
Typed Monoids –
An Eilenberg-like Theorem for non regular

Languages

Christoph Behle Andreas Krebs Stephanie Reifferscheid∗

Wilhelm-Schickard-Institut, Universität Tübingen,
{behlec,krebs,reiffers}@informatik.uni-tuebingen.de

Abstract

Based on different concepts to obtain a finer notion of language recognition via
finite monoids we develop an algebraic structure called typed monoid. This leads
to an algebraic description of regular and non regular languages.

We obtain for each language a unique minimal recognizing typed monoid, the
typed syntactic monoid. We prove an Eilenberg-like theorem for varieties of typed
monoids as well as a similar correspondence for classes of languages with weaker
closure properties.

1 Introduction
We present an algebraic viewpoint on the study of formal languages and introduce a
new algebraic structure to describe formal languages. We extend the known approach
to use language recognition via monoids and morphisms by equipping the monoids
with additional information to obtain a finer notion of recognition.

In the concept of language recognition by monoids, a language L ⊆ Σ∗ is recognized
by a monoid M if there exists a morphism h : Σ∗ → M and a subset A of M such that
L = h−1(A). The syntactic monoid, which is the smallest monoid recognizing L, has
emerged as an important tool to study classes of regular languages. Besides problems
applying this tool to non regular languages, even for regular languages this instrument
lacks precision.

One problem is, that not only the syntactic monoid but also the syntactic mor-
phism, i.e. the morphism recognizing L via the syntactic monoid, plays an important
role: Consider the two languages Lparity, Leven over the alphabet Σ = {a, b} where the
first one consists of all words with an even number of a’s while the latter consists of
all words of even length. Both languages have C2, the cyclic group of order two, as
syntactic monoid. But there are well-known results [FSS81, Ajt89] that in the model
∗the third author has been supported by Proyecto MTM2010-19938-C03-02, Ministerio de Ciencia y

Tecnologia, Spain

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 35 (2011)

of circuit complexity classes the language Lparity is harder than Leven. This reflects in
the recognition via morphism through the fact that in Lparity we need to distinguish be-
tween an “a” as input and a “b” as input, whereas in Leven we count only the number of
inputs.

So one of our goals is to introduce an algebraic structure where we have control of
the morphisms allowed, especially where the single letters are mapped to. The concept
of limiting the images of morphisms in the setting of finite monoids has been studied
in [ÉL03]. It was shown that this concept is useful and yields nice algebraic objects. A
similar approach but with a different algebraic object was used in [PS05].

Limiting the morphisms is a great tool, but especially if we want to study non
regular languages we need to add more information. Consider the language LMa j over
the alphabet Σ = {a, b} of all words with more a’s than b’s. This is clearly a non regular
language and hence not recognized by a finite monoid. The syntactic monoid of LMa j

is �, but � is also the syntactic monoid of an undecidable language in unary encoding.
The standard approach to recognize LMa j by � is the following: η : Σ∗ → � is

defined by η(a) = +1 and η(b) = −1. Then w ∈ L ⇔ η(w) > 1. Hence LMa j is
recognized by �, η, and the accepting set �+ (the positive numbers). While in general
various, even undecidable, languages can be recognized by � with suitable accepting
sets, what happens if we restrict the accepting set to �+? Let h : Σ∗ → � be a
morphism, then h(w) = h(a) · #a(w) + h(b) · #b(w), since � is commutative. Hence, any
language accepted by such a morphism is defined by a linear inequality of the ratio of
the letters occurring.

The idea to limit the allowed accepting subset has been studied in [Sak76] and
applied to context free languages. We use a different approach here: Instead of one
accepting subset, we will consider a set of subsets and then consider the Boolean alge-
bra generated by these sets. Each element of that Boolean algebra can be an accepting
subset. We loose precision there, because this forces us to be closed under comple-
mentation, but our aim is the application of our approach to circuit complexity and
descriptive complexity. The use of a Boolean algebra helps a lot to obtain a neat def-
inition for the block product which is an important tool to characterize such classes
algebraically.

If we combine the two approaches, i.e. fix the set of acceptance subsets of the
monoid and limit the allowed morphisms we obtain even better possibilities. If we
take � and allow only morphisms mapping letter to {−1,+1}, and have �+ as accepting
subset we can only recognize languages that partition the alphabet in two sets A and
B and test if the letters of set A occur more often than the letters of set B. All these
languages are “close” to LMa j in the sense that they reduce by a length preserving
morphism to it.

These two observations lead us to the definition of a typed monoid. A typed monoid
is a triple (S ,S,E), where S is a finitely generated monoid,S is a finite Boolean algebra
over S , and E ⊆ S is a finite set. The elements of S are called types and the elements
of E are called units.

A language is recognized by (S ,S,E) if there is a morphism h from Σ∗ → S ,
h(Σ) ⊆ E, and L = h−1(SSS) for a type SSS ∈ S. More generally, we use the units to limit
the allowed morphisms while only types may be acceptance sets.

The syntactic monoid plays an important role in the study of (regular) languages.

2

In the theory of finite monoids it can be shown that the syntactic monoid is the smallest
monoid recognizing a language with respect to division. Furthermore, if a monoid M
divides a monoid N, then all languages recognized by M are recognized by N and hence
the partial order of division on monoids is meaningful in terms of language recognition.
We will show the same properties for our typed monoids. On the other hand, we will
see that we are even able to distinguish the typed syntactic monoids of languages like
majority and prime numbers, although they have the same syntactic monoid, namely
�, in the conventional case.

In the finite case the theorem of Eilenberg, stating a one-to-one correspondence be-
tween varieties of (finite) monoids and varieties of (regular) languages, is the origin of
the algebraic study of formal languages. Recall that by results of Schützenberger and
McNaughton and Papert [Sch65, MP71] the (regular) starfree languages are exactly the
languages that can be recognized by (finite) aperiodic monoids, i.e. monoids that con-
tain only trivial subgroups. This result lead to the decidability of the question whether
a given regular language is starfree, and there are similar results for many varieties of
regular languages.

In Section 6 we will define varieties of typed monoids and formulate a version of
Eilenberg’s theorem for typed monoids. Using this it is possible to obtain algebraic
counterparts of varieties of (non-regular) formal languages [KLR07, Kre08].

Another important tool in the study of formal languages is there description via
logic. So it was shown that the star free languages are exactly the languages describable
by a first order logic fragment, namely FO[<]. The fact that FO is connected to the
circuit class AC0 which cannot recognize a group language [Ajt89, FSS81] lead to a
study about the links between subclasses of regular languages and classes of circuits.
These studies exhibited some interesting connections between some varieties of regular
languages and certain circuit classes. For a survey we recommend [TT07].

While varieties play an important role, a lot of language classes defined by logic
classes do not form a variety. Consider for instance the class FO[<,mod]: It can recog-
nize all words of even length Leven, but it is known [Ajt89, FSS81] that this class cannot
express Lparity. Hence it cannot be closed under arbitrary inverse morphisms, because
there is a non length preserving morphism h such that Lparity = h−1(Leven).

Eilenberg studied classes of transformation semigroups with weaker closure prop-
erties than varieties. We define weakly closed classes of typed monoids in Section 5
and show that for each weakly closed class of languages there exists a correspond-
ing weakly closed class of typed monoids. This gives a weaker version of the variety
theorem for classes of languages with closure properties like FO[<,mod].

We sum up the structure of the paper: In Section 3 we give the basic definitions of
our algebraic objects, morphisms, and language recognition. In the following sections
we transfer the Eilenberg program for (finite) monoids into the world of typed monoids.
The typed syntactic monoid and its minimality are treated in Section 4. We define
closure properties in Section 5 and show that weakly closed classes of typed monoids
correspond to weakly closed classes of languages. In Section 6 we consider varieties
and show that the correspondence of the previous section is one-to-one for varieties.

3

2 Preliminaries
We define here most notions in a very basic way and presume the reader to be famil-
iar with Eilenberg’s variety theory, namely the concepts of language recognition via
monoids and varieties. For a complete survey of monoids and language recognition
we recommend [Pin86]. For readers who wish an in-depth study of monoids and va-
rieties [Alm95] is a good source. We will bring up some logic classes from time to
time, mostly used in examples and as motivation for some classes of languages. The
reader can skip these parts but for those interested we refer to [Str94]. Most examples
can be found there and we use the same notation. It also displays the connections of
descriptive complexity, circuit complexity, and algebra.

Let A, B be nonempty sets; A mapping f : A 7→ B is called surjective if h(A) = B
and injective if for every b ∈ B there is at most one a ∈ A such that h(a) = b; f is
bijective iff f is injective and surjective.

A semigroup S is a nonempty set equipped with a binary relation · which is asso-
ciative. We call a semigroup M a monoid if it has a neutral element 1M , i.e. an element
such that 1M · x = x · 1M = x for all x ∈ M. A monoid G is called group if for each
g ∈ G there is a (unique) element h ∈ G such that g · h = h · g = 1G. As usual we write
xy for x · y and 1 for 1M if the context is understood.

A monoid M is finite if M is a finite set. A subset P of M generates M, denoted
by M = 〈P〉, if each element in M can be written as a finite product of elements in P
and the neutral element. M is finitely generated if there exists a finite subset P of M
generating M. The free monoid with generator set A is usually denoted by A∗, i.e. we
take the set of all finite sequences of elements of A together with the empty word as
neutral element, the multiplication is defined as concatenation. Let M,N be monoids,
a (monoid-)morphism h from M to N is a mapping h : M → N such that for all
m1,m2 ∈ M : h(m1m2) = h(m1)h(m2) and h(1) = 1. A subset M′ is a submonoid of M,
if xy ∈ M′ for all x, y ∈ M′ and 1 ∈ M′. A monoid N divides a monoid M (N � M) if
it is a morphic image of a submonoid of M, that is there exists a submonoid M′ of M
and a surjective morphism from M′ to N.

A congruence on a monoid M is an equivalence relation ∼ on M, such that x ∼ y and
x′ ∼ y′ imply xx′ ∼ yy′. Given a congruence ∼ on M, the set of equivalence classes
together with the multiplication [x][y] = [xy] form a monoid, the quotient monoid
denoted by M/ ∼. The mapping x 7→ [x] is a morphism, the so called canonical
epimorphism. Conversely, a morphism h : M → N defines a congruence ∼h on M by
setting x ∼h y⇔ h(x) = h(y).

The set of integers � with the usual addition is an infinite monoid generated by
{−1, 1}; for each natural number k we denote the quotient monoid �/k� of � (cor-
responding to the congruence x ∼ y iff x ≡ y mod k) by Ck and its elements by
0, . . . , k − 1.

A Boolean algebraB over a nonempty set S is a finite set of subsets of S containing
∅, S and being closed under union, intersection and complement. Let B,C be two
Boolean algebras over sets S and T respectively. A morphism h from B to C is a
mapping h : B → C such that h(∅) = ∅, h(S) = T , h(S \ B1) = T \ h(B1) and
h(B1 ∪ B2) = h(B1) ∪ h(B2) for all B1, B2 ∈ B.

IfB is a Boolean algebra over S and C ⊆ B is again a Boolean algebra over S , then

4

C is a Boolean subalgebra of B.

Languages. An alphabet Σ is a finite non-empty set and its elements are called let-
ters. The elements of the free monoid Σ∗ are called words and a language is a subset of
Σ∗. Let w be a word then we can uniquely write it as a product of letters w = w1 . . .wn,
where n is called the length of the word, denoted by |w|. For a letter a and a word w
we define #a(w) = |{i | wi = a}|, i.e. the number of occurrences of the letter a in w. A
morphism h from Σ∗ to ∆∗ is called length preserving if h(Σ) ⊆ ∆.

A monoid M recognizes a language L ⊆ Σ∗ iff there is a morphism h : Σ∗ → M and
a subset A ⊆ M such that L = h−1(A).

Given a language L ⊆ Σ∗ the syntactic congruence is defined on Σ∗ by x ≡L y iff for
all w, v ∈ Σ∗ holds wxv ∈ L ⇔ wyv ∈ L. The syntactic monoid M(L) of L is defined as
the quotient monoid Σ∗/ ≡L. The canonical epimorphism for this congruence is called
syntactic morphism and denoted by ηL. It can be shown that the syntactic monoid is a
minimal monoid recognizing L with respect to division.

3 Typed monoids
In this section we introduce the notion of typed monoids. We start from the usual
concept of language recognition by monoids. Instead of only considering the monoid
M we want control over the possible morphisms, a concept already studied in [ÉL03,
PS05]. We follow the approach of [ÉL03] and enhance the monoid with a subset,
called units, and require morphisms to map units on units. Further, to reduce the power
of the monoid we equip the structure with a finite Boolean algebra over the monoid,
and require the accepting subsets to be elements of this Boolean algebra. This is in
particular helpful when dealing with infinite monoids or non regular languages.

Definition 3.1 (Typed Monoid). A typed monoid is a triple (S ,S,E), where S is a
finitely generated monoid, S is a finite Boolean algebra over S , and E ⊆ S is a finite
set. The elements of S are called types and the elements of E are called units.

For a typed monoid (S ,S,E) we will write (S , {SSS1, . . . ,SSSd},E), where the SSSi are
types generating S. If the Boolean algebra S is generated by a single set we will
drop the braces: (S , {SSS},E) = (S ,SSS,E). We call a typed monoid (S ,S,E) free, if the
underlying monoid S is free.

Please note, that we do not require the units to generate S .

Example 3.2. We give some examples of typed monoids.

(a) Let S = �, S = {∅,�,�+,�−0 } (where �+ are the positive numbers and �−0 are
the non positive numbers), and E = {−1, 1}. Then (S ,S,E) is a typed monoid.
As stated above we use the short hand notation (�, {�+,�−0 }, {−1, 1}) or even
(�,�+, {−1, 1}) to denote (S ,S,E).

(b) Let S = �, S = {∅, 2�, 2� + 1,�}, and E = {0, 1}. Then (S ,S,E) is a typed
monoid. Again, we use the short hand notation (�, {2�, 2� + 1}, {0, 1}) or even
(�, 2�, {0, 1}) to denote (S ,S,E).

5

(c) Let S = C4, S = {∅, {0}, {1, 2, 3}, {0, 1, 2, 3}}, and E = {1}. Then (S ,S,E) is a
finite typed monoid. As we will see later this monoid is more restricted than C4
in the untyped world.

(d) Each finite monoid S can be seen as a typed monoid (S ,S,E) where the types are
the subsets of S (that is, S is the powerset of S) and the set of units is E = S .

(e) There is a strong connection between a language L ⊆ Σ∗ and typed monoids.
The structure (Σ∗, {∅, L,Σ∗ \ L,Σ∗},Σ) = (Σ∗, L,Σ) is a typed monoid. Note, that
a language L and its complement L̄ lead to the same typed monoid.

As mentioned before the units will limit the set of possible morphisms. On the
free monoid Σ∗ we usually pick Σ as the units; in this case every element has a unique
representation as a product of the units and the “length” of an element is the number
of units in its representation. Even on arbitrary monoids units give a kind of length
property, this has been studied in [ÉL03].

We define the notion of a morphism for typed monoids.

Definition 3.3 (Typed Morphism). A (typed) morphism h : (S ,S,E) → (S ′,S′,E′)
of typed monoids is specified by a triple (hS , hS, hE), where hS : S → S ′ is a monoid
morphism, hS : S→ S′ is a morphism of Boolean algebras, hE : E→ E′ is a mapping
of sets, and the triple fulfills the two compatibility requirements:

1. ∀SSS ∈ S it holds hS (SSS) = hS(SSS) ∩ hS (S),

2. ∀u ∈ E it holds hS (u) = hE(u).

Because of the compatibility conditions of this definition we can omit the indices of
the morphisms.

Condition 2 forces hS to map units to units and to be compatible with hE, and thus
the compatibility conditions imply that hS induces hE and - in case hS is surjective -
also hS. Note further that 1 implies that a nonempty type cannot be mapped to the
empty type, and thus hS needs to be injective, i.e. |S| ≤ |S′|.

The definitions of injective and surjective morphisms are straightforward.

Definition 3.4 (Injective, Surjective, Typed Submonoid, Division). Let (S ,S,E), (T,T,F)
be two typed monoids.

• A typed morphism h : (S ,S,E) → (T,T,F) with h = (hS , hS, hE) is injective
(resp. surjective, bijective) if hS , hS, and hE are all injective (resp. surjective,
bijective).
If h is bijective we say that (S ,S,E) and (T,T,F) are isomorphic (denoted �).

• A typed monoid (T,T,F) is a typed submonoid of (S ,S,E) (we write (T,T,F) ≤
(S ,S,E)) if T is a submonoid of S and there is an injective morphism from
(T,T,F) to (S ,S,E).

• A typed monoid (T,T,F) divides a typed monoid (S ,S,E) (we write (T,T,F) �
(S ,S,E)) if (T,T,F) is the morphic image of a typed submonoid of (S ,S,E).

6

As one should expect, concatenation of two (injective/surjective) morphisms is
again a (injective/surjective) morphism. And given a typed morphism h : (S ,S,E) →
(T,T,F), the image (preimage) of h is a submonoid in (T,T,F) ((S ,S,E)).

To clarify the notion of a typed morphism consider the following typed monoids.
We let

(S ,S,E) = (C4, {{0}, {1}, {2}, {3}}, {0, 1}),

(T,T,F) = (C4, {{0, 2}, {1, 3}}, {0, 1}), and

(U,U,G) = (C2, {{0}, {1}}, {0, 1}).

Since |S| > |T|, there is no typed morphism from (S ,S,E) to (T,T,F). On the
other hand the identity mapping yields an injective (but not surjective) typed morphism
from (T,T,F) to (S ,S,E). Hence, (T,T,F) is a typed submonoid of (S ,S,E).

There is no typed morphism from (U,U,G) to (S ,S,E): Assume h is such a mor-
phism. Then hG(0) = hU(0) = 0 and hG(1) can be 0 or 1. In the first case we hurt
condition 1. Because then the following equation should hold: 0 ∈ hU({0}) ∩ hU({1}) =

hU(∅) = ∅; contradiction. If we let hU(1) = 1 then hU is not a (monoid)morphism; in
particular (U,U,G) is no submonoid of (S ,S,E). Conversely, (U,U,G) is a factor of
(S ,S,E), since the mapping hT : (T,T,F)→ (U,U,G), i 7→ i (mod 2) defines a typed
morphism from (T,T,F) onto (U,U,G), and (T,T,F) is a submonoid of (S ,S,E).

Lemma 3.5. If (S ,S,E) � (T,T,F) and (T,T,F) � (U,U,G), then (S ,S,E) �
(U,U,G).

Proof. Suppose that (S ,S,E) � (T,T,F) and (T,T,F) � (U,U,G). By definition of
divisor we have submonoids (T ′,T′,F′) ≤ (T,T,F) and (U′,U′,G′) ≤ (U,U,G) and
are in the following situation:

(S ,S,E) (T,T,F) (U,U,G)

(T ′,T′,F′)

α

OOOO

77

77ooooooooooo
(U′,U′,G′)

β

OOOO

88

88qqqqqqqqqq

(U′′,U′′,G′′)

OOOO

77

77

In the diagram above we define (U′′,U′′,G′′) = β−1((T ′,T′,F′)), then α ◦ β maps
(U′′,U′′,G′′) surjectively on (S ,S,E) and is a submonoid of (U,U,G), hence (S ,S,E) �
(U,U,G). �

A concept strongly connected to morphisms is the concept of congruences. Each
morphism induces a congruence and vice versa. Congruences on typed monoids need
to be compatible with the set of types.

Definition 3.6 (Typed congruence). Let (S ,S,E) be a typed monoid and ∼ be a con-
gruence on S . Then ∼ is a typed congruence if ∀SSS ∈ S, s1, s2 ∈ S : s1 ∼ s2 ∧ s1 ∈ SSS⇒

s2 ∈ SSS.

7

In this case we say that ∼ is finer than S.

Example 3.7. The usual syntactic congruence ≡L is a typed congruence on (Σ∗, L,Σ).
To see this we have to show that ≡L respects the types, but these are only ∅, L, L̄,Σ∗ and
L is a union of congruence classes of ≡L.

Let ∼ be a typed congruence on a typed monoid (S ,S,E). Let E/ ∼= {[x]∼ | x ∈ E},
SSS/ ∼= {[x]∼ | x ∈ SSS} and S/ ∼= {SSS/ ∼| SSS ∈ S}. This is well defined, since ∼ is finer
than S. We call (S ,S,E)/ ∼= (S/ ∼,S/ ∼,E/ ∼) the typed quotient monoid of
(S ,S,E) by ∼.

As in the classical case, a typed morphism defines a typed congruence via
s1 ∼h s2 ⇔ hS (s1) = hS (s2). Likewise, a typed congruence ∼ on a typed monoid
(S ,S,E) defines a morphism from (S ,S,E) to (S ,S,E)/ ∼.

4 Typed Syntactic Monoid
We turn now to the recognition of languages by typed monoids. Instead of considering
all morphisms into a monoid we limit the allowed morphisms to these mapping letters
to units, and the only accepting subsets allowed are types. We can reduce the definition
of language recognition to the notion of a typed morphism:

Definition 4.1. We say that (S ,S,E) recognizes a language L ⊆ Σ∗ if there is a typed
morphism h : (Σ∗, L,Σ)→ (S ,S,E).

Since L and L̄ are disjoint types they have to be mapped on two disjoint types.
Hence, there is a type SSS ∈ S, such that L = h−1

S (SSS). So the definition resembles the
usual definition of language recognition via monoids. The standard notion of language
recognition for finite monoids coincides with our notion in the following way: Given a
finite monoid S then S and the typed monoid (S ,P(S), S) recognize exactly the same
languages.

Example 4.2. Let L ⊆ Σ∗ be a language, M(L) its usual syntactic monoid, ηL the
syntactic morphism, and A = ηL(L) the accepting subset. Then L is recognized by the
typed monoid (M(L), A, ηL(Σ)) = (ηL(Σ∗), ηL(L), ηL(Σ)).

The typed syntactic monoid will be defined using the syntactic congruence which
is a typed congruence on the typed monoid (Σ∗, L,Σ).

Definition 4.3 (Typed Syntactic Monoid). Let L ⊆ Σ∗ be a language, then syn(L) =

(Σ∗, L,Σ)/ ≡L is the typed syntactic monoid of L.

It is easy to see that L is recognized by its typed syntactic monoid via the typed
morphism induced by the syntactic morphism ηL. We call that morphism the typed
syntactic morphism.

In the finite case it is known that the syntactic monoid is the unique (up to isomor-
phism) minimal monoid recognizing the language (minimal with respect to division).
Since in general, division is only a preorder (see example 4.4), in the classical case we
only have that M(L) is a minimal element recognizing the language L, i.e.: If N is a
monoid recognizing L, then M(L) divides N.

8

Example 4.4. Let S and T be the free monoid with two and three generators, respec-
tively. Define the typed monoids (S ,S,E) = (〈a, b〉, {〈a, b〉}, {1}) and (T,T,F) =

(〈a, b, c〉, {〈a, b, c〉}, {1}). Then S and T divide each other but are not isomorphic:
〈a, b, c〉 is isomorphic to the submonoid 〈a, ab, abb〉 (this remains true with the given
types and units) and 〈a, b〉 is isomorphic to the submonoid 〈a, b〉 of 〈a, b, c〉 (this also
remains true for the given types and units).

We want to show that syn(L) divides (S ,S,E) if (S ,S,E) recognizes L.

Lemma 4.5. If there is a surjective morphism β : (S ,S,E) → (S ′,S′,E′), then every
morphism from the free monoid (T,T,F), where F is the standard generator set for T ,
to (S ′,S′,E′) factors though β. That is for every morphism α, there is a morphism α′

such that the following diagram commutes, i.e. β ◦ α′ = α:

(T,T,F)
α′

yy

α

&&MMMMMMMMMM

(S ,S,E)
β

// // (S ′,S′,E′)

Proof. We need to define the typed morphism α′ = (α′T , α
′
T
, α′

F
). For each unit s′ ∈ E′

there is an element s ∈ E with β(s) = s′. For each s′ pick such an element and
call it ss′ . We define α′ : (T,T,F) → (S ,S,E) by setting α′T (t) = sα(t) for all free
generators t of T . Recall that this defines a morphism on T , and thus also the mapping
α′

F
. It remains to define the corresponding mapping for the types. Let TTT ∈ T and set

α′
T

(TTT) = max{SSS ∈ S : SSS ∩ α′T (T) = α′T (TTT)}. Since every SSS ∈ β−1(α(TTT)) is in the above
set, this is well defined. �

As in the finite case the syntactic monoid is minimal with respect to language recog-
nition. We start by showing the following lemma which is a consequence of Lemma
4.5:

Lemma 4.6. Let (S ,S,E), (S ′,S′,E′) be typed monoids, such that (S ′,S′,E′) di-
vides (S ,S,E). Then every languages recognized by (S ′,S′,E′) is also recognized
by (S ,S,E).

In particular: If syn(L) divides (S ,S,E), then (S ,S,E) recognizes L.

Proof.
(Σ∗, L,Σ) //

α

��

α′

&& &&

(S ,S,E)

(U,U,G)
OO

OO

β
����

(S ′,S′,E′)

By definition there is a submonoid (U,U,G) of (S ,S,E) and a surjective morphism
β : (U,U,G) → (S ′,S′,E′). Since (S ′,S′,E′) recognizes the language L ⊆ Σ∗ there
is a morphism α : (Σ∗, L,Σ) → (S ′,S′,E′). Hence by Lemma 4.5 there is a morphism

9

α′ : (Σ∗, L,Σ) → (U,U,G). Since (U,U,G) is a submonoid of (S ,S,E) there is a
morphism i : (U,U,G)→ (S ,S,E), thus L is recognized by (S ,S,E) via the morphism
i ◦ α′. �

Although in the theory of typed monoids division is not a partial order (see example
4.4) we can show that the typed syntactic monoid of L is in fact the unique minimal
typed monoid recognizing L.

Lemma 4.7. Let L ⊆ Σ∗ be a language and (S ,S,E) a typed monoid.

(a) (S ,S,E) recognizes L if and only if syn(L) divides (S ,S,E).

(b) syn(L) is the unique minimal element (with respect to division) recognizing L, i.e.
if (S ,S,E) recognizes L and (S ,S,E) divides syn(L), then (S ,S,E) � syn(L).

Proof. (a) : We only need to show that syn(L) divides every typed monoid that recog-
nizes L ⊆ Σ∗. So let h : (Σ∗, L,Σ)→ (S ,S,E) be a morphism. Further let (S ′,S′,E′) be
the image of (Σ∗, L,Σ). We show that there is a surjective morphism α from (S ′,S′,E′)
to syn(L) (and hence syn(L) divides (S ,S,E)).

(Σ∗, L,Σ) h // //

η

����

(S ′,S′,E′)

α
xxxx

// // (S ,S,E)

syn(L)

So we need to show that α(s) = η(h−1(s)) is well defined. By contradiction assume
that there are w1,w2 with h(w1) = h(w2) and η(w1) , η(w2), then there are u, v ∈ Σ∗

with uw1v ∈ L and uw2v < L, but h(uw1v) = h(uw2v) and hence L is not recognized by
S . It is obvious that α respects units and types and therefore defines a typed morphism.

(b) : Let (S ,S,E) be a typed monoid recognizing a language L ⊆ Σ∗ via a morphism
h and dividing syn(L) := (S L,SL,EL). Then there is a submonoid (S ′L,S

′
L,E

′
L) of

(S L,SL,EL), a submonoid (S ′,S′,E′) of (S ,S,E), and morphisms α and β as shown
below:

(Σ∗, L,Σ) h // //

η

����

(S ′,S′,E′)

α
wwwwooooooooooo

// // (S ,S,E)

(S L,SL,EL)

(S ′L,S
′
L,E

′
L)

OO

OO

β

88 88ppppppppppppppppppppppppppp

Since Σ generates Σ∗ and h, η is surjective, we know E′ generates S ′, and S L is
generated by EL. Moreover |E′| ≤ |E| ≤ |E′L| ≤ |EL| ≤ |E

′|, so |E′| = |E| = |E′L| = |EL|.
In particular (S L,SL,EL) � (S ′L,S

′
L,E

′
L), and thus E generates S , which again implies

(S ,S,E) � (S ′,S′,E′).

10

Now we have a surjective morphism from (S ,S,E) to (S L,SL,EL) and converse,
but this does not imply that α or β are isomorphisms. But it is clear that α ◦ β is a
permutation of E, hence there is a power of α ◦ β that is the identity on E. But then this
power is also an identity on (S ,S,E) and we have (S L,SL,EL) � (S ,S,E). �

5 Weakly Closed Classes
Motivated by Eilenberg’s notion of a weakly closed class of transformation semigroups
we consider weakly closed classes of typed monoids and languages. Weakly closed
classes of transformation semigroups are closed under division and direct product. For
typed monoids we add an additional operation which allows to identify typed monoids
recognizing the same languages.

Definition 5.1 (Reduced Monoid/Trivial Extension). Let (S ,S,E), (T,T,F) be typed
monoids such that there exists a surjective morphism from (T,T,F) to (S ,S,E). We
call (S ,S,E) a reduced monoid of (T,T,F) and conversely (T,T,F) a trivial extension
of (S ,S,E).

The following lemma formalizes the idea that from a language recognition perspec-
tive, reduced monoids and trivial extensions are equivalent.

Lemma 5.2. If (S ,S,E) is a reduced monoid of (T,T,F), then they recognize exactly
the same languages.

Proof. The fact that every language recognized by (S ,S,E) is also recognized by
(T,T,F) follows from Lemma 4.6, since (S ,S,E) is a divisor of (T,T,F). On the
other hand: Let L be a language recognized by (T,T,F) via the typed morphism
h : (Σ∗, L,Σ) → (T,T,F). Then L is recognized by (S ,S,E) via the typed morphism
π ◦ h, where π denotes the surjective typed morphism from (T,T,F) to (S ,S,E). �

Similar to the case of the syntactic monoid, we can show that to each typed monoid
there exists a unique minimal reduced monoid. This can be constructed - as the syntac-
tic monoid - as a quotient monoid: Given a typed monoid (S ,S,E), define the relation
≡(S ,S,E) by letting x ≡ y (x, y ∈ S) iff for all z, z′ ∈ S for all types SSS ∈ S we have
zxz′ ∈ SSS⇔ zyz′ ∈ SSS. If we view a language as typed monoid with two nontrivial types,
the definition above coincides with the definition of the syntactic congruence. It is easy
to verify that the definition above forms a type preserving congruence. This allows us
to define the minimal reduced monoid:

Definition 5.3 (Minimal Reduced Monoid). Given a typed monoid (S ,S,E), the min-
imal reduced monoid is defined by ˜(S ,S,E) = (S ,S,E)/ ≡(S ,S,E).

Lemma 5.4. Let (S ,S,E) be a typed monoid and (T,T,F) be a reduced monoid of
(S ,S,E) then ˜(S ,S,E) is a reduced monoid of (T,T,F).

Proof. Let h : (S ,S,E) → (T,T,F) be a surjective morphism. Since hS (s1) = hS (s2)
implies that s1 ≡(S ,S,E) s2 the mapping T → ˜(S ,S,E) which maps every t to the
congruence class of an inverse image of t is well defined and gives the desired surjective
morphism. �

11

A standard operation on monoids is the direct product which corresponds to the
Boolean closure on the language side. We will get the same equivalence in the typed
world. The definition of the direct product of two typed monoids is straightforward and
sound in the category theory sense.

Definition 5.5 (Direct Product). The direct product of two monoids (S ,S,E),
(S ′,S′,E′), denoted by (S ,S,E) × (S ′,S′,E′), is defined as (S × S ′,S ×S′,E × E′).

The direct product for typed monoids can express Boolean operations on the lan-
guage side as in the case of conventional monoids:

Lemma 5.6. Let L1, L2 ⊆ Σ∗ be languages recognized by typed monoids (S ,S,E)
and (S ′,S′,E′) respectively. Then L1 ∩ L2 and L1 ∪ L2 are recognized by (S ,S,E) ×
(S ′,S′,E′).

Proof. Let h1 := π1(h) : Σ∗ → S and h2 = π1(h′) : Σ∗ → S ′ where h, h′ denote the
recognizing morphisms for L1, L2 respectively.

Define h̃ : Σ∗ → S × S ′ by h̃(σ) = (h1(σ), h2(σ)). Then L1 ∩ L2 = h̃−1(h1(L1) ×
h2(L2)) and L1 ∪ L2 = h̃−1((h1(L1) × S ′) ∪ (S × h2(L2))). By the definition of the direct
product of typed monoids h1(L1) × h2(L2) and (h1(L1) × S ′) ∪ (S × h2(L2)) are types
of (S ,S,E) × (S ′,S′,E′), so h̃ defines typed morphisms (Σ∗, L1 ∩ L2,Σ)→ (S ,S,E) ×
(S ′,S′,E′)) and (Σ∗, L1 ∪ L2,Σ) → (S ,S,E) × (S ′,S′,E′)), and the assertion follows.

�

Motivated by the definition of a weakly closed class of transformation semigroups
([Eil76, Chapter III]) we define:

Definition 5.7 (Weakly closed class of languages). A weakly closed class of languages
is a function V which associates to each alphabet A a nonempty set A∗V of languages
over A such that

1. A∗V is closed under Boolean combinations, and

2. ϕ−1(L) ∈ B∗V for every L ∈ A∗V and every length preserving morphisms
ϕ : B∗ → A∗.

Many sets of languages defined in other contexts, e.g. descriptive complexity or
circuit complexity, do not form varieties (see Section 6) but weakly closed classes.

Example 5.8. The languages described by the logic class FO[<,mod] form a weakly
closed class. One can easily verify that L(FO[<,mod]) is closed under length preserv-
ing morphisms and it is closed under Boolean operations. But since FO[<,mod] cannot
recognize the language Lparity, it is not closed under non length preserving morphisms.

We will now define sets of typed monoids:

Definition 5.9 (Weakly Closed Class). A weakly closed class of typed monoids is a
nonempty set of typed monoids that is closed under trivial extensions, division and
finite direct products.

12

Given a nonempty set V of typed monoids, we let L(V) be a mapping which as-
sociates with every alphabet A the nonempty set of all languages over A that can be
recognized by a typed monoid of V.

Obviously we have

Lemma 5.10. Let V, W be sets of typed monoids.

(a) If V is closed under division, then A∗L(V) is the set of all languages L ⊆ A∗ with
syn(L) ∈ V.

(b) For two classes V ⊆W we have A∗L(V) ⊆ A∗L(W) for every alphabet A.

Our aim is a correspondence between weakly closed classes of languages and
weakly closed classes of typed monoids, where the correspondence is given by the
function L.

Proposition 5.11. If V is a weakly closed class of typed monoids, then L(V) is a weakly
closed class of languages.

Proof. We have to show that V = L(V) forms a weakly closed class of languages.
We first show V to fulfill the closure under inverse length preserving morphisms: Let
L ⊆ Σ∗ be a language in Σ∗V and (S ,S,E) be a typed monoid recognizing L via the
typed morphism h. Assume that L′ ⊆ Π∗ is a language such that L′ = ϕ−1(L) where
ϕ : Π∗ → Σ∗ is a length preserving morphism. Since ϕ is length preserving it can be
seen as typed morphism from (Π∗, L′,Π) to (Σ∗, L,Σ), thus h ◦ ϕ is a typed morphism
from (Π∗, L′,Π) to (S ,S,E), and therefore L′ ∈ Π∗V.

The other closure properties follow with Lemma 5.6. �

The next proposition ensures that every weakly closed class of languages can be
characterized by a weakly closed class of typed monoids.

Proposition 5.12. If V is a weakly closed class of languages, then there is a weakly
closed class of typed monoids V with L(V) = V.

Proof. Let V be the smallest weakly closed class that contains all syntactic monoids
of V. We have to show that L(V) ⊆ V, i.e. if L ∈ Σ∗L(V) then L ∈ Σ∗V. The other
inclusion is obvious.

The outline of the proof is as follows: We start with a language L ∈ Σ∗L(V) and
want to show that it is also in Σ∗V. We do this by constructing a language L′ ∈ Π∗

as a Boolean combination of languages Li ∈ Σ∗i V, where the Li raise immediately
from the typed monoid recognizing L, and constructing a length preserving morphism
ϕ : Σ∗ → Π∗, such that L = ϕ−1(L′).

L is recognized by a monoid in V. We may assume that L is recognized via a typed
morphism h : (Σ∗, L,Σ) → ×n

i=1(S i,Si,Ei), where (S i,Si,Ei) are syntactic monoids
of some languages Li ∈ Σ∗i V, in particular (S i,Si,Ei) ∈ V (we can ignore the closure
under division and trivial extension by Lemma 5.2). Further, the languages Li ⊆ Σ∗i are
recognized via surjective morphisms ηi : (Σ∗i , Li,Σi)→ (S i,Si,Ei).

13

We now construct L′ and ϕ. The following diagram depicts the situation:

(Σ∗, L,Σ) h //

h̃

""

×n
i=1(S i,Si,Ei) ∈ V

×n
i=1(Σ∗i , Li,Σi) ∈ V

OOOO

The typed monoids (Σ∗i , Li,Σi) are trivial extensions of (S i,Si,Ei) and therefore
exists a typed morphism h̃ : (Σ∗, L,Σ) → ×n

i=1(Σ∗i , Li,Σi). So L = h̃−1(SSS) for some
type SSS = ×n

i=1 SSSi, where SSSi ∈ {∅,Σ
∗
i , Li,Σ

∗
i \ Li}. Note that h̃Σ∗ (Σ∗) ⊆ (×n

i=1 Σi)∗ (since
h̃Σ(Σ) ⊆ ×n

i=1 Σi and by the compatibility conditions of typed morphisms), thus h̃Σ∗ :
Σ∗ → (×n

i=1 Σi)∗ is a length preserving morphism. The assertion follows by setting
Π = (×n

i=1 Σi), L′ = SSS and ϕ = h̃Σ∗ .
�

Thus, by Proposition 5.11 and Proposition 5.12 we get:

Theorem 5.13. Let V be a weakly closed class of typed monoids, then L(V) is a weakly
closed class of languages.

Moreover, if V is a weakly closed class of languages, then there is a weakly closed
class V of typed monoids such that L(V) = V.

Note that this theorem does not guarantee a 1-1 correspondence: for a given weakly
closed class of languages, there could be multiple weakly closed classes of typed
monoids.

6 Varieties
In this section we prove our analogon to Eilenberg’s theorem. Our notion of a language
variety is the same that is found as ∗-variety in the literature [Eil76, Pin86].

The right quotient of a language L ⊆ Σ∗ by w ∈ Σ∗ is defined by Lw−1 = {x ∈ Σ∗ |

xw ∈ L}. The left quotient w−1L is defined analogously. A variety of languages is a
weakly closed class V of languages such that for all alphabets A and B holds:

1. If L ∈ A∗V, then a−1L, La−1 ∈ A∗V for all a ∈ A and ϕ−1(L) ∈ B∗V where
ϕ : B∗ → A∗ is a morphism.

To adapt this concept to the theory of typed monoids, we need the notion of shifts
and unit relaxations. The following definition models the fact that varieties are closed
under left and right quotients.

Definition 6.1 (Shifting). Let (S ,S,E) be a typed monoid. Then (S ,S′,E) is a shift
of (S ,S,E), if there are λ, % ∈ S with S′ = {λ−1SSS%−1 | SSS ∈ S}, where {λ−1SSS%−1}=

{s ∈ S | λs% ∈ SSS}.

14

The use of units let typed morphism correspond to length preserving morphisms
for languages. In order to a notion for non-length-preserving morphism we allow our
units to change:

Definition 6.2 (Unit Relaxation). Let (S ,S,E) be a typed monoid. Then for any finite
set E′ ⊆ S we say (S ,S,E′) is a unit relaxation of (S ,S,E).

Adding these two closure properties to the requirement of a weakly closed class of
typed monoids we obtain a variety of typed monoids.

Definition 6.3 (Variety of Typed Monoids). A variety of typed monoids is a weakly
closed class that is closed under shifting and unit relaxation.

Note that a variety of finite monoids in the sense of [Pin86] does not form a va-
riety of typed monoids if we consider every finite monoid S as the typed monoid
(S ,P(S), S), since it is not closed under trivial extension leading to infinite typed
monoids.

Proposition 6.4. If V is a variety of typed monoids, then L(V) is a variety of languages.

Proof. Let V = L(V). By Proposition 5.11 it remains to show that V is closed under
quotients and under inverse morphism. The closure under quotients is obviously given,
since V is closed under shifting.

Assume that ϕ : Π∗ → Σ∗ is a morphism and L ⊆ Σ∗ is a language recognized by a
typed monoid (S ,S,E) ∈ V (thus there is a typed morphism h : (Σ∗, L,Σ)→ (S ,S,E)).
We need to show that L′ = ϕ−1(L) is also recognized by a monoid in V. But this
follows by unit relaxation, since we can consider ϕ as typed morphism from (Π∗, L′,Π)
to (Σ∗, L, ϕ(Π)) and thus h ◦ ϕ : (Π∗, L′,Π)→ (S ,S, h(ϕ(Π))) is a typed morphism to a
monoid in V. �

Proposition 6.5. For two varieties V ⊆ W we have L(V) ⊆ L(W), where equality
occurs only if V = W.

Proof. Let L(V) = V and L(W) = W. By Lemma 5.10 we have V ⊆W, so we need to
show the equality statement for varieties.

Let (S ,S,E) be a monoid in W and assume V = W, we show (S ,S,E) is in V. We
denote the types in S by SSSi. Let G be a generating set of S containing E, then (S ,SSSi,G)
is a typed monoid in W for all i. The set G generates S , thus there is a language Li ⊆ G∗

recognized by (S ,SSSi,G), moreover syn(Li) � ˜(S ,SSSi,G) ∈W. Thus Li is in G∗W = G∗V
and consequently ˜(S ,SSSi,G) and therefore (S ,SSSi,G) ∈ V for all i. Since (S ,S,E) divides
×i(S ,SSSi,G) we conclude (S ,S,E) ∈ V and hence V = W. �

Proposition 6.6. For every variety of languages V there is a corresponding variety of
typed monoids V, such that V = L(V).

Proof. The proof is similar to the proof of Proposition 5.12. We let V be the smallest
variety that contains all syntactic monoids of V. We need to show that L ∈ Σ∗L(V)
implies L ∈ Σ∗V. We construct a language L′ ∈ Π∗V and a morphism ϕ : Σ∗ → Π∗

such that L = ϕ−1(L′).

15

L is recognized by a monoid in V. We may assume that L is recognized by
×(S i,Si, Ẽi) via some morphism h : (Σ∗, L,Σ) → ×(S i,Si, Ẽi), where (S i,Si,Ei)
are syntactic monoids of some languages Li ∈ Σ∗i V and Ẽi are arbitrary finite sub-
sets of S i. Further, the languages Li ⊆ Σ∗i are recognized via surjective morphisms
ηi : (Σ∗i , Li,Σi)→ (S i,Si,Ei). Note that we may ignore the closure under shifting since
V is closed under quotients.

The typed monoids (Σ∗i , Li, η
−1
i (Ẽi)) are trivial extensions of (S i,Si, Ẽi) and there-

fore exists a typed morphism h̃ : (Σ∗, L,Σ) → ×n
i=1(Σ∗i , Li, η

−1
i (Ẽi)). So L = h̃−1(SSS) for

some type SSS = ×n
i=1 SSSi, where SSSi ∈ {∅,Σ

∗
i , Li,Σ

∗
i \ Li}.

In contrast to the proof of Proposition 5.12 we can not immediately conclude that
h̃Σ∗ (Σ∗) ⊆ (×Σi)∗, since every entry in a tuple h̃Σ∗ (w) ∈ (×Σ∗i) could have different
length. Nevertheless, since we have the closure under unit relaxation we may assume
that every language Li has a neutral letter, i.e. a letter that gets mapped to the neutral
elements by the morphism ηi. Thus we can identify h̃Σ∗ (w) = (w1, . . .wn) with a word
(v1, . . . , vn) ∈ (×Σi)∗ where vi is wi padded with the neutral letter.

Now the assertion follows with ϕ is the morphism induced by h̃Σ∗ , Π = (×n
i=1 Σi)

and L′ = SSS. �

Summing up these results we obtain a one-to-one correspondence for varieties as
in the finite case:

Theorem 6.7. Varieties of typed monoids and varieties of languages are in a one-to-
one correspondence:

• Let V be a variety of languages and V the smallest variety of typed monoids that
recognizes all languages in V, then L(V) = V.

• Let V be a variety of typed monoids and W be the smallest variety that recognizes
all languages of L(V), then V = W.

As shown above, a variety of typed monoids contains always infinite typed monoids
because of the closure under trivial extensions. But without this closure property there
would be no one-to-one correspondence in the previous theorem. It is easy to construct
a typed monoid (S ,S,E) such that any language recognized by (S ,S,E) is aperiodic
but S contains a group.

7 Discussion
We have introduced typed monoids and shown that they can be used to describe lan-
guages, weakly closed classes, and varieties of languages. Typed monoids allow us
to obtain a more precise description of language classes than with the usual approach
with monoids or as mg-pairs or stamps as in [ÉL03] and [PS05].

In this paper we presented basic results about typed monoids. We have shown the
existence and uniqueness of a typed syntactic monoid and the equivalent of Eilenberg’s
theorem for typed monoids as well as a weaker version for weakly closed classes.
A number of questions are open when studying typed monoids. Green’s relation are

16

a useful tool in the study of monoids. Many important varieties within the regular
languages can be defined via some properties of the Green’s relations of the monoids
involved. This opens the question whether there is a useful notion of similar relations
for typed monoids.

It usually makes a difference if one considers language recognition via monoids
or semigroups. In the latter case languages are subsets of Σ+ instead of Σ∗ and the
term +-varieties is used. The difference between these two approaches diminishes for
typed monoids. The empty word must be mapped onto the neutral element of the typed
monoid. But if the neutral element is not contained in the units, the morphism on Σ∗ \

{λ} = Σ+ behaves like a semigroup morphism. Conversely, if one considers a language
L ⊆ Σ+ recognized by a semigroup S with accepting set A, this language is recognized
by the typed monoid (S 1, A, ηL(Σ)). Here, S 1 denotes S with an additional neutral
element added. If for example a language L without a neutral letter is recognized by a
semigroup S then (S 1, A, ηL(Σ)) recognizes L but not L with an additional neutral letter.

The motivation to study typed monoids stems from an interest in algebraic char-
acterizations of logic and circuit classes. The program linking finite monoids [GL84,
Imm87, BST90, BIS90, BCST92] to first order logic relied heavily on the block product
[RT89] (or the bilateral semidirect product). It is possible to define the block product
for typed monoids and, for example, obtain characterizations for first order logic with
the majority quantifier [KLR07] as well as subclasses [BKM07]. To do so it was es-
sential to limit the set of possible accepting subsets. The limitation of the acceptance
set (types) was used in [Sak76] to obtain monoids for context free languages. By us-
ing a Boolean algebra we loose the ability to characterize language classes that are not
closed under Boolean operations. We choose a Boolean algebra because circuit classes
are usually closed under Boolean operations. Even more, the use of a Boolean algebra
lead to a clean definition of a block product (or bilateral semidirect product) and eases
the characterizations of logic classes with (arbitrary) Lindström quantifiers.

The approach of ordered monoids ([Pin95]) allows to examine language classes
not closed under complement. A possible research area is to introduce “positive” and
“negative” types, closed under union to characterize context free languages and one
might be even able to define a block product for these kind of objects.

References
[Ajt89] Miklós Ajtai. First-order definability on finite structures. Ann. Pure Appl.

Logic, 45(3):211–225, 1989.

[Alm95] Jorge Almeida. Finite Semigroups and Universal Algebra. World Scien-
tific, Singapore, 1995.

[BCST92] David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and Denis
Thérien. Regular languages in NC1. J. Comput. Syst. Sci., 44(3):478–499,
1992.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On
Uniformity within NC1. J. Comput. Syst. Sci., 41(3):274–306, 1990.

17

[BKM07] Christoph Behle, Andreas Krebs, and Mark Mercer. Linear circuits, two-
variable logic and weakly blocked monoids. In MFCS, pages 147–158,
2007.

[BST90] David A. Mix Barrington, Howard Straubing, and Denis Thérien. Non-
uniform automata over groups. Inf. Comput., 89(2):109–132, 1990.

[Eil76] Samuel Eilenberg. Automata, Languages and Machines, Vol. A+B. Aca-
demic Press, 1976.

[ÉL03] Zoltán Ésik and Kim Guldstrand Larsen. Regular languages definable by
lindström quantifiers. ITA, 37(3):179–241, 2003.

[FSS81] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and
the polynomial-time hierarchy. In FOCS, pages 260–270, 1981.

[GL84] Yuri Gurevich and Harry R. Lewis. A logic for constant-depth circuits.
Information and Control, 61(1):65–74, 1984.

[Imm87] Neil Immerman. Languages that capture complexity classes. SIAM J. Com-
put., 16(4):760–778, 1987.

[KLR07] Andreas Krebs, Klaus-Jörn Lange, and Stephanie Reifferscheid. Charac-
terizing TC0 in terms of infinite groups. Theory Comput. Syst., 40(4):303–
325, 2007.

[Kre08] Andreas Krebs. Typed Semigroups, Majority Logic, and Threshold Cir-
cuits. PhD thesis, Universität Tübingen, 2008.

[MP71] Robert McNaughton and Seymour Papert. Counter-free automata. With an
appendix by William Henneman. Research Monograph No.65. Cambridge,
Massachusetts, and London, England: The M. I. T. Press. XIX, 163 p.,
1971.

[Pin86] Jean-Eric Pin. Varieties of formal languages. Plenum, London, 1986.

[Pin95] Jean-Eric Pin. A variety theorem without complementation. 39:80–90,
1995. English version: Russian Mathem. (Iz. VUZ) 39 (1995),74-83.

[PS05] Jean-Eric Pin and Howard Straubing. Some results on C-varieties. ITA,
39(1):239–262, 2005.

[RT89] John L. Rhodes and Bret Tilson. The kernel of monoid morphisms. J. Pure
Applied Alg., 62:27–268, 1989.

[Sak76] Jacques Sakarovitch. An algebraic framework for the study of the syntactic
monoids application to the group languages. In MFCS, pages 510–516,
1976.

[Sch65] Marcel Paul Schützenberger. On finite monoids having only trivial sub-
groups. Information and Control, 8(2):190–194, 1965.

18

[Str94] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complex-
ity. Birkhäuser, Boston, 1994.

[TT07] Pascal Tesson and Denis Thérien. Logic meets algebra: the case of regular
languages. Logical Methods in Computer Science, 3(1), 2007.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

