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Abstract

ACCm circuits are circuits consisting of unbounded fan-in AND, OR
and MODm gates and unary NOT gates, where m is a fixed integer. We
show that there exists a language in non-deterministic exponential time which
can not be computed by any non-uniform family of ACCm circuits of quasi-
polynomial size and o(log log n) depth, where m is an arbitrarily chosen
constant.

1 Introduction

Proving non-uniform circuit lower bounds is a longstanding open problem in com-
plexity theory. The lack of progress in nearly two decades has made it a well-
known major challenge in the theoretical computer science community. Recently,
Williams [15] proposed a research program which tried to show circuit lower
bounds via designing fast satisfiability algorithms for Circuit-SAT problems. A
few months ago, Williams [16] succeeded in carrying out the program by prov-
ing an ingenious super-polynomial lower bound for NEXP against non-uniform
constant-depth ACC circuits of polynomial size, thereby solving a notorious long-
standing open problem. For more background and history on circuit lower bounds,
we refer the readers to [16] which elaborates on this history in detail.
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In this paper, we show that Williams’ lower bound result can be extended to
a broader class of ACC circuits with non-constant depth. A function f is a quasi-
polynomial if f = nlog

O(1) n. Formally, our main theorem is stated as:

Theorem 1 NEXP does not have non-uniform ACC circuits of quasi-polynomial
size and o(log log n) depth.

1.1 Related work

In this section, we survey a few examples of earlier work giving super-polynomial
size bounds for circuits of non-constant depth.

More than two decades ago, building on his powerful switching lemma, Håstad
[9] proved that the parity function can not be computed by families of AC circuits
of polynomial size and depth at most c logn

log logn for some positive constant c. This
result found many applications in proving lower bounds for the parallel random
access machine model (PRAM), which is one of the widely adopted models of
parallel computation. For instance, Beame and Håstad [5] exhibited the optimal
Ω( logn

log logn) lower bounds on the time for CRCW (Concurrent read and concurrent
write) PRAM with polynomially many processors to compute the parity function
and related problems.

The classic results of Razborov [12] and Smolensky [13] showed that if p is a
prime and q is not a power of p, then the MODq function is not computable any
constant-depth and poly-size family of ACCp circuits. In fact, their technique also
works in the regime of non-constant-depth circuit lower bounds. More precisely,
one can adapt their polynomial method to show that the same MODq function
remains hard even for ACCp circuits of polynomial size and Ω( logn

log logn) depth.
Even though the results in this paper are exponentially worse in terms of circuit
depth, note that they hold for the more powerful ACC circuit model.

Some other Ω(log log n) depth bounds are known in the setting of uniform
circuits. Allender and Gore [2] showed that the permanent function is not com-
putable by DLOGTIME-uniform ACC0 circuits of exponential size. Later Allen-
der [1] proved a smaller (but still super-quasi-polynomial) bound for computing
the permanent on DLOGTIME-uniform threshold circuits .Koiran and Perifel [11]
extended this latter result [1], and proved that the permanent function can not be
computed by DLOGTIME-uniform threshold or arithmetic circuits of polynomial
size and o(log log n) depth.
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2 Preliminaries

We assume that the readers are familiar with standard notations for complexity
classes [3] and circuit complexity classes [14]. General circuits consist of NOT
gates and unbounded fan-in AND and OR gates. ACCm circuits are general circuits
equipped with unbounded fan-in MODm gates, where m is a fixed integer.

We say a boolean function g : Σn → {0, 1} is in ACCm(s, d) if g can be
recognized by some ACCm circuit of size at most s and depth bounded by d. For
any two functions s(n) and d(n), we say a language L ∈ ACC(s(n), d(n)) if there
exists an integer constant m such that for each input length n, its characteristic
function Ln is in ACCm(s(n), d(n)). For any two families of functions S and D,
ACC(S,D) =

⋃
ACC(s(n), d(n)) | s(n) ∈ S, d(n) ∈ D.

SYM+ circuits have exactly two levels of internal nodes. The top level is a
single gate with unbounded fan-in which computes an arbitrary symmetric function
and the bottom level contains only AND gates which are connected directly to the
input variables. We say a boolean function g : Σn → {0, 1} is in SYM+(s, t)
if it can be computed by some SYM+ circuit of size at most s, where moreover,
the fan-in of AND gates is bounded by t. We can define similarly as above the
language classes SYM+(s(n), t(n)) and SYM+(S, T ).

For a circuit type C and a set of associated measures, it will be convenient
for us to consider the family of collections of boolean circuits which is denoted
as CircuitC(s1(n), s2(n), .., sm(n)) = {G1, G2, ..}, where each circuit in Gn has
exactly n input variables and its ith measure is bounded by si(n) respectively. For
general circuits, we only consider the size measure, hence, CircuitGeneral(s(n)) =
{G1, G2, ..}, where Gn contains all circuits of size at most s(n). We can also give
similar definitions for CircuitACCm

(s(n), d(n)) with both size and depth measures
and for CircuitSYM+(s(n), t(n)) where the first measure is the size measure and
the second measure is in terms of the bottom fan-in.

For two families F1 = {G1, G2, ..} and F2 = {G′1, G′2, ..}, we say F1 is
transformable to F2 if for all sufficiently large n ∈ N, ∀C ∈ Gn, ∃C ′ ∈ G′n such
that ∀x ∈ Σn, C(x) = C ′(x), namely, C and C ′ are equivalent. Furthermore, F1

is transformable to F2 in time t(n) if there exists a uniform algorithm which given
the standard encoding of C, output C ′ in time t(n).

For a family F = {G1, G2, ..}, we say F-SAT is solvable in time t(n) if there
exists a uniform algorithm A such that for all sufficiently large n ∈ N, given an
arbitrary C in Gn, A decides its satisfiability in time t(n).
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3 Main result

3.1 A fast satisfiability algorithm

Transformation between different circuit types is an important building block in our
proof. Yao [17], Beigel and Tarui [7] and Allender and Gore [2] studied conversion
from CircuitACCm

(nO(1), O(1)) to CircuitSYM+(nlog
O(1) n, logO(1) n). In fact,

their strategy works in a more general setting.
Fix m to be an integer constant.

Theorem 2 ([7, 2]) There is a universal constant c such that for any size function
s(n) and any depth function d(n), the family ACCm(s(n), d(n)) is transformable

in time 2O((log s(n))2
cd(n)

) to the family SYM+(2(log s(n))
2cd(n)

, (log s(n))2
cd(n)

).

Corollary 3 For any small constant ε, any quasi-polynomial p(n) and any depth
function d(n) of order o(log log n), the family ACCm(p(n), d(n)) is transformable
to the family SYM+(2n

ε
, nε) in time 2O(nε).

In [16], Williams gave an algorithm for solving the satisfiability problem of
SYM+ circuits of size s over n variables in time O((2n + s)nO(1)). Combining it
with Corollary 3, the following theorem is immediate.

Theorem 4 There exists a constant c such that for any quasi-polynomial p(n) and
any depth function d(n) of order o(log log n), CircuitACCm

(p(n), d(n))-SAT is
solvable in time O(2nnc).

The running time above can indeed be improved.

Theorem 5 For any positive constant c′, any quasi-polynomial p(n) and any depth
function d(n) of order o(log log n), CircuitACCm

(p(n), d(n))-SAT is solvable in
time O( 2n

nc
′ ).

Proof: Let c be the constant in Theorem 4. Given an ACCm(p(n), d(n) circuit
over n variables, when the first (c + c′) log n inputs are set to definite values, we
simplify it to obtain a circuit over n − (c + c′) log n many variables. Hence, by
fixing the first (c+ c′) log n input variables to all possible sequences, we get nc+c

′

many circuits. Create a new circuit by feeding their outputs to a single OR gate.
The size of this new circuit is bounded by p(n)nc+c

′
and its depth is only increased

by one. Note that p(n)nc+c
′

is still a quasi-polynomial in (n− (c+ c′) log n), and
d(n)+1 is in o(log log(n− (c+c′) log n)) as well. By Theorem 4, its satisfiability
can be determined in time O(2n−(c+c

′) logn(n− (c+ c′) log n)c) which is O( 2n

nc′
).
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This finishes our arguments since the satisfiability problem for the new circuit is
equivalent to the one for the original circuit. 2
Note: The above strategy is very similar to the one adopted by [15], where about
nδ many input variables are set in a single copy. However, it is crucial for our work
to keep the size of the final circuit within quasi-polynomial (compared to 2n

O(δ)
in

[15]) in order to apply Theorem 4.

3.2 Proof of main theorem

In this section, we present our main lower bound result via the framework invented
by Williams [16]. The following notions will be useful.

Definition 1 Let x = x0x1x2...x|x|−1 be a binary string, where |x| is the size of x.
We say x is succinctly represented by the circuit C if C has dlog(|x| + 1)e many
input bits and moreover, for all 0 ≤ i ≤ |x| − 1, C(i) = xi while its output can be
arbitrary otherwise. We call such a circuit C as a succinct representations of x.

Let φ be a 3-CNF formula with n variables and m clauses. φ is succinctly rep-
resented by the circuit C ′ if C ′ has dlog(m+ 1)e many input bits and furthermore,
on the input 0 ≤ i ≤ m − 1, C ′(i)’s output is the standard binary encoding of
the ith clause. Hence, C ′ has roughly 3(dlog(n+ 1)e+ 1) output bits, the amount
which is needed to encode three literals. We say thatC ′ is a succinct representation
or compression of φ.

Theorem 6 (Theorem 1 restated) NEXP * ACC(nlog
O(1) n, o(log log n)).

Proof: Suppose NEXP ⊆ ACC(nlog
O(1) n, o(log log n)). The first step of our

proof is to note that, because of Theorem 5, it is possible to state a slight variant of
Lemma 3.1 of [16].

Lemma 7 There is a universal positive constant c with the following property.
Assume that P ⊆ ACC(nlog

O(1) n, o(log log n)), then for every L ∈ NTime[2n],
there is a nondeterministic algorithmA, an integer constantm, a quasi-polynomial
p′(n) and a depth function d′(n) of order o(log log n) such that

• A runs in O( 2n

nc′
) time,

• for every instance x with |x| = n, A(x) either rejects or prints a circuit
Cx ∈ Gn+c logn where Gn+c logn ∈ CircuitACCm

(p′(n), d′(n)) such that
x ∈ L if and only if Cx is the compression of a satisfiable 3-CNF formula
Fx of size 2n · nO(1), and
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• there is at least one computation path A(x) that outputs Cx.

Hence, Lemma 7 implies that as long as deciding the satisfiability of succinct
3-CNF instances such as Cx can be achieved in nondeterministic time O( 2n

nc′
)

for any c′, then NTime[2n] ⊆ NTime[ 2
n

nc′
], in contradiction to the nondetermin-

istic time hierarchy [18]. Therefore, we are done except for showing that the
satisfiability of Cx can be tested in this time bound, assuming that NEXP ⊆
ACC(nlog

O(1) n, o(log log n)).
The following theorem is a variant of Theorem 5.2 in [16]. It is also implicit in

the work of Impagliazzo, Kabanets and Wigderson [10].

Theorem 8 ([10, 16]) NEXP ⊆ SIZE(nlog
O(1) n) implies that for every language

L in NEXP, there exists a quasi-polynomial p such that ∀x ∈ L, there exists a
witness w for x with the property that the boolean function whose truth table is
given by w can be computed by a general circuit of size at most p(|x|).

In other words, every instance in L has a succinctly represented witness. In
particular, every compressed 3-CNF formula has a succinct satisfying assignment
since the Succinct SAT Problem is in NEXP.

Our assumption that NEXP ⊆ ACC(nlog
O(1) n, o(log log n)) implies NEXP ⊆

SIZE(nlog
O(1) n), so obviously the conclusion in Theorem 8 holds.

Lemma 9 (Folklore) If P ⊆ ACC(nlog
O(1) n, o(log log n)), then there exists a

universal constant m′ such that for any quasi-polynomial p(n), there exists a
quasi-polynomial p′(n) and a depth function d(n) of order o(log log n) such that
CircuitGeneral(p(n)) is transformable to CircuitACCm′

(p′(n), d(n)).

Proof: The Circuit Value Problem (CVP) is in P, and hence, there exists an integer
constant m′, a quasi-polynomial q(n) and a depth function d′(n) = o(log log n)
such that CVP is computed by a family of ACCm′ circuits of size at most q(n)
and depth bounded by d′(n). Under the standard encoding of circuits, this implies
that any general circuit of size at most p(n) has an equivalent ACCm′ circuit of
size at most q(p2(n)) and depth bounded by d′(p2(n)). Since q(p2(n)) is still a
quasi-polynomial in n and d′(p2(n)) = o(log log n), our claim holds. 2

Theorem 8 tells us that for every x in L, there exists a witness w that is
succinctly represented by a circuit of quasi-polynomial size. By Lemma 9, this
circuit can be assumed to be a quasi-polynomial-size ACC′m circuit Cw of depth
o(log log n). Thus analogous to the work of Williams [16], our algorithm for de-
ciding the satisfiability of the succinctly represented 3-CNF instance Cx proceeds
as the following steps.
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1. Guess the circuit Cw of quasi-polynomial size and depth o(log log n), where
w is a witness for Cx being satisfiable.

2. Build a circuit C of the following form: On input i, use Cx to obtain the
encoding of the ith clause of the formula Fx. Querying Cw, find the values
of the three variables occurring in this clause, according to the witness w.

3. C rejects if and only if these values cause cause the clause to evaluate to 1.

Note that C is unsatisfiable if and only if every clause of Fx is satisfied by w.

Fact 10 For two fixed integers m and m′, there exists a polynomial r such that
any ACC circuit containing both MODm and MODm′ gates of size at most s can
be simulated uniformly by an ACCl circuit of the same depth and size at most r(s)
where l = m ·m′.

By fact 10, C is a quasi-poly-size ACCl circuit of depth at most d(n)+d′(n)+
O(1) and by Theorem 5, its satisfiability is decidable in time O( 2n

nc′
) for any c′,

which concludes our proof for the main theorem. 2

4 Discussions

We have not fully exploited the strength of the machinery behind Theorem 2. The
original form of the transformation provides a large set of parameters which can
be tuned smoothly. For instance, one can allow m(n) = {l1, l2, ...} to be a slowly
growing (say, of order O(log log n)) integer sequence rather than a fixed constant
and consider the circuit families ACCm(n) where the nth circuit contains the pres-
ence of MODli gates for all i ≤ n. It is easy for the readers who are familiar
with the framework of [17], [7] and [2] to verify that NEXP does not have non-
uniform ACCm(n) circuits of quasi-polynomial size and non-constant depth. This
phenomenon has been observed by several authors, [4], [8] etc, and their further
investigations made it explicit that SYM+(nlog

O(1) n, logO(1) n) actually encom-
passes a circuit complexity class presumably larger than ACC(nO(1), O(1)), where
every ACC(nO(1), O(1)) circuit has an extra symmetric gate at the top. Hence, it
is natural to conjecture that NEXP is not contained in this class either. However,
the proof of Theorem 5 introduces too many duplicate symmetric gates, which falls
beyond the reach of current techniques. Note that Beigel [6] showed that polylog
majority gates can be merged into one at the top, but his results would yield the
trivial bound 2n

c
for some c > 1 in our case.
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We would like to draw the comparison between this work and [13]. The main
technical difficulty which prevents us from obtaining a depth lower bound of or-
der Ω( logn

log logn) is that each application of modulus-amplifying polynomials creates
extra AND gates of large fan-in. This in turn causes the snowball effect of the
blow-up in the final circuit size. Thus, new ideas are needed in order to improve
the current depth lower bound.
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