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Abstract

A q-query locally testable code (LTC) is an error correcting code that can be tested
by a randomized algorithm that reads at most q symbols from the given word. An
important question is whether there exist LTCs that have the c3 property: constant
relative rate, constant relative distance, and that can be tested with a constant number
of queries. Such codes are sometimes referred to as “asymptotically good”.

We show that dense LTCs cannot be c3. The density of a tester is roughly the
average number of distinct local views in which a coordinate participates. An LTC is
dense if it has a tester with density ω(1).

More precisely, we show that a 3-query locally testable code with a tester of density
ω(1) cannot be c3. Moreover, we show that a q-locally testable code (q > 3) with
a tester of density ω(1)nq−2 cannot be c3. Our results hold when the tester has the
following two properties:

• (no weights:) Every q-tuple of queries occurs with the same probability.

• (‘last-one-fixed’:) In every ‘test’ of the tester, the value to any q−1 of the symbols
determines the value of the last symbol. (Linear codes have constraints of this
type).

We also show that several natural ways to quantitatively improve our results would
already resolve the general c3 question, i.e. also for non-dense LTCs.

1 Introduction

An error correcting code is a set C ⊂ Σn. The rate of the code is log |C| /n and its (relative)
distance is the minimal Hamming distance between two different codewords x, y ∈ C, divided
by n. We only consider codes with distance Ω(1).

A code is called locally testable with q queries if it has a tester, which is a randomized
algorithm with oracle access to the received word x. The tester reads at most q symbols
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from x and based on this local view decides if x ∈ C or not. It should accept codewords with
probability one, and reject words that are far (in Hamming distance) from the code with
noticeable probability. The tester has parameters (τ, ε) if

∀x ∈ Σn, dist(x, C) ≥ τ =⇒ Pr[Tester rejects x] ≥ ε

Locally Testable Codes (henceforth, LTCs) are studied extensively in recent years. A
priori, even the existence of LTCs is not trivial. The Hadamard code is a celebrated example
of an LTC, yet it is highly “inefficient” in the sense of having very low rate (log n/n). Starting
with the work of Goldreich and Sudan [5], several more efficient constructions of LTCs have
been given. The best known rate for LTCs is 1/ logO(1) n, and these codes have 3-query
testers [3, 4, 8]. The failure to construct c3-LTCs leads to one of the main open questions in
the area: are there LTCs that are c3, i.e. constant rate constant distance and testable with a
constant number of queries (such codes are sometimes called in the literature “asymptotically
good”). The case of two queries has been studied in [1]. However, the case of q ≥ 3 is much
more interesting and still quite open.

Dense testers. In this work we make progress on a variant of the c3 question. We show
that LTCs with so-called dense testers, cannot be c3.

The density of a tester is roughly the average number, per-coordinate, of distinct local
views that involve that coordinate. More formally, every tester gives rise to a constraint-
hypergraph H = ([n], E) whose vertices are the n coordinates of the codeword, and whose
hyperedges correspond to all possible local views of the tester. Each hyperedge h ∈ E is also
associated with a constraint, i.e. with a Boolean function fh : Σq → {0, 1} that determines
whether the tester accepts or rejects on that local view. For a given string x ∈ Σn, we denote
by xh the substring obtained by restricting x to the coordinates in the hyperedge h. The
value of fh(xh) determines if the string x falsifies the constraint or not.

Definition 1.1 (The test-hypergraph, density). Let C ⊆ Σn be a code, let q ∈ N and ε > 0.
Let H be a constraint hyper-graph with hyperedges of size at most q. H is an (ε, τ)-test-

hypergraph for C if

• For every x ∈ C and every h ∈ E, fh(xh) = 1

• For every x ∈ Σn,
dist(x, C) ≥ τ ⇒ Pr

h∈E
[fh(xh) = 0] ≥ ε

where dist(x, y) denotes relative Hamming distance, i.e., the fraction of coordinates on
which x differs from y.

Finally, the density of H is simply the average degree, |E| /n.

The hypergraph is equivalent to a tester that selects one of the hyperedges uniformly at
random. Observe that we disallow weights on the hyperedges. This will be discussed further
below.

Goldreich and Sudan [5] proved that every tester with density Ω(1) can be made into
a “sparse” tester with density O(1) by randomly eliminating each hyper-edge with suitable
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probability. This means that a code can have both dense and sparse testers at the same
time. Hence, we define a code to have density ≥ d if it has a tester with density d. In this
work we show that the existence of certain dense testers restricts the rate of the code.

We say that an LTC is sparse if it has no tester whose density is ω(1). We do not know
of any LTC that is sparse. Thus, our work here provides some explanation for the bounded
rate that known LTCs achieve.

In fact, one wonders whether density is an inherent property of LTCs. The intuition
for such a claim is that in order to be locally testable the code seems to require a certain
redundancy among the local tests, a redundancy which might be translated into density. If
one were to prove that every LTC is dense, then it would rule out, by combination with our
work, the existence of c3-LTCs.

In support of this direction we point to the work of the second author with co-authors
(Ben-Sasson et al [2]) where it is shown that every linear LTC (even with bounded rate)
must have some non-trivial density. I.e. they show that no linear LTC can be tested only
with tests that from a basis to the dual code. Namely some constant density is required in
every tester of an LTC.

1.1 Our results

We bound the rate of LTCs with dense testers. We only consider testers whose constraints
have the “last-one-fixed” (LOF) property, i.e. that the value to any q−1 symbols determine
the value of the last symbol. Note for instance that any linear constraint has this property.

We present different bounds for the case q = 3 and the case q > 3 where q denotes the
number of queries.

Theorem 1.2. Let C ⊆ {0, 1}n be a 3-query LTC with distance δ, and let H be an (δ/3, ε)-
test-hypergraph with density d and LOF constraints. Then, the rate of C is at most O(1/d1/2).

For the case of q > 3 queries we have the following result

Theorem 1.3. Let C ⊆ {0, 1}n be a q-query LTC with distance δ, and let H be an (δ/2, ε)-
test-hypergraph with density ∆, where ∆ = dnq−2, and LOF constraints. Then, the rate of
C is at most O(1/d).

Extensions. In this preliminary version we assume that the alphabet is Boolean, but the
results easily extend to any finite alphabet Σ. It may also be possible to get rid of the
“last-one-fixed” restriction on the constraints, but this remains to be worked out.

Improvements. We show that several natural ways of improving our results will already
resolve the ‘bigger’ question of ruling out c3-LTCs.

• In this work we only handle non-weighted testers, i.e., where the hyper-graph has no
weights. In general a tester can put different weights on different hyperedges. This
is sometimes natural when combining two or more ”types” of tests each with certain
probability. This limitation cannot be eliminated altogether, but may possibly be
addressed via a more refined definition of density. See further discussion Section 4.3.
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• In Theorem 1.2 we prove that ρ ≤ O(1/d0.5). We show that any improvement of the 0.5
exponent (say to 0.5+ε) would again rule out the existence of c3-LTCs, see Lemma 4.1

• In Theorem 1.3 we bound the rate only when the density is very high, namely, ω(nq−2).
We show, in Lemma 4.2, that any bound for density O(nq−3) would once more rule
out the existence of c3-LTCs. It seems that our upper bound of ω(nq−2) can be made
to meet the lower bound, possibly by arguments similar to those in the proof of The-
orem 1.2

Related work. In the course of writing our result we have learned that Eli Ben-Sasson
and Michael Viderman have also been studying the connection between density and rate and
have obtained related results, through seemingly different methods.

2 Moderately dense 3-query LTCs cannot be c3

In this section we prove Theorem 1.2 which we now recall:

Theorem 1.2. Let C ⊆ {0, 1}n be a 3-query LTC with distance δ, and let H be an (δ/3, ε)-
test-hypergraph with density d and LOF constraints. Then, the rate of C is at most O(1/d1/2).

In order to prove the main theorem, we consider the hypergraph H = (V,E(H)) whose
vertices are the coordinates of the code, and whose hyper-edges correspond to the different
tests of the tester. By assumption, H has dn distinct hyper-edges. We describe an algorithm
in Figure 1 for assigning values to coordinates of a codeword, and show that a codeword is
determined using k = O( n

d1/2
) bits.

We need the following definition. For a partition (A,B) of the vertices V of H, we define
the graph GB = (A,E) where

E = {{a1, a2} ⊂ A | ∃b ∈ B, {a1, a2, b} ∈ E(H)} .

A single edge {a1, a2} ∈ E(GB) may have more than one “preimage”, i.e., there may be two
(or more) distinct vertices b, b′ ∈ B such that both hyper-edges {a1, a2, b} , {a1, a2, b′} are
in H. For simplicity we consider the case where the constraints are linear1 which implies
that for every codeword w ∈ C: wb = wb′ . This is a source of some complication for our
algorithm, which requires the following definition.

Definition 2.1. Two vertices v, v′ are equivalent if

∀w ∈ C, wv = wv′ .

Clearly this is an equivalence relation. A vertex has multiplicity m if there are exactly m
vertices in its equivalence class. The reader is invited to assume, at first read, that all
multiplicities are 1.

Denote by V ∗ the set of vertices whose multiplicity is at most βd1/2 for β = α/16.
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0. Init: Let α = 3ε/δ and fix β = α/16. Let B contain all vertices with multiplic-
ity at least βd1/2. Let F contain a representative from each of these multiplicity
classes. Let B also contain all “fixed” vertices (whose value is the same for all
codewords).

1. Clean: Repeat the following until B remains fixed:

(a) Add to B any vertex that occurs in a hyper-edge that has two endpoints
in B.

(b) Add to B all vertices in a connected component of GB whose size is at
least βd1/2, and add an arbitrary element in that connected component
into F .

(c) Add to B any vertex that has an equivalent vertex in B.

2. S-step: Each vertex outside B tosses a biased coin and goes into S with prob-
ability 1/d1/2. Let B ← B ∪ S and set F ← F ∪ S.

3. If there are at least two distinct x, y ∈ C such that xB = yB goto step 1,
otherwise halt.

Figure 1: The Algorithm

The following lemma is easy.

Lemma 2.2. If the algorithm halted, the code has at most 2|F | words.

Proof. This follows since at each step setting the values to vertices in F already fully deter-
mines the value of all vertices in B (in any valid codeword). Once the algorithm halts, the
values of a codeword on B determines the entire codeword. Thus, there can be at most 2|F |

codewords. �

Let Bt denote the set B at the end of the t-th Clean step. In order to analyze the expected
size of F when the algorithm halts, we analyze the probability that vertices not yet in B
will go into B on the next iteration. For a vertex v, this is determined by its neighborhood
structure. Let

Ev = {{u, u′} | u, u′ ∈ V ∗, and {u, u′, v} ∈ E(H)}
be a set of edges. Denote by A the vertices v with large |Ev|,

A = {v | |Ev| ≥ αd} .

The following lemma says that if v has sufficiently large Ev then it is likely to enter B in
the next round:

Lemma 2.3. For t ≥ 2, if v ∈ A then

Pr
S

[v ∈ Bt] ≥
1

2
.

1More generally, when the constraints are LOF the set of all such b’s can be partitioned into all those
equal to wb and all those equal to 1− wb.
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Next, consider a vertex v 6∈ A that is adjacent, in the graph GBt−1 , to a vertex v′ ∈ A.
This means that there is a hyper-edge h = {v, v′, b} where b ∈ Bt−1. If it so happens that
v′ ∈ Bt (and the above lemma guarantees that this happens with probability ≥ 1

2
), then the

hyper-edge h would cause v to go into Bt as well. In fact, one can easily see that if v goes
into Bt then all of the vertices in its connected component in GBt−1 will go into Bt as well
(via step 1a). Let At be the set of vertices outside Bt that are in A or are connected by a
path in GBt to some vertex in A. We have proved

Corollary 2.4. For t ≥ 2, let v ∈ At−1 then

Pr
S

[v ∈ Bt] ≥
1

2
.

�

Lemma 2.5. If the algorithm hasn’t halted before the t-th step and |At| < δ
2
n then the

algorithm will halt at the end of the t-th step.

Before proving the two lemmas, let us see how they imply the theorem.

Proof. (of theorem) For each t ≥ 2, Corollary 2.4 implies that for each v ∈ At half of the
S’s put it in Bt. We can ignore the sets S whose size is above 2 · n/d1/2, as their fraction is
negligible. By linearity of expectation, we expect at least half of At to enter Bt. In particular,
fix some St−1 to be an S that attains (or exceeds) the expectation. As long as |At| ≥ δn/2
we get

|Bt| ≥ |Bt−1|+ |At| /2 ≥ |Bt−1|+ δn/4.

Since |Bt| ≤ n after ` ≤ 4/δ iterations when the algorithm runs with S1, . . . , S` we must
have |A`| < δn/2. This means that the conditions of Lemma 2.5 hold, and the algorithm
halts.

How large is the set F? In each S-step the set F grew by |S| ≤ 2n/d1/2 (recall we
neglected S’s that were larger than that). The total number of vertices that were added to
F in S-steps is thus O(` · n/d1/2).

Other vertices are added into F in the init step and in step 1b. In both of these steps
one vertex is added to F for every βd1/2 vertices outside B that are added into B. Since
vertices never exit B, the total number of this type of F -vertices is n/(βd1/2).

Altogether, with non-zero probability, the final set F has size O( 1
d1/2

) · n. Together with
Lemma 2.2 this gives the desired bound on the number of codewords and we are done. �

We now prove the two lemmas.

2.1 Proof of Lemma 2.3

We fix some v ∈ A. If v ∈ Bt−1 then we are done since Bt ⊇ Bt−1. So assume v 6∈ Bt−1
and let us analyze the probability of v entering Bt over the random choice of the set S at
iteration t − 1. This is dictated by the graph structure induced by the edges of Ev. Let us
call this graph G = (U,Ev), where U contains only the vertices that touch at least one edge
of Ev. We do not know how many vertices participate in U , but we know that |Ev| ≥ αd.
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We begin by observing that all of the neighbors of u must be in the same multiplicity
class2. Indeed each of the edges {v, u, ui} is a hyper-edge in H and the value of ui is
determined by the values of v and u. Therefore, the degree in G of any vertex u ∈ U is
at most βd1/2, since vertices with higher multiplicity are not in V ∗ and therefore do not
participate in edges of Ev.

For each u ∈ U let Iu be an indicator variable that takes the value 1 iff there is a neighbor
of u that goes into S. If this happens then either

• u ∈ S: this means that v has a hyperedge whose two other endpoints are in Bt and
will itself go into Bt (in step 1a).

• u 6∈ S: this means that the graph GBt will have an edge {v, u}.

If the first case occurs for any u ∈ U we are done, since v goes into Bt in step 1a. Otherwise,
the random variable

∑
u∈U Iu counts how many distinct edges {v, u} will occur in GBt . If

this number is above βd1/2 then v will go into Bt (in step 1b) and we will again be done. It
is easy to compute the expected value of I. First, observe that

E[Iu] = 1− (1− 1/d1/2)deg(u)

where deg(u) denotes the degree of u in G and since the degree of u is at most βd1/2, this
value is between deg(u)/2d1/2 and deg(u)/d1/2. By linearity of expectation

E[I] =
∑
u

E[Iu] ≥
∑
u

deg(u)/2d1/2 = |Ev| d−1/2 ≥ αd1/2.

We will show that I has good probability of attaining a value near the expectation (and in
particular at least αd1/2/2 ≥ βd1/2), and this will put v in Bt at step 1b. The variables Iu are
not mutually independent, but we will be able to show sufficient concentration by bounding
the variance of I, and applying Chebychev’s inequality.

The random variables Iu and Iu′ are dependent exactly when u, u′ have a common neigh-
bor (the value of Iu depends on whether the neighbors of u go into S). We already know
that having a common neighbor implies that u, u′ are in the same multiplicity class. Since
U ⊂ V ∗, this multiplicity class can have size at most βd1/2. This means that we can partition
the vertices in U according to their multiplicity class, such that Iu and Iu′ are fully inde-
pendent when u, u′ are from distinct multiplicity classes. Let u1, . . . , ut be representatives of
the multiplicity classes, and let di ≤ βd1/2 denote the size of the ith multiplicity class. Also,
write u ∼ u′ if they are from the same multiplicity class.

2Or, more generally for LOF constraints, in one of a constant number of multiplicity classes.
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V ar[I] = E[I2]− (E[I])2 = E
∑
u,u′

IuIu′ −
∑
u,u′

EIuEIu′

=
∑
u∼u′

E[IuIu′ ] +
∑
u6∼u′

EIuEIu′ −
∑
u,u′

EIuEIu′

≤
∑
i

∑
u∼ui

∑
u′∼ui

EIuIu′

≤
∑
i

∑
u∼ui

∑
u′∼ui

EIu · 1

≤
∑
i

∑
u∼ui

EIu · di ≤
∑
i

∑
u∼ui

deg(u)

d1/2
· βd1/2

= β
∑
u

deg(u) = 2β |Ev|

By Chebychev’s inequality,

Pr[|I − E[I]| ≥ a] ≤ V ar[I]/a2

Plugging in a = E[I]/2 we get

Pr

[
|I − E[I]| ≥ E[I]

2

]
≤ V ar[I]

(E[I]/2)2
≤ (2β |Ev|) · ((

1

2
|Ev| d−1/2)2)−1 ≤ 8βd/ |Ev| ≤ 8β/α.

and so by choosing β = α/16 this probability is at most a half. Thus, the probability that
I ≥ EI/2 ≥ αd1/2/2 is at least a half. As we said before, whenever I ≥ βd1/2 we are
guaranteed that v will enter Bt in the next Clean step 1b and we are done. �

2.2 Proof of Lemma 2.5

We shall prove that if the algorithm hasn’t halted before the t-th step and |At| < δ
2
n then

|Bt| > (1− δ)n. This immediately implies that the algorithm must halt because after fixing
values to more than 1 − δ fraction of the coordinates of a codeword, there is a unique way
to complete it.

Recall that A is the set of all vertices v for which |Ev| ≥ αd. The set Bt is the set B in
the algorithm after the t-th Clean step. The set At is the set of vertices outside Bt that are
connected by a path in GBt to some vertex in A. Finally, denote G = GBt .

Assume for contradiction that |Bt| ≤ (1 − δ)n and |At| < δn/2. This means that
Z = V \ (At ∪ Bt) contains more than δn/2 vertices. Since Z ∩ A = φ, every vertex v ∈ Z
has |Ev| < αd. Our contradiction will come by finding a vertex in Z with large Ev. If the
algorithm doesn’t yet halt, there must be two distinct codewords x, y ∈ C that agree on Bt.
Let Ux 6=y = {u ∈ V | xv 6= yv}. This is a set of size at least δn that is disjoint from Bt. Since
|At| ≤ δn/2 there must be at least δn/2 vertices in Z ∩ Ux 6=y. Suppose u ∈ Z ∩ Ux 6=y and
suppose u′ is adjacent to u in G. First, by definition of Z, u ∈ Z implies u′ ∈ Z. Next, we
claim that u ∈ Ux 6=y implies u′ ∈ Ux 6=y. Otherwise there would be an edge {u, u′, b} ∈ E(H)
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such that b ∈ Bt, and such that xu 6= yu but both xu′ = yu′ and xb = yb. This means that
either x or y must violate this edge, contradicting the fact that all hyper-edges should accept
a legal codeword. We conclude that the set Z ∩ Ux 6=y is a union of connected components
of G. Since each connected component has size at most βd1/2 (otherwise it would have gone
into ! B in a previous Clean step) we can find a set D ⊂ Z ∩ Ux 6=y of size s, for

δ

3
n ≤ δ

2
n− βd1/2 ≤ s ≤ δ

2
n,

that is a union of connected components, i.e. such that no G-edge crosses the cut between
D and V \D. Now define the hybrid word

w = xDyV \D

that equals x on D and y outside D. We claim that dist(w,C) = dist(w, y) = |D| /n ≥ δ/3.
Otherwise there would be a word z ∈ C whose distance to w is strictly less than |D| /n ≤
δ/2 which, by the triangle inequality, would mean it is less than δn away from y thereby
contradicting the minimal distance δn of the code.

Finally, we use the fact that C is an LTC,

dist(w,C) ≥ δ/3 =⇒ Probh∼E(H)[h rejects w] ≥ ε.

Clearly to reject w a hyperedge must touch D. Furthermore, such a hyperedge cannot
intersect B on 2 vertices because then the third non-Bt vertex also belongs to Bt. It cannot
intersect Bt on 1 vertex because this means that either the two other endpoints are both
in D, which is imopssible since such a hyperedge would reject the legal codeword x as well;
or this hyperedge induces an edge in G that crosses the cut between D and V \ D. Thus,
rejecting hyper-edges must not intersect Bt at all.

Altogether we have εdn rejecting hyperedges spanned on V \ Bt such that each one
intersects D. This means that there must be some vertex v ∈ D that touches at least
εdn/(δn/3) = αd rejecting hyperedges. Recall that D ⊂ Z is disjoint from A, which means
that |Ev| < αd. On the other hand, each rejecting hyperedge touching v must add a distinct
edge to Ev. Indeed recall that Ev contains an edge {u, u′} for each hyperedge {u, u′, v} such
that u, u′ ∈ V ∗ and where V ∗ is the set of vertices with multiplicity at most βd1/2. The
claim follows since obviously all of the αd rejecting hyperedges are of this form (they do not
contain a vertex of high multiplicity as these vertices are in B). �

3 Very dense q-LTCs cannot be c3

In this section we prove the following theorem,

Theorem 1.3. Let C ⊆ {0, 1}n be a q-query LTC with distance δ, and let H be an (δ/2, ε)-
test-hypergraph with density ∆, where ∆ = dnq−2, and LOF constraints. Then, the rate of
C is at most O(1/d).

Our proof is similar to the proof in the previous section. We describe an algorithm for
assigning values to coordinates of a codeword, and show that a codeword is determined
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using k ≤ n ·O(1/d) bits. As in the previous section, we use the following definitions. For a
partition (A,B) of the vertices V of H, we define the 2-graph GB = (A,E) where

E = {{a1, a2} ⊂ A | ∃b3, · · · bq ∈ B, {a1, a2, b3, · · · , bq} ∈ E(H)} .

0. Init: Let B = ∅, F = ∅. Let α = ε
δ/2
, β = α/6q.

1. Clean: Repeat the following until B remains fixed:

(a) Add to B any vertex that occurs in a q-edge that has q − 1 endpoints in
B.

(b) Add to B all vertices in a connected component of GB whose size is at
least βd, and add an arbitrary element in that connected component into
F .

2. S-step: Each vertex outside B tosses q − 2 independent biased coins that get
1 with probability p = 6q/αd. A vertex goes into S if it got 1 in at least one of
the q − 2 coin tosses. Let B ← B ∪ S and set F ← F ∪ S.

3. If there are at least two distinct x, y ∈ C such that xB = yB goto step 1,
otherwise halt.

Figure 2: The Algorithm

The following two lemmas imply the theorem.

Lemma 3.1. If the algorithm halted, the code has at most 2|F | words.

Proof. Identical to the case of 3-queries. �

Lemma 3.2. Let Bt denote the set B at the end of the t-th Clean step. Let v be a vertex
whose H degree is at least α∆. Then if v 6∈ Bt−1 the probability over the choice of S that
v ∈ Bt is at least 1

2
.

Before proving the lemma, let us see how it implies the theorem.

Proof. (of theorem) Let L denote the vertices of degree less than α∆. First, we prove that
|L| < δn/2. Otherwise, |L| ≥ δn/2 and let L′ ⊂ L be an arbitrary subset of L of size δn/2.
Let x ∈ C and consider the hybrid word w defined to equal x outside of L′ and 1− x on L′.
Clearly

dist(w,C) = dist(w, x) = δ/2

since were there a closer word x′ 6= x to w it would be less than δ away from x by the triangle
inequality. By the (δ/2, ε)-LTC property we know that w is rejected with probability at least
ε, i.e., it is rejected by at least εn∆ hyperedges. But simple averaging shows there must be
a vertex in L′ touching at least εn∆/(δn/2) = α∆ hyperedges, contradicting the definition
of L′ ⊆ L.
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Denote by Bt the set B after the t-th Clean step. Also denote At = V \ (Bt ∪ L). Let
v ∈ At, then by Lemma 3.2 v will enter Bt+1 with probability at least 1/2. We expect, over
the choice of S that half of the vertices of At will go into Bt+1, and thus

ES[|At+1|] ≤ |At| /2

Let S(1), . . . , S(t) be the sets that attain or exceed this expectation at steps 1, . . . , t (again,
wlog we ignore sets S whose size deviates from their expected size which is at most qn/d). If
the algorithm chooses these sets S(1), S(2), . . . then at the t-th step we have |At+1| ≤ 1/2t ·n.
For t = log 2/δ this is no larger than δn/2. Since L too is smaller than δn/2, we deduce that
|Bt+1| > (1− δ)n and the algorithm must halt.

The size of the set F when the algorithm halts is no more than log 2/δ times twice the
expected size of S (which is at most O(n/d)), plus no more than n/(βd) (from the Clean
steps). Altogether this is O(n/d) and this bounds the rate by O(1/d). �

Let us now prove Lemma 3.2.

Proof. Consider the set of (q − 1)-edges

Nq−1(v) = {{u1, · · · , uq−1} | {u1, · · · , uq−1, v} ∈ E(H)} .

While we know that |Nq−1(v)| ≥ α∆ = αdnq−2, we do not know how many vertices partici-
pate in these edges. Let us fix some arbitrary order converting each subset in Nq−1(v) to an
ordered tuple.

Each vertex v outside B tosses q − 2 independent coins each has probability p = 6q

d
of

getting 1. Let Si, 1 ≤ i ≤ q− 2, be the set of vertices that their i-th coin toss is 1. A vertex
v goes into S if it gets 1 in at least one of the q − 2 independent coin tosses, i.e. S is the
union of all Si’s.

For 1 ≤ i ≤ q − 2 we define Ni(v) similar to the above. Namely

Ni(v) = {(u1, · · · , ui) | (u1, · · · , ui, x) ∈ Ni+1(v) and x ∈ Sq−1−i} .

We call the elements in Ni(v) i-edges (even for i = 1).
Our goal is to show that with probability greater than 1

2
over the selection of S, the set

N1(v) is of size greater than α d
6q

. This would suffice to prove the lemma since this means
that v is in a large connected component and will go into B in the next iteration.

An i-edge {u1, · · · , ui} is called h-heavy in Ni+1(v) if the number of distinct x’s for which
{u1, · · · , ui, x} ∈ Ni+1(v) is at least h. For 1 ≤ i ≤ q− 2, let Hi(v) be the set of i-edges that
are αd

2·5q−2−i heavy in Ni+1(v).

Claim 3.3. |Hi(v)| ≥ |Ni+1(v)|
2n

assuming |Ni+1(v)| ≥ αdni

5q−2−i .

Proof. Indeed, otherwise the number of i+ 1-edges in Ni+1(v) is too low, namely, at most

number of heavy i-edges · n+ number of non-heavy i-edges · αd

2 · 5q−2−i
.

This is smaller than

|Ni+1(v)|
2n

· n+ ni · αd

2 · 5q−2−i
=
|Ni+1(v)|

2
+

αdni

2 · 5q−2−i
≤ |Ni+1(v)|.

�
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We next show that edges in Hi(v) have very high probability of being selected into Ni(v).

Claim 3.4. For 1 ≤ i ≤ q−2, an edge in Hi(v) goes into Ni(v) with probability greater than

pi
def
= 1− (1− p)αd/2·5q−2−i ≥ 1− 1

8q+1
over the selection of S1, · · · , Si

Proof. Consider {u1, · · · , ui} ∈ Hi(v). By the definition of Hi(v) there are at least αd
2·5q−2−i

distinct x’s such that {u1, · · · , ui, x} ∈ Ni+1(v), {u1, · · · , ui} goes into Ni(v) if at least one
of these distinct x’s is selected into Sq−1−i. The probability that at least one is selected into

Sq−1−i is pi
def
= 1− (1− p)αd/2·5q−2−i

. Note that since p = 6q/αd, pi ≥ 1− 1
8q+1

. �

We are now ready to show that for 1 ≤ i ≤ q−2, with probability greater than (1− 1
2q

)i > 1
2

over the selection of S1, · · · , Si, |Ni(v)| > αdni−1/5q−1−i. Note that this implies that

|N1(v)| ≥ αd/5q−2 > αd/6q.

This implies that v is in a large connected component and hence will enter into B in the
next iteration.

Claim 3.5. For 1 ≤ i ≤ q − 2, let Ni = |Ni(v)|.

Pr
Sq−1−i

(
Ni >

1

5n
Ni+1

∣∣∣∣Ni+1 >
1

(5n)q−2−i
Nq−1

)
> 1− 1

2q

Proof. For every e ∈ Hi(v) we define an indicator random variable Ie that gets 1 iff e is
selected into Ni(v), otherwise Ie is 0. Let I =

∑
e∈Hi(v)

Ie. By Claim 3.3 we have that if

Ni+1 > αdni/5q−2−i = 1
(5n)q−2−iNq−1 then |Hi(v)| ≥ Ni+1

2n
. Thus,

E[Ni] ≥ E[I] = pi|Hi(v)|.

The variance of I can be bounded as follows.

V ar[I] =
∑

e1,e2∈Hi(v)

(E[Ie1Ie2 ]− E[Ie1 ]E[Ie2 ]) ≤ |Hi(v)|2pi − |Hi(v)|2p2i

= |Hi(v)|2(pi − p2i ) = E2[I](
1

pi
− 1) ≤ E2[I]

1

8q

The last inequality holds since pi > 1− 1
8q+1

, which implies 1
pi
− 1 ≤ 1

8q
.

By Chebychev’s inequality,

Pr[|I − E[I]| ≥ a] ≤ V ar[I]/a2

Plugging in a = E[I]/2 we get

Pr

[
|I − E[I]| ≥ E[I]

2

]
≤ 1

2q
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Thus, the probability that I ≥ E[I/2] ≥ pi|Hi(v)|/2 ≥ (1− 1
8q+1

) · Ni+1

2·2n ≥
Ni+1

5n
is at least

(1− 1/2q). Thus,

Pr
Sq−1−i

(
Ni >

1

5n
Ni+1

∣∣∣∣Ni+1 >
1

(5n)q−2−i
Nq−1

)
> 1− 1

2q
.

�

As a corollary of the last claim (Claim 3.5) we get the desired bound on N1(v):

Corollary 3.6.

Pr
S1,··· ,Sq−2

(|N1(v)| > αd/5q) >
1

2

Proof. We prove by downwards induction on i that

Pr
S1,··· ,Sq−1−i

(Ni >
1

(5n)q−1−i
Nq−1) > (1− 1

2q
)q−1−i.

For i = q − 1 this holds with probability 1. By Claim 3.5, if the above holds for i + 1
then it holds for i. �

The last corollary establishes the proof the the lemma.
�

4 Exploring possible improvements

4.1 Tradeoff between rate and density

Any improvement over our bound of ρ < 1/d1/2, say to a bound of the form ρ < 1/d0.501

would already be strong enough to rule out c3-LTCs (with a non-weighted tester) regardless
of their density. The reason for this is the following reduction by Oded Goldreich.

Suppose, for the sake of contradiction, that there is some family

Lemma 4.1. Suppose for some q ≥ 3 and some ε > 0 the following were true.

For any family {Cn} of q-query LTCs with rate ≤ ρ such that each Cn
has a tester with density at least d, then ρ ≤ 1/d

1
q−1

+ε.

Then, there is no family of q-query LTCs with constant rate and any density, such that the
tester is non-weighted.

Proof. Let β = 1
q−1 + ε, and let t ∈ N. Let {Ci} be an infinite family of q-LTCs with density

d = O(1) and relative rate ρ = Ω(1). Then there is another infinite family
{
C̃i

}
of q-LTCs

with density d · tq−1 and relative rate ρ/t. C̃i is constructed from Ci by duplicating each
coordinate t times and replacing each test hyper-edge by qt hyperedges. Clearly the density
and the rate are as claimed. The testability can also be shown. Plugging in the values
ρ̃ = ρ/t and d̃ = dtq−1 into the assumption we get

ρ/t = ρ̃ ≤ 1/d̃β = 1/(dtq−1)β

13



In other words ρdβ ≤ t1−(q−1)β. Since t is unbounded this can hold only if the exponent of t
is positive, i.e., β ≤ 1/(q − 1), a contradiction. �

4.2 For q > 3 density must be high

Lemma 4.2. Let C be a q-LTC with rate ρ, and density d. Then there is a (q+ q′)-LTC C ′

with density d ·
(
n
q′

)
such that C ′ has rate ρ/2, distance δ/2.

Corollary 4.3. If there is a 3-LTC with constant rate and density, then there are LTCs with
q > 3-queries, constant rate, and density Ω(nq−3).

The corollary shows that our upper bounds from Theorem 1.3 are roughly correct in their
dependence on n, but there is still a gap in the exponent.

Proof. (of lemma) Imagine adding another n coordinates to the code C such that they are
always all zero. Clearly the distance and the rate are as claimed. For the testability, we
replace each q-hyper-edge e of the hypergraph of C with

(
n
q′

)
new hyperedges that consist

of the vertices of e plus any q′ of the new vertices. The test associated with this hyperedge
will accept iff the old test would have accepted, and the new vertices are assigned 0. It is
easy to see that the new hypergraph has average degree d ·

(
n
q′

)
. Testability can be shown as

well. �

4.3 Allowing weighted hypergraph-tests

In this section we claim that when considering hyper-graph tests with weights, the density
should not be defined as the ratio between the number of edges and the number of vertices.
Perhaps a definition that takes the min-entropy of the graph into consideration would be
better-suited, but this seems elusive, and we leave it for future work.

We next show that if one defines the density like before (ignoring the weights) then every
LTC can be modified into one that has a maximally-dense tester. This implies that bounding
the rate as a function of the density is the same as simply bounding the rate.

Lemma 4.4. Let C be a q-LTC with q ≥ 3, rate ρ, distance δ, and any density. Then there
is another q-LTC C ′ with a weighted-tester of maximal density Ω(nq−1) such that C ′ has
rate ρ/2, distance δ/2.

Corollary 4.5. Let f : N→ N be any non-decreasing non-constant function. Any bound of
the form ρ ≤ 1/f(d) for weighted testers implies ρ ≤ 1/f(nq−1), and in particular ρ→ 0. �

Proof. (of lemma:) One can artificially increase the density of an LTC tester hypergraph
H by adding n new coordinates to the code that are always zero, and adding all possible
q-hyperedges over those coordinates (checking that the values are all-zero). All of the new
hyper-edges will be normalized to have total weight one half, and the old hyperedges will
also be re-normalized to have total weight one half. Clearly the rate and distance have been
halved, and the testability is maintained (with a different rejection ratio). However, the
number of hyperedges has increased to nq so the density is as claimed. �
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