
On the Complexity of Group Isomorphism

Fabian Wagner
Institut für Theoretische Informatik

Universität Ulm
fabian.wagner@uni-ulm.de

July 4, 2012

Abstract

The group isomorphism problem consists in deciding whether two groups G and H given by
their multiplication tables are isomorphic. An algorithm for group isomorphism attributed to
Tarjan runs in time nlogn+O(1), c.f. [Mil78].

Miller and Monk showed in [Mil79] that group isomorphism can be many-one reduced to
isomorphism testing for directed graphs. For groups with n elements, the graphs have valence
at least n. We introduce a different reduction for isomorphism testing, where the valence of the
graphs, say X(G) and X(H), and the complexity of the isomorphism test is closely related to
the structure of the groups.

Let G be the class of groups having a composition series where composition factors of size
at least logn/ log logn come before the others.

The composition series isomorphism problem is given two composition series S for G and S′

for H, such that any subgroup of G according to S is mapped blockwise onto that of H according
to S′. In the reduction onto graph isomorphism, we get graphs X(G,S) and X(H,S′). Then for
p-groups we find such an isomorphism in time ncp and for the more general class of G-groups1

in time nc logn/ log logn for a constant c.
We analyze the time complexity for three isomorphism testing algorithms with respect to

two parameters β, γ which depend on the group structure. With a combination of the al-
gorithms we also can show that G-group isomorphism is in time nc(γ+log β+logn/ log logn), and
p-group isomorphism is in time nc(p+γ+log β) with β, γ ≤ logp n. Most recently, D. Rosenbaum

improves in [Ros12] these bounds to n(1/2) logn+O(1) for p-groups and nilpotent groups, and to
n(1/2) logn+O(logn/ log logn) for solvable groups.

1 Introduction

Two groups G,H with ground set Ω = {1, . . . , n} are isomorphic if there is a mapping φ : Ω → Ω
such that φ(i) ·φ(j) = φ(i ◦ j) where we assume that ◦ is the group operation in G and · in H. The
group isomorphism problem is to decide whether two groups G and H are isomorphic.

The complexity of group isomorphism has been studied for more than three decades. When
groups are given by their generating sets (i.e., permutations over a ground set {1, . . . , n}) then the

1D. Rosenbaum [Ros12] pointed out, that there was an error in earlier versions of this work. This affected the
bound of composition series isomorphism for general groups, and remained correct for p-groups and the more general
class of G-groups.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 4 of Report No. 52 (2011)

graph isomorphism problem is polynomial time Turing reducible to group isomorphism, and this
problem is known to be in NP ∩ coAM [Luk93].

In [Mil79], isomorphism testing of explicitly given structures is many-one reduced to directed
graph isomorphism. Groups can also be represented as a ternary relation R, i.e. (a, b, c) ∈ R iff
ab = c. As a corollary, group isomorphism can be reduced to graph isomorphism. In this reduction,
the graphs have unbounded valence.

Here, we consider groups with n elements given in table representation (also called Cayley
groups), i.e., a table of n× n entries where the entry (i, j) contains the product ij. The following
algorithm for isomorphism testing on two Cayley groups G,H runs in time nlogn+O(1): compute a
generating set A of size log n for G. Then try all mappings from A bijectively onto each possible
subset A′ of H. There are

(
n
|A|
)
·|A|! many such ordered sets. Check for each such map whether

it can be extended to an isomorphism from G onto H. We start with A and A′ as partial ordered
sets and recursively check whether φ(i) · φ(j) = φ(i ◦ j) is consistent with A and A′. We extend
the partial ordered sets whenever φ(i ◦ j) is a new element. This algorithm is attributed to Tarjan,
c.f. [Mil78] and it is improved by Lipton, Snyder and Zalcstein [LSZ76] as a sharper O(log2 n) space
algorithm.

Arvind and Torán [AT04] give a 2-round Arthur-Merlin protocol for the group non-isomorphism
problem such that Arthur and Merlin use O(log6 n) random bits and O(log2 n) non-deterministic
bits, respectively. They derandomize this protocol in the case of solvable groups.

For abelian groups when given as generating sets, isomorphism can be tested in linear time [Kav03],
it is hard for ModL and contained in ZPLModL [AV04]. When given in multiplication tables then
isomorphism testing is trivially in L, and also in TC0(FOLL) (see [CTW10]). On the one side, not
far from abelian appear the hardest cases, namely nilpotent groups of class 2. For these groups,
the center Z(G) and the quotient G/Z(G) are abelian. On the other side, Babai et al. [BCGQ11]
consider groups without abelian normal subgroups. They prove that isomorphism testing for this
class of groups is in time nO(1)+c log logn. With parameter t(G), defined to be the smallest t such
that each minimal normal subgroup of G has at most t simple groups, isomorphism testing is in
time nO(1)+c log(t(G)) for a constant c. Quiao, Sarma and Tang [QMT11] present a framework to
test isomorphism of groups with at least one normal Hall subgroup, when groups are given in
multiplication tables.

Group decomposition. It is well known that a composition series even for permutation groups
can be obtained in polynomial time [Luk87] and also in NC [BLS87]. For a group G it can be
obtained as follows:

• Compute the socle Soc(G) of G, this is a normal subgroup isomorphic to a direct product of
simple groups (or the direct product of some minimal normal subgroups of G).

• Decompose the factor group G/Soc(G), recursively. For groups with n elements, the compo-
sition series has length at most log n.

• A minimal normal subgroup is a direct product of isomorphic simple groups. Here, we do not
initially decompose minimal normal subgroups. We guess the arrangement of those minimal
normal subgroups which are isomorphic within the socle. We do this for each socle in the
decomposition process.

2

This gives so far a normal series S with semisimple factor groups. Let seq(S) denote the
sequence of factor groups given by S. This group decomposition is central to our isomorphism
testing algorithms (also see Section 4). We consider two parameters (also see Definition 4.6) which
depend on the recursive decomposition into socles and their minimal normal subgroups:

• Let β be the maximum number of isomorphic minimal normal subgroups in any socle of this
decomposition process.

• Let γ be the maximum composition length of any minimal normal subgroup in any socle of
this decomposition process. Hence, there is a minimal normal subgroup where we need at
least γ group elements to generate it.

Our contribution and most recent related work. We show a reduction from group isomor-
phism onto graph isomorphism where the valence of the graphs depends on the group structure.
We compare three isomorphism testing algorithms and analyze their time-complexity depending on
the parameters β and γ.

1. Tarjan’s algorithm when given a normal series as above. Isomorphism testing for two groups
G and H can be done in two steps.
First, we compute a normal series S for G and S′ for H as above such that if G is isomorphic
to H then also (G, seq(S)) is isomorphic to (H, seq(S′)) respecting the structure induced by
seq(S) and seq(S′), i.e., mapping the subgroups in S of G blockwise onto those in S′ of H.
Second, we fix coset representatives for each of the factor groups in S′ as generators for H.
Note, for each factor group we may need more than one element to generate it. For example,
if a factor group is a direct product of k pairwise isomorphic cyclic groups then we have k
generators (and 2k generators if we have non-abelian simple groups instead), all these are
taken as coset representatives.

Then we run through all possibilities to select coset representatives with respect to S as
generators for G. If the mapping of the generators induces an isomorphism from G onto H
then we accept, otherwise we reject. Let the factor groups in S be direct products of simple
groups of size at most p. Then this algorithm runs in time n2 logp n.

2. Reduction to graph isomorphism. This algorithm also has two steps. The first step is as
before, we run through all arrangements of β pairwise isomorphic minimal normal subgroups
within a socle. In total, this can be done in time nlog β.

The second step is different: We reduce group isomorphism to graph isomorphism where the
valence of the graphs is bounded by p+ 1. For this we run through all possibilities to select
coset representatives for the factor groups as generators. This number is at most ncγ , for
a constant c. In the reduction, we first construct a complete tree where each node has p
children. We have several copies of this tree and also of a further graph gadget to encode
the group multiplications. Isomorphism testing for valence-d graphs is in time nO(d) [BL83].
Let the simple groups of the factor groups in S have size at most p. The group isomorphism
algorithm runs then (for a constant c) in time nc(γ+log β+(p+1)).

3. Combination of both algorithms. We distinguish between those minimal normal subgroups
which are a direct product of simple groups of size > α and the others. We take the first

3

algorithm to find generators for the minimal normal subgroups in the case > α and we take
the second algorithm for the remaining minimal normal subgroups. For a constant c, the
algorithm runs in time nc(γ+log β)(nc logα n + nc(α+1)).

Isomorphism on groups. The first algorithm runs faster if the composition length of G is small.
The second algorithm is an improvement especially for groups where the decomposition has factor
groups of small size (e.g. for p-groups where p is a small prime) and where also γ is small. The
runtime of the third algorithm becomes minimal if we set α = log n/ log logn.

Recently, D. Rosenbaum [Ros12] pointed out that in [Wag11] there was an error in the processing
step, where the degree of nodes should be reduced from ≥ α to a constant, whereas nodes with
degree < α are not altered. The problem was that this construction does not work when there
are nodes with degree less than α having children with degree at least α. However, for p-groups
this construction process is not required, such that the mentioned results for p-groups remained
correct. That is, Theorem 1.3 below follows immediately in [Wag11] by considering Theorem 6.1
and applying Theorem 6.7 for p-groups.

In Section 6 we prove the following theorem. D. Rosenbaum pointed out that it does not hold
for all groups, but still for an interesting class of groups, where also p-groups are contained.

Definition 1.1 Let G be the class of groups which have a composition series where factor groups
of size at least log n/ log log n come before factor groups of smaller size.

Theorem 1.2 Group isomorphism for groups in G with n elements given in table representation,
is in time (for a constant c):

nc(γ+log β+logn/ log logn)

Isomorphism on p-groups and solvable groups. In Section 3 we explain the reduction. In Section 5,
we introduce the reduction algorithm for p-groups.

Theorem 1.3 Group isomorphism for p-groups with n elements given in table representation is in
time (for a constant c): nc(p+γ+log β).

D. Rosenbaum [Ros12] improves this to time n(1/2) logn+O(logn/ log logn) in an earlier version and
further to time n(1/2) logn+O(1), and that this upper bound holds for nilpotent groups. Subsequently,
he generalized the techniques to derive an algorithm for group isomorphism on solvable groups,
which runs in time n(1/2) logn+O(logn/ log logn).

Composition series isomorphism. Composition series isomorphism seems to be a slightly easier task
than group isomorphism. Intuitively speaking, the nlogn barrier comes here from the number of
composition series which we consider in the reduction onto graph isomorphism.

Corollary 1.4 Composition series isomorphism is in time (with constant c)
for G-groups: nc(logn/ log logn)

for p-groups: ncp.

4

2 Preliminaries

Groups. A group G = (Ω, ◦) is a set Ω together with an operation ◦, i.e. a 2-ary function, which
satisfies the axioms of closure and associativity, G has a unique identity element e, and unique
inverse elements. We also write in short g ∈ G and mean that g ∈ Ω and gh in short for g ◦ h. We
consider finite groups where Ω consists of n elements, i.e. we say that G has order or size |G| = n.

For an integer i, gi is the element g ∈ Ω multiplied i times with itself. If gi = e for the smallest
i ≥ 1, then i is the order of g in G, in short we also write ord(g) = i. The set {g, g2, . . . , gi−1}
is denoted the powers of g. The element g−1 is the inverse element of g, it satisfies the equation
g−1g = e.

We write H ≤ G to denote that H is a subgroup of G. We use the following notion G \ H =
{g ∈ G | g 6∈ H} which has a different meaning than that of factor groups G/H defined below.

Let g ∈ G, then gH = {gh | h ∈ H} is a left coset of H in G, and Hg = {hg | h ∈ H} is a right
coset of H in G. Any pair of left cosets (resp. right cosets) has the property that they contain
either exactly the same set of elements or are disjoint. We write G as the union of its cosets

G = H + g2H + · · ·+ grH
to indicate that the cosets H, g2H, . . . , grH are disjoint and exhaust G. The elements g2, . . . , gr are
the coset representatives, these are arbitrary elements from each coset. We write H in short for
eH, and assume that the identity e is the representative for H. We use these notions also when
given left cosets. A set of representatives of all the cosets is called a transversal.

A group given in table representation, also denoted Cayley group, consists of a multiplication
table of size n by n filled with numbers in the range from 1 to n. The total size is n2 log n bits. A
set of elements S = {g1, . . . , gk} of G is a generating set for a subgroup H ≤ G if every g ∈ H can
be expressed as a product of elements from S, we also write 〈S〉 = H.

The direct product of two groups G = (Ω, ·) and H = (Ω′, ∗), denoted G ×H, is a group with
element set {(g, h) | g ∈ G, h ∈ H} and an operation ◦ defined elementwise (g, h) ◦ (g′, h′) =
(g · g′, h ∗ h′).

A group is commutative or abelian if for all g, h ∈ G : gh = hg holds. An abelian group is
isomorphic to the direct product of cyclic groups.

A subgroup H of G is said to be normal if for all g ∈ G, gH = Hg and we write H �G. H is a
minimal normal subgroup of G if there is no other normal subgroup of G contained in H. A group
is simple if it does not have non-trivial normal subgroups. A group is semisimple if it is the direct
product of simple groups. The socle of G is a subgroup generated by all minimal normal subgroups,
it is denoted Soc(G). The socle is semisimple and it is a normal subgroup. We shall take the cosets
Hgi as the elements of a system K. We define the product in K as (Hgi)(Hgj) = Hgk if gigj ∈ Hgk
in G. If H is normal, then K is a group (c.f. [Hal99], p. 27). The product depends solely on the
cosets and not on the choice of the representatives. K is a group which we call the factor group or
quotient group of G with respect to H and we write K = G/H.

A normal series of a group G is a finite sequence of subgroups G1, . . . , Gk with
{e} = Gk �Gk−1 � · · ·�G1 = G.

A normal series is a composition series if for each i, Gi+1 is a proper normal subgroup of Gi and
each factor group Gi/Gi+1 is simple. The Jordan-Hölder Theorem (see e.g. [Hal99], Theorem 8.4.4)
states that if

S1 : {e} = Gk �Gk−1 � · · ·�G1 = G
S2 : {e} = Hk �Hk−1 � · · ·�H1 = G

are two composition series for G respectively, then the factor groups Gi/Gi+1 are isomorphic to

5

Hπ(i)/Hπ(i+1) in some ordering π of the indices. Note, two non-isomorphic groups could have
composition series with isomorphic composition factors.

Definition 2.1 A complete set of coset representatives with respect to S1 is a sequence of tu-
ples of group elements ~s = (s1, . . . , sk−1) with si = (a) (or si = (a, b)) such that aGi+1 (or
aGi+1, bGi+1) generate the simple factor group Gi/Gi+1 that is cyclic (or non-abelian, respectively)
and aGi+1(, bGi+1) ∈ Gi \Gi+1, for each i ∈ {1, . . . , k − 1}. ~s generates G.

We generalize these notions for normal series with semisimple factor groups. If Gi/Gi+1 is
semisimple then we define si to be a tuple of generators.

The center of a group G is the set of elements which commute with all elements of G, i.e.
Z(G) = {z ∈ G | ∀ g ∈ G, gz = zg}. This set forms a commutative subgroup of G. The
commutator of two elements g, h ∈ G is the element [g, h] = g−1h−1gh. A commutator subgroup or
derived subgroup is the group [G,G] generated by all the commutators {[g, h] | g, h ∈ G}. When
iterating this, we get the derived series with G(0) = G,G(n) = [G(n−1), G(n−1)]. It is a descending
normal series G(r)� · · ·�G(1)�G(0) = G. If G(i+1) = G(i) is non-trivial then this series terminates
in a perfect group, i.e. it is equal to its own commutator subgroup. If G(i) = {e} the trivial group,
then the smallest such i is called the derived length. If all factor groups are commutative, then G
is called solvable.

In contrast to the derived series, the lower or descending central series is defined Gr � · · · �
G2 �G1 = G where Gi+1 = [Gi, G] for i ∈ {2, . . . , r}. Here, Gi+1 is a normal subgroup of Gi and
the factor group Gi/Gi+1 is cyclic, for all i. If the lower central series terminates in the trivial
group Gi = {e} then G is nilpotent. Nilpotent groups are solvable, the converse does not hold. The
smallest such i defines the nilpotency class of G.

The conjugacy class of a group element g ∈ G is the set cl(g) = {h−1gh | h ∈ G}. The
normal closure of a group element g ∈ G is the group nclG(g) = 〈cl(g)〉, i.e. a normal subgroup
of G generated by all elements of the conjugacy class cl(g). Note, nclG(g) is the smallest normal
subgroup of G that contains g.

A permutation is a bijective mapping among elements in Ω. The set of all permutations together
with composition as operation forms a group, the symmetric group Sym(Ω). An automorphism
φ ∈ Sym(G) is a permutation over group elements such that φ(g)φ(h) = φ(gh). The automorphism
group Aut(G) of a group G is a group with automorphisms as elements. The inner automorphism
group Inn(G) is a subgroup of Aut(G), it contains all automorphisms of the form φ : g 7→ h−1gh
for all h ∈ G. In an automorphism φ on G, a set S ⊆ G is fixed blockwise if φ(g) ∈ S if and
only if g ∈ S. Two groups G,H are isomorphic if there is a bijection φ : G 7→ H, such that
φ(g)φ(h) = φ(gh). Group isomorphism is the problem to decide whether two groups given in table
representation are isomorphic.

Composition series isomorphism is given two groups G,H and composition series S of G and
S′ of H, i.e.,

S : {e} = Gk � · · ·�G1 = G and S′ : {e} = Hk � · · ·�H1 = H
such that for all i, the subgroups Gi and Hi are isomorphic. Note, an isomorphism that mapps the
coset representatives according to S onto coset representatives according to S′ (as in Definition 2.1)
in correct order, gives a composition series isomorphism (G,S) onto (H,S′).

Graphs. A graph G is a pair (V,E) with a set of vertices V = V (G) and edges E = E(G) ⊆ V ×V .
We consider simple graphs, i.e. with undirected edges and without loops and multiedges. The size

6

of a graph is the number of its vertices. The distance between two vertices u, v in a graph G is the
length of the shortest path between u and v.

The degree or valence of a vertex v in a graph G is the number of edges which have v as end
vertex. The valence of a graph is the maximum valence of its vertices.

A graph is connected if there is a path between any two vertices. A graph is a tree if it is
connected and does not have a simple cycle. A root of a tree is a designated vertex. A rooted tree
is a tree with a root. Let (u, v, . . . , r) be a simple path from u to the root r in a rooted tree. Then
v is the parent of u and u is a child of v.

An isomorphism between graphs G1 = (V,E1) and G2 = (V,E2) is a bijective mapping
φ : V → V such that {u, v} ∈ E1 if and only if {φ(u), φ(v)} ∈ E2. Both graphs are isomor-
phic (G1

∼= G2) if such an isomorphism exists. An automorphism of graph G is a permutation
φ : V (G) → V (G) preserving the adjacency relation: {u, v} ∈ E(G) ⇔ {φ(u), φ(v)} ∈ E(G). A
rigid graph has no automorphisms except the identity. In an automorphism φ on G, a set U ⊆ V (G)
is fixed blockwise if φ(v) ∈ U if and only if v ∈ U . We also say that U is mapped blockwise onto
itself.

A Cayley graph of a group G with respect to generators g1, . . . , gk of G is a graph with group
elements as vertices and edges (u, v) with label gi if there is a generator gi with ugi = v in G.

Complexity. For the following and further complexity theoretic notions we refer to standard
textbooks, for example [Pap94]. The class P (or NP) contains languages accepted by a (non-) de-
terministic Turing machine with polynomial time bound. The class L (or NL) contains the languages
accepted by a (non-) deterministic Turing machine where the work-tape is restricted to O(log n)
bits. Non-determinism means, that the machines are allowed to guess bits while computing the
solution and verify it within the restricted resource bounds. The class ACi contains the languages
accepted by a DLOGTIME uniform family of Boolean circuits of depth O(logi n) and size polyno-
mial in n, with unbounded fanin and -gates and or -gates. The class NCi is ACi where and -gates
and or -gates have bounded fanin (i.e. fanin two). NC =

⋃
iNC

i. The following containments are
known:

AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ NC2 ⊆ · · · ⊆ NC ⊆ P ⊆ NP

A language L is AC0 many-one reducible (in short ≤AC0

m) to a language L′ if there is a total function f
computable in AC0 so that for all words, w ∈ L1 if and only if w ∈ L2. We consider reducibility
with respect to DLOGTIME uniformity. The notions L, NC or P many-one reducibility are defined
accordingly.

3 Reduction to Graph Isomorphism

In this section we reduce group isomorphism onto graph isomorphism. Following the reduction
in [Mil79], for groups with n elements the valence of the graphs is at least n. We introduce
a different reduction to graph isomorphism. If we break up the group into smaller pieces, i.e.
characteristic subgroups, then in our construction we get graphs with smaller valence.

The construction. Let G be a group with n elements in table representation. The reduction
goes in two steps.

First, we define a graph T (G) as follows: For every group element g ∈ G there is an element
vertex g in T (G). There is a root vertex eG, it is connected to all element vertices in T (G).

7

Second, from this tree we construct a graph X(G). X(G) contains a main copy of T (G). For
every element vertex g in T (G), we have a further copy Tg of T (G). The root of Tg is identified
with g. The leaves of Tg are connected to graph gadgets which encode the multiplication in G.
Figure 1 shows the construction for a multiplication graph gadget Mgh=k. Hence, each node g(h) is
connected to three multiplication graph gadgets, namely when g is multiplied with h in this order,
i.e. to vertex xgh=k in Mgh=k, and vice versa, i.e. to vertex yhg=i in Mhg=i, and when g is the
result of a multiplication with h, i.e. to vertex zjh=g in Mjh=g, for corresponding group elements
i, j, k ∈ G.

g

h(g)

k

h(k)

h

g(h)

Mgh=k

Tg Th Tk e

eG

g1g2

xgh=k ygh=k zgh=k

Figure 1: The graph X(G) is shown together with some element vertices e, g1, g2, g, h, k. A multi-
plication graph gadget Mgh=k is indicated by white nodes.

Claim 3.1 Every automorphism in G gives an automorphism in X(G).

Proof. The root node eG is the only node with valence n and so it is fixed. Hence, the vertices
at each level in the construction are mapped onto each other. When the element vertices of the
main copy T (G) in X(G) are fixed, then the whole graph is fixed. That is, because for every triple
g, h, k ∈ G with gh = k there is a unique multiplication graph gadget Mgh=k and hence, there are
unique paths from g to h and to k passing Mgh=k. Hence, g(h), h(g), k(h) are fixed blockwise. Since
every vertex at distance two to the root eG is connected to at least one multiplication graph gadget,
all nodes of this level are fixed. The multiplication graph gadgets are rigid. �

Refinement of groups. The graph X(G) has vertices with valence at least n. We construct a
new tree T ′(G). Let X ′(G) be the graph X(G) where we replace each copy of T (G) by T ′(G). The
goal is that in X ′(G) the nodes have smaller valence but the automorphism properties of X ′(G)
are the same as in X(G).

Let N be a characteristic subgroup in G. We get a normal series, namely {1}�N �G. Every
group element g ∈ G can be written as a product h1n where n ∈ N and h1 ∈ h1N is a coset
representative. Let h1, . . . , hk be a complete set of coset representatives.

We define a new tree T ′(G) as follows.

• For every group element g ∈ G with g = hin (i ∈ {1, . . . , k}) there is an element vertex hin
in T ′(G).

8

• For every coset representative h1, . . . , hk there is a vertex hiN in T ′(G).

• There is a root vertex eG connected to the vertices h1N, . . . , hkN in T ′(G).

The rest of the construction of X ′(G) is the same as for X(G). In particular, the tree copies
connected to the leaves of T ′(G) are copies of T ′(G).

Remarks. We use the property that N is characteristic and that the cosets h1N, . . . , hkN are
mapped blockwise onto each other and that eN is fixed blockwise. The tree T ′(G) respects these
automorphisms. The valence of the graph is now the maximum of 1 + k and 1 +n/k where k is the
number of cosets and |N | = n/k. Note, here we neglect that e.g. g(h) has at least 4 neighbors. We
remedy this later with minor changes to the construction. Figure 2 shows an example.

eG

g

h(g)

k

h(k)

h

g(h)

Mgh=k

Tg Th Tk e

eNh1Nh2N

en2h1e enh1n
2 h1n

hkN

Figure 2: The graph X ′(G) is shown together with coset representatives e, h1, . . . , hk and with
normal subgroup N , a cyclic group of three elements. The labels of the element vertices are written
as products with an element in N and a coset representative.

Another important point is, that this construction does not depend on the selection of the coset
representatives. For example, take h′1 ∈ h1N instead of h1 as coset representative. Since h′1 ∈ h1N
there exists n ∈ N such that h′1 = h1n or equivalently h1 = h′1n

−1. Every element h1n
′ can be

written as (h′1n
−1)n′ = h′1(n

−1n′). Hence, taking a different element as coset representative implies
a rearrangement among the children of the node h1N in T ′(G). Also if h′1 ∈ hiN instead of h1N
then this means that we also permute the cosets. This implies a rearrangement among the nodes
h1N, . . . , hkN in T ′(G).

We repeat the decomposition of N and the factor group G/N to further reduce the valence.
That is, in the tree T ′(G) we add new intermediate layers. Hence, we end up in a normal series
where each of the subgroups is characteristic and the factor groups are semisimple. The valence
depends on the size of the largest factor group in this series.

9

4 Decomposition of Groups

In this section we discuss some technical details for the decomposition of groups. The motivation
here is that the group decomposition is central in the isomorphism algorithms, for example in the
reduction part to graph isomorphism. It also has an influence in the complexity analysis.

It is well known that a composition series even for permutation groups can be obtained in
polynomial time [Luk87] and also in NC [BLS87]. The recursive decomposition of groups into
normal subgroups and factor groups ends up in simple groups. Here, we just distinguish between
two types of simple groups, namely the cyclic groups and non-abelian simple groups. We use the
following fact.

Fact 4.1 Finite simple non-abelian groups can be generated by two group elements.

The proof of this depends on the classification of the finite simple groups. Clearly, a cyclic group
of prime order can be generated by one element. The non-abelian simple groups can be generated
by two elements where one is an involution (see e.g. [MSW94]).

In the following we discuss two points. First, when decomposing groups we reduce the number
of group elements, we need to define a complete set of coset representatives. For example if we
have h1 /∈ N as a representative for h1N , then we can take h21 as a representative for the coset
h21N . The goal is to describe all coset representatives by a small set of generators, namely coset
representatives for those elements that generate the factor group G/N . If the factor groups are
simple, then we have at most two elements for this. We show now, that all group elements in a
simple group can be arranged uniquely when one or two generators are fixed. Second, we show how
the groups can be decomposed.

4.1 Arrange group elements by generators

When given a set of generators for a group, where the generators are arranged in a unique order,
then this induces a unique order for all group elements. This can be done for example by defining
unique products to generate each group element and then by arranging them lexicographically.

Generator-representation for groups. For a group G there is a normal series S where the
factor groups Gi/Gi+1 for i ∈ {1, . . . , k − 1} are semisimple:

{e} = Gk �Gk−1 � · · ·�G1 = G

• If Gi/Gi+1 for i ∈ {1, . . . , k − 1} is cyclic, then we need one generator aiGi+1 for Gi/Gi+1.

• If Gi/Gi+1 is non-abelian and simple, then we need two generators aiGi+1, biGi+1 for Gi/Gi+1.

• If Gi/Gi+1 is semisimple, a direct product of l simple groups, then we need at most 2l
generators ai,1Gi+1, bi,1Gi+1, . . . , ai,lGi+1, bi,lGi+1 for Gi/Gi+1.

Let S be given by ~s = (s1, . . . , sk−1), we say that an element g is given in generator-representation,
if it can be expressed as a product w1 · · ·wk−1 where

• wi = alii with si = (ai) and li ∈ {0, . . . , pi − 1} if Gi/Gi+1 is cyclic,

10

• wi is a uniquely determined word of generators ai, bi with si = (ai, bi) ifGi/Gi+1 is non-abelian
and simple,

• wi is a uniquely determined word of generators ai,1, bi,1, . . . , ai,l, bi,l with si = (ai,1, bi,1, . . . , ai,l, bi,l)
if Gi/Gi+1 is semisimple as denoted above.

Unique order for group elements. The following lemma says how group elements in simple
groups can be arranged uniquely according to their generator-representation. This unique order
depends on a given composition series.

Lemma 4.2 Let G be a group and S a composition series given by ~s as in Definition 2.1 on page 6.
There is a logspace computable function that brings every group element in G into a new order that
is uniquely determined according to their generator-representation.

Proof. Let ~s = (s1, . . . , sk−1). The group elements are arranged in lexicographical order according
to their generator representation, i.e. with highest priority sort group elements according to a word
w1 of group elements in s1, then those which are equal are sorted according to a word w2 of group
elements in s2 and so on, until we sort according to a word wk−1 of group elements in sk−1.

Clearly, if si = (a) (i.e. Gi/Gi+1 is cyclic) then a word wi is a power of a, these can be
distinguished by their exponent a0 < a1 < · · · < aord(a)−1. If si = (a, b) (i.e. Gi/Gi+1 is non-
abelian and simple) and we have an order a < b, then we compare products of these generators as
words wi lexicographically. Hence, it remains to say how to get unique words for the elements in
this factor group.

Consider the Cayley graph of Gi/Gi+1 where we have directed edges labeled with ai, a
−1
i and

bi, b
−1
i . Since ai, bi are generators, this graph is connected. We define as order id < ai < a−1i <

bi < b−1i .

Claim 4.3 In a Cayley graph of a group, if all generators are arranged in a unique order then
there is a logspace computable function which arranges all group elements in a unique order.

Proof. The proof is adapted from [DLN08], where planar 3-connected graphs embedded in a
plane are canonized. This procedure also works in logspace for general graphs when given a cyclic
arrangement for the edges going around each vertex, c.f. oriented graphs in [Wag10].

Let a1 < a−11 < · · · < ak−1 < a−1k−1 be a unique order for all generators. We complete this to

a cyclic arrangement ρ with a−1k−1 < a1. Hence, the Cayley graph is an oriented graph now. We
follow a path starting at node e in direction of the edge labeled with a1 with a universal exploration
sequence [Rei08]. That is, a logspace machine traverses the whole graph and reaches in polynomial
number of steps every vertex at least once. Let p be this path. A second logspace machine goes
through this path p and computes all the positions when each vertex is reached for the first time.
These paths up to a certain position can be seen as a product with generators that evaluates to a
group element. We can sort all group elements according to the position of their first occurrence
in this path. �

This completes the proof of Lemma 4.2. �

Since the computations are deterministic and independent from the table representation of the
group elements, we immediately get the following corollary.

11

Corollary 4.4 Let G,H be two groups and S, S′ be composition series given by complete sets of
coset representatives. If these induce an isomorphism from G onto H then Lemma 4.2 gives that
isomorphism from G onto H.

4.2 Computation of a composition series.

Let G be a group with n elements. We summarize the main steps of the decomposition process
which come preliminary to the isomorphism tests.

• Decompose G into a characteristic subgroup N and a factor group G/N . We take N = Soc(G)
the socle of G.

• Decompose the factor group recursively this way until we end up in a normal series where
each factor group is semisimple (i.e. a direct product of simple groups).

• Decompose the socles in each step of the decomposition process into minimal normal sub-
groups.

• Compute generators for semisimple factor groups.

• Arrange all simple groups in the decomposition of socles according to the minimal normal
subgroups, see Definition 4.6 below.

Generators for semisimple factor groups. For this we compute first the normal closure ncl(x)
for all elements x ∈ G. Note, ncl(x) = G for all x ∈ G if and only if G is already simple.

The algorithm will give us generators for Soc(G). If Gi/Gi+1 is cyclic, then we get one coset
representative, if it is non-abelian and simple, then we get two and if Gi/Gi+1 is semisimple with
composition length l, then we get up to 2l coset representatives.

Note, ncl(x) is the smallest normal subgroup which contains x. These are minimal normal
subgroups, i.e. a direct product of isomorphic simple groups. We run through all elements x ∈ G
and select those, where ncl(x) is not contained in another subgroup ncl(y) encountered before. It
is also useful to have the following (c.f. Proposition 1.5.1 in [Faw09]).

Fact 4.5 Any two distinct minimal normal subgroups of a group G must intersect trivially.

The socle Soc(G) is a subgroup generated by all minimal normal subgroups. The socle is a
normal subgroup of G, it is a direct product of simple groups. For these and more facts, see
[Faw09].

There is one task, namely to break up the socle into its simple groups. For this we use Fact 4.5,
i.e., that the simple groups from the socle come from all the minimal normal subgroups. Hence, it
suffices to break up each minimal normal subgroup N into its simple groups:

• If N is abelian, then consider all elements of prime order. Go through them from left to right
and select an element as generator if it is not generated by the group elements of prime order
to the left.

To see this, we refer to Lemma 3.2.1 and 3.2.2 in [Hal99], namely that every group element
can be written uniquely as a product of prime power elements, and prime power elements can
be generated by prime elements.

12

• If N is not abelian, then we need for each of the simple groups in N two generators. Let
N = K1 × · · · ×Ki. We search a pair of elements in N which generates a simple group K1

which is normal in N . For this, we compute nclN (g) for g ∈ G until we find a non-trivial
normal subgroup K1 of N . We repeat this for N/K1, in the end we obtain generators for all
simple groups K2, . . . ,Ki.

Arrange factor groups in composition series. For an isomorphism test, the first task is to
arrange the simple groups of the socle by their isomorphism type. This can be done as follows.

In the case of abelian groups isomorphism testing can be done in linear time [Kav03]. In
the algorithm, the orders of all group elements are simply compared. Hence, when sorting these
sequences they can be compared lexicographically. This defines an order ≺ on abelian groups.

We define an order G ≺ H on two simple non-abelian groups if one of the following holds:

• |G| < |H| or

• |G| = |H| but TG < TH which is defined as follows. Let (a′, b′) be a pair of elements which
generate H. Since we have only two generators for simple groups, we run through all pairs
(a, b) of group elements in G. As in Claim 4.3 we compute Cayley graphs with a < b in G and
a′ < b′ in H. The claim sais, that the group elements can be arranged in a unique order in
logspace. Now, compare the multiplication tables TG and TH with group elements arranged
in this order line by line and bit by bit.

We define G = H if the groups are isomorphic, i.e. if neither G ≺ H nor H ≺ G holds. We
define G � H if G ≺ H or G = H holds.

With this notion we define an order on the composition factors in a composition series of a
group.

Definition 4.6 A well ordered sequence of composition factors is a sequence of factor groups in
a composition series where factor groups are sorted as follows.

1. According to the recursive decomposition into normal subgroups and factor groups, i.e. {e}�
Soc(G) �G, where we refine G/Soc(G) recursively as we do for G.

2. The socles in the decomposition process are direct products of minimal normal subgroups, i.e.
Soc(G) = K1 × · · · ×Ki, where (for j ∈ {1, . . . , i} and γj ≥ 1) each Kj = Kj,1 × · · · ×Kj,γj

is a direct product of isomorphic simple groups. Arrange K1,1,K2,1, . . . ,Ki,1 according to ≺,
for example if K1,1 � K2,1,� · · · � Ki,1 then we refine {e}� · · ·�Soc(G) where all the factor
groups are arranged K1,1, . . . ,K1,γ1 ,K2,1, . . . ,Ki,γi in this order from left to right.

We define two parameters.

• Let β be the maximum number of isomorphic minimal normal subgroups in K1, . . . ,Ki in all
levels of recursion.

• Let γ = maxij=1 γj be the maximum number of isomorphic simple groups in K1, . . . ,Ki in all
levels of recursion.

13

For a composition series S, let seq(S) be the sequence of composition factors in S. Note, ~s
induces a well ordered sequence of factor groups on G, namely seq(S).

Let G and H be two groups. For an isomorphism test, we compute a composition series for G,
i.e. by recursively computing socles, and then we have to arrange in H within each of the socles in
the decomposition process:

• K1, . . . ,Ki if these are isomorphic (i.e. a direct product of the same number of isomorphic
simple groups) and

• within each Kj (1 ≤ j ≤ i) all the simple groups.

In arbitrary two composition series the composition factors are well ordered with respect to
Step 1 in Definition 4.6, because the socle of a group is characteristic. According to Step 2, we
arrange the factor groups with respect to the order ≺. For this note, that if a group is a direct
product then there are automorphisms which swap them. Hence, we get the following lemma.

Lemma 4.7 For two isomorphic groups G and H, there are well ordered composition series S for
G and S′ for H as in Definition 4.6 with (G, seq(S)) isomorphic to (H, seq(S′)) such that this
isomorphism maps the subgroups in this series seq(S) blockwise onto those in seq(S′).

The algorithm. In Algorithm 1 we show how a composition series for a group can be computed
where the factor groups are arranged as in Definition 4.6. This algorithm is the basis for our iso-
morphism tests. We give some comments to the three main parts of this algorithm.

In the first part, we compute the minimal normal subgroups and put them into the set NCL.
The socle Soc(G) is then generated by the members in NCL. Since some members in NCL
generate the same subgroup, we have r ≤ r′. If ncl(g) = G for all g ∈ G then G is simple, the
composition series is trivially {e}�G and we return ~s = (s1) with s1 = (a) or s1 = (a, b).

In the second part, we compute for each minimal normal subgroup N its simple groups. We
distinguish the situation whether N is abelian or not. Then we need one or two generators for a
simple group, respectively.
In Line 9 and 12, we write in short 〈R(N)〉 and mean the group generated by all group elements
put into R(N).
In Lines 10 to 12, we aim to find coset representatives si,1, . . . , si,li such that 〈si,1〉×· · ·×〈si,li〉 = Ni

for all i ∈ {1, . . . , r}. In the third part, in ~s1 we encode a composition series for the factor group
G/Soc(G), recursively. In ~s2 we encode a composition series for Soc(G). We take the generators
(i.e. in the tuples si,j for i ∈ {1, . . . , r}, j ∈ {1, . . . , li}) of all the composition factors as coset
representatives and get a well ordered complete set of coset representatives for G.
In Line 18, ~s2 is the same as in Line 17, the elements are just relabeled.

Composition series for an isomorphism test. Later, in the isomorphism tests we will take
Algorithm 1 to get a composition series for H, whereas we modify it for G as follows.

• Line 9: guess a generating set for N .
If N is a direct product of γN cyclic groups, then we need γN log |N | non-deterministic bits.

• Line 11 and 12: guess a generating set for N .
If N is a direct product of γN simple non-abelian groups, then we need 2γN log |N | non-
deterministic bits.

14

Algorithm 1 CompSeries: Compute a well ordered composition series for groups.

input: group G with n elements
output: well ordered composition series for G given by a complete set of coset representatives ~s
initialize: set of groups NCL = {}, sets R(N) for all N ∈ NCL

{ 1. compute minimal normal subgroups }
1: for each g ∈ G do
2: nclG(g) = 〈g1, . . . , gj〉 with {g1, . . . , gj} = {h−1gh | h ∈ G}
3: end for
4: compute NCL = {ncl(g) | @h ∈ G \ {e} s.t. |ncl(h)| < |ncl(g)|}
5: Soc(G) = 〈N1, . . . , Nr′〉 with {N1, . . . , Nr′} = NCL
6: if ∀g ∈ G \ e : nclG(g) = G (or G = {e}) then

G is simple (or trivial), return ~s = (s1) = ((g)) (or ~s = (s1) = ((e)))
{ 2. compute simple groups }

7: for each N ∈ NCL do
8: if N is abelian then
9: for each {g ∈ N | ord(g) prime, g /∈ 〈R(N)〉} do R(N)← (g)

10: if N is not abelian then
11: for each {(g, h) ∈ N ×N | g 6= h, ∃n ∈ N : 〈g, h〉 = nclN (n)} do
12: if 〈g, h〉 ∩ 〈R(N)〉 = {e} then R(N)← (g, h)
13: end for

{ 3. compute all composition series }
14: ~s1 = CompSeries(G/Soc(G)) = (s1, . . . , si)
15: choose arbitrarily (N1, . . . , Nr) ∈ Sym(NCL) with si � sj , ∀ i < j ≤ r ≤ r′, si ∈ Ni, sj ∈ Nj

16: choose arbitrarily (s1,1, . . . , s1,l1 , . . . , sr,1, . . . , sr,lr) ∈ Sym(S(N1))×· · ·×Sym(S(Nr)) ∼= Soc(G)
17: ~s2 = (s1,1, . . . , s1,l1 , . . . , sr,1, . . . , sr,lr) represents the socle, i.e.

Soc(G) = G1,1 �G1,2 � · · ·�Gr,lr �Gr,lr+1 = {e}
with Gi,j/Gi,j+1 = 〈aGi,j+1〉 if si,j = (a), (i ≤ r, j ≤ li) and
with Gi,j/Gi,j+1 = 〈aGi,j+1, bGi,j+1〉 if si,j = (a, b), (i ≤ r, j ≤ li)

18: return ~s = (s1, . . . , si, si+1, . . . , sk) with (s1, . . . , si) = ~s1, (si+1, . . . , sk) = ~s2, r = k − i

• Line 15: guess an arrangement (N1, . . . , Nk) ∈ Sym(NCL) with si � sj for all i < j, si ∈ Ni,
sj ∈ Nj . For this we need k log k bits. Since k ≤ β ≤ log n we need at most β log β ≤
log n log logn non-deterministic bits.

• Line 16: guess an arrangement (s1,1, . . . , s1,l1 , . . . , sk,1, . . . , sk,lk) ∈ Sym(S(N1))×· · ·×Sym(S(Nk)).
At most li log li non-deterministic bits for each li are required. Suppose that γN = l1 = · · · = lk.
Since kγN ≤ log n we need at most

∑k
i=1 li log li ≤

∑k
i=1 li log(γN) ≤ kγN log(γN) non-

deterministic bits. Hence, we need at most log n log log n non-deterministic bits.

The total demand on non-deterministic bits which corresponds to Lines 9, 11 and 12 is computed
as follows. We get the worst-case if we have minimal normal subgroups of large size. Let the largest
minimal normal subgroup in the decomposition process be N∗ which is a direct product of γ simple
groups. Then |N∗| = pγ if N∗ is a direct product of γ simple groups of size p. We need at most
2γ log pγ = 2γ2 log p non-deterministic bits. The number of such minimal normal subgroups is at
most log n/ log pγ = log n/(γ log p). Hence, the total demand is at most log n/(γ log p) · 2γ2 log p =

15

2γ log n bits.
The total demand on non-deterministic bits which corresponds to Line 15 is computed as follows.

Recall that β is the largest number of isomorphic minimal normal subgroups required to generate
one of the socles in the decomposition process. We get the worst-case if each of the socles consists
of exactly β isomorphic minimal normal subgroups. Let d be the total depth of recursion. Then
the total demand is dβ log β bits. Note, that dβ ≤ log n since we have at most log n factor groups.
Hence, we get the worst-case if d = 1. It follows, that d ≤ log n/β and the total demand is
log n/β · β log β = log n log β ≤ log n log log n bits.

The total demand on non-deterministic bits which corresponds to Line 16 is computed as follows.
Recall, that at recursion level i we have l1, . . . , lr ≤ γi and we said that we need at most kγi log(γi)
non-deterministic bits. Let d be the total depth of recursion. We get the worst-case if l1 = · · · =
lr = γi for all i ∈ {1, . . . , d} and if γ = γ1 = · · · = γi = · · · = γd. It follows, that dkγ ≤ log n
since we have at most log n factor groups. Thus, dk ≤ log n/γ and the total demand is at most
(log n/γ) · γ log γ ≤ log n log γ.

Theorem 4.8 Let G,H be two isomorphic groups. A composition series S for G and S′ for H
such that (G, seq(S)) is isomorphic to (H, seq(S′)) can be computed in NP with access to at most
2γ log n + log n log β + log n log γ ≤ O(log2 n) non-deterministic bits.

5 Isomorphism for p-groups

In this section we use the reduction technique from Section 3 for p-groups. For this we need a
composition series S for the input group G. We decompose G as in Algorithm 1 and guess the
composition series S′ for the other input group H as in Theorem 4.8. First, we explain the graph
construction which is part of the reduction.

The construction. For a prime number p, let (G,S) be a p-group G over n elements with a
composition series S. The factor groups in S are cyclic of order p.

{1} = Gk �Gk−1 � · · ·�G1 = G

Let ~g = ((g1), . . . , (gk−1)) be a complete set of coset representatives with respect to S with generator
g1Gi+1 ∈ Gi/Gi+1 for Gi/Gi+1 which is a cyclic group of order p.

Let seq(S) be the sequence of factor groups of S. Recall, any element in a coset could be
taken as a representative. So an isomorphism from (G, seq(S)) onto (H, seq(S′)) just maps cosets
blockwise onto each other.

Theorem 5.1 There is an AC0-computable function that on input of groups G,H and S, S′ com-
putes a graph Xp(G,S) and Xp(H,S

′) with at most 11n2 + 1 vertices which have valence at most
p + 1 such that Xp(G,S) is isomorphic to Xp(H,S

′) if and only if (G, seq(S)) is isomorphic to
(H, seq(S′)), i.e. there exist composition series such that their subgroups Gi and Hi are isomorphic.

Proof. We construct a graph Xp(G,S) for G and S in two steps. The construction for Xp(H,S
′)

is done accordingly.
In the first step we define a tree Tp(G,S). Intuitively speaking, this tree is based on the structure

of the composition series S.

16

1. For every group element g ∈ G we have an element vertex in Tp(G,S).

2. For all i ∈ {1, . . . , k − 1} and each coset gGi and subgroup eGi of the factor group G/Gi we
have a coset vertex gGi and eGi in Tp(G,S). Note, for i = 1 we call eG1 = eG the root of
Tp(G,S).

3. For each element vertex g and coset vertex gGk−1 we have an edge {g, gGk−1} in Tp(G,S).

4. For each pair of coset vertices gGi, gg
′Gi+1 with g ∈ gGi and g′ ∈ Gi+1 we have an edge

{gGi, gg′Gi+1} in Tp(G,S).

Now we construct Xp(G,S). We use Tp(G,S) and define a further graph gadget to simulate the
multiplication rule.

1. We have a main copy of Tp(G,S) in Xp(G,S). The root node of the main copy is connected to
a color graph gadget, namely a path of length two to distinguish this vertex from the others.
For each leaf node v in Tp(G,S) we have a copy Tv of Tp(G,S). We identify the root node of
Tv with v.

2. For each node v in Tp(G,S), we have for each leaf node w of Tv five nodes w←, w→, wl, wr, w=

in Xp(G,S). We have edges (w,wl), (wl, w←), (w,wr), (wr, w→), (wr, w=) in Xp(G,S).

3. For each pair of group elements g, h ∈ G we simulate the multiplication gh = k as follows.

We define a multiplication graph gadget that is connected to the vertices h
(g)
← in Tg, g

(h)
→ in

Th, and h
(k)
= in Tk. One gadget Mgh=k is shown in Figure 3.

We prove now that Xp(G,S) has all the properties stated in Theorem 5.1.

17

g21g2G3 eG3g2G3g22G3g21G3g21g
2
2G3 g1g

2
2G3 g1g2G3 g1G3

g

h(g)

k

h(k)

h

g(h)

h(k)
=

Mgh=k

g21G2 eG2g1G2

h(g)
← h(g)

=h(g)
→ g(h)→

Tg Th Tk egk−1g2k−1

eGk−1

eG

Figure 3: The graph Xp(G,S) with γ = 1 and a multiplication graph gadget Mgh=k indicated by
white nodes.

Claim 5.2 The graph Xp(G,S) has at most 11n2 + 1 vertices.

Proof.

• Tp(G,S) is a complete tree with n leaves where each inner node at the same depth i has the

same number max{p, γi} of children, it has at most
∑logp(n)−1

i=1 pi ≤ 2n− 1 vertices.

• The color graph gadget is a path of length two connected to the root node of Tp(G,S).

• For each of the n leaf nodes of Tp(G,S) we have a copy of Tp(G,S). Since the root nodes of
these copies are identified with the leaf nodes of Tp(G,S) we do not count these nodes twice.
We get at most n((2n− 1)− 1) vertices.

• Every leaf node v of these copies is connected to a subtree with five nodes vl, vr, v←, v→ and
v=. There are n2 such leaf nodes. Hence, we get further 5n2 vertices.

• Every multiplication gate has 4 vertices, when not counting the vertices v←, v→ and v= twice.
We have n2 multiplication gates. We get 4n2 vertices.

We have in total at most 2n− 1 + 2 + n((2n− 1)− 1) + 5n2 + 4n2 = 11n2 + 1 vertices.
�

Claim 5.3 There is a logspace-computable function that computes the graph Xp(G,S).

Proof. Since we have coset representatives (g1, . . . , gk−1), every element gGi ∈ G1/Gi can be
obtained uniquely by following a path

(eG,w1G2, w1w2G3, . . . , w1 · · · · · wi−1Gi),

18

where wjGj+1 is a coset vertex, for each j ∈ {1, . . . , i−1}. This is related to the following product:

gGi = w1 · w2 · · · · · wi−1Gi

The logspace machine goes through all products. The construction of the tree is done as in a
depth first traversal through the resulting tree Tp(G,S). We evaluate the products for all group
elements g = w1 · wk−1 for all wi in a preprocessing step. This can be done in logspace. A further
logspace machine relabels the group elements by such products, i.e. we rewrite the whole group
table.

It is easy to see, that with access to the new group table each step of the graph construction
can be done in AC0. �

Claim 5.4 The graph Xp(G,S) has valence at most p+ 1 for all p ≥ 2.

Proof. The nodes in the tree Tp(G,S) have one parent and p children, because in Step 4 of the
construction, there are at most p cosets gg′Gi+1 in gGi with g ∈ gGi and g′ ∈ Gi+1. The root
node is connected to a color graph gadget and has also valence p+ 1. The leaves are identified with
the root node of a copy of Tp(G,S) and have also valence p + 1. Each leaf node of the copies of
Tp(G,S) is connected to at most one multiplication graph gadget and has valence two. To see this
we argue, that for every pair of variables in gh = k the third variable is uniquely determined in a
group. The vertices of the multiplication graph gadgets and the color graph gadget have valence
at most 3, this is not greater than p+ 1 for all p ≥ 2. �

Claim 5.5 The graph Xp(G,S) is isomorphic to Xp(H,S
′) if and only if (G, seq(S)) is isomorphic

to (H, seq(S′)).

Proof. Consider an isomorphism φ between (G, seq(S)) and (H, seq(S′)), we argue now that we
get an isomorphism between Xp(G,S) and Xp(H,S

′). That is, for every pair of elements g, h in G
we show that the property φ(g)φ(h) = φ(gh) can be transformed into an isomorphism between the
graphs.

Clearly, an isomorphism from (G, seq(S)) onto (H, seq(S′)) is also an isomorphism when just
considering Tp(G,S) and Tp(H,S

′). The subgroups in S and S′ correspond to characteristic normal
subgroups, hence, these have to be mapped onto each other. Now, consider Xp(G,S) and Xp(H,S

′).
Let gh = k, between three leaf nodes g, h, k of Tp(G,S) in Xp(G,S) there are unique simple paths
going through a single multiplication graph gadget Mgh=k such that:

• except g, h, k there is no other vertex visited in Tp(G,S),

• there is a unique simple path from g of Tp(G,S) to h
(g)
← in Tg,

• there is a unique simple path from h
(g)
← of Tg to g

(h)
→ of Th in M ,

• there is a unique simple path from g
(h)
→ of Th to h of Tp(G,S) in Th,

• there are unique simple paths from h
(g)
← of Tg and g

(h)
→ of Th to h

(k)
= in Tk in M ,

• there is a unique simple path from h
(k)
= of Tk to k of Tp(G,S) in Tk.

19

Hence, if φ is an isomorphism of (G, seq(S)) onto (H, seq(S′)) then in Xp(H,S
′) there is also a

multiplication graph gadget Mφ(g)φ(h)=φ(k) such that these unique simple paths exist. This isomor-
phism mimics the permutation from Tp(G,S) onto Tp(H,S

′) also at each copy of the tree, e.g. Tg in
Xp(G,S) is mapped onto Tφ(g) in Xp(H,S

′), and for every leaf vertex v with φ(v) = w, the vertices
v←, v→, v= in Tg are mapped via φ onto w←, w→, w= in Tφ(g).

Now to the other direction. Since the root node of Tp(G,S) is distinguished from the others, any
isomorphism maps this root node onto the root node of Tp(H,S

′). Vertices at the same distance are
mapped onto each other, hence Tp(G,S) is mapped onto Tp(H,S

′). This also holds for the copies
of the tree rooted at the children and the multiplication graph gadgets.

Any isomorphism respects the multiplication rules of the groups: There are multiplication graph
gadgets just for the multiplication rules, i.e. if gh = k in G then there is no gadget Mgh=k′ for any
k′ 6= k. Since the multiplication graph gadget is rigid, there is no isomorphism that maps a vertex v←
in Xp(G,S) onto any vertex w→ or w= in Xp(H,S

′) and vice versa. We conclude, every isomorphism
φ from (G, seq(S)) onto (H, seq(S′)) maps Mgh=k in Xp(G,S) onto Mφ(g)φ(h)=φ(k) in Xp(H,S

′).
Hence, if (G, seq(S)) is not isomorphic to (H, seq(S′)) then we cannot get an isomorphism from
Xp(G,S) onto Xp(H,S

′).
There is a one-to-one correspondence between automorphisms of Xp(G,S) and automorphisms

of (G, seq(S)). Assume, the leaf nodes of Tp(G,S) are fixed. Since any three leaf vertices of Tp(G,S)
have at most one rigid multiplication graph gadget in common, all of them are fixed. Since every

vertex w
(v)
← , w

(v)
→ , w

(v)
= of every tree Tv in Xp(G,S) is connected to a multiplication graph gadget,

all these vertices are fixed. We conclude, that every automorphism of (G, seq(S)) induces a unique
automorphism of Xp(G,S). Hence, this also holds for isomorphisms from Xp(G,S) onto Xp(H,S

′).
�

This completes the proof of Theorem 5.1. �

Note, the graph Xp(G,S) has the property that it is a cone-graph with logarithmic depth bound.
That is, from every vertex, there is a unique path to the root node of Tp(G,S).

Complexity. For an isomorphism test, we compute first a well ordered composition series S′ and
guess then a well ordered corresponding composition series S, such that we get seq(S) and seq(S′),
as in Definition 4.6.

By Theorem 4.8 we need 2γ log n + log n log β + log n log γ ≤ O(log2 n) non-deterministic
bits or accordingly, deterministic time n2γ+log β+log γ . The complexity of bounded valence GI is in
polynomial time:

Theorem 5.6 ([BL83]) Isomorphism on graphs of valence at most d can be tested in deterministic
time nO(d).

We put this together and get for a constant c the running time nc(γ+log β)·nc(p+1). This completes
the proof of Theorem 1.3.
Theorem 1.3 Group Isomorphism for p-groups with n elements given in table representation is
in time (for a constant c): nc(p+γ+log β)

20

6 Three Algorithms for Isomorphism Testing

In this section we describe three isomorphism tests. The first is the classical isomorphism test, it
can be seen as a variant of the algorithm attributed to Tarjan, c.f. [Mil78]. The second algorithm
is an extension of what we showed for p-groups in Section 5. The third is a combination of both
algorithms, but is unfortunately not applicable for all groups.

For all these algorithms we assume, that for a group G the composition factors of a composition
series S are given together with a well ordered complete set of coset representatives ~s. We address
this sequence of composition factors of S by seq(S).

6.1 Classical Isomorphism Test

The isomorphism test. Let G and H be two groups. By Theorem 4.8 it suffices to run through
at most n2γ+log β+log γ+c (for a constant c) well ordered composition series S for G and S′ for H,
such that if G is isomorphic to H then also (G, seq(S)) is isomorphic to (H, seq(S′)).

Let (H,S′) be a group with normal series S′ and a complete set of coset representatives ~h =
(h1,1, . . . , h1,γ1 , . . . , hk−1,γk−1

). For an isomorphism test, we guess a complete set of coset represen-
tatives ~g = (g1,1, . . . , g1,γ1 , . . . , gk−1,γk−1

) in G which are mapped onto (h1,1, . . . , h1,γ1 , . . . , hk−1,γk−1
)

in this order. These are defined as follows.

• If Gi/Gi+1 is cyclic, then gi,1 = (ai,1).

• If Gi/Gi+1 is non-abelian and simple, then gi,1 = (ai,1, bi,1).

• If Gi/Gi+1 is semisimple then we have gi,1, . . . , gi,γi of the same type. We assume that
gi,j = (ai,j , bi,j) is mapped onto hi,j = (a′i,j , b

′
i,j) by mapping ai,j onto a′i,j and bi,j onto b′i,j .

We write the group elements in generator-representation and arrange them in increasing lexico-
graphical order according to their representation. We relabel the elements according to their new
order as in Lemma 4.2. We write the multiplication tables for G and H where the elements are
sorted and compare them line by line and bit by bit.

Algorithm 2 Isomorphism testing for Cayley Groups

Input: multiplication tables of two groups G,H with n elements
Computation: accept if G is isomorphic to H, and reject otherwise

1: compute a normal series S′ for H together with complete sets of coset representatives ~h =
(h1,1, . . . , hk−1,γk−1

) according to Algorithm 1
2: guess a complete set of coset representatives ~g = (g1,1, . . . , gk−1,γk−1

) to get S for G
3: for each g ∈ G (or H) do compute repr(g) a word with g1,1, . . . , gk−1,γk−1

in G with respect

to ~g or a word with h1,1, . . . , hk−1,γk−1
in H with respect to ~h

4: relabel generators according to their order in ~g (and ~h)
5: let TG be G (and TH be H) in table representation where elements are sorted according to their

new labels in increasing lexicographical order
6: compare TG, TH lexicographically line by line and bit by bit
7: if TG = TH then accept and halt
8: reject and halt

21

We give some notes to Algorithm 2.

Step 1: compute a normal series for G and H according to Algorithm 1. For the normal series
we have coset representatives, i.e. one or two generators if a factor group is simple and k or 2k
generators if a factor group is semisimple, a direct product of k simple isomorphic groups.

Step 2: guess a complete set of coset representatives to get S for G. For each factor group we
guess the same number of generators as we have for the corresponding factor group in S′ for H.

Step 3: For each group element g, compute its generator representation. The representation
depends on the generators in ~g and ~h. The representation for a group element g ∈ G is a product
of generators with unique words according to Lemma 4.2. For example, if Gi/Gi+1 is a direct
product of γi cyclic isomorphic groups, then gi = (ai,1, . . . , ai,γi) and the i-th term in this product

is a
li,1
i,1 . . . a

li,γi
i,γi

with li,j ∈ {0, . . . , ord(ai,j) − 1} and j ∈ {1, . . . , γi}. Whereas if Gi/Gi+1 is non-
abelian and simple, then instead of ai,j we have ai,j , bi,j , correspondingly, and the i-th term is a
word with ai, bi.

Step 4: Relabel generators according to their order in ~g (and ~h). The new labels are taken from
the set {1, . . . , n} in increasing order.

Step 5: Compute the multiplication table where elements are sorted by their new labels. We relabel
the group elements as in Lemma 4.2 and sort them in increasing lexicographical order.

Step 6 to 8: Accept iff the tables TG and TH are equal. The comparison is done lexicographically
line by line and for each line element by element. The elements are compared bit by bit. If TG = TH
then we accept, else we reject.

Complexity. Every step can be done in polynomial time by an NP-machine. We calculate now
the demand on non-deterministic bits in Algorithm 2.

In Step 3, we guess generators, these are different to the coset representatives from Step 2. An
isomorphism then maps generators onto each other. For i ∈ {1, . . . , k − 1} and j ∈ {1, . . . , γi} we
guess ai,j(, bi,j) ∈ Gi \Gi+1, i.e. we need at most 2 log(|Gi| − |Gi+1|) ≤ 2 log n bits. If Gi/Gi+1 has
order pγi , then we have γi generators, each of order p. For an upper bound, let every generator
have order at least p. Hence, in total we have at most logp n generators and we need at most
O(log n) · logp n non-deterministic bits to guess all generators. We get the following Theorem.

Theorem 6.1 Let the factor groups in S of G have size at least p. Group Isomorphism on groups
with n elements given in table representation can be tested by an NP-machine with access to at most
O(log n logp n) non-deterministic bits.

Remarks. Instead of non-determinism, the computations can be done accordingly in deterministic
time nc · 2logn logp n = nc+logp n for a constant c.

In the worst case we have p = 2 and then we reach the known upper bound for group isomor-
phism. For the complexity analysis of the third isomorphism testing algorithm we will consider this
bound depending on parameter p.

6.2 Isomorphism test: Reduction to Bounded Valence Graph Isomorphism.

In the second isomorphism testing algorithm we compute a composition series for G and guess a
composition series for H where each subgroup is characteristic. Then we reduce the isomorphism

22

problem onto graph isomorphism. The valence of the resulting graph depends on the size of the
largest factor group.

The reduction. We generalize the reduction of Theorem 5.1 from p-groups to arbitrary groups.
For group H over n elements we compute a composition series S′ as in Algorithm 1 with a

complete set of coset representatives ~s′ = (s′1, . . . , s
′
k−1) and composition series S′:

{1} = Hk �Hk−1 � · · ·�H1 = H

For group G we guess a composition series S corresponding to (H,S) where each factor group
Gi/Gi+1 has order pi:

{1} = Gk �Gk−1 � · · ·�G1 = G

Let ~s = (s1, . . . , sk−1) be a complete set of coset representatives for S.
If the factor groups do not have the same order, or are not of the same type, then (G,S) is not

isomorphic to (H,S′). We prove the following theorem.

Theorem 6.2 Let p = max{p1, . . . , pk−1}. There is an AC0-computable function that computes a
graph X(G,S) and X(H,S′) with at most 11n2 + 1 vertices which have valence at most p+ 1 such
that X(G,S) is isomorphic to X(H,S′) if and only if (G, seq(S)) is isomorphic to (H, seq(S′)).

Proof. First, we generalize the construction of Xp(G,S) in the proof of Theorem 5.1 from p-groups
to groups and define a new graph X(G,S).

First, we construct a tree T (G,S) the same way as Tp(G,S) in the proof of Theorem 5.1. If the
factor group Gi/Gi+1 is a non-abelian simple group, e.g. A5 the alternating group on 5 elements,
then we have pi = |Gi/Gi+1| = 60 since |A5| = 60.

The rest of the construction of X(G,S) is identical to the construction of Xp(G,S) in the proof
of Theorem 5.1.

We prove now that X(G,S) has all the properties stated in Theorem 6.2.

Claim 6.3 The graph X(G,S) has at most 11n2 + 1 vertices.

The proof goes the same lines as in the proof of Claim 5.2. In X(G,S), the inner nodes do not
have the same valence, but every node has at least two children. Hence, we get at most 11n2 + 1
vertices.

Claim 6.4 There is a logspace-computable function that computes the graph X(G,S).

The proof goes the same lines as the proof of Claim 5.3.

Claim 6.5 The graph X(G,S) has valence at most p+ 1 for any p ≥ 2.

Recall, that there is no factor group of order greater than p. The proof follows the lines of the
proof of Claim 5.4.

Claim 6.6 The graph X(G,S) is isomorphic to X(H,S′) if and only if (G, seq(S)) is isomorphic
to (H, seq(S′)).

23

The proof is similar to the proof of Claim 5.5. In the proof we have a different tree structure,
namely T (G,S) instead of Tp(G,S). Both trees are rooted and complete. In T (G,S) nodes at the
same distance to the root have the same valence. Hence, there are automorphisms that map a
vertex onto every other vertex which has the same distance to the root node eG1.

This completes the proof of Theorem 6.2. �

Complexity. Recall, that β is the maximum number of isomorphic minimal normal subgroups
in a socle along the decomposition process and that γ is the maximum composition length of a
minimal normal subgroup in any socle of the decomposition process. By Theorem 4.8 we need
2γ log n + log n log β + log n log γ ≤ O(log2 n) non-deterministic bits or deterministic time
n2γ+log β+log γ+c for a constant c.

Let the factor groups in S and S′ have size at least p. The isomorphism test runs for a constant
c in time nc plus the time complexity nc(p+1) for bounded valence GI (see Theorem 5.6, [BL83]).
We get the following theorem.

Theorem 6.7 Group Isomorphism for groups with n elements given in table representation can be
tested in deterministic time O(nc(γ+log β) · nc·(p+1)) for a constant c.

6.3 Combine both Isomorphism Tests

The worst-case for Algorithm 2 is when the considered groups can be decomposed into a large
number of factor groups of small size, whereas the complexity of the second algorithm is bad if
there are any factor groups of large size.

The idea is that we use both algorithms in a subroutine for the new algorithm. The new
algorithm additionally gets to the input an integer α as parameter. For factor groups of size larger
than α we guess the generators as in Algorithm 2. Since the number of corresponding factor groups
is small, this also keeps the runtime of Algorithm 2 low in the new algorithm. Then we modify the
construction of the graph X(G,S), such that it has valence at most α + 1. With parameter α we
minimize the runtime of the new isomorphism testing algorithm.

Unfortunately, the third algorithm here is not applicable for all groups, but for groups in class G,
also see Theorem 1.2. That is, in a well ordered composition series seq(S), the factor groups of size
at least α come before the others. This was pointed out as an error in a previous version [Ros12].

Changes to the graphs. Since we guess some of the generators, we make changes to the graphs
from the reduction. We modify X(G,S) for a group G ∈ G and a composition series S that is
given by a complete set of coset representatives ~s = (s1, . . . , sk−1).

Lemma 6.8 Let G ∈ G and A = si1 ∪ · · · ∪ sij be a subset of the generators in s1, . . . , sk−1. Let
α be the size of the factor group with largest size among those in S which do not have generators
in A. Then we can compute a graph X(G,S,A) of valence at most α+ 1 that behaves like X(G,S)
but where any automorphism fixes the generators in A elementwise.

Proof. Let ai ∈ A be a generator, such that aiGi+1 is a coset representative for a cyclic factor
group Gi/Gi+1 in (G,S). Let ai, bi ∈ A be generators with respect to a non-abelian simple factor
group Gi/Gi+1 in (G,S). Let Di be the set of nodes at distance i to the root eG. That is, gGi ∈ Di

with g any product of generators in w1, . . . , wi.

24

We do the following changes for every node gGi ∈ Di in the graph X(G,S):

• Remove edges to the children of gGi. For example, in the cyclic case remove {gGi, ggli+1

i+1Gi+1}
where gi+1 is a fixed coset representative. In the non-abelian simple case, remove gwjGi where
wj is a word with ai, bi as in the proof of Lemma 4.2.

• Arrange edges according to generators ai (or ai, bi). Let l = ord(ai)− 1 (or let l be the order
of the group generated by ai, bi). Arrange the children from right to left:

(galiGi+1, ga
l−1
i Gi+1, . . . , ga

1
iGi+1, gGi+1).

This is done according to Lemma 4.2.

• Connect the children from right to left to the leaves of a binary tree with root gGi such that
children have the same distance to gGi. We connect pairwise leaves or subtrees from right to
left to form larger subtrees, inductively. The tree contains nodes with one or two children.
See Figure 4 for an example.

• Color the leaf connected to gaiGi+1 (or the leaves connected to gaiGi+1 and gbiGi+1). In
the cyclic case, we connect gaiGi+1 to an extra vertex. In the non-abelian simple case, we
connect gaiGi+1 to an extra vertex and gbiGi+1 to a path of length three. These can be
distinguished from all other vertices, because there is no vertex with the same distance to the
root eG connected to a single vertex or a path of length three (we ignore nodes that come
from other paths which indicate a coloring of nodes).

gGi

(b)(a)

gGi

gg4iGi+1 gg3iGi+1 ggiGi+1 gGi+1gg2iGi+1 gGi+1gaiGi+1ga2iGi+1ga3iGi+1ga4iGi+1

Figure 4: The situation is shown where Gi/Gi+1 is a cyclic factor group.
(a) The node gGi and its children ggjiGi+1 for all j ∈ {0, . . . , l} in X(G,S), with l = 4.
(b) The graph gadget connected to these nodes in X(G,S,A) enclosed within the dashed box. Note,
ai can be any element in Gi \Gi+1.

The colored nodes gaiGi+1 (or gaiGi+1 and gbiGi+1) are fixed. If aiGi+1 (or aiGi+1 and biGi+1)
are fixed in Gi/Gi+1, then every automorphism of the group fixes all cosets of the factor group
Gi/Gi+1. Hence, all children of the node gGi are fixed in any automorphism of the group.

The tree structure guarantees that the distances to the root eG remain unchanged for all vertices.
The graph X(G,S) is a cone graph, it follows that this also holds for X(G,S,A).

D. Rosenbaum mentioned, that this does not apply to general groups here. Let G be a group
outside G. Let j < i and Gj/Gj+1 have size less than α and Gi/Gi+1 size greater than α. Hence, at
level j in the tree the nodes have degree less than α and we do not have coset representatives in A.

25

The problem is now that we do not know at the nodes in Di which child is taken as the rightmost,
because this depends on the child to be taken rightmost at the predecessors in Dj .

Conversely, if G is in G, then for every node gGi in Di, there is a unique child taken as the
rightmost, namely gGi+1 where g is uniquely determined by a word of generators in A. We argue
inductively, that this is done at the levels ≤ i in the tree before. �

The algorithm. We give some notes to Algorithm 3.

Algorithm 3 Isomorphism testing for Cayley Groups in G.

Input: multiplication tables G,H of two groups in G with n elements, parameter α
Computation: accept if G is isomorphic to H and reject otherwise

1: let S′ be ~s′ = (s′1, . . . , s
′
k−1) = CompSeries(H) a well ordered composition series for H from

Algorithm 1
2: guess S with ~s = (s1, . . . , sk−1) from CompSeries(G) a well ordered composition series for G

from Algorithm 1 as in Theorem 4.8 and reject if G 6∈ G.
3: for i ∈ {1, . . . , k − 1} do
4: if Gi/Gi+1 is of order > α then
5: guess t = (a) (or t = (a, b)) with 〈aGi+1, bGi+1〉 ∼= Gi/Gi+1

6: ti = t, A← a(, b), A′ ← a′(, b′) with s′i = (a′) (or (a′, b′))
7: end if
8: end for
9: if X(G,S,A) ∼= X(H,S′, A′) then accept and halt

10: reject and halt

In Lines 1 and 2, we compute a composition series S′ for H and guess a composition series S for G
together with coset representatives that we obtain from Algorithm 1. Clearly, finding out whether
a group is in G is an easy task, just compare sizes of factor groups according to S and S′.

In Lines 3 and 4, we run through the factor groups of size greater than α.

In Line 5, for each such factor group Gi/Gi+1 we guess one or two generators for ti, depending on
whether the factor groups are cyclic or non-abelian simple groups, respectively.

In Line 6, we put the guessed generators in ti also in a set A and correspondingly those in s′i in a
set A′.

In Line 9, we construct the graphs where we treat generators in the sets A and A′ specially. If the
graphs are isomorphic, then we accept and halt.

The complexity of G-group isomorphism. We calculate the runtime of Algorithm 3.
In Line 1 the composition series for H can be computed in polynomial time [Luk87, BLS87], also
see Algorithm 1.
In Line 2, to guess the composition series for G we need

2γ log n + log n log β + log n log γ ≤ O(log2 n)
non-deterministic bits by Theorem 4.8. For a deterministic algorithm, we can run Algorithm 3
accordingly several times trying all possibilities, i.e. it requires at most nc(γ+log β) time.
In Line 5, we say that we guess generators for composition factors of size > α. For this we need

26

log n logα n non-deterministic bits only. For a deterministic algorithm, we can run Algorithm 3
accordingly several times, trying all possibilities as generators. Hence, the running time is multiplied
with 2logn logα n = nlogα n.
In Line 9, we invoke an isomorphism testing algorithm for graphs of valence at most α + 1. This
algorithm runs in time nO(α+1).

Hence, the total running time (for a constant c) is:

nc(γ+log β) · nc logα n · ncα

Note, that β and γ depend on the input whereas α can be chosen. We minimize the runtime if
logα n = α, because the left side is monotonically decreasing whereas the right side is increasing.

log n/ logα = α.

Now, we substitute α by log n/ logα on the left side and get the following two equations which are
equivalent:

log n/ log(log n/ logα) = α (1)

log n/(log log n− log logα) = α (2)

If we substitute α again by log n/ logα on the left side, and since log logα ≤ log log log n we proved
the following theorem.

Theorem 1.2 Let G be the class of groups which have a composition series where factor groups
of size at least log n/ log logn come before factor groups of smaller size. Group isomorphism for
groups in G with n elements given in table representation, is in time (for a constant c):

nc(γ+log β+logn/ log logn)

Acknowledgments. We thank V. Arvind, László Babai, Paolo Codenotti, Johannes Köbler,
David Rosenbaum, Youming Qiao and Jacobo Torán for helpful discussions and finding errors in
previous versions.

References

[AT04] V. Arvind and Jacobo Torán. Solvable group isomorphism is (almost) in NP ∩ coNP. In
Annual IEEE Conference on Computational Complexity (formerly Annual Conference
on Structure in Complexity Theory), volume 19, 2004.

[AV04] V. Arvind and T. C. Vijayaraghavan. Abelian permutation group problems and logspace
counting classes. In Annual IEEE Conference on Computational Complexity (formerly
Annual Conference on Structure in Complexity Theory), volume 19, pages 204–214,
2004.

[BCGQ11] László Babai, Paolo Codenotti, Joshua A. Grochow, and Youming Qiao. Code equiv-
alence and group isomorphism. In Proceedings of ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1395–1408, 2011.

27

[BL83] László Babai and Eugene M. Luks. Canonical labeling of graphs. In 15th Annual ACM
Symposium on Theory of Computing (STOC), pages 171–183, 1983.

[BLS87] László Babai, Eugene M. Luks, and Ákos Seress. Permutation groups in NC. In ACM
Symposium on Theory of Computing (STOC), pages 409–420, 1987.

[CTW10] Arkadev Chattopadhyay, Jacobo Torán, and Fabian Wagner. Graph isomorphism is
not AC0 reducible to group isomorphism. In Proceedings of the 30th Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
2010.

[DLN08] Samir Datta, Nutan Limaye, and Prajakta Nimbhorkar. 3-connected planar graph iso-
morphism is in log-space. In Proceedings of the 28th annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS), pages 153–162,
2008.

[Faw09] Joanna Fawcett. The o’nan-scott theorem for finite primitive permutation
groups, and finite representability. Thesis, University of Waterloo, UWSpace
http://hdl.handle.net/10012/4534, 2009.

[Hal99] Marshall Hall. The theory of groups. AMS Chelsea Publishing, American Mathematical
Society, Providence, Rhode Island, 1999.

[Kav03] Telikepalli Kavitha. Efficient algorithms for abelian group isomorphism and related
problems. Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), 23, 2003.

[LSZ76] Richard J. Lipton, Lawrence Snyder, and Yechezkel Zalcstein. The complexity of word
and isomorphism problems for finite groups. Technical report, John Hopkins, 1976.

[Luk87] Eugene M. Luks. Computing the composition factors of a permutation group in poly-
nomial time. Combinatorica, 7:87–99, 1987.

[Luk93] Eugene M. Luks. Permutation groups and polynomial-time computation. DIMACS
series in Discrete Mathematics and Theoretical Computer Science, 11:139–175, 1993.

[Mil78] Gary L. Miller. On the nlogn isomorphism technique. In ACM Symposium on Theory
of Computing (STOC), 1978.

[Mil79] Gary L. Miller. Graph isomorphism, general remarks. Journal of Computer and System
Sciences, 18(2):128–142, 1979.

[MSW94] Gunter Malle, Jan Saxl, and Thomas Weigel. Generation of classical groups. Geometriae
Dedicata, 49(1):85–116, 1994.

[Pap94] Christos M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

[QMT11] Youming Qiao, Jayalal Sarma M.N., and Bangsheng Tang. On isomorphism testing of
groups with normal hall subgroups. In 28st Annual Symposium on Theoretical Aspects
of Computer Science (STACS), 2011.

28

[Rei08] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM),
55(4):1–24, 2008.

[Ros12] David Rosenbaum. Breaking the n(logn) barrier for solvable-group isomorphism. Tech-
nical report, arXiv:1205.0642v3, 2012.

[Wag10] Fabian Wagner. Isomorphism Testing for Restricted Graph Classes - On the complex-
ity of isomorphism testing and reachability problems for restricted graph classes. Süd-
deutscher Verlag für Hochschulschriften, 2010.

[Wag11] Fabian Wagner. On the complexity of group isomorphism. Technical Report Revision
#1 to TR11-052, Electronic Colloquium on Computational Complexity (ECCC), 2011.

29

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

