graph GQ and color each edge (u, v) by the color i ∈ [d] for which u = v⊕i.
The inequalities follow by counting edges while noting that Infmax(Q) measures the cardinality of
the largest monochromatic matching (in nodes),

∑
i Infi(Q) measures the sum of degrees, and d is

an upper bound on the maximal degree.

Also, recall that by [32], if Q is balanced then we also have c log d/d ≤ Infmax(Q) where c is a
universal constant.

3.1 Cryptographic definitions

Collection of Functions. Let s = s(n) and m = m(n) be integer-valued functions which are
polynomially bounded. A collection of functions F : {0, 1}s × {0, 1}n → {0, 1}m takes two inputs
a public collection index k ∈ {0, 1}s and an input x ∈ {0, 1}n, the output F (k, x) consists of the
evaluation Fk(x) of the point x under k-th function in the collection. We always assume that the
collection is equipped with two efficient algorithms: an index-sampling algorithm K which given 1n

samples a index k ∈ {0, 1}s, and an evaluation algorithm which given (1n, k ∈ {0, 1}s, x ∈ {0, 1}n)
outputs Fk(x). We say that the collection is in NC0 if there exists a constant d (which does not
grow with n) such that for every fixed k the function Fk has output locality of d. (In our case, k is
typically the dependencies graph G.) All the cryptographic primitives in this paper are modeled as
collection of functions. We will always assume that the adversary that tries to break the primitive
gets the collection index as a public parameter. Moreover, our constructions are all in the “public-
coin” setting, and so they remain secure even if the adversary gets the coins used to sample the
index of the collection.

In the following definitions we let F : {0, 1}s × {0, 1}n → {0, 1}m be a collection of functions
where K is the corresponding index-sampling algorithm. We also let ε = ε(n) ∈ (0, 1) be a
parameter which measures the security of the primitive. All probabilities are taken over the explicit
random variables and in addition over the internal coin tosses of the adversary algorithms.

One-way functions. Informally, a function is one-way if given a random image y it is hard
to find a preimage x. We will also use a stronger variant of approximate one-wayness in which
even the easier task of finding a string which approximates the preimage is infeasible. Formally,
for a proximity parameter δ = δ(n) ∈ (0, 1

2) and security parameter ε = ε(n) ∈ (0, 1), we say
that a collection of functions F : {0, 1}s×{0, 1}n → {0, 1}m is (ε, δ) approximate one-way function
(AOWF) if for every efficient adversaryA which outputs a poly(n) list of candidates, and sufficiently
large n’s we have that

Pr
k
R←K(1n),x

R←Un,y=Fk(x)

[∃z ∈ A(k, y), z′ ∈ F−1
k (y) s.t. dist(z, z′) ≤ δ(n)] < ε(n),

where dist denotes the relative Hamming distance. In the special case of δ = 0, the collection F is
referred to as ε one-way, or simply one-way if in addition ε is a negligible function.9

9Note that in the case, of δ = 0, we can assume that the list contains a single candidate, as the algorithm can
efficiently check which of the candidates (if any) is a preimage. Hence, the notion of (0, ε)-approximate one-wayness
is indeed equivalent to the standard notion of ε one-wayness.
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Indistinguishability. Let Y = {Yn} and Z = {Zn} be a pair of distribution ensembles. We say
that a pair of distribution ensembles Y = {Yn} and Z = {Zn} is ε-indistinguishable if for every
efficient adversary A, the distinguishing advantage |Pr[A(1n, Y ) = 1]− Pr[A(1n, Z) = 1]| is at most
ε(n). We say that the ensembles are ε statistically-close (or statistically-indistinguishable) if the
above holds for computationally unbounded adversaries.

Pseudorandom and unpredictability generators. Let m = m(n) > n be a length parameter.
A collection of functions F : {0, 1}s×{0, 1}n → {0, 1}m is ε pseudorandom generator (PRG) if the
ensemble (K(1n), FK(1n)(Un)) is ε-indistinguishable from the ensemble (K(1n),Um(n)). When ε is
negligible, we refer to F as a pseudorandom generator. The collection F is ε unpredictable generator
(UG) if for every efficient adversary A and every sequence of indices {in}, where in ∈ [m], we have
that

Pr
k
R←K(1n),x

R←Un,y=Fk(x)

[A(k, y[1..in−1]) = Fk(x)in ] < ε(n).

We say that F is ε last-bit unpredictable if the above is true for the sequence of indices in = m(n).
We refer to m(n) − n as the stretch of the PRG (resp., UG), and classify it as sublinear if

m(n)− n = o(n), linear if m(n)− n = Ω(n) and polynomial if m(n)− n > n1+Ω(1).

Remark 3.2 (Uniform unpredictability). One may consider a uniform version of the unpredictabil-
ity definition where the sequence of indices {in} should be generated in polynomial-time by an effi-
cient algorithm which is given 1n (and is allowed to err with negligible probability). We prefer the
non-uniform version as it will be easier to work with. However, it is not hard to show that the two
definitions are essentially equivalent. Formally, for any inverse polynomials ε, and δ the notion of
ε-unpredictability (as per the above definition) implies uniform (ε+ δ)-unpredictability. To see this,
consider an efficient adversary A that contradicts non-uniform unpredictability, and let us construct
an efficient algorithm B that generates a “good” sequence of indices. The idea is to estimate the
quantity pi which is the success probability of A in predicting the i-th bit of the sequence FK(1n)(Un)
based on the i− 1 prefix. By standard Chernoff bound, we can efficiently estimate each of the pi’s
(for i ∈ [n]) with an additive error of δ with all but exponentially small failure probability, and then
choose the best index.

3.2 Properties of Goldreich’s function

The following propositions shows that for the ensemble FQ,m last-bit unpredictability and standard
unpredictability are equivalent, and so are approximate one-wayness and standard one-wayness.

Proposition 3.3. For every constant locality d ∈ N and predicate Q : {0, 1}d → {0, 1}: If FQ,m
is ε last-bit unpredictable then FQ,m is also ε(1 + o(1))-unpredictable, for every m = poly(n) and
every ε = 1/poly(n).

Proof. The proof follows easily from the symmetric structure of F . Assume towards a contradiction
that FQ,m can be predicted with success probability ε. Suppose that there exists a next-bit predictor
P and a sequence of indices {in} such that

α(n) = Pr
x
R←Un,G

R←Gn,m,d,y=fG,Q(x),in
R←[m]

[P(G, y[1..in−1]) = yin ].
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We construct a last-bit predictor P′ with success probability of α − o(α) as follows. First, use
Remark 3.2 to efficiently find an index j ∈ [m] such that, with probability 1 − neg(n) over the
coins of P′, it holds that Pr[P(G, y1..j) = yj+1] > α(n)− α(n)2 where the probability is taken over
a random input and random coin tosses of P. Now given an input (G, y[1..m−1]), construct the
graph G′ by swapping the j-th edge Sj of G with its last edge Sm. Then, P′ invokes P on the
input (G′, y[1..j−1]) and outputs the result. It is not hard to verify that this transformation maps

the distribution (G
R← Gn,m,d, fG,Q(Un)[1..m−1]) to (G

R← Gn,m,d, fG,Q(Un)[1..j]), and so the claim
follows.

Proposition 3.4. For every constant locality d ∈ N, predicate Q : {0, 1}d → {0, 1}, and fixed
proximity parameter δ ∈ (0, 1

2) (which may depend on d), there exists a constant c = c(d, δ), such
that for every inverse polynomial ε = ε(n) the following hold.

1. For m > cn, if FQ,m is ε one-way then FQ,m is also (ε′ = ε+ o(1), δ) approximate one-way.

2. If FQ,m+cn is ε one-way then FQ,m is (ε′ = ε(1 + o(1)), δ) approximate one-way.

Proof. Assume, without loss of generality, that Q is a non-constant d local predicate (otherwise, the
theorem is trivially true), and let 0 < δ < 1

2 be a fixed proximity parameter (that may depend on
d). In Thm. 2 of [13] it is shown that there exists a constant c = c(d, δ) and an efficient algorithm A
that inverts Fm,Q given a δ-approximation of the preimage x, for every fixed proximity parameter
δ ∈ (0, 1

2). More precisely, it is shown that for a fraction of 1− o(1) of all (m,n, d) hypergraphs G,
we have that

Pr
x
R←Un,y=fG,Q(x)

[∀x′ s.t. dist(x, x′) ≤ δ, A(y, x′) ∈ f−1
G,Q(y)] > 1− neg(n). (1)

We can now prove the proposition. Suppose that FQ,m is not (ε′, δ) approximate one-way. That
is, there exists an algorithm B which given (G, y = fG,Q(x)), where G is a random (m,n, d) graph

and x
R← Un, finds a string x′ which δ-approximates x with probability ε′ (for infinitely many

n’s). To prove the first item (where m > cn) invoke B, obtain an approximation x′ w.p. ε′, feed
the algorithm A with G, y and x′ and output its result. By a union bound, the overall success
probability is ε = ε′ − o(1) as required.

We move to the second item, and construct an ε-inverter for FQ,m+cn. Given an input (G, y =
fG,Q(x)), partition G and y into two pairs (G1, y1) and (G2, y2) where G1 (resp., y1) consists of
the first m hyperedges of G (resp., bits of y), and G2 (resp., y2) consists the last cn hyperedges
(resp., bits) of G (resp. of y). Now first apply B to (G1, y1) to obtain an approximation x′ and
then apply A to (G2, y2, x

′). Let us condition on the event that B succeeds, and the event that G2

is a “good” graph for A, i.e., that G2 satisfies Eq. 1. The two events are independent and so the
probability that they both happen is ε′(1 − o(1)). Conditioned on this, the algorithm A succeeds
with probability 1− neg(n), and so by a union bound we get that the overall success probability is
ε = ε′(1− o(1))− neg(n) = ε′(1− o(1)), as needed.

4 Random Local Functions with Constant Unpredictability

We will prove the following theorem:
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Theorem 4.1 (one-way⇒ somewhat-unpredictable). For every constants ε and d ∈ N there exists
a constant c > 0 such that the following holds. For every predicate Q : {0, 1}d → {0, 1} and m > cn
if the collection FQ,m is ε-one-way then it is also ε′-unpredictable for some constant ε′ < 1. (In
particular, ε′ = 1−Match(Q)/2 + Θ(ε).)

By Propositions 3.3 and 3.4 (part 1), we can replace next-bit prediction with last-bit predictor
and exact inversion with approximate inversion. Hence, it suffices to prove the following:

Theorem 4.2 (approximate one-way⇒ last-bit unpredictability). For every polynomial m = m(n),
constant d ∈ N, predicate Q : {0, 1}d → {0, 1}, and constant 0 < ε < µ = Match(Q), if the collection
FQ,m is (ε/4, 1

2 +ε/6) approximate-one-way then it is (1−µ/2+ε)-last-bit unpredictable generator.

Recall, that µ > 2−d for a non-fixed predicate and µ > Ω(log d/d) if the predicate is balanced.
The proof of the theorem is given in Section 4.1.

4.1 Proof of Thm. 4.2

To prove the theorem we consider the following algorithm (see Figure 1) which makes calls to a
last-bit predictor P. Syntactically, P takes as an input an (m − 1, n, d) graph G, an (m − 1)-bit
string y (supposedly y = fG,Q(x)), and an hyperedge S, and outputs its guess for Q(xS).

• Input: an (n,m, d) graph G and a string y ∈ {0, 1}m.

• Randomness: Choose uniformly at random a set S = (i1, . . . , id), and an index ` ∈ [d],
as well as random coins r for P.

1. For every i ∈ [n]: Let x̂i = P(G, y, S`←i; r), where S`←i is the set obtained by replacing
the `-th entry in S with the index i, and P is always invoked with the same fixed
sequence of coins r.

2. Output the candidate x̂ and its complement.

Figure 1: Basic Algorithm.

We analyze the algorithm. In order to succeed we intuitively need two conditions (1) sensitivity:
flipping the `-th entry of xS should change the value of the predicate Q; and (2) correctness: The
predictor should predict well over many of the i’s. We will prove that conditions of this spirit
indeed guarantee success, and then argue that the conditions hold with good enough probability
(taken over a random input and the random coins of the algorithm).

We begin by formalizing these conditions. We say that the tuple (x,G, r, S, `) is good if the
following two conditions hold

Q(xS) 6= Q(x⊕`S ) (2)

where z⊕i denotes the string z with its i-th bit flipped, and, in addition, for at least (1
2 + ε/6)

fraction of the i ∈ [n]
P(G, fG,Q(x), S`←i; r) = Q(xS`←i). (3)

It is not hard to see that a good tuple leads to a good approximation of x.
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Lemma 4.3. If the tuple (x,G, r, S, `) is good then either x̂ or its complement agrees with x for a
fraction of (1

2 + ε/6) of the indices.

Proof. Let j` be the `-th entry of S. Then, by Eq. 2, we can write

Q(xS`←i) = Q(xS)⊕ xj` ⊕ xi.

Hence, for every i ∈ [n] for which Eq. 3 holds we have that

x̂i = P(G, y, S`←i; r) = Q(xS`←i) = Q(xS)⊕ xj` ⊕ xi = b⊕ xi,

where b = Q(xS)⊕ xj` . Hence, if b = 0 the output x̂ agrees with x on a fraction of (1
2 + ε/6) of its

coordinates, and otherwise, the complement 1− x̂ has such an agreement.

In the next section, we will prove that for many of the triples (x,G, r), a randomly chosen (S, `)
forms a good tuple with probability Ω(εµ/d).

Lemma 4.4. For at least ε− neg(n) fraction of the pairs (x,G), we have that

Pr
S,`,r

[(x,G, r, S, `) is good] > Ω(εµ/d)). (4)

We can now prove Thm. 4.2.

Proof of Thm. 4.2. Given an inputG and a string y = fG,Q(x), invoke the basic algorithmO(d/(εµ))
times each time with a randomly chosen coins, and output all the O(d/(εµ)) candidates. Let us
condition on the event that the pair (G, x) satisfies Eq. 4, which, by Lemma 4.4, happens with
probability at least ε/2. In this case, by Lemmas 4.3 and 4.4, in each iteration we will output with
probability Ω(εµ/d) a good candidate whose agreement with x is (1

2 + ε/6)n. Since the success
probability of each iteration is independent of the others, we can make sure that at least one it-
eration succeeds with probability ε/4, and so, by a union bound, the overall success probability is
ε/2− ε/4 = ε/4.

4.2 Proof of Lemma 4.4

Call x balanced if wt(x) ∈ (n/2± n2/3). We call a triple (x,G, r) good if x is balanced and

Pr
S

[P(G, fG,Q(x), S; r) = Q(xS)] > 1− µ/2 + ε/2. (5)

Claim 4.5. A random triple (x,G, r) is good with probability ε− neg(n).

Proof. By our assumption on P we have that

Pr
G,S,x,r

[P(G, fG,Q(x), S; r) = Q(xS)] > 1− µ/2 + ε.

Hence, by Markov’s inequality and the fact that ε < µ,

Pr
G,x,r

[(x,G) satisfy Eq. 5] > ε/(µ− ε) > ε.

Finally, by a Chernoff bound, a random x is balanced with probability 1−neg(n), and so can write

Pr
G,x is balanced,r

[(x,G) satisfy Eq. 5] > ε− neg(n),

and the claim follows.
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Fix a good triple (x,G, r). Let us define for every set S the event A(S) which happens if
P(G, fG,Q(x), S; r) = Q(xS). To prove Lemma 4.4 it suffices to show that

Lemma 4.6. For a fraction of at least εµ
3d · (1− o(1)) of the pairs (S, `), the following hold:

Q(xS) 6= Q(x⊕`S ) (6)

Pr
i∈[n]

[A(S`←i)] >
1

2
+ ε/6 (7)

Proof. First, we will need some definitions. For a set S let xS ∈ {0, 1}d be the “label” of the
set. Let M be a maximal matching of the predicate Q whose cardinality is µ2d. We restrict our
attention to sets S for which xS ∈M . For such S, we define the index `(S) to be the single integer
` ∈ [n] for which the pair (xS , x

⊕`
S ) is an edge in M . (Since M is a matching, S will have exactly

one index.) Observe, that by definition, we have that Q(xS) 6= Q(x⊕`S ), where ` is the index of S.
Hence, to prove the lemma, it suffices to show that the following probabilistic event E:

xS ∈M
∧
` = `(S)

∧
Pr
i∈[n]

[A(S`←i)] >
1

2
+ ε/6,

happens with probability at least εµ
3d · (1 − o(1)) over a random choice of S and `. PrS,`[E] is

lower-bounded by

Pr
S

[xS ∈M ] · Pr
`
R←[d]

[` = `(S)] · Pr
S s.t. xS∈M

[
Pr
i
R←[n]

[A(S`(S)←i)] >
1

2
+ ε/6

]
.

Clearly, we have that Pr
`
R←[d]

[` = `(S)] = 1/d and so it suffices to show that

Pr
S

[xS ∈M ] > µ− o(1) (8)

Pr
S s.t. xS∈M

[
Pr
i
R←[n]

[A(S`(S)←i)] >
1

2
+ ε/6

]
> ε/3. (9)

Before we prove Eq. 8 and 9, we need the following simple observation. Note that the labels
of S (which are d-bit strings) induce a partition over all the n(d) sets to 2d classes. For a label
z ∈ {0, 1}d, let pz denote the probability that a random set S is labeled by z. Note that pz depends
only in the Hamming weight of z (and x). In particular, since x is balanced and d is small, we have

Claim 4.7. For every z ∈ {0, 1}d, pz ∈ 2−d ± o(1).

Proof. Since x is balanced (n/2−n
2/3−d
n )d < pz < (n/2+n2/3

n−d )d, and the claim follows as d < o(n1/3).

Hence, Eq. 8 follows as

Pr
S

[xS ∈M ] =
∑
z∈M

pz =
(
µ2d · 2−d(1± o(1))

)
= (µ± o(1)).

From now on, we focus on proving Eq. 9. We begin by showing that P succeeds well with
respect to a set S chosen uniformly over all S’s for which xS is a node in M .
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Claim 4.8. PrS s.t. xS∈M [A(S)] > 1
2 + ε/3.

Proof. By Bayes’ theorem and the goodness of (x,G) we have

1− µ/2 + ε < Pr
S

[A(S)] = Pr
S

[xS /∈M ] · Pr
S s.t. xS /∈M

[A(S)] + Pr
S

[xS ∈M ] · Pr
S s.t. xS∈M

[A(S)],

by rearranging the equation and by noting that PrS s.t. xS /∈M [A(S)] is at most 1, we get

Pr
S s.t. xS∈M

[A(S)] >

(
Pr
S

[A(S)]− Pr
S

[xS /∈M ]

)
· 1

PrS [xS ∈M ]

>
1− µ/2 + ε− 1 + PrS [xS ∈M ]

PrS [xS ∈M ]
.

Recall that PrS [xS ∈M ] = (µ± o(1)), hence, we conclude that

Pr
S s.t. xS∈M

[A(S)] >
1− µ/2 + ε− 1 + µ− o(1)

µ+ o(1)

=
µ/2 + ε/2− o(1)

µ+ o(1)

>
1

2
+ ε/2− o(1),

and the claim follows.

Note that in Eq. 9, we are actually interested in prediction over a random “neighbor” S`(S)←i
of S. To analyze this, we need one final observation. We use the graph M to define a larger graph
H over all the sets S for which xS ∈M . The edges of H are defined as follows: each S is connected
to n nodes where the i-th node is S`←i where ` is the index of S. We put forward some basic facts
about the graph H:

Claim 4.9. The graph H is undirected and each node has exactly n distinct neighbors including
one self loop.

Proof. We show that the graph is undirected. Fix an edge (S, T = S`←i) where xS = z and ` be
the index of S, i.e., (z, z⊕`) is an edge in M . We claim that ` is also the index of T . Indeed, by
definition xT is either z or z⊕` and therefore T ’s index is `. It follows that for every j the pair
(T, T`←j) is also an edge in H and by taking j to be the `-th entry of S we get that (T, T`←j = S)
is an edge. The rest of the claim follows directly from the definition of H.

In fact, it is not hard to verify that the edges form an equivalence relation and therefore the
graph is composed of n-sized cliques. We can now prove Eq. 9. Namely, that P predicts well over
a set S′ which is a random neighbor of a random set S (for which xS ∈M):

Claim 4.10. For at least ε/3 fraction of all sets S for which xS ∈M we have

Pr
i
R←[n]

[A(S`(S)←i)] >
1

2
+ ε/6.

16



Proof. First note that

Pr
S s.t. xS∈M,i

R←[n],T=S`(S)←i

[A(T )] = Pr
S s.t. xS∈M

[A(S)]. (10)

Indeed, the set T is chosen by first choosing a random node S in the regular graph H and then
letting T be a random neighbor of S in H. Hence, since H is a regular graph, T is just a random
node (uniformly distributed over all S for which xS ∈M). Now by Claim 4.8, the rhs of Eq. 10 is
at least 1

2 + ε/3, and so the current claim (4.10) follows from Markov’s inequality.

This completes the proof of Lemma 4.6.

5 Random Local Functions with (1
2 + 1/poly)-Unpredictability

In this section we prove the following theorem:

Theorem 5.1 (one-way⇒ (1
2 +1/poly)-unpredictable). Let d ∈ N be a constant locality parameter

and Q : {0, 1}d → {0, 1} be a sensitive predicate. Then, for every m ≥ n and inverse polynomial ε,
if FQ,m/ε2 is ε-one-way then FQ,m is (1

2 + cε)-unpredictable, for some constant c = c(d) > 0.

For simplicity, and, without loss of generality, we assume that the first variable of Q has maximal
influence, i.e., Inf1(Q) = 1. We rely on the following notation. For a permutation π : [n]→ [n] and
an ordered set S = {i1, . . . , id} ⊆ [n] we let π(S) denote the ordered set {π(i1), . . . , π(id)} ⊆ [n].
For an (m,n, d) graph G = (S1, . . . , Sm) we let π(G) denote the (m,n, d) graph (π(S1), . . . , π(Sm)).
For a string x ∈ {0, 1}n, the string π(x) is the string whose coordinates are permuted according to
π.

To prove the theorem, assume towards a contradiction that we have a predictor P that predicts
the last output with probability 1

2 + ε for infinitely many n’s where ε is an inverse polynomial. (A
standard next-bit predictor can be transformed to such predictor by Prop. 3.3.) Syntactically, P
takes as an input an (m− 1, n, d) graph G, an (m− 1)-bit string y (supposedly y = fG,Q(x)), and
an hyperedge S, and outputs its guess for Q(xS).

In order to invert FQ,tm we will make use of the following sub-routine Vote (Figure 2), which
essentially corresponds to the “basic procedure” described in Section 2. The subroutine takes a
“small” (n,m, d) graph G, a corresponding output string y = fG,Q(x), and uses the predictor P to
approximate the value xi ⊕ x` where the indices i and ` are given as additional inputs. (The index
` is referred to as “global advice” as it will be reused among different iterations).

The algorithm Invert (Figure 3) uses Vote to invert a random member of FQ,tm.

Analysis. From now on fix a sufficiently large input length n for which P is successful. Let us
focus on the way our algorithm recovers one fixed variable i ∈ [n]. First we will show that in
each call to the subroutine Vote, whenever the predictor predicts correctly, we get a “good” vote
regarding whether xi and x` agree. Hence, if our global guess b for x` is correct, and most of the
predictions (in the i-th iteration of the outer loop) are good, we successfully recover xi. In order
to show that the predictor succeeds well, we should analyze the distribution on which it is invoked.
In particular, we should make sure that the marginal distribution of each query to P is roughly
uniform, and, that the dependencies between the queries (during the i-th iteration of the outer
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• Input: an (n,m, d) graph G, a string y ∈ {0, 1}m, an index i ∈ [n].

• Global advice: index ` ∈ [n].

1. Choose a random hyperedge S = (S1, . . . , Sd) from G subject to the constraint S1 = i
and ` /∈ {S2, . . . , Sd}. Let s denote the index of S in G, i.e., S = Gs. (If no such edge
exist abort with a failure symbol.)

2. Let G′ be the same as G except that the hyperedge S is removed. Similarly, let y′ be
the string y with its s-th bit removed. Define the hyperedge S′ = (`, S2, . . . , Sd).

3. Choose a random permutation π : [n]→ [n], and let (H = π(G′), y′, T = π(S′)).

4. Output P(H, z, T )⊕ ys.

Figure 2: Algorithm Vote.

• Input: an (n, tm, d) graph G and a string y ∈ {0, 1}tm, where t is a parmeter.

1. Partition the input (G, y) to t blocks of length m where y(j) = y[(j−1)m+1..jm] and

G(j) = G[(j−1)m+1..jm].

2. Choose a random pivot `
R← [n], and a random bit b (our guess for x`).

3. For each i ∈ [n] we recover the i-th bit of x as follows:

(a) For each j ∈ [t], invoke the subroutine Vote on the input (G(j), y(j), i) with global
advice `, and record the output as vi,j .

(b) Set vi to be the majority vote of all vi,j ’s.

4. If b = 0 output v; otherwise output the complement 1− v.

Figure 3: Algorithm Invert.
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loop) are minor. This is a bit subtle, as there are some dependencies due to the common input x
and common pivot `. To cope with this, we will show (in Lemma 5.2) that these queries can be
viewed as independent samples, alas taken from a “modified” distribution which is different from
the uniform. Later (in Lemma 5.3) we will show that, whp, P predicts well over this distribution
as well.

The modified distribution. Let Xk denote the set of all n-bit strings whose Hamming weight
is exactly k. For k ∈ [n] and a bit σ ∈ {0, 1} define the distribution Dk,σ over tuples (G, r, y, T ) as
follows: the graph G is sampled from Gn,m−1,d, the string r is uniformly chosen from Xk, the string
y equals to fQ,G(r), and the hyperedge T = {T1, . . . , Td} is chosen uniformly at random subject to
rT1 = σ. In Section 5.1, we prove the following lemma:

Lemma 5.2. Let (G, y, `, i) be the input to Vote where G
R← Gn,m,d, the indices ` ∈ [n] and i ∈ [n]

are arbitrarily fixed and y = fQ,G(x) for an arbitrary fixed x ∈ {0, 1}n. Consider the random
process Vote(G, y, `, i) induced by the internal randomness and the distribution of G. Then, the
following hold:

1. The process fails with probability at most 1/2.

2. Conditioned on not failing, the random variable (H,π(x), y′, T ) is distributed according to
Dk,x`, where k is the Hamming weight of x.

3. Conditioned on not failing, if the outcome of the predictor P(H, y′, T ) equals to Q(π(x)T )
then the output of Vote is xi ⊕ x` (with probability 1).

Our next goal is to show that with good probability over x and the pivot `, the predictor P
predicts well on the distribution Dwt(x),x` . In Section 5.2, we prove the following lemma:

Lemma 5.3. With probability Ω(ε) over a random choice of the input x
R← Un and the pivot `

R← [n],
we have that

Pr
(G,r,y,T )

R←Dwt(x),x`

[P(G, y, T ) = Q(rT )] >
1

2
+ ε/2.

We can now prove the theorem.

Proof of Thm. 5.1 given the lemmas. Let us condition on the event that x and ` satisfy the equation
of Lemma 5.3, and that our guess b for x` was successful. By Lemma 5.3, this event happens with
probability Ω(ε) · 1

2 = Ω(ε). From now on, we assume that x, ` and b are fixed. Let us now upper-
bound the probability that the output of Invert disagrees with x on the i-th bit for a fixed index
i ∈ [n]. Define a random variable αj which takes the value 1 if the vote vi,j is good i.e., vi,j = xi⊕x`,
takes the value −1 if the vote is incorrect, and takes the value 0 if the subroutine Vote fails. Observe
that we recover xi correctly if

∑
αj is positive (as our guess b for x` is assumed to be correct).

By Lemmas 5.2 and 5.3, the αj ’s are identically and independently distributed random variables
which takes the value 0 with probability at most 1/2, and conditioned on not being zero take the
value 1 with probability at least 1

2 + Ω(ε). We claim that the probability of
∑
αj ≤ 0 is at most

exp(−Ω(tε2)). Indeed, first observe that, by a Chernoff bound, the probability of seeing at most
2t/3 zeroes is at least 1−exp(−Ω(t)). Now, conditioned this event, the t′ > t/3 remaining non-zero
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αi’s are i.i.d random variables that take the value ±1 w/p 1
2±Ω(ε). Hence, by Hoefding’s inequality,

the probability that their sum is negative is at most exp(−Ω(t′ε2)) = exp(−Ω(tε2)). Overall, by a
union bound, the probability that the i-th bit of x is badly recovered (i.e.,

∑
αj ≤ 0) is at most

exp(−Ω(tε2)) + exp(−Ω(t)) < exp(−Ω(tε2)).
This already implies a weaker version of Thm. 5.1, as by taking t = O(lg n/ε2) we get that each

bit of x is recovered with probability 1 − 1/n2 and so by, a union bound, we recover all the bits
of x with overall probability of Ω(ε)(1− o(1)) > Ω(ε). This shows that FQ,O(m lgn/ε2) is Ω(ε)-one-
way. To obtain the stronger version (without the lg n overhead), we employ Prop. 3.4. Namely,
we let t = O(1/ε2), and so with probability Ω(ε) each bit of x is recovered with probability 3/4.
These predictions are not independent. However, by Markov (conditioned on the above) at least
2/3 of the indices are recovered correctly with some constant probability, and overall we get an
inverter that finds a 1/3-approximation of x with probability Ω(ε), which, by Prop. 3.4 (part 2),
contradicts the Ω(ε)-one-wayness of FQ,O(m/ε2)+cdn, where cd is a constant that depends only in

the locality d. Overall, we showed that if FQ,m′ is ε′-one-way then FQ,m is 1
2 + ε hard to predict,

for m′ = O(m/ε2) + cdn and ε′ = Ω(ε). By letting ε′ = c′ε for some constant c′ = c′(d), we can set
m′ = m/ε′2 (as m ≥ n), and derive the theorem.

In Section 5.3 we will show that the above theorem generalizes to variants of FQ,m that capture
some of the existing heuristic candidates.

5.1 Proof of Lemma 5.2

First item. We lower-bound the probability of failure. First, the probability that G has no
hyperedge whose first entry equals to i is (1− 1/n)m < (1− 1/n)n < 2/5. Conditioned on having
an hyperedge whose first entry is i, the probability of having ` as one of its other entries is at most
O(d/n). Hence, by a union bound, the failure probability is at most 2/5 +O(d/n) < 1/2.

Second item. Fix x and let k be its Hamming weight. Let x+ be the support of x, i.e., set of
indices j such that xj = 1. Consider the distribution of the pair (G,S) defined in Step 1. This
pair can be sampled independently as follows: first choose a random hyperedge S whose first entry
is i and ` does not appear in its other entries, then construct G by choosing a random graph R
from Gn,m−1,d and by planting S in a random location at R. From this view, it follows that the

pair (G′, S′) (defined in Step 2) is independently distributed such that G′
R← Gn,m−1,d and S′ is a

random hyperedge whose first entry is `. Since x is fixed and y′ = fQ,G′(x), we have now a full
understanding of the distribution of the tuple (G′, x, y′, S′).

We will now analyze the effect of the permutation π. Let x′ = π(x) and H = π(G′). First,
observe that for every fixed permutation π the tuple (H,x′, y′) satisfies y′ = fQ,H(x′) since y′ =
fQ,G′(x). Moreover, since G′ is taken from Gn,m−1,d, so is H = π(G) even when π is fixed. Let us
now pretend that the random permutation π is selected in two steps. First, choose a random set
A ⊆ [n] of size k and then, in the second step, choose a random permutation πA subject to the
constraint that π(x+) = A.

Consider the distribution of x′ which is induced by the random choice of A, i.e., before the
second step was performed. Already in this phase we have that x′ is uniformly and independently

distributed according to Xk. Hence, (H
R← Gn,m−1,d, x

′ R← Xk, y
′ = fQ,H(x′)).
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Let us now fix both H and A (and therefore also x′) and so the only randomness left is due
to the choice of πA. We argue that the hyperedge T = πA(S′) is uniformly and independently
distributed under the constraint that the first entry τ of T satisfies x′τ = x`. To see this, recall that

S′1 = `, and so the entry T1 = πA(`) is mapped to a random location in the set
{
j : x′j = x`

}
, also

recall that the last d− 1 entries of S′ are random indices (different than `) and so for every fixing
of πA the d− 1 last entries of T are still random. This completes the proof as we showed that the
tuple (H,x′, y′, T ) is distributed properly.

Third item. Let us move to the third item. Suppose that P outputs the bit Q(π(x)T ). Then,
since T = π(S′), the result equals to Q(xS′), which, by definition, can be written as Q(xS)⊕x`⊕xi.
Hence, when this bit is XOR-ed with Q(xS), we get x` ⊕ xi, as required.

5.2 Proof of Lemma 5.3

We define a set X of “good” inputs by taking all the strings of weight k ∈ K for some set K ⊂ [n].
We will show that X captures Ω(ε) of the mass of all n-bit strings, and that for each good x the
predictor P predicts well with respect to the cylinder Xwt(x). Specifically, let pk = Pr[Un ∈ Xk]
and let qk be

Pr
x
R←Xk,G

R←Gn,m−1,d,S
R←([n]

d )
[P(G, fQ,G(x), S) = Q(xS)].

We let X =
⋃
k∈K Xk where K is defined via the following claim.

Claim 5.4. There exists a set K ⊆
{
n/2− n2/3, . . . , n/2 + n2/3

}
for which:∑

k∈K
pk > ε/3 (11)

∀k ∈ K, qk >
1

2
+ ε/2 (12)

Proof. By definition, we have
n∑
k=1

pk · qk >
1

2
+ ε.

By a Chernoff bound, for all k 6∈ (n/2± n2/3) we have pk < neg(n), and therefore,∑
k∈(n/2±n2/3)

pk · qk >
1

2
+ ε− neg(n).

Let K ⊆ (n/2 ± n2/3) be the set of indices for which qk > 1
2 + ε/2. By Markov’s inequality,∑

k∈K pk > ε/3, as otherwise,

1

2
+ε−neg(n) <

∑
k∈(n/2±n2/3)

pk ·qk =
∑
k∈K

pk ·qk+
∑

k∈(n/2±n2/3)\K

pk ·qk < ε/3+

(
1

2
+ ε/2

)
=

1

2
+5ε/6,

and, since ε is an inverse polynomial, we derive a contradiction for all sufficiently large n’s.
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For a bit σ ∈ {0, 1} let qk,σ be

Pr
x
R←Xk,G

R←Gn,m−1,d,S
R←([n]

d )
[P(G, fQ,G(x), S) = Q(xS)|xS1 = σ],

where S1 denotes the first entry of S. Observe that for every k there exists a σk ∈ {0, 1} for which
qk,σk ≥ qk. Hence, by the above claim, we have that with probability Ω(ε) over a random choice of

the input x
R← Un, we have that x ∈ X and so

Pr
(G,r,y,T )

R←Dwt(x),σwt(x)

[P(G, y, T ) = Q(rT )] >
1

2
+ ε/2.

To complete the proof of the lemma, observe that for every x ∈ X, since x is balanced, the

probability that a random pivot `
R← [n] satisfies x` = σwt(x) is at least (n/2− n2/3)/n = 1

2 − o(1).

Hence, with probability Ω(ε) over the random choice of x and `, we have that qwt(x),x` >
1
2 + ε/2

as required.

5.3 Generalization to the noisy case

Let Q be a sensitive predicate. Consider the collection F ′Q,m which is indexed by a random (m,n, d)
graph G, and given x it outputs (G, fG,Q(x)⊕E), where E is a “noise” distribution over {0, 1}m with
the following properties: (1) it is independent of G and x; (2) it is invariant under permutations:
for every π : [m] → [m] the random variable π(E) is identically distributed as E; and (3) it
can be partitioned to t blocks E = (Ei) of length b each, such that each block is identically and
independently distributed. We may also slightly generalize this and allow E to have an index k
which is sampled and given as part of the index of the collection F ′Q,m. One-wayness is defined
with respect to x, that is, we say that F ′Q,m is ε-one-way if it is hard to recover x with probability
ε. Theorem 5.1 can be generalized to this setting as follows.

Theorem 5.5 (Thm. 5.1: generalization). Let d ∈ N be a constant locality parameter and Q :
{0, 1}d → {0, 1} be a sensitive predicate. Let m ≥ n be the block length of the noise E. Then, for
every inverse polynomial ε, if F ′Q,m lgn/ε2 is ε-one-way then F ′Q,m is (1

2 + Ω(ε))-unpredictable.

The proof is the essentially the same as the proof of Thm. 5.1. Algorithm Invert is being used,
and its analysis does not change due to the symmetry and independence of the noise. The only
difference is that we do not know whether the reduction from approximate one-wayness to one-
wayness holds and so we employ the algorithm invert with t = lg n/ε2 overhead to ensure inversion
rather than approximate inversion.

This generalization can capture the case of noisy-local-parity construction ( [2, 8, 4]) where Q
is linear (i.e., “exclusive-or”) and each bit of E is just an independently chosen noisy bit taken to
be one with probability p < 1

2 (e.g., 1/4). It also captures a variant of the MST construction [36],
and so in both cases we prove weak pseudorandomness from one-wayness.

6 From Unpredictability to Pseudorandomness

We will prove Theorems 1.2, 1.3, and 1.4 by combining our “one-wayness to unpredictability”
reductions (proved in Sections 4 and 5) with several generic transformations.
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First we will need the well-known theorem of Yao [40] which shows that sufficiently strong
unpredictability leads to pseudorandomness:

Fact 6.1 (Good UG ⇒ PRG). A UG of output length m(n) and unpredictability of 1
2 + ε, is a

PRG with m · ε pseudorandomness.

By combining this fact with Thm. 5.1 we obtain Thm. 1.4:

Corollary 6.2 (Thm. 1.4 restated). For every constant d, sensitive predicate Q : {0, 1}d → {0, 1},
length parameter m(n) ≥ n, and an inverse polynomial δ(n) ∈ (0, 1), if FQ,m3/δ2 is one-way then
FQ,m is cδ-pseudorandom, for some constant c = c(d) > 0.

Proof. By Thm. 5.1, if FQ,m3/δ2 is one-way then FQ,m is (1
2 +Ω(δ/m))-unpredictable, and by Yao’s

theorem (Fact 6.1) the latter is Ω(δ)-pseudorandom.

Recall that in Thm. 4.1 we showed that for constant ε and sufficiently large m = Ω(n) if FQ,m
is ε-one-way then it is also ε′-unpredictable for some related constant ε′ < 1. We would like to
use this theorem to obtain a linear stretch PRG. However, in this case Yao’s theorem (Fact 6.1)
is useless as we have only constant unpredictability. For this setting of parameters we give an
alternative new NC0 transformation from UG to PRG which preserves linear stretch.

Theorem 6.3. For every constant 0 < ε < 1
2 , there exists a constant c > 0 such that any NC0

unpredictable generator G : {0, 1}n → {0, 1}cn which is (1
2 + ε)-unpredictable, can be transformed

into an NC0 pseudorandom generator with linear stretch (e.g., that maps n bits to 2n bits) and
negligible distinguishing advantage.

The theorem is proved by combining the techniques of [27] with non-trivial NC0 randomness
extractors from [8]. The proof of this theorem is deferred to Section 6.1.

As a corollary of the above theorem and Thm. 4.1 we get:

Corollary 6.4 (Thm. 1.2 restated). Let d ∈ N be an arbitrary constant and Q : {0, 1}d → {0, 1}
be a predicate. Then there exists a constant c = cd such that if FQ,cn is 1

2 -one-way then there exists
a collection of PRGs which doubles its input in NC0.

We mention that by standard techniques (see Fact 6.5 below), we can obtain any fixed linear
stretch at the expense of increasing the locality to a different constant.

We will now show that for sensitive Q if FQ,n1+δ is one-way then one get get arbitrary polynomial
stretch and arbitrary (fixed) inverse polynomial security in NC0 (i.e., prove Thm. 1.3). For this
purpose, we will need the following amplification procedures (together with Thm. 5.1):

Fact 6.5 (Amplifying unpredictability and stretch). For every polynomials t = t(n) and s = s(n):

1. A d-local UG G : {0, 1}n → {0, 1}m(n) with unpredictability of 1
2 + ε(n), can be transformed

into a (td)-local UG G′ : {0, 1}n·t → {0, 1}m(n) with unpredictability of ε′ = (ε(n))Ω(t)+neg(n).

2. A d-local PRG G : {0, 1}n → {0, 1}nb with pseudorandomness ε(n), can be transformed into

a (ds)-local PRG G′ : {0, 1}n → {0, 1}n(bs)
with pseudorandomness sε(n).
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The above fact also holds with respect to collections. The first part is based on Yao’s XOR-
lemma, and may be considered to be a folklore, and the second part is based on standard compo-
sition. A proof is given in Section A for completeness.

We can prove Thm. 1.3.

Corollary 6.6 (Thm. 1.3 restated). For every constant d, sensitive predicate Q : {0, 1}d → {0, 1},
and constant δ > 0. If FQ,n1+δ is one-way then for every stretch parameter 1 < a < O(1) and
security parameter 1 < b < o(n) there exists a collection of PRGs of output length na and pseudo-

randomness of 1/nb + neg(n) with locality d′ = (bd/δ)O( lg a
δ

).

Note that for fixed δ > 0, we can have PPRG with arbitrary fixed polynomial stretch and
security with constant locality. Alternatively, by setting b = b(n) = ω(1) (e.g., b = log∗(n)), we get
a standard PPRG with slightly super constant locality.

Proof. Fix d,Q and δ, and assume that FQ,n1+δ is one-way. With out loss of generality, δ ≤ 1.

Then, by Thm. 5.1, FQ,n1+δ/4 is (1
2 + n−δ/4)-unpredictable. We can now amplify unpredictability

via Fact 6.5, part 1.
Specifically, by taking t = Ω(b/δ) we get a new generator G with input length ` = tn, output

length n1+δ/4 = `1+δ/5, locality td and unpredictability of n−(b+4) = `−(b+3). By Yao’s theorem
(Fact 6.1) the resulting collection is pseudorandom with security `−(b+3) ·`1+δ/5 = `−(b+1) (as δ ≤ 1).

Finally, increase the stretch of the PRG by applying s-composition (Fact 6.5, part 2), for
s = lg(a)/ lg(1 + δ/5). This leads to a PRG which stretches `-bits to `(1+δ/5)s = `a bits, with

pseudorandomness of s · `−(b+1) < `−b, and locality of (td)s = (bd/δ)O( lg a
δ

).

6.1 Proof of Thm. 6.3

We will prove the following weaker version of Thm. 6.3.

Theorem 6.7. There exist constants 0 < ε0 <
1
2 and c0 > 0 such that if there exists an NC0 UG

(resp., collection of UG) G : {0, 1}n → {0, 1}c0n which is (1
2 + ε0)-unpredictable, then there exists

an NC0 PRG (resp., collection of PRG) with linear stretch.

Note that this version implies Thm. 6.3, as for any fixed ε > 0 given (1
2 + ε)-unpredictable gen-

erator G : {0, 1}n → {0, 1}cn with sufficiently large constant c = cε, we can amplify unpredictability
(via Fact 6.5, part 2) and obtain a new UG in NC0 and unpredictability of (1

2 + ε0) and stretch
c0n.

To prove the theorem we will employ NC0 randomness extractors.

Extractors. The min-entropy of a random variable X is at least k if for every element x in the
support of X we have that Pr[X = x] ≤ 2−k. A mapping Ext : {0, 1}`×{0, 1}n → {0, 1}N is a (k, µ)
randomness extractor (or extractor in short), if for every random variable X over {0, 1}n with min-
entropy of k, we have that Ext(U`, X) is µ statistically-close to the uniform distribution. We refer to
µ as the extraction error, and to the first argument of the extractor as the seed. We typically write
Extr(x) to denote Ext(r, x). We will use the following fact which follows by combining Lemma 5.7
and Thm. 5.12 of [8]:
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Fact 6.8 (Non-trivial extractors in NC0). For some constants α, β < 1 there exists an NC0

extractor Ext that extracts n bits from random sources of length n and min-entropy α · n, by using
a seed of length βn. Furthermore, the error of this extractor is exponentially small in n.

Construction 6.9. Let G : {0, 1}n → {0, 1}cn be a UG, and Ext : {0, 1}βn × {0, 1}n → {0, 1}n
be the extractor of Fact 6.8. We define the following function H : {0, 1}n2(1+cβ) → {0, 1}cn2

as
follows.

• Input: n independent seeds x = (x(1), . . . , x(n)) ∈ ({0, 1}n)n for the generator, and cn inde-
pendent seeds for the extractor z = (z(1), . . . , z(cn)) ∈ ({0, 1}βn)cn.

• Output: Compute the n × cn matrix Y whose i-th row is G(x(i)). Let Yi denote the i-th
column of Y , and output (Extz(1)(Y1), . . . ,Extz(cn)(Ycn)).

Note that H has linear stretch if c > 1/(1 − β). Also, the locality of H is the product of the
localities of G and Ext, and so it is constant. Let ε be a constant which is strictly smaller than
(1− α)/2.

Lemma 6.10. If G is (1
2 + ε)-unpredictable, then the mapping H is a pseudorandom generator.

Proof. The proof follows (a special case of) the analysis of [27]. We sketch it here for completeness.
First, by Proposition 4.8 of [27], we have that G being a (1

2 + ε)-UG has next-bit pseudo-entropy
in the following sense. For every sequence of efficiently computable index family {in} and efficient
distinguisher A there is a random binary variable W , jointly distributed with G(Un), such that:
(1) the Shannon entropy of W given the in − 1 prefix of G(Un) is at least µ, where µ = 1 − 2ε;
and (2) A cannot distinguish between G(Un)[1..in] and (G(Un)[1..in−1],W ) with more than negligible
advantage, even when A is given an oracle which samples the joint distribution (G(Un),W ).

Then, we use Claim 5.3 of [27], to argue that the n-fold direct product G(n) which outputs the
matrix Y (defined in Construction 6.9) has block pseudo-min-entropy of n(µ−o(1)) in the following
sense. For every sequence of efficiently computable index family {in} and efficient distinguisher A
there is a random variable W ∈ {0, 1}n jointly distributed with G(Un), such that: (1) the min-
entropy of W given the first in−1 columns of Y is at least n(µ−o(1)); and (2) A cannot distinguish
between Y[1..in] and (Y[1..in−1],W ) with more than negligible advantage, even when A is given an
oracle which samples the joint distribution (Y,W ).

This means that for every family {in} the distribution (Y[1..in−1],ExtUβn(Yin)) is indistinguish-
able from (Y[1..in−1],Un). Otherwise, an adversary B that contradicts this statement can be used to
construct an adversary A which contradicts the previous claim. Specifically, A(M, v) chooses
a random seed s for the extractor and invokes B on (M,Exts(v)). If v is chosen from Yin
then B gets a sample from (Y[1..in−1],ExtUβn(Yin)), and if v is chosen from W , B gets a sample
from (Y[1..in−1],ExtUβn(W )) which is statistically close to (Y[1..in−1],Un), as W has min-entropy of
n(µ− o(1)) > αn. Hence, A has the same distinguishing advantage as B (up to a negligible loss).

Finally, the above statement implies that for every family {in} the distributionsH(Un2(1+cβ))[1..in]

is indistinguishable from (H(Un2(1+cβ))[1..in−1],U1), and so H is (1
2 + δ)-unpredictable generator for

negligible δ, and by Yao’s theorem (Fact 6.1), it is pseudorandom.

7 Inapproximability of the Densest-Subgraph Problem

We will prove the following theorem:
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Theorem 7.1 (Thm. 1.5 restated). Let d ∈ N be a constant, Q be a d-ary predicate, and m ≥ nc,
where c > 3 is a constant. If Fm,Q is ε = o(1/(

√
n · log n))-pseudorandom, then for every 1/n

c−3
2d ≤

p ≤ 1
2 the p-Densest-Subhypergraph problem is intractable with respect to d-uniform hypergraphs.10

Note that the larger c gets, the better inapproximaility ratio we obtain. Clearly, c cannot be
larger than c(d) where nc(d) is the maximal stretch of d-local pseudorandom generators. Currently,
the best upper-bound on c(d) is roughly d/2 due to [36].

From now on, we assume, without loss of generality, that Q(1d) = 1, otherwise we can negate
it, and use 1−Q as our predicate. (It is not hard to see that pseudorandomness still holds.) Let p
the parameter chosen in Theorem 7.1 and assume that there exists an integer t for which 2−t = p,
i.e., 1 ≤ t ≤ O(log n). We define an operator ρ as follows. Given an (m,n, d) graph G, and a t×m
binary matrix Y ∈ {0, 1}t×m, we view the i-th column of Y as a t-bit label for the i-th edge of G.
Then, the operator ρ(G, Y ) outputs the (m′, n, d) subgraph G′ whose edges are those edges of G
which are indexed under Y by the all-one string 1t.

We construct a pair of distributions Dyes and Dno over hypergraphs which are indistinguishable,
but Dyes (resp., Dno) outputs whp a yes instance (resp., no instance):

• The distribution Dno. Choose a random (m,n, d) graph G, and a random t × m binary

matrix Y
R← Ut×m. Output the subgraph G′ = ρ(G, Y ).

• The distribution Dyes. Choose a random (m,n, d) graph G, and a random t × n binary

matrix X
R← Ut×n. Let x(i) be the i-th row of X, and define a t×m binary matrix Y whose

i-th row is fG,Q(x(i)). Output the subgraph G′ = ρ(G, Y ).

First, we show that Dno and Dyes are weakly-indistinguishable.

Claim 7.2. If Fm,Q is ε-pseudorandom then the ensembles Dno and Dyes (indexed by n) are t · ε =
o(1/
√
n)-indistinguishable.

Proof. A tε-distinguisher immediately leads to a tε-distinguisher between the distributions (G, y(1),
. . . , y(t)) and (G, fG,Q(x(1)), . . . , fG,Q(x(t))) where G is a random (m,n, d) graph, the y’s are random
m-bit strings and the x’s are random n-bit strings. By a standard hybrid argument this leads to
an ε distinguisher for Fm,Q.

Let us analyze Dno. Since Y and G are independent, we can redefine Dno as follows: (1) choose
Y uniformly at random, (2) determine which of the columns of Y equal to the all one string, and (3)
then choose the corresponding hyperedge uniformly at random. Hence, G′ is just a random Gm′,n,d
graph where m′ is sampled from the binomial distribution Bin(p,m), where p = 2−t. Therefore,
standard calculations show that

Lemma 7.3. With all but negligible probability neg(n), the graph G′ chosen from Dno satisfies the
following: (1) It has m′ = (p± 1/n)m edges; and (2) Every set S of nodes of density p contains at
most pd + o(pd) fraction of the edges.

10We did not attempt to optimize the parameters and constraints, and some of them (e.g., c > 3) can be slightly
improved.
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Proof. The first item follows from an additive Chernoff bound: define m Bernoulli r.v.’s, where the
i-th variable is 1 if the i-th hyperedge is chosen. Since the number of r.v.’s is m, the probability of
having m′ = (p± 1/n)m is 1− neg(m) = 1− neg(n).

To prove the second item, let us condition on the event m′ > nc−1, which by the previous
argument happens w/p 1 − neg(n). (Recall that c < d and so 1/n < p). Fix such an m′, and

let G′
R← Gm′,n,d. Consider a fixed set of nodes S of size pn in G′. Every edge of G′ falls in S

with probability pd. Hence, by an additive Chernoff bound, the probability that S contains a set
of edges of density pd + 1/n(c/2)−1 is bounded by exp(−2m′/nc−2) = exp(−2n). Therefore, by a
union bound, the probability that this happens for some set S is at most exp(−2n+ n) = neg(n).
Finally, observe that our choice of p gurentess that 1/n(c/2)−1 = o(pd).

On the other hand, we prove that Dyes has a “large” planted dense sub-graph.

Lemma 7.4. With probability at least 1/
√
n, a graph G chosen from Dyes has a sub-graph of density

pd that contains a fraction of at least pd−1(1− o(1)) edges.

We mention that a tighter analysis can be used to improve the quantity 1/
√
n.

Proof. Label the i-th node of G by t-bit column of the matrix X, and let S be the set of nodes
which are labeled by the all-one string. Consider the following event E in which: (1) S is of density
exactly p; (2) At least pd − 1/n(c/2)−1 fraction of the edges of the original graph G fall in S; (3)
The number of remaining edges m′ in G′ is at most (p+ 1/n)m.

First observe that edges which fall into S are labeled by the all-one strings as Q(1d) = 1, and
so they also appear in G′. Hence, if E happens, then in G′ the p-dense set S contains a set of

edges of density at least (pd− 1/n(c/2)−1)m/m′ > pd−1/n(c/2)−1

p+1/n . Observe that the restriction of p to

1/n
c−3
2d ≤ p ≤ 1

2 , implies that the “error” terms 1/n(c/2)−1 and 1/n are o(pd) and o(p), respectively.

Hence, the density of the set of edges that fall into S can be written as pd−1 · 1−o(1)
1+o(1) > pd−1(1−o(1)).

Now, let us bound the probability of the event E. First, since each node falls in S independently
with probability p, we have (by standard properties of the binomial distribution) that the sub-
event (1) holds with probability at least Ω(1/

√
n). Conditioned on (1), the sub-event (2) happens

with all but negligible probability due to additive Chernoff bound. Hence, (1) and (2) happen
simultaneously w/p Ω(1/

√
n).

Finally, we argue that the probability β that (3) holds is at least 1−neg(n)−t ·ε = 1−o(1/
√
n).

Indeed, consider the algorithm which attempts to distinguish Dno from Dyes by looking at m′ and
accepting iff it m′ ≤ (p + 1/n)m. By Lemma 7.3 this leads to a distinguisher with advantage
1− neg(n)− β, which, by Claim 7.2, can be at most t · ε.

To complete the proof, observe, that, by a union bound, we have that (3) holds together with
(1) and (2) with probability Ω(1/

√
n).

Let us now prove Theorem 7.1.

Proof of Thm. 7.1. Lemma 7.3 guarantees that a graph sampled from Dno is almost always a NO
instance, whereas, by Lemma 7.4, a graph sampled from Dyes is a YES instance with probability at
least Ω(1/

√
n). Hence, an algorithm that solves p−DSH for d-uniform hypergraphs can distinguish

between the two distributions with advantage at least Ω(1/
√
n), in contradiction to Claim 7.2.
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A Omitted proofs

A.1 Amplifying unpredictability and stretch

We will prove Fact 6.5.

Part 1: unpredictability amplification. Define the UG collection F t⊕ : {0, 1}st × {0, 1}nt →
{0, 1}m to be the bit-wise xor of t independent copies of F , i.e., for k1, . . . , kt ∈ {0, 1}s and
x1, . . . , xt ∈ {0, 1}n let F t⊕k1,...,kt

(x1, . . . , xt) = Fk1(x1)⊕ . . .⊕ Fkt(xt).
Fix some t = t(n), and assume, towards a contradiction, that there exists an algorithm A and

a sequence of indices {in} such that

Pr[A(Y
t(⊕)

[1..in−1]) = Y
t(⊕)
in

] >
1

2
+ δ,

for infinitely many m’s and δ = εΩ(t) + neg(n). Then, there exists another adversary A′

Pr[A′(Y (1)
[1..in−1], . . . , Y

(t))
[1..in−1]) = Y

t(⊕)
in

] >
1

2
+ δ,
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for the same input lengths. Define a randomized predicate Pn which given an in − 1 bit string y
samples a bit b from the conditional distribution Ym|Y1..in−1 = y. Then, the last equation can be
rewritten as

Pr[A′(y(1), . . . , y(t)) =
⊕
j∈[t]

Pn(y(j))] >
1

2
+ δ,

where each y(j) is sampled uniformly and independently from Y[1..in−1]. By Yao’s XOR lemma
(cf. [25]), such an efficient adversary A′ implies an adversary A′′ for which

Pr[A′′(Y[1..in−1]) = Pn(Y[1..in−1]) = Yin ] >
1

2
+ ε,

for the same input lengths, in contradiction to the unpredictability of Y .

Uniformity. In order to apply the above argument in a fully uniform setting we should make
sure that pairs Y[1..in−1], Yin are efficiently samplable. Since Y is efficiently samplable it suffices to
show that the sequence {in} is uniform, i.e., can be generated in time poly(n). In fact, to get our
bound, it suffices to have a uniform sequence {i′n} for which A achieves prediction probability of
1
2 + δ −

√
δ. Hence, we can use Remark 3.2.

Part 2: stretch amplification. Let G be the original collection of PRGs with key sampling

algorithm K. We define the s-wise composition of G as follows. The collection G
(s)
~k

(x) is indexed

by s-tuple of “original” indices ~k = (k0, . . . , ks) where the i-th entry is sampled uniformly and

independently by invoking the original index sampling generator K on (1n
(bi)

). We define G
(0)
~k

(x)

to be Gk0(x), and for every i > 0 we let G
(i)
~k

(x) = Gki(G
(i−1)
~k

(x)). Clearly, the resulting collection

has output length of n(bs) and locality ds. A standard hybrid argument shows that the security is
sε(n). (See [24, Chp. 3, Ex. 19].)
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