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Abstract

We put forth several simple candidate pseudorandom functions fk : {0, 1}n →
{0, 1} with security (a.k.a. hardness) 2n that are inspired by the AES block-cipher by
Daemen and Rijmen (2000). The functions are computable more efficiently, and use a
shorter key (a.k.a. seed) than previous constructions. In particular, we have candidates
computable by

(1) circuits of size n poly lg n (thus using a seed of length |k| ≤ n poly lg n);

(2) TC0 circuits of size n1+ǫ, for any ǫ > 0, using a seed of length |k| = O(n);

(3) for each fixed seed k of length |k| = O(n2), a single-tape Turing machine with
O(n2) states running in time O(n2).

Candidates (1) and (3) are natural asymptotic generalizations of AES with a specific
setting of parameters; (2) deviates somewhat from AES, by relaxing a certain state
permutation in AES to have larger range. We argue that the hardness of the candidates
relies on similar considerations as those available for AES.

Assuming our candidates are secure, their improved efficiency brings the “Natural
Proofs Barrier” by Razborov and Rudich (JCSS ’97) closer to the frontier of circuit
lower bounds. For example, the fact that standard pseudorandom function candidates
could not be computed as efficiently as the one in (2) had given rise to a plan for TC0

circuit lower bounds (Allender and Koucký; J. ACM 2010).
We also study the (asymptotic generalization of the) AES S-box. We exhibit a

simple attack for the multi-bit output, while we show that outputting one, Goldreich-
Levin bit results in a small-bias generator.
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1 Introduction

Introduced by Goldreich, Goldwasser, and Micali [GGM86], pseudorandom functions (PRF)
are functions fk : {0, 1}n → {0, 1}, parameterized by a seed (or key) k of length s, that
are indistinguishable from random by efficient adversaries (for background, see [Gol01]).
This exponential-stretch extension of pseudorandom generators has many applications in
cryptography. It also has bearings to our ability to prove circuit lower bounds, thanks to a
connection by Razborov and Rudich [RR97], reviewed below.

Many applications would benefit from having PRF that are very efficient. A natural
goal is to have PRF that are computable by circuits of linear size O(n), in particular that
use a seed of length s = O(n) and have exponential hardness 2n, i.e., circuits of size 2n

have advantage ≤ 1/2n in distinguishing the PRF from random. (Note that in this setting
of hardness 2n pseudorandom “function” is a bit of a misnomer, since the distinguisher has
time to look at the entire truth-table. The PRF is better seen as a pseudorandom generator.)

There are two reasons why we do not have such PRF, both stemming from the fact
that PRF are typically constructed from more basic assumptions, such as one-way functions
or pseudorandom generators. First, standard hardness assumptions such as those related to
factoring and discrete-log have hardness (necessarily) of the form 2s1−Ω(1)

, which is insufficient.
Second, even if we had a size-O(n) computable one-way function fk : {0, 1}n → {0, 1}n with
hardness 2n, the known constructions of PRF blow-up both the seed length and the circuit
size by a polynomial [GGM86, HILL99] (for optimizations, see [HRV10], especially Corollary
6.3).

The lack of candidates to reach the above natural goal stands in contrast with widespread
block-ciphers, which can be thought of as PRF where both the input and seed lengths are
fixed, such as the Advanced Encryption Standard (AES) by Daemen and Rijmen [DR02].
AES is designed to be very “efficient,” and on seeds of length s (e.g. s = 128) it is believed
to resist attacks running in “time” 2αs for a constant α ≈ 1.

In this paper we put forth several candidate PRF with hardness 2n for seed lengths
ranging from O(n2) to O(n). The candidates are inspired by AES, and we show that they
are computable more efficiently than previous candidates. For example one candidate is
computable by circuits of quasi-linear size n poly lg n (and in particular the seed length is s =
n poly lg n as well). We then argue that these candidates preserve the hardness considerations
used in the design of AES (for example, jumping ahead, resistance to differential and linear
cryptanalysis). So, we believe that even if an attack is found for some candidates, this should
translate into new insights into the hardness of AES, for example by showing that certain
tradeoffs between parameters are necessary.

Thus our work leverages block-ciphers to obtain new theoretical constructions. This is a
somewhat different angle from other works that investigate efficient cryptographic primitives
that could translate to efficient block-ciphers.

The search for efficient cryptographic primitives. There is a large body of work
on proposing and analyzing efficient cryptography primitives such as one-way functions
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and pseudorandom generators, and even public-key cryptosystems, see e.g. [Gol00, AIK06,
AIK08, ACPS09, Pei09, ABW10, App11]. By contrast, there are few PRF candidates that
are more efficient than what is given by the original construction [GGM86]. Some such can-
didates are due to Naor and Reingold [NR04] (cf. [NR99]), and later with Rosen [NRR02],
based on factoring and discrete-log assumptions. They give PRF f : {0, 1}n → {0, 1} with
hardness 2n computable by circuits of size nb, where b is a constant that is smaller than
what is implied by the generic construction [GGM86, HILL99] (a fact that is also noted in
[NRR02]). These PRF also have the benefit of being parallelizable. For an alternative, fixed-
input-length approach to PRF, see the work by Bellare, Canetti, and Krawczyk [BCK96].

We mention that an approach of Levin [Lev87] is useful to trade efficiency for hardness
in PRF constructions. Given a PRF fk : {0, 1}n → {0, 1}, the idea is to construct the PRF
f ′

k,h(x) := fk(h(x)) that first hashes the input x to h(x) with a hash function that is part
of the seed, and then applies f . Thus we only compute fk on inputs of length h(x) ≪ n,
resulting in increased efficiency and decreased hardness. Given a PRF with superpolynomial
hardness, one can apply this idea to obtain a PRF with again superpolynomial hardness
computable by circuits of size nǫ plus the size of hashing. Ishai, Kushilevitz, Ostrovsky, and
Sahai [IKOS08] show how to compute hash functions by linear-size circuits, thus obtaining
such PRF computable by linear-size circuits. However this approach is useless if the hardness
is at premium and cannot be traded, for example for size-O(n) PRF with hardness 2n.

Natural proofs. The landscape of circuit lower bounds remains bleak, despite exciting
recent results [Wil11]. Researchers however have been successful in explaining this lack of
progress by pointing out several “barriers,” i.e., establishing that certain proof techniques
will not give new lower bounds [BGS75, RR97, AW08].

Of particular interest to us is the Natural Proofs work by Razborov and Rudich [RR97].
They make the following two observations. First, most lower-bound proofs that a certain
function f : {0, 1}n → {0, 1} cannot be computed by circuits C (e.g., C = circuits of size
n2) entail an algorithm that runs in time polynomial in N := 2n and can distinguish truth-
tables of n-bit functions g ∈ C from truth-tables of random functions (i.e., a random string
of length N). (For example, the algorithm corresponding to the restriction-based proof that
Parity is not in AC0, given f : {0, 1}n → {0, 1}, checks if there is one of the 2O(n) = NO(1)

restrictions of the n variables that makes f constant.) Informally, any proof that entails
such an algorithm is called “natural.”

The second observation is that, under standard hardness assumptions, no algorithm such
as the above one exists when C is a sufficiently rich class. For example, under the assumption
that computing a factor of a random s-bit Blum integer has hardness 2sΩ(1)

, one can construct
a PRF fk : {0, 1}n → {0, 1} with seed length |k| = poly(s) and also hardness 2sΩ(1)

. Making
s = nc for large enough c = O(1), the hardness is Nω(1) and in particular no algorithm as
the above one exists.

The combination of the two observations is that no natural proof exists against circuits
of size nc, for a large enough c = O(1). Moreover, the aforementioned PRF construction by
Naor and Reingold [NR04] is implementable in the restricted circuit class TC0 of unbounded
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fan-in majority circuits of constant-depth and polynomial-size, pushing the above second
observation “closer” to the frontier of known circuit lower bounds.

The gap between lower bounds and PRF. However, the natural proofs barrier still
has a significant gap with known lower bounds, due to the lack of sufficiently strong PRF. For
example, there is no explanation as to why one cannot prove superlinear-size circuit lower
bounds. For this one would need to reach the natural goal mentioned at the beginning,
i.e. have a PRF fk : {0, 1}n → {0, 1} that is computable by linear-size circuits (hence in
particular with |k| = O(n)) and with exponential hardness 2n. (So that, given n, if one had
a distinguisher running in time 2O(n), one could pick a PRF on inputs of length bn for a large
enough constant b, to obtain a contradiction.)

A recent work by Allender and Koucký [AK10] brings to the forefront another setting
where the Natural Proofs barrier does not apply: proving lower bounds on TC0 circuits of
size n1+ǫ and depth d, for any ǫ > 0 and a large enough d = d(ǫ). Naor and Reingold’s
PRF in TC0 requires larger size. The setting is especially interesting because [AK10] shows
that such a lower bound for certain functions implies a “full-fledged” lower bound for TC0

circuits of polynomial-size. Moreover even if the first lower bound were natural, the latter
would not be, thus circumventing Naor and Reingold’s PRF in TC0. Even more, a lower
bound where ǫ = ǫ(d) (as opposed to d = d(ǫ)) is known [IPS97].

Another long-standing problem is to exhibit a candidate PRF in ACC0, which would
explain the slow progress on lower bounds, cf. [Wil11].

Of course, circuit models such as the above ones are only some of the models in which
the gap between candidate PRF and lower bounds is disturbing. Other such models include
various types of Turing machines, and small-space branching programs. For example, there is
no explanation as to why the lower bounds for single-tape Turing machines stop at quadratic
time, cf. [KN97, §12.2].

1.1 Background on AES

To define our candidates, we begin with a review of AES; the reader is referred to [DR02]
for a thorough treatment. AES is a block cipher operating on (n = 128)-bit messages,
parameterized by a seed K of length s = 128 (other seed lengths are supported as well). On
an input message x, the computation proceeds in r = 10 rounds. Each round i = 1, . . . , r
uses a different n-bit string K(i), referred to as the ith round key, and each round key is
derived from K via a process known as the AES key schedule. In addition there is an n-bit
“whitening” key K(0), also derived from K.

Each round i maps the current n-bit state to a new n-bit state, where the initial state is
x ⊕ K(0). Each round is computed as follows (see Figure 1). First, the state is divided into
bundles of b = 8 bits, and to each bundle a permutation γ is applied, which has the form

γ(x) := L
(
x2b−2

)
,
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b-bit “bundle” (b · t)-bit “group”

n-bit “state”

γ γ γ γ γ γ γ γ γ γ γ γ

π

φ φ φ φ
λ

K(i)

λ is GF(2b)-linear

K(i) = ith round key ⊕

γ : GF(2b) → GF(2b) π :
(
GF(2b)

)n/b →
(
GF(2b)

)n/b
φ :
(
GF(2b)

)t →
(
GF(2b)

)t

γ(x) := L(x2b−2)

L is GF(2)-affine

S-boxes

Figure 1: One round of AES

where L is an affine transformation over GF(2)b; note that x2b−2 is field inversion x−1 over
GF(2b) if x 6= 0. Each instance of γ is called an S-box.

Second, a linear permutation λ is applied to the entire state; specifically, each bundle is
seen as an element in GF(2b), and λ is seen as a n/b × n/b matrix over this field. Up to a
permutation π of the positions of the input bundles, λ is a block-diagonal matrix where each
block is the same t × t matrix φ (t = 4).

Finally, the state is xored with the current round key K(i).

Design criteria. AES is designed to resist linear and differential cryptanalysis ([Mat94,
BS91]; see also Chapters 6-9 of [DR02]). This resistance is not proved formally, but is
believed to follow from the combination of some heuristics and two theorems. The first
theorem gives an upper bound (⋆) of 2−(b/2−1) on certain input-output correlations of the
S-box γ (this will be made precise in a later section; see Theorem 2.2).

The second theorem gives a lower bound on a certain quantity related to the computation
of AES on non-zero inputs, a quantity known as the number of active S-boxes. The number
A of active S-boxes can be defined as follows. Let AES’ be the function that is identical
to AES, except that K(i) := 0n for i = 0, . . . , r and the S-box γ is the identity map. Let

wb :
(
{0, 1}b

)n/b → N be the function which counts the number of non-zero b-bit bundles in
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its input. Then,

A := min
0n 6=x∈{0,1}n

r∑

i=1

wb(state of AES’(x) at the beginning of round i).

Given this definition, the second theorem is the following.

Theorem 1.1 ([DR02], Thm. 9.5.1). A ≥ ⌊r/4⌋ · (t + 1)2.

With respect to linear and differential cryptanalysis, the hardness of AES is measured as
the time needed to recover the round keys (or some portion thereof). The dominating factor
of the workload for these attacks is the number of plaintext/ciphertext pairs needed, and
thus lower bounding this number is the route taken to show hardness. To do this, an upper
bound similar to (⋆) is used, though now what is bounded are the correlations of the entire
cipher, and not just the S-box. For AES, this bound is believed to be 2−A·(b/2−1), which is
the previous bound (⋆) raised to A. Intuitively, this should hold because the aforementioned
correlations should multiply across active S-boxes. The number of plaintext/ciphertext pairs
needed for the attacks is inversely proportional to this correlation1, and thus the hardness
of AES is believed to be

≥ 2A·(b/2−1).

(See Definition 2.1 and Theorem 2.2 for more precise details.)
In AES, b = 8 and Theorem 1.1 guarantees A ≥ 50 because t = 4 and r = 10, so the

hardness is at least 2150. The number of rounds r is chosen so as to achieve hardness which
is greater than the work factor 2s of an exhaustive search for the seed K. Accordingly, r
increases for seeds larger than s = 128. Extra rounds are also added to provide additional
“diffusion”, which in this context means propagating (possibly small) changes in the state
bits throughout the entire state. See [DR02, §3.5] for a more detailed discussion on the
number of rounds.

While resistance to linear and differential cryptanalysis is “the most important criterion in
the design” of AES [DR02, p. 81], considerations have also been taken to prevent attacks that
would exploit algebraic structure in the cipher (e.g. the interpolation attacks of Jakobsen and
Knudsen [JK01]). For instance, the affine portion L of the S-box γ is included to “allow γ to
have a complex algebraic expression” when considered as a univariate polynomial over GF(2b)
[DR02, p. 36]. Choices also appear to have been made to ensure that the computation has
high degree when considered as a multivariate polynomial over GF(2). For example, the use
of x 7→ x2b−2 results in each of γ’s output bits having (near-maximum) degree ≥ b−1. Using
instead x 7→ x3 would not diminish AES’s resistance to linear and differential cryptanalysis,
but it would result in degree (only) 2 [Pie91, Nyb93] (cf. [Kop11, Lemma 9]). We refer the
reader to [CMR06] for an overview of the algebraic structure of AES and potential means
of exploiting it. In general, algebraic cryptanalysis appears less understood than linear and
differential cryptanalysis.

1For linear cryptanalysis, the number is actually inversely proportional to the square of the correlation.
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Finally, although AES’s hardness is often measured against key-recovery attacks, we share
many researchers’ viewpoint that distinguishing attacks are the correct model. We also point
out that the linear and differential cryptanalysis techniques can be seen as falling in the latter
type of attacks, as they do construct a distinguishing algorithm (which is then used to select
the correct round key from a set of potential keys).

1.2 Our candidates

We propose several ways to generalize AES to obtain candidate PRF defined on infinitely
many input lengths. In each of our candidates, we do away with the AES key schedule
and instead use uniform and independent round keys; as a result, the seed length is always
s = n(r + 1). Using independent round keys, as opposed to generating them from a single
n-bit seed, should only increase hardness.

Inspired by AES, we use the value 2A·(b/2−1) as a measure of hardness for each of our
candidates; namely, for n-bit functions we require that A · (b/2 − 1) ≥ n.

We observe another restriction on the candidates, originating when each output bit is
viewed as a polynomial over GF(2) in the input bits. To resist attacks that exploit the degree
of this polynomial, we need the degree of each of our candidates to be ≥ ǫn for a certain
constant ǫ. (For completeness we present such an attack in Appendix A, showing that a
PRF which has degree o(n) cannot have hardness 2n.) The only non-linear operation in the
entire cipher is the S-box γ, which operates on b bits and has degree b − 1, and hence the
maximum possible degree of each output bit is at most (b − 1)r. We require br ≥ n in each
of our candidates. (The distinction between (b − 1)r ≥ ǫn and br ≥ n is unimportant, as in
our candidates we can always increase r by a constant factor, except in Candidate 4 where
we have r = 1 and b = n.)

Another obvious obstruction to an output bit having large degree is that this bit depends
on few input bits. Towards avoiding this obstruction, we make sure the following syntactic
requirement is satisfied. Consider the graph with r layers and degree t corresponding to π,
in which nodes on layer h represent bundles at round h, and there is an edge i → j between
two bundles i, j if they are in the same group, i.e., if bundle i is an input to the occurrence
of φ outputting bundle j. We make sure that each output bundle is connected to Ω(n/b)
input bundles in this graph (in particular, tr ≥ Ω(n/b)). We note that this holds for AES
after even 2 rounds [DR02, §3.5].

We now briefly describe each of our candidates. Each is candidate to having hardness
2n, and the seed length will range from s = O(n2) to s = O(n). Candidates 1-2 output n
bits, Candidate 3 outputs O(n) bits, and Candidate 4 outputs 1 bit.

Candidate 1. This candidate is our most straightforward generalization of AES, and may
be folklore. We keep b = 8 and t = 4, leave γ unchanged, and we leave λ unchanged except
for the necessary increase in the number of input/output bundles. To get A · (b/2 − 1) ≥ n,
we take r = n. (Theorem 1.1 is actually overkill for this candidate, because the trivial lower
bound A ≥ r suffices when r = n.)
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Candidate 1 is computable by size O(n2), depth O(n) Boolean circuits. Note this is
already better than previous candidate PRF. For each fixed seed K, Candidate 1 is also
computable in time O(n2) by a single-tape Turing machine with O(n2) states (note that the
fixed-seed setting is sufficient for the natural proofs connection).

It is an open problem to get a candidate computable in time O(n) on a 2-tape Turing
machine.

Candidate 2. In this candidate, we set b = log n, t =
√

n/ log n and r = Θ(log n/ log log n).
γ and λ are again the same as in AES except for an increase in the input/output sizes.

We prove that Candidate 2 is computable by Boolean circuits of quasilinear-size Õ(n) :=
n poly log n. To show this, note that since r is logarithmic, it is enough to show how to
compute each round with those resources. Moreover, since b is logarithmic, computing the
S-boxes comes at little cost.

Our main technical contribution in this candidate is to show how to efficiently compute
each t × t block of AES’s block-diagonal linear transformation λ; specifically, we show that
each block can be computed with size Õ(t) = t poly lg t, for a total size of

Õ
(n

t
· t
)

= Õ(n).

In AES (and in Candidates 1-2), each block of λ is constructed from the generator matrix G
of a t → 2t maximum distance separable (MDS) code; specifically, if GT = [I |M ], then each
block of λ is M . Our method for computing λ efficiently has two parts. First, we use a result
by Roth and Seroussi [RS85] that if G generates a Reed-Solomon code (which is well-known
to be MDS), then M forms a t × t Cauchy matrix (a certain type of matrix specified by
O(t) elements). We then use a result by Gerasoulis [Ger88] to compute the product of a
length-t vector (consisting of bundles of the state) and a Cauchy matrix in quasilinear time;
this requires a simple adaptation of the algorithm in [Ger88] to fields of characteristic 2.

It is an open problem to get a candidate computable by circuits of size O(n).

Candidate 3. In the previous two candidates, the components γ and λ remain essentially
unchanged from AES. In Candidate 3, we also keep γ the same (aside from the increase in
input/output size), but we modify the linear permutation λ.

Our observation is that the important property of λ is just that it allows one to bound
the number A of active bundles. With a simple modification to λ, we obtain a lower bound
of the form A = Ω(tr−1), rather than the weaker A = Ω(r · t2) (see Theorem 3.7). (Note: we
do not know that the transformation λ in AES would not give a bound of the form tΩ(r), but
because of technical complications we are not able to prove it for their construction, which
relies on a somewhat subtle propagation of the active S-boxes (cf. §3.3).) The strengthened
lower bound allows us to take b, t = nǫ and r = O(1/ǫ) for arbitrarily small ǫ > 0, and so
each round is computable in size

n

b
poly(b) +

n

tb
poly(b, t) = n1+O(ǫ),
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and the whole circuit also in size n1+O(ǫ).
We mention that our modified λ retains much of the same features of the original λ. It

is still a linear, invertible map, corresponding to a block-diagonal matrix. However it will
not be a permutation anymore, and instead we double the size of the state at each round
(so the blocks are not square). As a result, Candidate 3 maps n bits to 2rn bits. However,
because we take r = O(1), the growing state size poses no problem for the analysis.

We further show that Candidate 3 is computable even by TC0 circuits of size n1+O(ǫ)

for any ǫ > 0 (with depth depending on ǫ), cf. §“The gap between lower bounds and PRF”
above. The technical difficulty in implementing this candidate with the required resources is
that the S-box function γ requires computing inversion in a field of size 2b (recall b = nΩ(1)).
To implement this in TC0 we note (cf. [HV06]) that inverting the field element α(x) can be
accomplished as:

α(x)2b−2 = α(x)
∑b−1

i=1 2i

=
b−1∏

i=1

α(x)2i

=
b−1∏

i=1

α
(
x2i
)

where the last equality follows from the fact that we are working in characteristic 2. By
hard-wiring the ≤ b powers x, x2, . . . , x2b−1

of x in the circuit, and using the fact that the
iterated product of poly(n) field elements is computable by poly(n)-size TC0 circuits (see
e.g. [HAB02, Corollary 6.5] and cf. [HV06]), we obtain a TC0 circuit.

A more radical candidate is a variant of Candidate 3 in which we apply an error-correcting
code to the whole state. After even one round this gives a good enough bound on A, but
the details of computing the code efficiently by TC0 circuits of size n1+ǫ are more involved
(details omitted).

Finally, we mention that implicit in the assumption that Candidate 3 is indeed hard
is the assumption that field inversion cannot be computed by unbounded fan-in constant
depth circuits with parity gates AC0[⊕]. For otherwise, it can be shown that the whole
candidate would be in that class, in contradiction with an algorithm in [RR97, §3.2.1] which
distinguishes truth tables of AC0[⊕] functions from random ones. (λ can be seen to be
a linear operation over GF(2), hence it can be computed easily with parity gates.) Some
evidence that field inversion is not in AC0[⊕] comes from the fact that related functions can
indeed be shown not to be in AC0[⊕]; see [HV06] and the recent work by Kopparty [Kop11].

Candidate 4. In our final candidate, we use the extreme setting of parameters b = n and
r = t = 1. In other words, Candidate 4 consists of one round, and this round contains only
a single S-box (and in particular no linear permutation). While this setting does indeed pre-
serve resistance to linear and differential cryptanalysis, we exhibit a simple attack, inspired
by Jakobsen and Knudsen [JK01], in which we exploit the algebraic structure to recover the
seed with just 4 queries.

We put forth a related, clean candidate where we only output the Goldreich-Levin bit
[GL89]: fk,k′(x) := 〈(x + k)2b−2, k′〉. We prove that this candidate is a small-bias generator
[NN93, AGHP92], and using Braverman’s result [Bra09] (cf. [Baz09, Raz09]) we obtain that

this candidate also fools small-depth AC0 circuits of any size w = 2no(1)
(that look at only w

fixed output bits of the candidate).
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Using the same ideas for Candidate 3, this candidate is also computable by poly-size TC0

circuits. For unbounded-depth circuits, a more refined size bound Õ(n2) follows from the
exponentiation algorithm in [GvzGPS00].

Organization. In §2 we give some additional details on AES, in particular on the features
of its component functions that provide hardness. In §3 we construct each of our PRF
candidates described above. We conclude in §4. Appendix A sketches an attack on low-
degree PRF.

2 The Advanced Encryption Standard

We now give a more thorough description of AES, building on the overview in §1.1. Recall
that AES is computed over r rounds, each of which maps the current n-bit state to a new
n-bit state, and that we view the state as being divided into n/b bundles of b bits (see
Figure 1). Each round is computed using the three functions γ, π and φ; there are specific
restrictions put on these functions in order to provide resistance to differential and linear
cryptanalysis, which we describe now.

The nonlinear S-box γ. The permutation γ : GF(2b) → GF(2b) is defined by γ(x) :=
L(x2b−2), where L is a transformation that is affine over GF(2)b (but not over GF(2b)). Note
that x2b−2 is simply inversion in GF(2b) with 0−1 := 0, and we will refer to this as “patched
inversion”. To describe the desirable features of γ, we need the following definition.

Definition 2.1. Let f : {0, 1}b → {0, 1}b be a function. The maximum differential propaga-
tion probability of f is MaxDPP(f) := max∆x 6=0b,∆y

(Prx [f(x) ⊕ f(x ⊕ ∆x) = ∆y]), and the
maximum linear correlation of f is MaxCor(f) := maxu,w 6=0b |2 · Prx[〈u, x〉 = 〈w, f(x)〉] − 1| .

The results of [Nyb93] and the references therein establish the following theorem.

Theorem 2.2. Let γ : {0, 1}b → {0, 1}b be defined as above. Then,

1. MaxDPP(γ) ≤ 2−(b−2). 2. MaxCor(γ) ≤ 2−(b/2−1). 2

Theorem 2.2 is the first theorem which was alluded to in §1.1, and it is primarily the
combination of this and Theorem 1.1 which supports the belief that AES has hardness 2150

and 2300 against linear and differential cryptanalysis, respectively. More specifically, it is
believed that MaxDPP and MaxCor multiply across active S-boxes, and so it is believed
that MaxDPP(AES) ≤ 2−A(b−2) and MaxCor(AES) ≤ 2−A(b/2−1). We refer the reader to
[DR02, Ch. 7-8] for further details on this argument.

We also note that the bound MaxCor(AES) incorporates the same bound on each fourier
coefficient of each output bit of AES. In turn, this implies that each output bit depends on

2[Nyb93] actually bounds a related quantity known as the non-linearity of γ, but it translates directly to
the stated result.

9



Ω(n) input bits. (For else it can be verified that it would have too large a fourier coefficient
by Parseval’s identity.)

The affine portion of γ is defined by L(x) := Mγx + aγ . Mγ is a circulant matrix, in
which the first row consists of ⌈b/2⌉+1 ones followed by ⌊b/2⌋−1 zeros, and each subsequent
row is equal to the row above it shifted circularly one place to the right. aγ was chosen so
that there are no fixed points and no opposite fixed points, i.e. values x ∈ {0, 1}b such that
γ(x) = x or γ(x) = x.

We stress that we do not modify the function γ in any of our candidates. We do allow
the bundle size b to vary, but γ is always computed as described here.

The bundle permutation π. The combination of π and φ provides inter-bundle diffusion
throughout the computation of AES. Recall that we view the n/b bundles of the state as
being grouped consecutively into groups of size t. The criterion that π should satisfy is
referred to as diffusion optimality by [DR02, Def. 9.4.1].

Definition 2.3. A bundle permutation π is diffusion optimal if for every group i, and every
two bundles j 6= k in group i, π(j) and π(k) are in different groups.

Note that it is only possible to have a diffusion optimal bundle permutation if there are at
least as many groups as there are bundles per group, i.e. n/(bt) ≥ t ⇐⇒ n ≥ bt2.

In AES, the bundle permutation π is computed as follows. First, the bundles are placed
column-wise into a t × (n/bt) matrix (each group is completely contained in one column).
Then row i of the matrix (0 ≤ i < t) is shifted circularly to the left by i places, and finally
the bundles are extracted column-wise from the new matrix.

Recall that in our candidates we impose the additional restriction that in the layered
connection graph specified by π, each output bundle is connected to Ω(n/b) input bundles.
It can be verified that for r ≥ n/(bt), this holds for the above construction of π. In the
special case when the matrix is square, i.e. when t =

√
n/b (which is the setting of both

AES and our Candidate 2), it holds for r ≥ 2.

The linear function φ. φ is specified by choosing a matrix in GF(2b)t×t (we let φ denote
both the matrix and the function defined by left-multiplication with this matrix). The crucial
design criterion here is that φ has maximal branch number:

Definition 2.4. Let φ : F
t → F

t be a linear transformation acting on vectors over a field F.
The branch number of φ is

Br(φ) = min
α6=0t

(w(α) + w(φ(α)))

where w(·) denotes the number of non-zero elements.

The maximum possible branch number for any transformation operating on vectors of
length t is t+1. In AES, φ is constructed from the generator matrix of a maximum distance
separable (MDS) code as follows. Let G be the generator matrix for any MDS code mapping
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F
t → F

2t, and take G to be in reduced echelon form, i.e. GT = [I |M ] where I is the t × t
identity matrix. Then, it is easy to see that Br(M) = G’s minimum distance, namely t + 1.

Finally, we briefly revisit Theorem 1.1, the lower bound on the number A of active S-
boxes in AES. The theorem holds for any cipher with the AES structure in which π and φ
satisfy the above criteria.

Theorem 2.5 ([DR02], Thm. 9.5.1). Let F : {0, 1}n → {0, 1}n be any block cipher computed
over r rounds, in which each round consists of: (1) n/b parallel S-boxes; (2) a diffusion
optimal bundle permutation; (3) n/bt parallel linear transformations each with branch number
t + 1; (4) xor with the current round key. Then, A ≥ ⌊r/4⌋ · (t + 1)2.

3 Candidate pseudorandom functions

In this section we give the details of the candidate PRFs described in §1.2. Notationally, we
will use Fi to refer to Candidate i.

3.1 Candidate 1

We keep the choices b = 8 and t = 4, and let the number of rounds r grow with n as needed
to preserve the hardness. Let F1 : {0, 1}n → {0, 1}n be this function, computed as described
in §2, and note that this is well-defined for any n that is a multiple of 32.

Efficiency: small circuits. In each round, the O(n) instances of γ and φ each perform
computations on a constant number of bits; because permuting the bundles and adding the
round key can also be done with O(n) wires, each round of F1 can be computed by a circuit
of depth d = O(1) and size w = O(n). Thus the entire circuit for F1 has depth d = O(r)
and size w = O(rn). We will take r = n to get hardness 2n below, so F1 is computable by
circuits of size w = O(n2) and depth d = O(n).

Efficiency: fast Turing machines. Similarly, for any fixed seed K ∈ {0, 1}s, each round
of F1 can be computed in time O(n) on a single-tape Turing machine with O(n2) states. To
do so, we encode the bundles on the tape so that the matrix used by π is written column-wise.
As before, the O(n) instances of γ and φ in a single round can be done in time O(n). To see
that π can also be computed in time O(n), note that due to the column-wise representation
each bundle needs to move ≤ 3 places away, except for the 6 bundles which are shifted
circularly to the other end of the tape. Finally, encoding the (s = O(n2))-bit seed in the
TM’s state transitions, the addition of each round key also takes time O(n). Therefore, the
r = n rounds of F1 can be computed in time O(n2).

Alternatively, consider the Turing machine variant with two tapes, in which the first tape
is read-only and contains the n-bit input followed by the n(r + 1)-seed, the second tape is
read/write, and the TM has O(1) states. Then F1 can again be computed in time O(n2)
exactly as described above, because in round i only bits in + 1, . . . , in + n of the seed are
used.
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Hardness. We let the number of rounds r = n. This guarantees that br ≥ n, and further-
more (by Theorem 2.5) that A · (b/2 − 1) > n.

3.2 Candidate 2

In this section we give a candidate, F2, which is computable by Boolean circuits of size
n logO(1) n. γ and π remain unchanged from AES other than the increase in the input/output
size. We choose φ from the generator matrix of an MDS code as is done in AES, but we do
this in a way so that multiplication by φ can be done with few operations over GF (2b).

We now specify the parameters for this candidate. Let ℓ ∈ N be sufficiently large, and
set b = 22ℓ, n = 2b, t = 2(b−2ℓ)/2, and r = ⌈b/2ℓ⌉; this gives b = log n, t =

√
n/ log n

and r = ⌈log n/ log log n⌉. Observe that we have bt2 ≤ n which is necessary for π to be
well-defined (cf. Definition 2.3), and also that we have 2b ≥ 2t which is necessary for the
construction of a t → 2t Reed-Solomon code over GF (2b) below.

Construction of φ. Let G be the 2t × t generator matrix of a Reed-Solomon code over
GF (2b). [RS85, Theorem 1] shows that when G is put into reduced echelon form, i.e. when
GT = [I |M ] where I is the t × t identity matrix, then M is a t × t generalized Cauchy
matrix.

Definition 3.1. Let F be any field of characteristic 2. A matrix C ∈ Ft×t is a Cauchy
matrix if there exist 2t distinct values α1, . . . , αt, β1, . . . , βt ∈ F such that Ci,j = (αi + βj)

−1.
Furthermore, a matrix M ∈ Ft×t is a generalized Cauchy matrix if it can be written as
M = BCD, where C is a Cauchy matrix and B, D ∈ Ft×t only have non-zero values on the
diagonal.

Recall that because G generates an MDS code, the operation defined by left multiplication
with M has (maximal) branch number t + 1. So, we choose φ = M .

[Ger88] shows that multiplication of a vector by a t× t Cauchy matrix can be done with

Õ(t) operations when the underlying field is C. (Multiplication with B and D in the above
definition can be done with O(t) operations, so we will focus on multiplication by C.) This
algorithm can also be made to work over GF (2b), as we now show. We stress that we are
using the algorithm from [Ger88] without modification; the purpose here is to show that it
works over GF(2b).

Theorem 3.2. Let C ∈ GF (2b)t×t be a Cauchy matrix defined by the (distinct) elements
{αj, βj}j∈[t]. Then, given any vector z ∈ GF (2b)t, the product C · z can be computed with
O(t · log2 t · log log t) operations over GF (2b).

Proof. Define the following polynomial.

f(x) :=

t∑

j=1

zj(x + βj)
2b−2

12



Then we have C · z = (f(α1), . . . , f(αt)), and so it suffices to evaluate f at the points {αi}i.
Now define the following three polynomials.

g(x) :=

t∏

j=1

(x + βj)

h(x) :=
t∑

i=1

[
zi(x + βi)

2b−1 ·
∏

j 6=i

(x + βj)

]

h∗(x) :=
t∑

i=1

zi

∏

j 6=i

(x + βj)

Then we have f(x) = h(x)/g(x) as formal polynomials. Furthermore, for any y 6∈ {βj}j we

have h(y) = h∗(y), using the identity y2b−2 = 1 valid for any y 6= 0. Since our goal is to
evaluate f(αi) for all i, this is now seen to be equivalent to evaluating h∗(αi)/g(αi) because
αi 6= βj for all i, j.

Notice that, for each βj , we have h∗(βj) = zj · g′(βj), where g′(x) =
∑

i∈[t]

∏
j 6=i(x + βj)

is the derivative of g. So, another way to view h∗(x) is that it is the unique degree ≤ t − 1
polynomial interpolating the points {(βj, zj ·g′(βj)}j∈[t]. The algorithm is now the following:

1. Compute g(x) and g′(x) in coefficient form.

2. Evaluate g′(βj) for each βj .

3. Compute all values of zj · g′(βj).

4. Interpolate the points {(βj , zj · g′(βj)} to obtain h∗(x) in coefficient form.

5. Evaluate both g(αj) and h∗(αj) for each αj .

6. Compute each value of f(αj) = h∗(αj)/g(αj).

We note that steps 1 and 2 do not involve the vector z and thus can be pre-processed, and
that steps 3 and 6 can easily be done with t operations over GF (2b) each. We thus focus on
the remaining steps. The following results can be found in (for example) [vzGG03, Ch. 10],
and they hold for any commutative ring with unity R.

Theorem 3.3 ([vzGG03], Corollary 10.8). Evaluation of a polynomial in R[x] of degree < t
at t points can be done with O(t · log2 t · log log t) operations in R.

Theorem 3.4 ([vzGG03], Corollary 10.12). Given t distinct values u1, . . . , ut ∈ R and t
arbitrary values v1, . . . , vt ∈ R, the unique polynomial in R[x] of degree < t which interpolates
{(ui, vi)}i can be computed in coefficient form with O(t · log2 t · log log t) operations in R.

As a result, steps 4 and 5, and thus the entire multiplication by C, can be performed
with the stated number of operations in GF (2b).
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Efficiency. We now show that F2 can be computed by Boolean circuits of quasilinear size.
We first consider the circuit size necessary to compute one round of F2 for any given values
of n, t and b. One round consists of the following:

1. n/b parallel instances of exponentiation in GF (2b) (i.e. x → x2b−2).

2. n/b parallel instances of an affine transformation L : {0, 1}b → {0, 1}b.

3. One instance of the bundle permutation π.

4. n/(bt) parallel instances of multiplication by φ ∈ GF (2b)t×t.

5. One instance of the round key addition.

Because finite field arithmetic and affine transformations are computable by polynomial size
circuits, steps 1 and 2 can be computed by a circuit with at most (n/b) · bO(1) = n logO(1) n
wires. Steps 3 and 5 can each clearly be done with O(n) wires. For step 4, we have size at
most (n/(bt)) · t log3 t · bO(1) = n logO(1) n. Note that the factor of t is crucially cancelled out
in step 4, and indeed this is the reason for using a φ that is a generalized Cauchy matrix.

We conclude that the r = Θ(log n/ log log n) rounds of F2 are computable by a circuit of
size at most w = n logO(1) n.

Hardness. The parameter choices ensure that br ≥ n. Theorem 2.5 guarantees that
A ≥ (r/4) · (t + 1)2 = Ω(n/ log log n), so A · (b/2 − 1) ≥ n for sufficiently large n.

3.3 Candidate 3

In this section we give a candidate, F3, that can be computed by TC0 circuits of size O(n1+ǫ)
for any fixed ǫ > 0. This variant differs from the previous ones in that the size of the state
doubles each time, and thus F3 maps n bits to 2rn bits. The parameter choices will be
b = t = nΘ(ǫ) and r = Θ(1/ǫ). The generalization of γ is the same as in the previous
candidates, but the choices of φ and π will differ, as described below.

Construction of φ. To construct the linear transformation φ, we again start from the
(2t × t) generator matrix G of an MDS code, but we no longer take only the parity-check
portion. Instead, we set φ = G, which in particular means that φ now maps t bundles to
2t bundles. (This is the reason for the growing state size.) In fact, we will allow φ to differ
between rounds, and specifically φ(j) in round j will be the (2jt × 2j−1t) generator matrix
of an MDS code. It is important to note that while the size of the groups on which φ acts
grows at each round, the number of groups remains the same, namely n/(bt).

To see the advantage that this has over the choice of φ in AES, consider an input vector to
φ(1) in which all bundles are non-zero. If we use only the fact that φ(1) has maximal branch
number, then we are only guaranteed that φ(1)’s output will have one non-zero bundle.
However if we instead take φ(1) = G as just described, then we are guaranteed that at least
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t + 1 out of the 2t output bundles will be non-zero, even if all input bundles were non-zero.
Since these non-zero bundles are the source of the active S-boxes, this guarantee allows us to
show that the number of active S-boxes increases exponentially with the number of rounds.

Construction of π. Recall that the requirement for the bundle permutation π in AES
is that all bundles in each single group (of size t) are moved into t distinct groups by π.
We instead view the groups as being collected into consecutive sets, and generalize the
requirement by requiring that π moves all bundles in each set of groups into distinct groups
(the size of these sets will grow with each round). As with φ, we necessarily allow π to differ
between rounds and we let π(j) denote the instance in round j. We will require that each
π(j) acts as a collection of parallel transpose permutations, defined as follows.

Definition 3.5. Let c, d ∈ N such that c | d. A permutation τ : {0, . . . , d−1} → {0, . . . , d−1}
is a c-transpose permutation if it is computed as follows:

1. The elements of {0, . . . , d − 1} are placed row-wise into a c × (d/c) matrix T ; i.e.,
Ti,j = i · (d/c) + j, where i ∈ [0, c − 1] and j ∈ [0, (d/c) − 1].

2. The elements of {0, . . . , d − 1} are extracted column-wise from T ; i.e., τ(k) := Ti,j for
i = k (mod c) and j = ⌊k/c⌋.

More concisely, τ is a c-transpose permutation if τ(k) = (k (mod c)) · (d/c) + ⌊k/c⌋.

Because of the growing state size, π(j) acts on a set of 2j−1 ·n/b bundles which are divided
into n/(bt) groups of size 2j−1t. Let g := n/(bt) denote the number of groups (which does

not vary across rounds), and let P (j) = (P
(j)
1 , . . . , P

(j)

g/tj−1) be the canonical partition3 of the

g groups into sets of size tj−1. Note that each P
(j)
i contains tj−1 groups, and each group

contains 2j−1t bundles. Furthermore, for P (j) to be well-defined we must (and will) ensure

that tj−1 always divides g. We say that a bundle is encompassed by P
(j)
i if it is contained

within a group in P
(j)
i .

Our requirement on π(j) can now be formally stated as follows.

Requirement 3.6. When restricted to the 2j−1tj bundles encompassed by any P
(j)
i ∈ P (j),

π(j) is a (2j−1t)-transpose permutation. In particular, π(j) acts separately on each P
(j)
i .

We actually only require that this holds for rounds j ∈ {2, . . . , r − 1}, and we let π(1)

and π(r) each be the identity permutation. Note that with the combination of Definition 3.5
and Requirement 3.6, π(j) is now completely specified for all rounds j.

Before discussing the hardness of this candidate, we note that this construction of π
satisfies the requirement that each output bundle be connected to Ω(n/b) input bundles in
the layered connection graph specified by π (cf. discussion below Definition 2.3). Indeed,
the edges between layers 2, . . . , r − 1 form a butterfly network (cf. [MU05, §4.5.2]), and thus
every output bundle is connected to every input bundle.

3Meaning that P
(j)
1 contains the first tj−1 groups, P

(j)
2 contains the next tj−1 groups, and so on.
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Putting it together. We now define our parameters and prove the lower bound on A.
Let b, r ∈ N be arbitrary for now, and set t := b and n := tr. (This indeed ensures that tj−1

divides g = n/(bt) for j ∈ {2, . . . , r − 1}, which is necessary for our construction of π.) Let
F3 : {0, 1}n → {0, 1}2rn be defined by the above choices of φ and π.

Theorem 3.7. For the function F3, the number A of active S-boxes is bounded by

A ≥
r−1∑

j=1

(
tj ·

j−1∏

i=1

2i

)
.

In particular, A > 4tr−1.

Proof. Let x ∈ {0, 1}n be any non-zero input to F3. x must contain at least one active
(non-zero) bundle; let i ≤ g be the value such that this active bundle is encompassed by

P
(1)
i . Then, after the application of φ(1), P

(1)
i will encompass at least t active bundles. In

the remainder of the proof, for readability we will use
∑

[ℓ] to denote the value
∑ℓ

i=1 i.
We argue inductively that for 1 ≤ j ≤ r − 1, at the end of round j some set in P (j)

encompasses at least 2
∑

[j−1]tj active bundles. The base case j = 1 is established by the
preceding paragraph. Assume the claim holds up to j − 1, and let i ≤ g/tj−2 be the value

such that P
(j−1)
i encompasses at least 2

∑
[j−2]tj−1 active bundles. The relationship between

sets in P (j−1) and sets in P (j) can be expressed as follows:

∀k ≤ g

tj−1
: P

(j)
k =

kt⋃

ℓ=(k−1)t+1

P
(j−1)
ℓ .

Therefore, let k be the value such that P
(j−1)
i ⊂ P

(j)
k . Then, when π(j) acts on P

(j)
k , it will

move each of the active bundles encompassed by P
(j−1)
i into a distinct group of size 2j−1t (this

follows directly from Definition 3.5 and the fact that π(j) satisfies Requirement 3.6). Finally,
after the application of φ(j), each group that contained one of these active bundles will contain
at least 2j−1t active bundles, and so P

(j)
k encompasses at least 2j−1t · 2

∑
[j−2]tj−1 = 2

∑
[j−1]tj

active bundles as claimed.
Summing the number of active bundles at the end of rounds 1 through r − 1 gives the

statement of the theorem.

Efficiency. We now show that F3 can be computed by TC0 circuits of size O(n1+ǫ). We
first observe that each component of F3 is computable by polynomial-size TC0 circuits,
and thus there exists a constant C such that round j can be computed by a TC0 circuit
with at most n · (2jbt)C wires. Indeed, the only “tricky” component is exponentiation in
GF(2b), but as mentioned in §1.2 this can be done by hardwiring x, x2, . . . , x2b−1

into the
circuit. Therefore, F3 is computable by a threshold circuit of depth d = O(r) and total size
w ≤ (r2rC) · n · (bt)C .

Now fix any ǫ > 0. Let r := ⌈2C/ǫ⌉. Let b ∈ N be sufficiently large, and set t := b and
n := br. Then, we have w ≤ (r2rC) · n1+ǫ = O(n1+ǫ) as claimed. Furthermore, this is indeed
a TC0 circuit because r = O(1).
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Hardness. We have br = n by construction. By Theorem 3.7 and the fact that b = t, we
have A · (b/2 − 1) > 2tr − 4tr−1 = 2n − 4n1−1/r ≥ n for sufficiently large n.

Finally, we wish to note that an arguably simpler construction for F3 would be to let φ
compute an n → O(n) error correcting code with minimum distance Ω(n), apply φ to the
entire state at each round, and eliminate π all together. As such codes can be computed by
TC0 circuits of size O(n1+ǫ) (details omitted), this would preserve both the circuit size and
the hardness properties of the function presented here. However, we feel that the version
detailed above better preserves the “spirit” of AES, and in particular Requirement 3.6 is a
natural generalization of AES’s concept of diffusion optimality (Definition 2.3).

3.4 Candidate 4

As our final generalization of AES, we choose the extreme setting of b = n and t = r = 1,
which means that the function is computed over one round and essentially consists of just a
single S-box. More specifically, the function is indexed by a seed (k0, k1) ∈ {0, 1}2n, and is
computed as

F4(x) := γ(x ⊕ k0) ⊕ k1.

Recall that γ consists of patched inversion in GF (2n) followed by an invertible affine trans-
formation over GF (2)n. So, letting L(·) denote the affine transformation, we can write

F4(x) = L
(
(x + k0)

2n−2
)

+ k1.

Though F4 does indeed preserve resistance to differential and linear cryptanalysis, we note
that the seed can be recovered with four known plaintext/ciphertext pairs, using an attack
similar in spirit to the so-called interpolation attack of [JK01].

Claim. Let F4 be the above function indexed by k0, k1 ∈ {0, 1}n. Let {(pi, ci)}1≤i≤4 be any
set such that ci = F4(pi) for all i and pi 6= pj for i 6= j. Then, with probability (1 − 1/2n−2)
over k0, the values of k0 and k1 can be recovered from {(pi, ci)}i.

Proof. The attack is performed by using the four pairs to create two equations over GF (2n)
that are linear in the seed, as follows. Assume that k0 6∈ {pi}i, which happens with proba-
bility (1 − 1/2n−2). Then the equation

L−1(ci + k1) · (pi + k0) = 1

holds for 1 ≤ i ≤ 4. Let ci := L−1(ci) and k1 := L−1(k1). We can rewrite the equations as

k0k1 + cik0 + pik1 + cipi = 1. (1)

If we sum (1) for i = 1, 2, the quadratic terms cancel and we obtain

(c1 + c2)k0 + (p1 + p2)k1 + (c1p1 + c2p2) = 0.

Summing (1) for i = 3, 4 gives another linear equation in k0, k1. The attack concludes by
solving the two linear equations, and then applying L to k1 to obtain the desired seed.

17



We now consider a slight modification to F4 that is not susceptible to this simple attack,
and furthermore is a small-bias generator. The new function F5 : {0, 1}n → {0, 1} is defined
as follows:

F5(x) :=
〈
(x + k0)

2n−2, k1

〉
.

In other words, we combine the AES S-box (minus the affine transformation) with the
Goldreich-Levin hardcore predicate [GL89]. Note that we now output only a single bit.

The next theorem shows that F5 is a small-bias generator. This result is reminiscent
of the “exponentiation” small-bias generator in [AGHP92], where the x-th output bit is
〈kx

0 , k1〉. Indeed, our proof is inspired by theirs. However we face the extra difficulty that
the polynomials we work with are not of low degree.

Theorem 3.8. For any choice of d ≤ 2n, F5 is a d-wise small-bias generator with error
d/2n: for any distinct a1, . . . , ad ∈ {0, 1}n,

∣∣∣∣∣ Pr
k0,k1

[
d∑

i=1

F5(ai) = 0

]
− 1

2

∣∣∣∣∣ <
d

2n
.

Proof. Fix any distinct choices of a1, . . . , ad. Then, identifying elements of GF (2n) with
elements of {0, 1}n, we have

∑

i≤d

F5(ai) =
∑

i≤d

〈
(ai + k0)

2n−2, k1

〉

=

〈
p(x) :=

∑

i≤d

(ai + k0)
2n−2, k1

〉
.

We now show that the polynomial p(x) =
∑

i≤d(ai + x)2n−2 has at most 2d − 1 dis-
tinct roots. This will conclude the proof because when k0 is not a root of p(x), we have
Prk1 [〈p(k0), k1〉 = 0] = 1/2. Therefore,

∣∣∣∣∣ Pr
k0,k1

[
d∑

i=1

F5(ai) = 0

]
− 1

2

∣∣∣∣∣ ≤
1

2
Pr
k0

[p(k0) = 0] <
d

2n
.

To show the bound on the number of roots, define the following polynomials:

p(x) := p(x) ·
∏

i≤d

(ai + x) =
∑

i≤d

[
(ai + x)2n−1

∏

j 6=i

(aj + x)

]
,

p∗(x) :=
∑

i≤d

∏

j 6=i

(aj + x).

Observe that any root y of p(x) is also a root of p(x). Moreover, note for any y 6∈ {aj :

j ≤ d}, p(y) = p∗(y), using the identity y2b−2 = 1 valid for any y 6= 0.
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Also observe that p∗(x) is not identically zero. Indeed, by inspection, the constant term
of the polynomial p∗(x + a1) is

∏
j 6=1(aj + a1), which is non-zero because the aj are distinct;

therefore p∗(x + a1) is not identically zero, and so neither is p∗(x). Since p∗(x) is a non-zero
polynomial of degree d − 1, it has at most d − 1 distinct roots.

So, if p(x) has r roots, also p has r roots. At least r − d of these do not belong to
{aj : j ≤ d}, and so they are also roots of p∗(x). Therefore, r− d ≤ d− 1, or r ≤ 2d− 1.

By Braverman’s result [Bra09] (cf. [Baz09, Raz09]), we obtain that this candidate also

fools small-depth AC0 circuits of any size w = 2no(1)
(that look at only w fixed output bits

of the candidate).

Indeed, fix any function w = 2no(1)
and any constant d = O(1); let N := 2n. By

Theorem 3.8, any w output bits have bias < w/N . By [AGM03], for any k ≤ w, the output
distribution on those w bits is wkw/N -close to a k-wise independent distribution. By [Bra09],

k = lgO(d2) w ≤ no(1) is sufficient to fool circuits of depth d with error 1/w. Hence the overall

error will be 1/w = 1/2no(1)
plus

wkw

N
=

(
2no(1)

)no(1)

N
≤ 1√

N
,

for a total of 1/w + 1/
√

N = O(1/w).

Efficiency. As noted in §1.2, F5 is computable by Boolean circuits of size Õ(n2) and TC0

circuits of size nO(1).

4 Conclusion

We believe a good candidate PRF should be the simplest candidate that resists known
attacks. As noted in [DR02], some of the choices in the design of AES are not motivated by
any known attack, but are there as a safeguard (for example, one can reduce the number of
rounds and still no attack is known). While this is comprehensible when having to choose
a standard that is difficult to change, one can argue that a better way to proceed is to put
forth the simplest candidate PRF, possibly break it, and iterate until hopefully converging
to a PRF. We view this paper as a step in this direction.

Abstracting from the design of AES, one may arrive to the following paradigm for con-
structing PRF: alternate the application of (1) an error-correcting code and (2) a bundle-wise
application of any local map that has high degree over GF(2) and resists attacks correspond-
ing to linear and differential cryptanalysis.

This viewpoint may lead to a PRF candidate computable in ACC0, since for (1) one
just needs parity gates, while, say, taking parities of suitable mod 3 maps one should get a
map that satisfies (2). However a good choice for this latter map is not clear to us at this
moment.
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Another direction is to obtain candidate PRF starting from other block-ciphers. We
focus in this work on AES because it is widespread, and so its hardness seems more accepted
than for other block-ciphers.

Acknowledgments. We thank Guevara Noubir for helpful discussions, and Salil Vadhan
for mentioning AES.
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A Distinguishing o(n)-degree PRFs

In this section, we show that any PRF fk : {0, 1}n → {0, 1} which is computable by an
o(n)-degree polynomial over GF(2) cannot have hardness 2n. This just follows from the fact
that in time 2n one can write down the polynomial representation of f restricted to Ω(n)
input bits. Details follow.

For simplicity, we instead show that any such PRF can be broken in time 2O(n). This
implies the desired goal, for if we had a PRF fk : {0, 1}n → {0, 1} with hardness 2n we could
consider it over bn input bits, note that the degree would still be o(n) = o(bn), and obtain
a contradiction.

To start, let f : {0, 1}n → {0, 1} be any function, and define the following three values:

• Tf ∈ {0, 1}2n
is the truth table of f ; i.e. (Tf)i := f(i), identifying a natural number

with its binary representation.

• Cf ∈ {0, 1}2n
is the coefficient vector of f , defined as follows. Fix some ordering on the

22



2n possible multilinear monomials in n variables. Then, (Cf)i = 1 iff the ith monomial
appears in the polynomial representation of f over GF(2).

• A ∈ {0, 1}2n×2n
is the matrix with rows indexed by the set {0, 1}n and columns indexed

by the set of degree ≤ n multilinear monomials (as with Cf), defined by Aij := 1 iff
monomial j has value 1 under input i.

Note that A is independent of the function f . Furthermore, A is invertible because it has
full rank, which follows from the fact that any two linear combinations of A’s columns give
the truth tables of two distinct polynomials. We now show how to distinguish a low-degree
PRF using the fact that A · Cf = Tf for all f .

Theorem A.1. Let {fk : {0, 1}n → {0, 1}}k be a PRF such that, for each key k, the
polynomial representation of fk over GF(2) has degree o(n). Then, there is an adversary

that runs in time ≤ 2O(n) and distinguishes fk from random with advantage ≥ 1 − 2−2Ω(n)
.

Proof. For any function f : {0, 1}n → {0, 1}, we can use Cf to check if the polynomial
representation of f contains a monomial of degree ≥ n/2. Clearly this will be false for any
fk drawn from the PRF, and for a uniformly random function F we have

Pr
F

[F has a monomial of degree ≥ n/2] ≥ 1 − 2−( n
n/2) ≥ 1 − 2−2Ω(n)

which can be seen by viewing F as being randomly chosen by including each possible mono-
mial independently with probability 1/2. Finally, note that Cf can be computed from the
truth table of f in time 2O(n) as Cf = A−1 · Tf .
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