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Abstract

Two graphs with adjacency matrices A and B are isomorphic if there exists a permutation
matrix P for which the identity PTAP = B holds. Multiplying through by P and relaxing the
permutation matrix to a doubly stochastic matrix leads to the notion of fractional isomorphism.
We show that the levels of the Sherali-Adams hierarchy of linear programming relaxations
applied to fractional isomorphism interleave in power with the levels of a well-known color-
refinement heuristic for graph isomorphism called the Weisfeiler-Lehman algorithm. This tight
connection has quite striking consequences. For example, it follows immediately from a deep
result of Grohe in the context of logics with counting quantifiers, that a fixed number of levels of
SA suffice to determine isomorphism of planar graphs. We also offer applications both in finite
model theory and polyhedral combinatorics. First, we show that certain properties of graphs
such as that of having a flow-circulation of a prescribed value, are definable in the infinitary
logic with counting with a bounded number of variables. Second, we exploit a lower bound
construction due to Cai, Fürer and Immerman in the context of counting logics to give simple
explicit instances that show that the SA relaxations of the vertex-cover and cut polytopes do
not reach their integer hulls for up to Ω(n) levels, where n is the number of vertices in the graph.

1 Introduction

Let A and B be the adjacency matrices of two labeled graphs on {1, . . . , n}. The fact that the two
graphs are isomorphic is equivalent to the existence of a permutation matrix P for which the relation
PTAP = B holds. Multiplying both sides by P gives the equivalent condition AP = PB. At this
point a linear programming relaxation suggests itself: relax the condition that P is a permutation
matrix to a doubly stochastic matrix. How much coarser is this than actual isomorphism?

The concept of fractional isomorphism as defined in the preceeding paragraph falls within the
framework of linear programming relaxations of combinatorial problems. Other types of relaxations
of isomorphism include color-refinement methods such as the Weisfeiler-Lehman algorithm (WL-
algorithm). In this algorithm the vertices of the graphs are classified according to their degree, then
according to the multi-set of degrees of their neighbors, and so on until a fixed-point is achieved. If
the two graphs get partitions with different parameters, the graphs are definitely not isomorphic.
As it turns out, fractional isomorphism and color-refinement yield one and the same relaxation: it
was shown by Ramana, Scheinerman and Ullman [34] that two graphs are fractionally isomorphic
if and only if they are not distinguished by the color-refinement algorithm.
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Despite their simplicity, color-refinement methods are known to behave very well in practice
and are in fact one of the most commonly used heuristics for isomorphism testing. A sample result
adding support to this claim is a classical result of Babai, Erdös and Selkow [5] showing that the
color-refinement algorithm will end-up distinguishing every pair of vertices of a randomly chosen
graph with high probability. That said, one obvious limitation of the method is that it will fail
badly on regular graphs, as in such a case the algorithm cannot even start. To remedy this, the WL-
algorithm has been extended to refinement of colorings of k-tuples of vertices (the k-WL algorithm)
for k = 1, 2, 3, . . ., thus yielding a hierarchy of increasingly powerful relaxations of isomorphism.
The power of the resulting algorithms has also been studied in depth. For example, Kucera [24]
shows that the algorithm for k = 2 decides isomorphism almost surely on random regular graphs.
Another example of quite different nature is the result of Grohe showing that there exists a fixed
constant k for which the k-WL-algorithm is able to distinguish any pair of non-isomorphic planar
graphs [15]. This was extended recently to a much more general and breakthrough result showing
that the same is true for any non-trivial minor-closed class of graphs [17].

Hierarchies of relaxations such as the k-WL-algorithm could also be considered in the context
of fractional isomorphism through linear programming. The theory of lift-and-project methods in
the mathematical programming literature provides such a framework. These are methods by which
an initial relaxation P of an integral polytope PZ is tightened into sharper and sharper polytopes,
thus forming a hierarchy of relaxations:

P = P 1 ⊇ P 2 ⊇ · · · ⊇ PZ.

Examples of these include the hierarchy of linear programming relaxations proposed by Lovász and
Schrijver [30], the one by Sherali and Adams [38], and their semi-definite programming versions,
including Lasserre [25]. See [26] for a survey and comparison. These have been applied to study
classical polytopes of combinatorial optimization such as the stable-set polytope, the cut polytope,
and the matching polytope, among others [30, 26, 40, 31].

In this paper we show that for k ≥ 2, the k-th level of the Sherali-Adams hierarchy relaxation
of graph isomorphism is sandwiched between the (k − 1)-tuple version of the WL-algorithm and
its k-tuple version. What this means is that if two graphs are distinguishable by the (k − 1)-
WL-algorithm, then the k-th level of SA vanishes, and that if they are indistinguishable by the
k-WL-algorithm, then the k-th level of SA remains non-empty. Thus, the k-WL-algorithm provides
a combinatorial characterization of the power of this lift-and-project method applied to graph
isomorphism. We call this sandwiching property the Transfer Lemma.

1.1 Consequences

The Transfer Lemma, in combination with the above-mentioned strong results about the power
of the WL-algorithm, already has consequences for the graph isomorphism problem itself. For
example, it follows directly from Grohe’s results that there exists a fixed level of SA relaxations
that becomes empty on any pair of non-isomorphic planar graphs. A very notable feature of this
consequence is the fact that the proof of Grohe’s result relies very heavily on the interpretation of
the WL-algorithm in the context of logic languages with counting quantifiers, which do not seem
to be even remotely related to linear programming relaxations.

Less immediate applications of the Transfer Lemma arise from the link it sets between two
different areas: polyhedral combinatorics and finite model theory. We offer applications going in
both directions.
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First, we show that several properties of graphs are definable in a logic known in the finite model
theory literature as infinitary logic with counting quantifiers and a bounded number of variables
(denoted by Cω

∞ω). These properties include “having a matching of a given size in bipartite graphs”
and “having an st-flow of a given value in networks with unit capacities”. We note that the
definability of the first follows also from a result by Blass, Gurevich and Shelah [8], but that the
second strengthens it and is new; see the section on related work for more on this.

As a second application we export the powerful inexpressibility results due to Cai, Fürer, and
Immerman [9] in the context of counting logics to get instances with fractional solutions in the
context of SA relaxations. From the existence of two non-isomorphic graphs of bounded degree
that remain indistinguishable by the k-WL-algorithm up to k = Ω(n), we get explicit instances of
the max-cut and vertex-cover problems whose linear programming relaxations do not reach their
integer hulls after Ω(n) levels of SA. Let us note that in both cases stronger results are known since
Schoenebeck [36] proved that a non-trivial integrality gap for vertex-cover resists Ω(n) levels of the
Lasserre hierarchy, and hence of the SA hierarchy, and similar techniques would apply to max-cut.
At any rate, the point we are trying to make with this application is not to get the strongest
possible results, but to illustrate the power that the connection established by the Transfer Lemma
gives for exporting methods from one field into the other.

Both these applications of the Transfer Lemma make use of a general statement we prove about
the preservation of solutions between k-local linear programs: if two graphs have a non-empty k-
level SA polytope of fractional isomorphisms, our result implies that solutions to the linear program
of one graph translate to solutions of the linear program of the other.

1.2 Related work

For the origins of fractional isomorphism see the references in the monograph [35]. The connection
between fractional isomorphism and the color-refinement algorithm for vertices was made in [34].
The extension to the levels of the Sherali-Adams hierarchy and to the tuple-version of the WL
algorithm and the logic with counting quantifiers is, to our knowledge, new.

The logic Cω
∞ω is well-studied in finite model theory [11, 28]. The connection between indis-

tinguishability in this logic and the tuple-version of the WL algorithm is from [20]. Despite the
negative results from [9], the expressive power of this logic is still the object of study. Somewhat
unexpectedly, it was shown in [8] that the property of having a perfect matching in bipartite graphs
is expressible in the uniform version of Cω

∞ω called IFP + C. Here we revisit matchings in bipartite
graphs and consider the more general problems of st-cuts and st-flows in networks with unit capac-
ities. Our results show that the existence of such objects with prescribed values are expressible in
C3
∞ω. Our techniques and those in [8] are completely different. The open problem from [8] about

perfect matchings in general graphs stays open.
Lift-and-project methods for combinatorial optimization problems have been the object of in-

tense study. An optimal integrality gap of 2 for vertex-cover was shown to resist Ω(log n) levels of
the Lovász-Schrijver hierarchy (LS) in [1]. This was later improved in [41, 37, 14] to more levels
and to the semi-definite version LS+. For the Sherali-Adams hierarchy, it was shown in [10] that
optimal gaps of 2 for vertex-cover and max-cut resist nΩ(1) levels. For vertex-cover, a gap of 7/6
resists Ω(n) levels of Lasserre and hence of SA [36], and a gap of 1.36 resists nΩ(1) levels of Lasserre
[42]. For max-cut, we could not find any published lower-bound on the number of SA-levels that
are needed to reach the integer hull but Schoenebeck informs us that his methods would yield a
non-trivial gap for up to Ω(n) levels of Lasserre and hence SA. See also [27] for related results.
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2 Preliminaries

In this section we define Sherali-Adams relaxations of 0-1 linear programs in their full generality.
We also give a brief overview the basic definitions in counting logics, their corresponding pebble
games, and the Weisfeiler-Lehman algorithm refered to in the introduction.

2.1 Sherali-Adams relaxations

Let P ⊆ [0, 1]n be a polytope defined by a system of linear inequalities, say:

P = {x ∈ R
n : Ax ≥ b, 0 ≤ x ≤ 1}

for a matrix A ∈ R
m×n, and a column vector b ∈ R

m. We write PZ for the convex hull of the
0-1-vectors in P . In symbols, PZ = conv(P ∩ {0, 1}n). The sequence of Sherali-Adams relaxations
of PZ is a sequence of polytopes P 1 ⊇ P 2 ⊇ · · · starting at P 1 = P and each containing PZ. The
k-th polytope P k is defined in three steps.

In the first step, a system of polynomial inequalities of degree k is obtained by multiplying both
sides of each defining inequality aTx ≥ b of P by all possible multipliers of the form

∏

i∈I xi

∏

j∈J(1−
xj), where I and J are subsets of [n] such that |I ∩ J | ≤ k− 1 and I ∩ J = ∅. This leaves a system
of polynomial inequalities, each of degree at most k. In the second step the polynomial system is
linearized, and hence relaxed. What this means is that each square x2

i is replaced by xi, and each
resulting monomial of the form

∏

j∈K xi is replaced by a new variable yK. The result is a system of

linear inequalities defining a polytope P k
L in R

nk for nk =
∑k

i=0

(

n
i

)

. In the third step, the polytope
is projected back to n dimensions by defining

P k := {x ∈ R
n : there exists y ∈ P k

L such that y{i} = xi for every i ∈ [n]}.

The polytope P k is called the k-th level Sherali-Adams relaxation of PZ. It is not hard to see that
P k ⊇ PZ. Indeed, the integer hull of P is achieved not later than after n steps [38]:

P = P 1 ⊇ P 2 ⊇ · · · ⊇ Pn = PZ.

Thus, the Sherali-Adams hierarchy provides a sequence of tighter and tighter relaxations of the
integral polytope PZ. The smallest k for which P k = PZ is called the Sherali-Adams rank of the
polytope P .

2.2 Counting quantifiers

A counting quantifier has the form ∃≥mxφ, where m is a non-negative integer. The meaning is
that “there exist at least m distinct x satisfying φ”. Although a counting quantifier as in ∃≥mxφ
can always be replaced by an equivalent formula such as ∃x1 · · · ∃xm(

∧

i6=j xi 6= xj ∧ φ(x/xi)),

doing so requires introducing m new variables. For an example, the formula ∀x(∃≥dy(E(x, y)) ∧
¬∃≥d+1y(E(x, y))) says of a graph that it is d-regular, and it does so using exactly two variables.
It is not hard to see that without counting quantifiers the same property would require d + 1
variables. Saving variables in a logical expression is analogous to saving space in computation.
As in the example, variables can even be re-used provided they are re-used with disjoint scopes.
Complexity issues of this sort have been explored in depth in finite model theory.
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For the rest of the paper, let Ck denote the collection of all logical formulas with counting
quantifiers using at most k different variables. For a class C of structures, we write C=n for the
subclass of structures whose universe has cardinality n. We say that a subclass D ⊆ C is non-
uniformly Ck-definable on C if there exists a sequence of Ck-formulas ϕ1, ϕ2, . . . such that D=n is
precisely the class of A in C=n on which ϕn is true, for each n ≥ 1. We call it uniformly Ck-definable
if a single Ck-formula ϕ = ϕn does the job. For instance, the example above shows that the class
of d-regular graphs is uniformly C2-definable on the class of graphs. It is not hard to see that non-
uniform Ck-definability corresponds to uniform definability in the logic Ck

∞ω extensively studied in
finite model theory. For more background on Ck and Ck

∞ω we refer the reader to [32, 9, 11].

2.3 Pebble games

An essential concept from logic is that of indistinguishability by the formulas of a logical language.
We say that two structures A and B are Ck-indistinguishable if every Ck-formula that is true in
A is also true in B, and vice-versa. Clearly this defines an equivalence relation on the class of
structrures that we write A ≡k

C B. The indistinguishability relation in a logical language usually
admits an alternative interpretation in terms of a two-player game. For first-order logic, these sort
of games go back to Ehrenfeucht and Fräıssé [12, 13], and for logics with restricted number of
variables to Barwise [7] and Immerman [18]. For the logic Ck we follow [9, 19], but see also [22].

The game for Ck goes as follows. Let A and B be two structures. The game is played by two
players: Spoiler and Duplicator. The goal of Spoiler is to show a difference between A and B. The
goal of Duplicator is to hide such a difference for as long as possible. There are 2k pebbles matched
in pairs, say by having k different shapes. In each round, Spoiler chooses a pair of pebbles to play,
say the i-th pair. Then he chooses a structure, A or B, and a subset X of the universe of that
structure. In response, Duplicator must choose a subset Y of the universe of the other structure
such that |Y | = |X|; if she cannot do even that, she loses immediately. To complete the round,
Spoiler places one of the pebbles of the i-th pair over an element of Y of his choice, and in response
Duplicator places the other pebble of the i-th pair over an element of X of her choice. At the end
of the round the sets X and Y are forgotten, but the pebbles are retained on the board. The goal
of Spoiler is to exhibit a discrepancy between A and B in the form of a correspondence between
pebbled elements ai 7→ bi for i ∈ [k], that is not a partial isomorphism between the substructure of
A induced by {ai : i ∈ [k]} and the substructure of B induced by {bi : i ∈ [k]}. If he succeeds, the
game ends and Duplicator loses. We say that Duplicator has a winning strategy for the Ck-pebble
game if she has a strategy to play forever.

When the concept of winning strategy is appropriately formalized (we do that in the next
section), the claim is that Duplicator has a winning strategy for the Ck-pebble game played on A
and B if and only if A ≡k

C B. For a proof see [19].

2.4 Weisfeiler-Lehman algorithm

For this subsection, let A and B denote colored directed graphs with vertex sets A and B, edge
relations EA and EB, and color classes CA

1 , . . . , C
A
r and CB

1 , . . . , C
B
r , respectively. Let k ≥ 1

be an integer. One way to determine if A ≡k+1
C B is by running the k-tuple WL-algorithm on

each structure, and checking if the resulting parameters match. Let us now give the details of the
algorithm. This exposition follows [9].
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The k-WL algorithm run on A starts with all k-tuples of elements of A classified into bags
labeled by the isomorphism type that the tuples induce on A, where the isomorphism type induced
by a k-tuple (a1, . . . , ak) is the collection of all atomic formulas on the variables x1, . . . , xk that are
satisfied by the assignment xi = ai.

1 At each iteration, the algorithm cycles through all possible
k-tuples (a1, . . . , ak) and counts, for each isomorphism type of (k + 1)-tuples T and each k-tuple
of bags (B1, . . . , Bk), the number of a ∈ A for which the (k + 1)-tuple (a1, . . . , ak, a) induces on
A a substructure of isomorphism type T , and the k-tuple (a1, . . . , ai−1, a, ai+1, . . . , ak) belongs to
the bag Bi for every i ∈ [k]. Once these counts are over, it refines each bag of tuples into sub-bags
labeled by the outcomes of these counts. When no further splitting is possible, the algorithm stops.
To avoid the size of the labels to increase exponentially, after each iteration the bags are ordered in
some standard way (lexicographically by their labels, say), and re-labeled by their position in this
order. The parameters of the output are the counts that result at the final collection of bags. Note
by the way that the splitting process must finish after no more than |A|k iterations since whenever
a bag contains a single tuple it cannot split any further. When the k-WL algorithm is run on both
A and B, we say that the parameters match if the parameters of their outputs are the same. The
claim is that for k ≥ 1, it holds that A ≡k+1

C B if and only if the parameters match when the k-WL
algorithm is run on A and B. For a proof see [9, 33].

There is one subtle difference in our definition of the k-WL algorithm and the definition in [9]
that is nonetheless relevant only if k = 1. The difference is that we introduce isomorphism types
of (k + 1)-tuples into the counts. In the case k ≥ 2 it can be seen that these counts are redundant
since the maximum arity of the relations in A is 2. The good news is that our definition unifies the
algorithm and its proof of correctness for the cases k = 1 and k > 1. In contrast the definition in
[9] required splitting into cases. Also the generality of working with isomorphism types is necessary
to deal with directed graphs (in the case k = 1). Our definition of k-WL appeared first in [16].

3 Transfer Lemma

The statement of the Transfer Lemma relates two different notions of indistinguishability. One
is defined through the k-pebble game and is denoted by ≡k

C, and the other is the k-th level of
Sherali-Adams of fractional isomorphism and is denoted by ≡k

SA. These will be defined formally in
the coming subsections. For more generality, and because we need it in the applications, we prove
and state the lemma for colored directed graphs instead of plain graphs. A colored directed graph
is a structure of the form A = (A,EA, CA

1 , . . . , C
A
r ), where EA is a binary relation on the set of

vertices A, and each CA
i is a subset of the vertices that represent the vertices colored i ∈ {1, . . . , r}.

The statement of our main result is the following:

Theorem 1. (Transfer Lemma) Let A and B be colored directed graphs and k ≥ 1 an integer.
Then:

A ≡k+1
SA B =⇒ A ≡k+1

C B =⇒ A ≡k
SA B.

We do not know if either implication can be reversed. However, for k = 1, the second implication
can be reversed as it is known that A ≡1

SA B is literally equivalent to A ≡2
C B. Indeed, ≡1

SA is just
plain fractional isomorphism as discussed in the introduction and ≡2

C is known to be equivalent to
the vertex-refinement algorithm or the 1-WL-algorithm (see [20]). Thus, the equivalence between
≡1

SA and ≡2
C is exactly the result from [34], which was the starting point for our work.

1The atomic formulas are the formulas of the form xi = xj or E(xi, xj) or Cc(xi) for some c ∈ [r].
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3.1 Formal definition of the pebble game

Following the standard practice in finite model theory, we define winning strategies in the pebble
game in terms of systems of partial isomorphisms that have the back and forth properties.

Let A and B be sets that do not contain the special element ⋆. Let A = (A,EA, CA
1 , . . . , C

A
r )

and B = (B,EB, CB
1 , . . . , C

B
r ) be colored directed graphs, i.e. EA ⊆ A2 and CA

i ⊆ A for i ∈ [r].
Let (a,b) be a pair of k-tuples, where a = (a1, . . . , ak) with ai ∈ A ∪ {⋆} for every i ∈ [k], and
b = (b1, . . . , bk) with bi ∈ B ∪ {⋆} for every i ∈ [k]. We say that (a,b) defines a partial k-
isomorphism from A to B if the following conditions hold for every i ∈ [k], every j ∈ [k], and every
c ∈ [r]:

1. ai = ⋆ if and only if bi = ⋆,

2. ai = aj if and only if bi = bj,

3. (ai, aj) ∈ EA if and only if (bi, bj) ∈ EB,

4. ai ∈ CA
c if and only if bi ∈ CB

c .

For a k-tuple a = (a1, . . . , ak), an index i ∈ [k] and an element a, we write a[i/a] for the result
of replacing the i-th component of a by a.

A winning strategy for the Duplicator in the k-pebble game on A and B is a non-empty F ⊆
(A ∪ {⋆})k × (B ∪ {⋆})k such that every (a,b) in F defines a partial k-isomorphism from A to B
and for every i ∈ [k] the following properties are satisfied:

1. (a[i/⋆],b[i/⋆]) belongs to F ,

2. for every X ⊆ A there exists Y ⊆ B with |Y | = |X| such that for every b ∈ Y there exists
a ∈ X such that (a[i/a],b[i/b]) belongs to F ,

3. for every Y ⊆ B there exists X ⊆ A with |X| = |Y | such that for every a ∈ X there exists
b ∈ Y such that (a[i/a],b[i/b]) belongs to F .

If there exists such a strategy, we write A ≡k
C B.

3.2 Sherali-Adams levels of fractional isomorphism

For every a, a′ ∈ A, let Aa,a′ = 1 if (a, a′) belongs to EA and Aa,a′ = 0 otherwise. Similarly,
for every b, b′ ∈ B, let Bb,b′ = 1 if (b, b′) ∈ EB and Bb,b′ = 0 otherwise. Thus, (Aa,a′)a,a′∈A and
(Bb,b′)b,b′∈B are the adjacency matrices of A and B, which we also denote by A and B whenever
there is no risk that this could lead to confusion. For every a ∈ A and c ∈ [r], let Ca,c = 1 if a ∈ CA

c

and Ca,c = 0 otherwise. Similarly, for every b ∈ B, let Db,c = 1 if b ∈ CB
c and Db,c = 0 otherwise.

Thus, (Ca,c)a∈A,c∈[r] and (Db,c)b∈B,c∈[r] are |A| × [r] and |B| × [r] matrices that encode the colors.
We will write C and D for them.

For every pair (a, b) ∈ A×B, let Xa,b be a variable. Let X be the |A|×|B| matrix (Xa,b)a∈A,b∈B .
The fractional relaxation of isomorphism is the following system of linear equalities and inequalities:

AX = XB BXT = XTA
C = XD D = XTC
Xe = 1 XTe = 1

X ≥ 0

(1)
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We write F (A,B) for this linear program.
It is worth noting that if A and B are graphs, then A = AT and B = BT, and the equations

AX = XB and BXT = XTA in F (A,B) become equivalent. In the general case of directed colored
graphs, the equation BXT = XTA is added for symmetry purposes.

For every integer k ≥ 0, let Rk denote the collection of all subsets p ⊆ A × B with |p| ≤ k.
For p ∈ Rk and (a, b) ∈ A ×B, we use the notation p ∪ ab as an abbreviation for p ∪ {(a, b)}. For
every p ∈ Rk, let Xp be a variable. If A = {a1, . . . , an} and B = {b1, . . . , bn}, the k-th level of
Sherali-Adams applied on F (A,B) is equivalent to the following system of linear equalities and
inequalities:

Aa,a1Xq∪a1b + · · · +Aa,anXq∪anb = Xq∪ab1Bb1,b + · · · +Xq∪abn
Bbn,b for a ∈ A, b ∈ B, (2)

Bb,b1Xq∪ab1 + · · · +Bb,bn
Xq∪abn

= Xq∪a1bAa1,a + · · · +Xq∪anbAan,a for a ∈ A, b ∈ B, (3)

together with

Xq∪ab1Db1,c + · · · +Xq∪abn
Dbn,c = XqCa,c for a ∈ A, c ∈ [r], (4)

Xq∪a1bCa1,c + · · · +Xq∪anbCan,c = XqDb,c for b ∈ B, c ∈ [r], (5)

and

Xq∪ab1 + · · · +Xq∪abn
= Xq for a ∈ A, (6)

Xq∪a1b + · · · +Xq∪anb = Xq for b ∈ B, (7)

Xq∪ab ≥ 0 for a ∈ A, b ∈ B, (8)

X∅ = 1 (9)

where in all places where it appears, q is an element of Rk−1. We obtained these inequalities by
multiplying each equation in (1) by a term of the form

∏

ab∈I Xab for I ⊆ A×B with |I| ≤ k − 1,
and linearizing. Note that the factors of the form

∏

ab∈J(1 −Xab) that are required in the official
definition of Sherali-Adams relaxations, and appear to be missing here, are really implicit as they
can be obtained as linear combinations of the ones given. This holds in this special case since all
constraints are equalities instead of inequalities.

We write Fk(A,B) for this system. Note that setting k = 1 we recover F (A,B). If Fk(A,B)
is satisfiable, we write A ≡k

SA B.

4 Proof of the Transfer Lemma

Let A and B be colored directed graphs, and let k ≥ 1 be a natural number. We will prove a
longer chain of implications that entails the Transfer Lemma and involves two more notions of
indistinguishability: ≡k

EP is an equivalence relation that extends the combinatorial notion known
as “equitable partitions” (see [35]) to k-tuples, while ≡k

CS is defined by another pebble game that
we refer to as the sliding game. The complete statement is the following:

A ≡k+1
SA B =⇒ A ≡k+1

C B =⇒ A ≡k
CS B =⇒ A ≡k

EP B =⇒ A ≡k
SA B.

We prove the sequence of implications precisely in the order they appear. Before that, we need to
define the two new notions of indistinguishability.
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4.1 Formal definition of the sliding game

For a in A ∪ {⋆}, define N+(a) and N−(a) as follows:

1. N+(a) = {a′ ∈ A : (a, a′) ∈ EA}, if a 6= ⋆,

2. N−(a) = {a′ ∈ A : (a′, a) ∈ EA}, if a 6= ⋆,

3. N+(a) = N−(a) = A, if a = ⋆.

For b in B ∪ {⋆}, define N+(b) and N−(b) analogously.
A winning strategy for the Duplicator in the k-pebble sliding game on A and B is a non-empty

F ⊆ (A ∪ {⋆})k × (B ∪ {⋆})k such that every (a,b) in F defines a partial k-isomorphism from A
to B and for every i ∈ [k] and every o ∈ {+,−}, the following properties are satisfied:

1. (a[i/⋆],b[i/⋆]) belongs to F ,

2. for every X ⊆ No(ai) there exists Y ⊆ No(bi) with |Y | = |X| such that for every b ∈ Y there
exists a ∈ X such that (a[i/a],b[i/b]) belongs to F ,

3. for every Y ⊆ No(bi) there exists X ⊆ No(ai) with |X| = |Y | such that for every a ∈ X there
exists b ∈ Y such that (a[i/a],b[i/b]) belongs to F .

If there exists such a strategy, we write A ≡k
CS B.

4.2 Analogue of equitable partition for tuples

For an integer k ≥ 1, we write Sk for the set of all permutations on [k]. For a permutation π ∈ Sk,
we write a ◦ π for the tuple (aπ(1), . . . , aπ(k)).

Let a = (a1, . . . , ak) and a′ = (a′1, . . . , a
′
k) be tuples in (A ∪ {⋆})k. For every i ∈ [k] and

o ∈ {+,−}, define:

do
i (a,a

′) =

{

1 if a 6= a′ and there exists a ∈ No(ai) ∪ {⋆} such that a′ = a[i/a],
0 otherwise.

Note that d+
i (a,a′) = d−i (a′,a). Let S and T be subsets of (A ∪ {⋆})k . For every i ∈ [k] and

o ∈ {+,−}, define:

do
i (S, T ) =

∑

a∈S

∑

a′∈T

do
i (a,a

′).

Note that d+
i (S, T ) = d−i (T, S). If S is a singleton {a}, we write do

i (a, T ) instead of do
i ({a}, T ). We

call d+
i (a, T ) the out-degree of a in T on its i-th component, and d−i (a, T ) the in-degree of a in T

on its i-th component.
Let (P1, . . . , Ps) be a partition of (A ∪ {⋆})k into non-empty parts. For every a ∈ (A ∪ {⋆})k ,

let c(a) be the unique m ∈ [s] such that a belongs to Pm. The partition (P1, . . . , Ps) is called a
k-equitable partition of A if for every m ∈ [s] and every a,a′ ∈ Pm, the following conditions hold:

1. (a,a′) defines a partial k-isomorphism from A to A,

2. c(a[i/⋆]) = c(a′[i/⋆]) for every i ∈ [k],

3. do
i (a, Pn) = do

i (a
′, Pn) for every i ∈ [k], o ∈ {+,−}, and n ∈ [s],

4. |Pc(a)| = |Pc(a◦π)| for every permutation π ∈ Sk,
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5. c(a ◦ π) = c(a′ ◦ π) for every permutation π ∈ Sk.

By 3., we note that the following identity holds for every m,n ∈ [s], a ∈ Pm, a′ ∈ Pn, and i ∈ [k]:

|Pm|d+
i (a, Pn) = d+

i (Pm, Pn) = d−i (Pn, Pm) = |Pn|d
−
i (a′, Pm) (10)

We say that A and B have a common k-equitable partition if there exist a k-equitable partition
(P1, . . . , Ps) of A and a k-equitable partition (Q1, . . . , Qt) of B such that the following conditions
are satisfied:

1. s = t and |Pm| = |Qm| for every m ∈ [s],

and, for every m ∈ [s], a ∈ Pm and b ∈ Qm:

2. (a,b) defines a partial k-isomorphism from A to B,

3. c(a[i/⋆]) = c(b[i/⋆]) for every i ∈ [k],

4. do
i (a, Pn) = do

i (b, Qn) for every i ∈ [k], o ∈ {+,−}, and every n ∈ [s],

5. c(a ◦ π) = c(b ◦ π) for every permutation π ∈ Sk.

If there exists a common k-equitable partition we write A ≡k
EP B.

4.3 From Sherali-Adams to pebble game

We show the first implication in the Transfer Lemma:

Lemma 1. Let k ≥ 2. If A ≡k
SA B, then A ≡k

C B.

Proof. Let (Xp)p∈Rk
be a feasible solution for Fk(A,B). Let F be the collection of all pairs of

k-tuples (a,b) ∈ (A ∪ {⋆})k × (B ∪ {⋆})k for which the following two conditions are satisfied:

1. ai = ⋆ if and only if bi = ⋆, for every i ∈ [k],

2. p = {(ai, bi) : i ∈ [k], ai 6= ⋆, bi 6= ⋆} satisfies Xp 6= 0.

Note that F is non-empty as the pair of k-tuples (⋆k, ⋆k) satisfies the two conditions since in this
case p = ∅ and X∅ 6= 0 by equation (9). We proceed to show that each (a,b) in F defines a partial
k-isomorphism from A to B and that the subtuple and back-and-forth properties are satisfied. We
start with the subtuple property:

Claim 1. Let p, q ∈ Rk. If q ⊆ p, then Xp ≤ Xq.

Proof. Assume q ⊆ p. We proceed by induction on the cardinality of the difference |p − q|. If
|p − q| = 0, then p = q and we are done. Assume |p − q| > 0. Let (a, b) ∈ p − q and define
p′ = p− {(a, b)}. Then q ⊆ p′ and |p′ − q| < |p− q|. By equation (6) with p′ ∈ Rk−1 we have

Xp′ =
∑

b′∈B

Xp′∪ab′ .

Since each term in the sum is non-negative by equation (8) we get Xp′∪ab ≤ Xp′ . Since p′ ∪ ab = p,
the inequality Xp ≤ Xq follows from the induction hypothesis Xp′ ≤ Xq.
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Before we continue we need a definition. Let p ∈ Rk, where p = {(a1, b1), . . . , (as, bs)} with
s ≤ k and (ah, bh) 6= (aℓ, bℓ) for every h, ℓ ∈ [s], h 6= ℓ. We say that p is a partial k-isomorphism
from A to B if the following conditions are satisfied for every h, ℓ ∈ [s] and c ∈ [r]:

1. if ah = aℓ then bh = bℓ (and hence h = ℓ),

2. if bh = bℓ then ah = aℓ (and hence h = ℓ),

3. if Aah,aℓ
= 1 then Bbh,bℓ

= 1,

4. if Bbh,bℓ
= 1 then Aah,aℓ

= 1,

5. if Cah,c = 1 then Dbh,c = 1,

6. if Dbh,c = 1 then Cah,c = 1.

With this definition we are ready to state the second property of the solutions to Fk(A,B):

Claim 2. Let p ∈ Rk. If Xp 6= 0, then p is a partial k-isomorphism from A to B.

Proof. Assume Xp 6= 0. Let p = {(a1, b1), . . . , (as, bs)} with s ≤ k and (ah, bh) 6= (aℓ, bℓ) for every
h, ℓ ∈ [s], h 6= ℓ. We need to check all six conditions in the definition of partial k-isomorphism
above.

For 1, assume for contradiction that ah = aℓ and bh 6= bℓ. Let q = p − {(aℓ, bℓ)} and note that
q ∈ Rk−1. From equation (6) for this q and a = ah we get

Xq∪ahbh
= Xq −

n
∑

b∈B
b6=bh

Xq∪ahb.

Since (ah, bh) belongs to q we have q ∪ ahbh = q and therefore

n
∑

b∈B
b6=bh

Xq∪ahb = 0.

Each term in the sum is non-negative by equation (8), hence each is 0. In particular, either h = ℓ
and then we are done, or Xq∪ahbℓ

= 0. But ah = aℓ and q∪aℓbℓ = p, hence Xp = 0; a contradiction.
For 2 argue as in 1 using equation (7) for q = p− {(ah, bh)} and b = bℓ.
For 3, assume for contradiction that Aah,aℓ

= 1 and Bbh,bℓ
= 0. Let q = {(ah, bh)}. Note that

q ∈ R1 ⊆ Rk−1 since k ≥ 2. From equation (2) for this q, a = ah and b = bℓ we get

Xq∪aℓbℓ
=

∑

b∈B

Xq∪ahbBb,bℓ
−

∑

a∈A
a 6=aℓ

Aah,aXq∪abℓ
. (11)

Since (ah, bh) belongs to q, by part 1 of this lemma we have Xq∪ahb = 0 whenever b 6= bh. Moreover,
whenever b = jh we have Bb,bℓ

= 0 by assumption. Both things together mean that the first sum in
equation (11) vanishes. Since every term in the second sum in that same equation is non-negative
by equation (8), we get Xq∪aℓbℓ

≤ 0. Since q∪aℓbℓ ⊆ p, by Claim 1 we get Xp ≤ 0. But also Xp ≥ 0
by (8), so Xp = 0; a contradiction.

For 4 argue as in 3 using part 2 of this lemma.
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For 5, assume for contradiction that Cah,c = 1 and Dbh,c = 0. Let q = p−{(ah, bh)}. Note that
q ∈ Rk−1. From equation (4) for this q and a = ah we get

XqCah,c =
∑

b∈B

Xq∪ahbDb,c ≤ Xq∪ahbh
Dbh,c. (12)

But then the conditions Cah,c = 1 and Dbh,c = 0 imply that Xq ≤ 0. Since q ⊆ p, we get Xp ≤ 0
from Claim 1, and hence Xp = 0; a contradiction.

For 6 argue as in 4 using equation (5) for the same q and b = bh.

The next claim states the forth property:

Claim 3. Let q ∈ Rk−1. If Xq 6= 0, then for every X ⊆ A, there exists Y ⊆ B with |Y | = |X| such
that for every b ∈ Y there exists a ∈ X such that Xq∪ab 6= 0.

Proof. Assume Xq 6= 0. For every (a, b) ∈ A×B, define Ya,b = Xq∪ab/Xq and let Y be the |A|× |B|
matrix (Ya,b)a∈A,b∈B . Equations (6), (8) and (9) imply that Y is a doubly stochastic matrix.
Therefore Y is the convex combination of one or more permutation matrices: Y =

∑r
t=1 αtΠt with

r ≥ 1 and αt > 0 for every t ∈ {1, . . . , r}. Let π be the permutation underlying Π1 interpreted like
a bijection from A to B. For every X ⊆ A, define Y = π(X). Obviously |Y | = |X|. Moreover, for
every b ∈ Y , choose a = π−1(b) ∈ X and check:

Ya,b =
r

∑

t=1

αtΠt(a, b) ≥ α1Π1(a, b) = α1 > 0.

This implies Xq∪ab 6= 0 and we are done.

The final claim states the back property:

Claim 4. Let q ∈ Rk−1. If Xq 6= 0, then for every Y ⊆ B, there exists X ⊆ A with |X| = |Y | such
that for every a ∈ X there exists b ∈ Y such that xq∪ab 6= 0.

Proof. This proof is the same is Claim 3 with the roles of X and Y , and a and b reversed.

These claims complete the proof of the lemma.

4.4 From pebble game to sliding game

For this section, fix k ≥ 1. We show that if the Duplicator has a winning strategy in the non-sliding
game with k + 1 pebbles, then she also has a winning strategy in the sliding game with k pebbles.
Intuitively, the idea is that the Duplicator can use her stategy in the non-sliding game to simulate
the moves of the sliding game by pretending that the Spoiler makes restricted use of pebble k + 1.

More precisely, if Spoiler slides pebble i ∈ [k] from a to a′ in the sliding game, then Duplicator
pretends that Spoiler actually does the following: place pebble k + 1 on a′ to force the sliding
condition on the Duplicator side, then move pebble i from a to a′ to actually get the move done,
and finally remove pebble k + 1 out the board to leave it free for the next move. We make this
argument formal in the next lemma:

Lemma 2. Let k ≥ 1. If A ≡k+1
C B, then A ≡k

CS B.
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Proof. Let F be a winning strategy witnessing that A ≡k+1
C B. Let H be the collection of all pairs

of k-tuples (a′,b′), with a′ = (a′1, . . . , a
′
k) ∈ (A ∪ {⋆})k and b′ = (b′1, . . . , b

′
k) ∈ (B ∪ {⋆})k, for

which there exists (a,b) in F , with a = (a1, . . . , ak+1) and b = (b1, . . . , bk+1), such that ai = a′i
and bi = b′i for every i ∈ [k]. In words, a′ and b′ are the projections on the first k components of
some pair of tuples (a,b) that belongs to F . We claim that H is a winning strategy in the k-pebble
sliding game.

First, H is non-empty since F is non-empty. Second, every (a′,b′) in H is a partial k-
isomorphism since the corresponding (a,b) in F is a partial k + 1-isomorphism. Third, for every
(a′,b′) in H and every i ∈ [k], the pair (a′[i/⋆],b′[i/⋆]) belongs to H by the closure under subtuples
of F . Next we argue that the back and forth property are satisfied. By symmetry, it suffices to
check the forth property with +-orientation.

Fix (a′,b′) in H, with a′ = (a′1, . . . , a
′
k) and b′ = (b′1, . . . , b

′
k). Let a = (a′1, . . . , a

′
k, ak+1) and

b = (b′1, . . . , b
′
k, bk+1) be the corresponding pair of tuples in F . Fix i ∈ [k] and X ⊆ N+(a′i). By the

closure under subtubles of F and the forth property of F applied to the pair (a[k+1/⋆],b[k+1/⋆]),
component k + 1, and set X ⊆ N+(⋆) = A, there exists Y ⊆ N+(⋆) = B with |Y | = |X| such that
for every b ∈ Y there exists a ∈ X such that (a[k+ 1/a],b[k+ 1/b]) belongs to F . Now let us show
that:

Claim 5. Y ⊆ N+(b′i).

Proof. If b′i = ⋆ there is nothing to show since in that case N+(b′i) = B and it is obvious that
Y ⊆ B. Assume then that b′i 6= ⋆. Fix an arbitrary element b ∈ Y . We want to show that (b′i, b) is
an edge in B. By choice of Y , there exists a ∈ X such that (a[k + 1/a],b[k + 1/b]) belongs to F .
In particular (a[k + 1/a],b[k + 1/b]) is a partial k + 1-isomorphism, and since (a′i, a) is an edge in
A, also (b′i, b) must be an edge in B. This shows that Y ⊆ N+(b′i).

Next we show:

Claim 6. For every b ∈ Y , there exists a ∈ X such that (a′[i/a],b′[i/b]) belongs to H.

Proof. In the proof of the previous claim we argued that for every b ∈ Y , there exists a ∈ X such
that (a[k+ 1/a],b[k + 1/b]) belongs to F . By the forth property of F applied to the pair of tuples
(a[k + 1/a],b[k + 1/b]), component i, and set X ′ = {a} ⊆ N+(a′i), there exists Y ′ ⊆ N+(b′i) with
|Y ′| = |X ′| such that for every b′ ∈ Y ′ there exists a′ ∈ X ′ such that (a[k+1/a, i/a′],b[k+1/b, i/b′])
belongs to F . But since the members of F define partial k+1-isomorphisms and the only a′ in X ′ is
a, necessarily Y ′ = {b} since otherwise the components i and k+1 would be equal in a[k+1/a, i/a′]
and different in a[k + 1/b, i/b′].

The previous paragraph shows that for every b ∈ Y there exists a ∈ X such that the pair
(a[k+1/a, i/a],b[k+1/b, i/b]) belongs to F . Since (a′[i/a],b′[i/b]) is precisely the pair of projections
on the first k components of the tuples in (a[k+ 1/a, i/a],b[k+ 1/b, i/b]), this shows that for every
b ∈ Y there exists a ∈ X such that (a′[i/a],b′[i/b]) belongs to H.

The proof of the forth property of H is complete, and with it the proof of the lemma.
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4.5 From sliding game to common equitable partition

For this section, fix k ≥ 1. Let a and b be k-tuples in (A ∪ {⋆})k and (B ∪ {⋆})k respectively.
Define (a,A) ≡ (b,B) if (a,b) belongs to some winning strategy for the Duplicator in the k-pebble
sliding game on A and B.

Lemma 3. ≡ is an equivalence relation.

Proof. The symmetry of the relation follows from the symmetry of the game, and its reflexivity
is clear. The only property that requires checking is transitivity. Assume (a,A) ≡ (b,B) and
(b,B) ≡ (c,C). Let F and F ′ be the two winning strategies witnessing these facts. Let G be the
collection of all pairs of k-tuples (a′, c′) with a′ ∈ (A ∪ {⋆})k and c′ ∈ (C ∪ {⋆})k for which there
exists a k-tuple b′ ∈ (B ∪ {⋆})k such that (a′,b′) belongs to F and (b′, c′) belongs to F ′. Clearly
each (a′, c′) in G defines a partial k-isomorphism from A to C. Moreover, (a′[i/⋆], c′[i/⋆]) belongs
to G by the closure under subtuples properties of F and F ′. Indeed (a′[i/⋆],b′[i/⋆]) belongs to F
and (b′[i/⋆], c′[i/⋆]) belongs to F ′ for the b′ that witnesses that (a′, c′) belongs to G. The back
and forth properties of G are also easily derived from the back and forth properties of F and F ′.
Finally, G contains the pair (a, c) by construction, which means that it is non-empty, and hence a
winning strategy witnessing that (a,A) ≡ (c,C).

In restriction to a single structure A, the equivalence relation ≡ can be thought as an equivalence
relation on (A ∪ {⋆})k .

Lemma 4. The sequence of equivalence classes of ≡ on (A∪ {⋆})k is a k-equitable partition of A.

Proof. Let (P1, . . . , Ps) be the equivalence classes of ≡ on (A ∪ {⋆})k . This forms a partition of
(A ∪ {⋆})k. Fix an index m ∈ [s], and tuples a = (a1, . . . , ak) and a′ = (a′1, . . . , a

′
k) in Pm. Since

a ≡ a′, the pair (a,a′) belongs to some winning strategy F . In particular it defines a partial
k-isomorphism from A to A.

To argue that c(a[i/⋆]) = c(a′[i/⋆]) for every i ∈ [k], note that (a[i/⋆],a′[i/⋆]) also belongs to
F by the closure under subtuples property in the definition of winning strategy.

Next we want to show that do
i (a, Pn) = do

i (a
′, Pn) for every i ∈ [k], o ∈ {+,−}, and n ∈ [s].

First we consider the case that a[i/⋆] lands in Pn. In this case do
i (a, Pn) = 1 since every tuple in

Pn must be equivalent to a[i/⋆] and hence have ⋆ in the i-th component, and do
i (a, Pn) is precisely

the number of a ∈ No(ai) ∪ {⋆} such that a[i/a] belongs to Pn. Also a′[i/⋆] lands in Pn by the
previous paragraph, and hence do

i (a
′, Pn) = 1 by the same argument.

Next we consider the case where a[i/⋆] does not land in Pn. Let X be the set of all a ∈ No(ai)
such that a[i/a] belongs to Pn. Then |X| = do

i (a, Pn). Similarly, let X ′ be the set of all a′ ∈ No(a′i)
such that a′[i/a′] belongs to Pn. Since a′[i/⋆] does not land in Pn either because c(a[i/⋆]) =
c(a′[i/⋆]), we have |X ′| = do

i (a
′, Pn). We show that |X| = |X ′|.

Let Y ⊆ No(a′i) be the set guaranteed to exist by the forth property of F for the pair of tuples
(a,a′), index i, and set X. Then |Y | = |X|. We claim that Y ⊆ X ′. To show this, observe that for
each a′ ∈ Y there exists some a ∈ X such that (a[i/a],a′[i/a′]) belongs to F . Hence a[i/a] ≡ a′[i/a′]
which means that a′[i/a′] belongs to the equivalence class Pn of a[i/a]. This shows that Y ⊆ X ′.
Therefore |Y | ≤ |X ′| and hence |X| ≤ |X ′| because |Y | = |X|. The symmetric argument exchanging
the roles of a, X and a′, X ′ would show that |X ′| ≤ |X|. Thus |X| = |X ′| as was to be shown.

To argue that c(a ◦ π) = c(a′ ◦ π) for every permutation π ∈ Sk, note that F ◦ π defined as
{(c ◦ π, c′ ◦ π) : (c, c′) ∈ F} is also a winning strategy. The same argument shows that |Pc(a)| =
|Pc(a◦π)|.
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Lemma 5. Let k ≥ 1. If A ≡k
CS B, then A ≡k

EP B.

Proof. Let (P1, . . . , Ps) be the k-equitable partition given by ≡ on A. Similarly, let (Q1, . . . , Qt)
be the k-equitable partition given by ≡ on B.

By hypothesis there exists a winning strategy for the Duplicator on A and B. Let F be such a
strategy. By the forth property of F , for every a in Ak there exists b = b(a) in Bk such that (a,b)
belongs to F , therefore (a,A) ≡ (b(a),B). Moreover, by the transitivity of the equivalence relation
and the fact that (a,A) ≡ (b(a),B) for every a ∈ (A ∪ {⋆})k it follows that (a,A) ≡ (a′,A) if
and only if (b(a),B) ≡ (b(a′),B). This means that there exists a well-defined injective mapping
α : {1, . . . , s} → {1, . . . , t} that takes m ∈ [s] to the unique n ∈ [t] such that every a in Pm is
equivalent to every b in Qn.

Claim 7. s = t.

Proof. The injective mapping α : {1, . . . , s} → {1, . . . , t} shows that s ≤ t. By symmetry we also
get t ≤ s and hence s = t.

Since α is indeed a bijection, we may assume that it is the identity by rearranging the partitions.
In other words, from now on we assume that (a,A) ≡ (b,B) if and only if c(a) = c(b).

Claim 8. c(a[i/⋆]) = c(b[i/⋆]) for every i ∈ [k], m ∈ [s], a ∈ Pm and b ∈ Qm.

Proof. Since (a,A) ≡ (b,B), the pair (a,b) belongs to some winning strategy F , but then the pair
(a[i/⋆],b[i/⋆]) also belongs to F by the closure under subtuples of winning strategies. This shows
that c(a[i/⋆]) = c(b[i/⋆]).

Next we show that the degrees are the same:

Claim 9. do
i (a, Pn) = do

i (b, Qn) for every i ∈ [k], o ∈ {+,−}, m,n ∈ [s], a ∈ Pm and b ∈ Qm.

Proof. Let a = (a1, . . . , ak) and b = (b1, . . . , bk). First we consider the case that a[i/⋆] lands in Pn.
In this case do

i (a, Pn) = 1 since every tuple in Pn must be equivalent to a[i/⋆] and hence have ⋆
in the i-th component, and do

i (a, Pn) is precisely the number of a ∈ No(ai) ∪ {⋆} for which a[i/a]
lands in Pn. By Claim 8, also b[i/⋆] lands in Qn. Hence do

i (b, Qn) = 1 by the same argument,
which completes this case.

Next we consider the case that a[i/⋆] does not land in Pn. Let X be the set {a ∈ No(ai) :
a[i/a] ∈ Pn}. Thus |X| = do

i (a, Pn). By the definition of winning strategy for the Duplicator
there exists a set Y ⊆ No(bi) with |Y | = |X| such that for every b ∈ Y there exists a ∈ X such
that (a[i/a],b[i/b]) belongs to F . Since this implies (a[i/a],A) ≡ (b[i/b],B) we can conclude that
b[i/b] ∈ Qn for every b ∈ Y . Thus do

i (b, Qn) ≥ |Y | = |X| = do
i (a, Pn).

The symmetric condition for winning strategy implies the opposite inequality and putting the
two together we have do

i (a, Pn) = do
i (b, Qn).

Next we show that the classes have the same sizes:

Claim 10. |Pm| = |Qm| for every m ∈ [s].
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Proof. First notice that the fact that there is a winning strategy for the Duplicator implies that
|A| = |B|. To see this note first that the pair of k-tuples (⋆k, ⋆k) belongs to the winning strategy
by the closure under subtuples of winning strategies, and that the forth property applied to this
pair of tuples and any i ∈ [k], o ∈ {+,−} requires that for every X ⊆ No(⋆) = A there must exist
a Y ⊆ No(⋆) = B such that |Y | = |X|, among other properties. In particular choosing X = A we
get |B| ≥ |A|. By the symmetric condition we also get |A| ≥ |B|. Using the equality between the
sizes of A and B the statement of this claim follows easily from the previous one.

For every m,n ∈ [s], a ∈ Pm, a′ ∈ Pn, b ∈ Qm and b′ ∈ Qn we have the identities

|Pm|d+
i (a, Pn) = d+

i (Pm, Pn) = d−i (Pn, Pm) = |Pn|d
−
i (a′, Pm)

|Qm|d+
i (b, Qn) = d+

i (Qm, Qn) = d−i (Qn, Qm) = |Qn|d
−
i (b′, Qm).

Therefore
|Pm|

|Pn|
=
d−i (a′, Pm)

d+
i (a, Pn)

=
d−i (b′, Qm)

d+
i (b, Qn)

=
|Qm|

|Qn|

where the second equality follows from the previous claim. This means that the ratio r = |Pm|/|Qm|
does not depend onm, and since |A| =

∑s
m=1 |Pm| = r

∑s
m=1 |Qm| = r|B|, it follows that r = 1.

Claim 11. c(a ◦ π) = c(b ◦ π) for every permutation π ∈ Sk, m ∈ [s], a ∈ Pm and b ∈ Qm.

Proof. Since (a,A) ≡ (b,B), the pair (a,b) belongs to some winning strategy F . But then the
pair (a ◦π,b ◦π) belongs to F ◦π defined by {(c ◦π, c′ ◦ π) : (c, c′) ∈ F}, which is again a winning
strategy. This shows that c(a ◦ π) = c(b ◦ π).

These claims show that (P1, . . . , Ps) and (Q1, . . . , Qs) witness that A and B have a common
k-equitable partition.

4.6 From common equitable partition to Sherali-Adams

We prove the last implication of the Transfer Lemma:

Lemma 6. Let k ≥ 1. If A ≡k
EP B, then A ≡k

SA B.

Proof. Let (P1, . . . , Ps) and (Q1, . . . , Qs) be the common k-equitable partition of A and B.
For every q ⊆ A× B with |q| ≤ k, if q is not a partial mapping define Xq = 0. If q is a partial

mapping, define Xq as follows. Let a1, . . . , ar be an enumeration without repetitions of Dom(q).
In particular r ≤ k. Let a = (a1, . . . , ar, ⋆, . . . , ⋆) be the k-tuple that starts with a1, . . . , ar and
is padded to length k by adding stars. Let b = (b1, . . . , bk) be the k-tuple defined by bi = q(ai)
for every i ∈ {1, . . . , r} and bi = ⋆ for every i ∈ {r + 1, . . . , k}. Let m = c(a) and n = c(b). If
m 6= n, define Xq = 0. If m = n, define Xq = 1/|Pm| = 1/|Qm|. Since c(a ◦ π) = c(b ◦ π) and
|Pc(a)| = |Pc(a◦π)| hold for every permutation π ∈ Sk, this definition does not depend on the choice
of the enumeration a1, . . . , ar and is hence well-defined.

Claim 12. If |q| < k and a ∈ A, then Xq =
∑

b∈B Xq∪ab.

Proof. If q is not a partial mapping, then Xq = 0 and Xq∪ab = 0 for every b ∈ B, and the identity is
obvious. Assume then that q is a partial mapping and that |q| < k. Let a1, . . . , ar be an enumeration
without repetitions of Dom(q). In particular r < k. Let a = (a1, . . . , ar, ⋆, . . . , ⋆) be the k-tuple
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that starts with a1, . . . , ar and is padded to length k by adding stars. Let b = (b1, . . . , bk) be the
k-tuple defined by bi = q(ai) for every i ∈ {1, . . . , r} and bi = ⋆ for every i ∈ {r+1, . . . , k}. Setting
i = r + 1 for the rest of the proof, in particular ai = bi = ⋆.

Let m = c(a) and n = c(b). If m 6= n, we have Xq = 0 by definition, and also Xq∪ab = 0 for
every b ∈ B since otherwise c(a[i/a]) = c(b[i/b]), which implies c(a) = c(b), and hence m = n,
by the definition of common equitable partition. Since this makes the identity obvious, we may
assume that m = n.

Recall i = r+ 1 and let a′ = a[i/a] and m′ = c(a′). Note that none of the tuples b′ in Qm′ can
have ⋆ in the i-th component since (a′,b′) must define a partial k-isomorphism, a′ does not have
it. We claim that

∑

b∈B

Xq∪ab =
d+

i (b, Qm′)

|Qm′ |
=
d−i (Qm′ , Qm)

|Qm||Qm′ |
=

1

|Qm|
= Xq.

The first equality follows from the definition of Xq∪ab that sets Xq∪ab = 0 if b[i/b] does not belong
to Qm′ , and Xq∪ab = 1/|Qm′ | if b[i/b] belongs to Qm′ , together with the facts that N+(bi) = B
since bi = ⋆, and that b[i/⋆] does not land in Qm′ since no tuple in Qm′ has ⋆ in the i-th component.
The second equality follows from the identity

|Qm|d+
i (b, Qm′) = d+

i (Qm, Qm′) = d−i (Qm′ , Qm).

For the third equality, let b ∈ B be such that b[i/b] lands in Qm′ . Such a b must exist since
d+

i (b, Qm′) = d+
i (a, Pm′) and d+

i (a, Pm′) ≥ 1 as a[i/a] lands in Pm′ and a ∈ N+(ai) = N+(⋆) = A.
Again we are using the fact that no tuple in Qm′ has ⋆ in the i-th component to make sure that
the count d+

i (b, Qm′) does not include ⋆. Now we have d−i (b[i/b], Qm) = 1 since d−i (b[i/b], Qm)
is precisely the number of b′ in N−(b) ∪ {⋆} such that b[i/b′] belongs to Qm, but the only such b′

is ⋆. Indeed, every tuple b′ in Qm has ⋆ in the i-th component since (b,b′) must define a partial
k-isomorphism, and b has it. This together with the identity

d−(Qm′ , Qm) = |Qm′ |d−i (b[i/b], Qm)

proves the third equality and the claim.

Claim 13. If |q| < k and b ∈ B, then Xq =
∑

a∈AXq∪ab.

Proof. The proof is the same as above: exchange the roles of a and b, and A and B.

Claim 14. If |q| < k, a ∈ A and b ∈ B, then
∑

a′∈AAa,a′Xq∪a′b =
∑

b′∈B Xq∪ab′Bb′,b.

Proof. If q is not a partial mapping, then Xq = 0 and Xq∪a′b = 0 for every b ∈ B, and the
identity is obvious. Assume then that q is a partial mapping and that |q| < k. Let a1, . . . , ar be
an enumeration without repetitions of Dom(q). In particular r < k since we are assuming |q| < k.
Let a = (a1, . . . , ar, a, ⋆, . . . , ⋆) be the k-tuple that starts with a1, . . . , ar, follows with a, and is
padded to length k by adding stars. Similarly, let b = (q(a1), . . . , q(ar), b, ⋆, . . . , ⋆) be the k-tuple
that starts with q(a1), . . . , q(ar), follows with b, and is padded to length k by adding stars.
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Set i = r+ 1 for the rest of the proof and let m = c(a) and n = c(b). By the same argument as
in Claim 12, note that none of the tuples in Qm or Pn have ⋆ in the i-th component since neither
a nor b have it. We claim that

∑

a′∈A

Aa,a′Xq∪a′b =
∑

a′∈N+(a)

Xq∪a′b =
d+

i (a, Pn)

|Pn|
. (13)

The first equality is obvious. The second equality follows from the definition of Xq∪a′b that sets
Xq∪a′b = 0 if a[i/a′] does not belong to Pn, and Xq∪a′b = 1/|Pn| if a[i/a′] belongs to Pn, together
with the fact that a[i/⋆] does not land in Pn since none of the tuples in Pn has ⋆ in the i-th
component.

At the same time we claim that

∑

b′∈B

Xq∪ab′Bb′,b =
∑

b′∈N−(b)

Xq∪ab′ =
d−i (b, Qm)

|Qm|
. (14)

Again the first equality is obvious, and the second equality follows from the definition of Xq∪ab′ ,
together with the fact that the tuples in Qm do not have ⋆ in the i-th component.

Fix a′ ∈ Pn and b′ ∈ Qm. From the definition of common equitable partition we have
d−i (a′, Pm) = d−i (b, Qm) and d+

i (b′, Qn) = d+
i (a, Pn). Moreover |Pm| = |Qm| and |Pn| = |Qn|.

These, together with any one of the two identities

|Pn|d
−
i (a′, Pm) = d−i (Pn, Pm) = d+

i (Pm, Pn) = |Pm|d+
i (a, Pn)

|Qm|d+
i (b′, Qn) = d+

i (Qm, Qn) = d−i (Qn, Qm) = |Qn|d
−
i (b, Qm),

give the identity
d−i (b, Qm)

|Qm|
=
d+

i (a, Pn)

|Pn|
.

This shows the equality between (13) and (14).

Claim 15. If |q| < k, a ∈ A and c ∈ [r], then XqCa,c =
∑

b∈B Xq∪abDb,c.

Proof. First assume that Ca,c = 0, so the left-hand side is 0. Then for every b ∈ B we have either
Db,c = 0, or Db,c = 1 and then Xq∪ab = 0 since q ∪ ab cannot be a partial isomorphism in this case.
Thus, each term in the right-hand side is 0.

Next assume that Ca,c = 1, so the left-hand side is Xq. Then Xq∪ab = 0 whenever Db,c = 0
since q ∪ ab cannot be a partial isomorphism in this case. Thus, the right-hand side can be written
as

∑

b∈B

Xq∪ab

which equals Xq by equation (6).

Claim 16. If |q| < k, b ∈ B and c ∈ [r], then XqDb,c =
∑

a∈AXq∪abCa,c.

Proof. This proof is the same as in the previous claim exchanging the roles of a and b, and C and
D.

These claims show that the proposed assignment satisfies all the equations of Fk(A,B). Since
the components are non-negative, the lemma follows.
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5 Preservation of Local Linear Programs

Many of the linear programs that appear in the combinatorial optimization literature are composed
of linear inequalities that are in some sense local : the variables involved in the inequality talk about
some small neighborhood of the graph or hypergraph, or whatever combinatorial structure the linear
program refers to. In this section we isolate one such definition of local linear program and show
that its polytope of feasible solutions is preserved by the SA-levels of fractional isomorphism. This
will be of use in the applications of Sections 6 and 7.

5.1 Local linear programs

Let A = (A,EA, CA
1 , . . . , C

A
r ) be a colored directed graph. Let the size of a tuple a ∈ Ak, denoted

by |a|, be the number of distinct elements in the tuple. For a tuple a = (a1, . . . , ak) ∈ Ak, let
us temporarily define γ : {a1, . . . , ak} → {1, . . . , |a|} to be the unique bijective map such that
γ(ai) ≤ |(a1, . . . , ai)| for every i ∈ [k]. We will denote by [A,a] the generic colored directed graph
isomorphic to the subgraph of A induced by {a1, . . . , ak} together with the tuple corresponding to
a, which we refer to as its order-tuple. Thus, in [A,a]:

1. the vertices are {1, . . . , |a|},

2. the edges are {(γ(a), γ(a′)) : (a, a′) ∈ EA},

3. the i-th color is {γ(a) : a ∈ CA
i },

4. the order-tuple is (γ(a1), γ(a2), . . . , γ(ak)).

For two tuples a = (a1, . . . , am) and b = (b1, . . . , bn), we write ab for the concatenation tuple
(a1, . . . , am, b1, . . . , bn). If m = n, we write a ⊕ b for the tuple of pairs ((a1, b1), . . . , (am, bm)).

A basic k-local LP is specified by rational numbers d[C,c] and M
[C,c]
r for every generic colored

digraph C of size at most k with order-tuple c of length at most 2k, and every r ≤ k. The
instantiation of the system on A is the system of inequalities that has one variable xa for every
tuple a ∈ A≤k, and for every a′ ∈ A≤k one inequality of the form

k
∑

r=1

∑

a∈Ar

|aa′|≤k

M [A,aa′]
r xa ≤ d[A,a′].

A k-local LP is a union of basic k-local LPs. If L is a k-local LP, its instantiation on A, denoted
by L(A), is the union of the instantiations of the basic k-local systems that compose L.

5.2 Examples

Before we go on to show that the feasible solutions to local linear programs are preserved by the
SA-levels of fractional isomorphism, let us give a few examples of local LPs. These examples will
actually play a role later in the paper.

Typical constraints All four examples discussed contain two types of constraints for which it is
easy to check the condition of k-locality: that the coefficient of a variable indexed by a tuple a in
an inequality indexed by a tuple a′ depends only on [A,aa′] and the length of a. One special case
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that satisfies the condition is an LP consisting of a single inequality with the same coefficient for
all xa in which a induces a particular colored directed subgraph or one in a set of colored directed
subgraphs on the structure. We call such a basic local LP homogeneous. The objective functions
of many natural linear programs are homogeneous local LPs, as we will see.

Another special case is when the coefficient in front of variable xa in the inequality indexed by

a′ is non-zero only if the elements in a are contained within a′. In this case we have M
[C,c]
r 6= 0 only

if the first r elements of c are included in the last s− r, where s is the length of c. The non-zero
coefficients are allowed to all be different since in the case that a1 and a2 are contained in a′, we
have [A,a1a

′] 6= [A,a2a
′] whenever a1 6= a2, because they have different order-tuples. We call such

a basic k-local LP bounded. In particular, any inequality in a linear program that only mentions
the variables indexed by tuples over up to k points of A is a bounded k-local LP. We see examples
below.

Matchings in bipartite graphs We write the fractional matching polytope for general graphs
which, for bipartite graphs, is known to coincide with its integer hull.

Let G = (V,E) be an undirected graph. The classical way of writing the fractional matching
polytope has one variable xe for each edge e ∈ E and two types of constraints:

∑

e∈δ(u) xe ≤ 1 for u ∈ V,

0 ≤ xe ≤ 1 for e ∈ E,

where δ(u) denotes the set of edges of G that are incident on u. The classical objective function is

maximize
∑

e∈E xe.

In order to write this linear program as a local LP, we introduce one variable xuv for every pair of
vertices u, v ∈ V , and add constraints that force these variable to 0 if {u, v} is not an edge of the
graph, and force xuv = xvu for every u, v ∈ V . We also incorporate the objective function as one
additional constraint:

1
2

∑

u 6=v xuv ≥W (15)
∑

v 6=u xuv ≤ 1 for u ∈ V, (16)

0 ≤ xuv ≤ 1 for u, v ∈ V, (17)

xuv = 0 for u, v ∈ V such that {u, v} 6∈ E, (18)

xuv = xvu for u, v ∈ V with u 6= v. (19)

We check that this is a 2-local LP. First, inequality (15) is a homogeneous 2-local system: set
d[C,c] = −W if C is the empty graph and c is the empty tuple, and d[C,c] = 0 otherwise; set

M
[C,c]
r = −1/2 if r = 2 and C is a graph on {1, 2} and c = (1, 2), and M

[C,c]
r = 0 otherwise.

Second, inequality (16) is a local LP: set d[C,c] = 1 if C is a graph on {1} and c = (1), and

d[C,c] = 0 otherwise; set M
[C,c]
r = 1 if r = 2 and C is a graph on {1, 2} and c = (1, 2, 1), and

M
[C,c]
r = 0 otherwise. The remaining inequalities are bounded 2-local systems. Thus, the result is

a union of basic 2-local LPs, and hence a 2-local LP.
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Maximum flows A network is a directed graph without self-loops, and with two distinguished
vertices s and t. We code these as colored directed graphs G = (V,E, S, T ), with color S set to {s}
and color T set to {t}. Our networks have unit capacities at every edge.

The classical linear program for st-flows has one variable xe for every e ∈ E and two types of
constraints:

∑

e∈δ−(u) xe −
∑

e∈δ+(u) xe = 0 for u ∈ V \ {s, t},

0 ≤ xe ≤ 1 for e ∈ E,

where δ−(u) denotes the set of edges of G entering u, and δ+(u) denotes the set of edges of G
leaving u. The objective is to maximize the flow going out of s:

maximize
∑

e∈δ+(s) xe.

In order to write this linear program as a local LP, we introduce one variable xuv for every pair of
vertices u, v ∈ V , and add constraints that force xuv to be non-zero only on edges (u, v) ∈ E. We
also incorporate the objective function as a constraint:

∑

v 6=s xsv ≥W (20)
∑

v 6=u xvu −
∑

v 6=u xuv = 0 for u ∈ V \ {s, t}, (21)

0 ≤ xuv ≤ 1 for u, v ∈ V, (22)

xuv = 0 for u, v ∈ V such that (u, v) 6∈ E. (23)

Inequality (20) is a homogeneous 2-local LP: set d[C,c] = −W if C is the empty graph and c

is the empty tuple, and d[C,c] = 0 otherwise; set M
[C,c]
r = −1 if r = 2 and C is a graph on {1, 2}

with color S on vertex 1 and c = (1, 2), and M
[C,c]
r = 0 otherwise. Equation (21) is a union of two

basic 2-local LPs with opposite signs: one for ≤ and one for ≥. In the first, set d[C,c] = 0 for every

C and c, and M
[C,c]
r = 1 if r = 2 and C is a graph on {1, 2} where 2 is not colored S or T and

c = (1, 2, 2), and set M
[C,c]
r = −1 if r = 2 and C is a graph on {1, 2} where 1 is not colored S or T

and c = (1, 2, 1), and M
[C,c]
r = 0 otherwise. The remaining inequalities are bounded 2-local LPs.

SA-levels of vertex-cover Let G = (V,E) be an undirected graph. The vanilla linear program
for vertex cover is:

xu + xv ≥ 1 for {u, v} ∈ E,

0 ≤ xu ≤ 1 for u ∈ V.

The objective function is
minimize

∑

u∈V xu.

The corresponding t-level Sherali-Adams system is defined on the variables yI for every I ⊆ V
with |I| ≤ t. For I, J ⊆ V , let S(I, J) =

∑

J ′⊆J(−1)|J
′|yI∪J ′ . In particular S(I, J) = 0 if I and J

are not disjoint. In the following definition I and J range over all disjoint subsets of V such that
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|I ∪ J | ≤ t− 1. We also incorporate the objective function as a constraint:
∑

u∈V y{u} ≤W, (24)

y∅ = 1, (25)

S(I, J) ≥ 0, (26)

S(I, J) ≥ S(I ∪ {u}, J) for u ∈ V, (27)

S(I ∪ {u}, J) + S(I ∪ {v}, J) ≥ S(I, J) for {u, v} ∈ E. (28)

To put it in the form of a local LP we need the variables to be indexed by tuples, so we replace
yI for I = {v1, . . . , vr}, r ≤ t, by ya for a = (v1, . . . , vr) and for every permutation π : [r] → [r] we
add the constraint ya = ya◦π. Constraints should also be indexed by tuples, so (28) is really a pair
of (equivalent) constraints: one for (u, v) and one for (v, u).

Inequality (24), which comes from the objective function, is a homogeneous 1-local LP, which
implies it is also a homogeneous (t+1)-local LP. The remaining constraints are bounded (t+1)-local
LPs.

SA-levels of max-cut Again, let G = (V,E) be an undirected graph. The linear program
relaxation for max-cut known as the metric polytope has one variable xuv for every pair of vertices
u, v ∈ V , and the constraints below:

0 ≤ xuv ≤ 1 for u, v ∈ V (29)

xuv = xvu for u, v ∈ V, (30)

xuw ≤ xuv + xvw for u, v,w ∈ V, (31)

xuv + xvw ≤ 2 − xuw for u, v,w ∈ V. (32)

The objective function is
maximize 1

2

∑

{u,v}∈E xuv.

The corresponding t-level Sherali-Adams system is defined on the variables yI for every I ⊆ V 2

with |I| ≤ t. In the following system I and J range over all disjoint subsets of V 2 such that
|I ∪ J | ≤ t− 1. We also incorporate the objective function as a constraint.

1
2

∑

{u,v}∈E y{uv} ≥W, (33)

y∅ = 1, (34)

S(I, J) ≥ 0, (35)

S(I, J) ≥ S(I ∪ {uv}, J), (36)

S(I ∪ {uv}, J) = S(I ∪ {vu}, J), (37)

S(I ∪ {uw}, J) ≤ S(I ∪ {uv}, J) + S(I ∪ {vw}, J), (38)

S(I ∪ {uv}, J) + S(I ∪ {vw}, J) ≤ 2S(I, J) − S(I ∪ {uw}, J). (39)

To put it in the form required by Theorem 2 we need the variables to be indexed by tuples, so
we replace yI for I = {(v1, v

′
1), . . . , (vr, v

′
r)}, r ≤ t, by ya for a = (a1, . . . , ar) with ai = (vi, v

′
i), and

for every permutation π : [r] → [r] we add the constraint ya = ya◦π.
Similarly to the case of vertex cover, the first constraint, which comes from the objective

function, is a homogeneous 2-local LP, which implies it is also a homogeneous (2t + 1)-local LP.
The remaining constraints are bounded (2t+ 1)-local LPs.
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5.3 Preservation of feasible solutions

Next we show that local LPs have the good feature that their polyhedra of feasible solutions are
preserved by sufficiently high levels of the Sherali-Adams relaxation of fractional isomorphism.
More precisely, to preserve k-local LPs, k levels suffice. The full statement is the following:

Theorem 2. Let L be a k-local LP, and let A and B be colored digraphs such that A ≡k
SA B.

Then, L(A) is feasible if and only if L(B) is feasible. Furthermore, if xa is a solution of L(A) then
xb =

∑

a∈Ar Xa⊕b xa is a solution of L(B), where X denotes the solution witnessing A ≡k
SA B,

and r is the length of b.

The rest of this section is devoted to the proof of Theorem 2. Let us fix A and B such that
A ≡k

SA B, and let X be a solution of Fk(A,B) witnessing this fact. We start with a straightforward
lemma about the properties of X that we will use several times.

Lemma 7. Let 0 ≤ r, s ≤ k be integers, let a ∈ Ar and a′ ∈ As be such that |aa′| ≤ k, and let
b ∈ Br. Then

Xa⊕b =
∑

b′∈Bs

[A,aa′]=[B,bb′]

Xaa′⊕bb′ .

Proof. The proof is a simple induction on s. For s = 0 the statement trivially holds. Next, for
s ≥ 1, suppose a′ = a′′a where a′′ ∈ As−1 and a ∈ A. Applying Claim 2 from Section 4 we have

∑

b′′∈Bs−1,b∈B

[A,aa′′a]=[B,bb′′b]

Xaa′′a ⊕ bb′′b =
∑

b′′∈Bs−1

[A,aa′′]=[B,bb′′]

∑

b∈B

Xaa′′a ⊕ bb′′b.

Equation (6) of the Sherali-Adams system shows that the right-hand side is
∑

b′′∈Bs−1

[A,aa′′]=[B,bb′′]

Xaa′′⊕bb′′ ,

and the induction hypothesis gives that this is precisely Xa⊕b.

We proceed with the proof of the theorem. It is sufficient to prove the statement for a basic

k-local LP L given by M
[C,c]
r and d[C,c]. Let xa be a feasible solution for L(A). Thus for every

a′ ∈ A≤k we have
k

∑

r=1

∑

a∈Ar

|aa′|≤k

M [A,aa′]
r xa ≤ d[A,a′]. (40)

We need to show that for every b′ ∈ B≤k it holds that

k
∑

r=1

∑

b∈Br

|bb′|≤k

M [B,bb′]
r

∑

a∈Ar

Xa⊕b xa ≤ d[B,b′]. (41)

In the following, let 0 ≤ s ≤ k be such that b′ ∈ Bs. Using Lemma 7 the left-hand side of
equation (41) becomes

k
∑

r=1

∑

b∈Br

|bb′|≤k

M [B,bb′]
r

∑

a∈Ar

∑

a′∈As

[A,aa′]=[B,bb′]

Xaa′⊕bb′ xa.
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Rearranging the sums with care we can rewrite this as

∑

a′∈As

[A,a′]=[B,b′]

k
∑

r=1

∑

b∈Br

|bb′|≤k

∑

a∈Ar

[A,aa′]=[B,bb′]

M [B,bb′]
r Xaa′⊕bb′ xa

=
∑

a′∈As

[A,a′]=[B,b′]

k
∑

r=1

∑

a∈Ar

|aa′|≤k

∑

b∈Br

[A,aa′]=[B,bb′]

M [B,bb′]
r Xaa′⊕bb′ xa

=
∑

a′∈As

[A,a′]=[B,b′]

k
∑

r=1

∑

a∈Ar

|aa′|≤k

M [A,aa′]
r xa

∑

b∈Br

[A,aa′]=[B,bb′]

Xaa′⊕bb′ .

In the last line we used the fact that the condition [A,aa′] = [B,bb′] implies M
[A,aa′]
r = M

[B,bb′]
r .

Using again Lemma 7 the last expression becomes

∑

a′∈As

[A,a′]=[B,b′]

k
∑

r=1

∑

a∈Ar

|aa′|≤k

M [A,aa′]
r xa Xa′⊕b′

=
∑

a′∈As

[A,a′]=[B,b′]

Xa′⊕b′

k
∑

r=1

∑

a∈Ar

|aa′|≤k

M [A,aa′]
r xa

≤
∑

a′∈As

[A,a′]=[B,b′]

Xa′⊕b′ d[A,a′] = d[B,b′].

In the last line we used equation (40), together with the fact that the condition [A,a′] = [B,b′]
implies d[A,a′] = d[B,b′], another application of Lemma 7, and X∅ = 1 by (9). This completes the
proof of Theorem 2.

6 Applications to Logics with Counting

In this section we discuss the applications of the Transfer Lemma and the preservation of local
linear programs to get new results on the expressive power of the logic with counting quantifiers.

6.1 Examples revisited

In the following, let MAX-FLOW denote the linear program for st-flows in st-networks as discussed
in Section 5.2. Similarly, let BIPARTITE-MATCHING denote the linear program for matchings in
bipartite graphs. For every integer t ≥ 1, let VERTEX-COVER

t denote the t-th level of SA of the
standard linear programming relaxation of vertex-cover, and let MAX-CUT

t denote the t-th level of
SA of the metric polytope relaxation of max-cut.

For a local LP L, we say that L is preserved by an equivalence ≡ if, whenever A ≡ B and
L(A) has a solution, also L(B) has a solution. More generally, if L is a local LP with an associated
objective function max cTx for which the constraint cTx ≥W is also a local LP for every value W ,
then we say that the optimum value of L is preserved by ≡ if the expanded local LP L∪{cTx ≥W}
is preserved by ≡ for every W .
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The examples under consideration were all shown to be k-local LPs, for appropriate k, with
the objective function incorporated as a constraint. Thus, a direct corollary to Theorem 2 is the
following:

Corollary 1. For every t ≥ 1, the following hold:

1. the optimum value of BIPARTITE-MATCHING is preserved by ≡2
SA,

2. the optimum value of MAX-FLOW is preserved by ≡2
SA,

3. the optimum value of VERTEX-COVER
t is preserved by ≡t+1

SA ,

4. the optimum value of MAX-CUT
t is preserved by ≡2t+1

SA .

By the Transfer Lemma, the optimum values of these LPs are also preserved by ≡3
C in the first

two cases, and by ≡t+2
C and ≡2t+2

C in the last two. This will be used in the sequel.

6.2 Definability results

One consequence of the fact that the optimum value of BIPARTITE-MATCHING is preserved by ≡2
SA

and hence by ≡3
C is, for example, that the class of bipartite graphs that have a perfect matching is

definable by a C3
∞ω-sentence. Let us see why.

First, the preservation under ≡3
C means that the class of bipartite graphs that have a perfect

matching is a union of ≡3
C-equivalence classes of bipartite graphs. Now, it is a standard result in

finite model theory that each ≡3
C-equivalence class is definable by a C3

∞ω-sentence. More precisely,
what this means is that for every structure A, there exists a sentence φA of the logic C3

∞ω that is
true precisely on the structures that are ≡3

C-equivalent to A (see Lemma 1.39 in [32]). Thus, since
C3
∞ω is closed under infinitary disjunctions, it suffices to take the disjunction of all the φA’s as A

ranges over the bipartite graphs whose ≡3
C-equivalence classes partition those that have a perfect

matching.
It goes without saying that the same sort of argument carries over to MAX-FLOW in st-networks.

For the following statement, let a saturable network be an st-network in which enough flow can be
pushed through it to fill the capacity of all edges leaving the source.

Corollary 2. The following hold:

1. the class of graphs that have a perfect matching is C3
∞ω-definable on bipartite graphs,

2. the class of saturable networks is C3
∞ω-definable on st-networks with unit capacities.

We have chosen to state the result for saturable networks, but we are free to prefer the class of
networks in which a 1/3-fraction, say, of the capacity leaving the source can be filled. Similarly, we
are free to prefer the class of bipartite graphs that have a matching pairing a 2/3-fraction, say, of
the vertices.

A less direct application of Corollary 1 concerns the max-cut problem on K5-minor free graphs.
A non-trivial result in polyhedral combinatorics states that for graphs G that do not have K5 as a
minor, optimizing over the projection of the metric polytope to the edges of G yields the integral
optimal cut of G [6]. Since optimizing over the projection to the edges of G of the metric polytope
is precisely what the linear program MAX-CUT is, we get the following consequence to Corollary 1
and the Transfer Lemma:
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Corollary 3. The class of graphs that have a partition that cuts at least half the edges is C4
∞ω-

definable on the class of K5-minor free graphs.

Obviously, the choice to cut half the edges is arbitrary; a 1/3-fraction would work equally well.
Let us note that from the results in [17] on counting logics being able to express all polynomial-
time properties on classes of minor-free graphs, Corollary 3 would follow for Ck

∞ω replacing C4
∞ω

for some k (that is very likely big). This is because optimizing a linear function over the metric
polytope can be done in polynomial time by linear programming. Our argument shows that k = 4
is enough. It is interesting that the two proofs are very different.

To conclude this section, we note for contrast that the linear programming formulation of the
matching polytope for non-bipartite graphs due to Edmonds is not k-local for any constant k. This
is because its inequalities are indexed by the odd-size subsets of vertices (see [29]). However, this
does not rule out the possibility that it is nonetheless preserved by ≡k

SA for some constant k, and
therefore that the class of general graphs having a perfect matching is definable in Ck

∞ω for some
constant k, but this stays open.

7 Applications to Sherali-Adams Rank

The goal in this section is to exploit the known lower-bound results in the context of counting logics
to build explicit instances of the vertex-cover and max-cut problems that show that the SA-rank
of their relaxations is Ω(n), where n is the number of vertices in the graphs. The known result
that we will use is the celebrated construction of Cai, Fürer and Immerman [9] showing that there
exist graphs with n vertices and bounded degree that cannot be distinguished by a formula of the
counting logic Ck for k = Ω(n).

7.1 The Cai-Fürer-Immerman construction

Instead of indistinguishable pairs of graphs as in [9], it will be convenient to start with indistin-
guishable pairs of instances of a constraint satisfaction problem. We use systems of linear equations
over GF(2) as in [3]. Let H = (V,E) be a 3-regular graph, and let d = (dv : v ∈ V ) be a GF(2)-
labeling of its vertices. We call d odd if

∑

v∈V dv = 1 mod 2; otherwise we call it even. We build
a system of linear equations S(H,d) over GF(2) as follows. For every vertex v ∈ V and every edge
e ∈ E that is incident on v, the system has two variables xv,e

0 and xv,e
1 . For every vertex v ∈ V

with incident edges e1, e2 and e3, the system includes the following eight equations, one for each
choice of i, j, k ∈ {0, 1}:

xv,e1
i + xv,e2

j + xv,e3

k = dv + i+ j + k.

For every edge e ∈ V with end-points u and v, the system includes the following four equations,
one for each choice of i, j ∈ {0, 1}:

xu,e
i + xv,e

j = i+ j.

We refer to equations of the first type as vertex equations, and to equations of the second type as
edge equations.

These systems were introduced in [2] to re-interpret the construction due to Cai, Fürer, and
Immerman in the context of constraint satisfaction problems. Interestingly, these systems are
very closely related to the so-called Tseitin systems that appear so often in propositional proof
complexity [43]. The following fact is straightforward:
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Lemma 8. The system S(H,d) is satisfiable if and only if d is even.

Proof. For the if direction, set xv,e
i to dv + i. For the only if direction, consider the subsystem

induced by the variables xv,e
0 . The left-hand side of all equations in this subsystem adds-up to 0,

and the right-hand side adds-up to
∑

v∈V dv.

Systems of linear equations as above can be encoded as relational structures in several standard
ways. In the one we use below, the universe of the structure is the set of variables, and the equations
of the type x1 + · · · + xk = a, where x1, . . . , xk are variables, a ∈ GF(2) and k ≥ 1, are thought of
as tuples of a k-ary relation Rk,a. Note that every such structure can also be viewed as a system of
linear equations over GF(2) (perhaps with repeated variables in some equations, but this point is
minor and not really relevant for what follows). From now on we identify linear systems of GF(2)
with the relational structures that encode them in this way.

In this framework we can state the following result from [3] whose proof builds on the main
result in [9].

Theorem 3 ([3]). Let k ≥ 1 be an integer, let H = (V,E) be a 3-regular graph, and let d,d′ ∈
{0, 1}V be labelings of its vertices. If the treewidth of H is more than k, then S(H,d) ≡k

C S(H,d′).

In particular, if G is a 3-regular expander graph with n vertices, then its treewidth is at least ǫn

for some constant ǫ > 0, and hence S(G,d) ≡
⌊ǫn⌋
C S(G,d′). If we take d an even labeling and d′ an

odd one, we get a pair of Ω(n)-indistinguishable instances, one of which is satisfiable and the other
is unsatisfiable. Our next goal is to turn this pair of instances into pairs of Ω(n)-indistinguishable
graphs, one of which has a small vertex cover or a large cut and the other does not.

7.2 Method of interpretations

The method of interpretations is the logic version of the concept of reducibility in computational
complexity. Informally, we say that a structure B is interpretable in another structure A, if the
universe and the relations of B are definable by means of formulas interpreted in the structure A.
The important point of interpretations for us is that they propagate indistinguishability: if B and
B′ are interpretable in A and A′, respectively, then B and B′ stay indistinguishable if A and A′

were.
Let us make this concept formal. Let Θ be a class of formulas. A Θ-interpretation of width w and

p parameters is a sequence of Θ-formulas I = (ϕ0(x0;y), ϕ1(x1, . . . ,xr1 ;y), . . . , ϕs(x1, . . . ,xrs ;y)),
where each xi is a w-tuple of distinct variables and y is a p-tuple of distinct variables. For a
structure A and a p-tuple of parameters c = (c1, . . . , cp) ∈ Ap such that ci 6= cj for i 6= j, the
outcome of the interpretation is the structure I(A, c) with universe {a ∈ Aw : A |= ϕ0(a; c)} and
relations {(a1, . . . ,ari

) ∈ (Aw)ri : A |= ϕi(a1, . . . ,ari
; c)} for i = 1, . . . , s. Let B be a structure.

We say that I interprets B in A if, for some and every p-tuple of parameters c = (c1, . . . , cp) ∈ Ap

such that ci 6= cj for i 6= j, it holds that I(A, c) is isomorphic to B.
As mentioned earlier, our interest in interpretations is the following well-known result. We give

the straightforward proof for completeness.

Lemma 9. Let I be a Ck-interpretation of width w and p parameters. Let A and A′ be structures
and let B and B′ be structures interpreted by I in A and A′, respectively. If A ≡mw+k+p

C A′, then
B ≡m

C B′.
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Proof. Let I = (ϕ0, ϕ1, . . . , ϕs) be the Ck-formulas in the interpretation. We prove the contrapos-
itive. Assume that B 6≡m

C B′ and let ψ be a Cm-sentence such that B |= ψ and B′ 6|= ψ. Let
{x1, . . . , xm} be the set of variables that appear in ψ, which we may assume disjoint from the set of
variables in the formulas ϕi, and let y = (y1, . . . , yp) be a set of p new variables. For every formula
θ with all variables in {x1, . . . , xm}∪{y1, . . . , yp}, let T (θ) be the result of replacing each occurrence
of Ri(xi1 , . . . , xiri

) in θ by ϕi(xi1 , . . . ,xiri
;y), each occurrence of xi = xj in θ by xi = xj, and each

quantifier ∃≥txiτ by2 ∃≥txi(ϕ0(xi;y) ∧ T (τ)). In this transformation we use w new variables xi

for each variable xi in ψ. Note that T (ψ) carries y as free-variables, and that its total number of
variables is wm+ k + p.

Now we claim that the Cwm+k+p-sentence δ := ∃y1 · · · ∃yp(
∧

i6=j yi 6= yj ∧T (ψ)) distinguishes A
from A′. Indeed, B is isomorphic to I(A, c) for some and every c = (c1, . . . , cp) ∈ Ap with ci 6= cj
for i 6= j, and T (ψ) is designed so that A |= T (ψ)(c) if and only if I(A, c) |= ψ. Similarly, B′

is isomorphic to I(A′, c) for some and every c′ = (c′1, . . . , c
′
p) ∈ A′p with c′i 6= c′j for i 6= j, and

T (ψ) is designed so that A′ 6|= T (ψ)(c′) if and only if I(A′, c′) 6|= ψ. We conclude that A |= δ and
A′ 6|= δ.

7.3 Reductions to vertex-cover and max-cut

With Lemma 9 in hand, the only thing left to do is to apply the standard reductions from constraint
satisfaction problems to vertex-cover and max-cut, and show that these reductions are indeed
Ck-interpretations for some small k. In both cases we proceed by first reducing the constraint
satisfaction problem to the independent set problem, and from there we branch into reductions to
vertex-cover and max-cut.

The reduction from constraint satisfaction problems to the independent set problem is simple.
For every constraint with variables x1, . . . , xk, create as many vertices as there are assignments
to these variables that satisfy the constraint. In the case of linear systems over GF(2), there
are exactly 2k−1 assignments satisfying each equation on k distinct variables. Then add an edge
between any two vertices that represent incompatible assignments: that is, assignments that give
two different values to some variable. In particular, the cloud of vertices that corresponds to a
particular constraint will always be a clique. For a system of linear equations S, let G(S) be the
resulting graph. The straightforward claim is that S is satisfiable if and only if G(S) contains an
independent set of size m, where m is the number of constraints in S.

Let us show that this construction is a C14-interpretation of width 6 and 2 parameters. We
define the formulas ϕ0(x;p) for the set of vertices of G(S) and ϕ1(x,y;p) for the edge relation
of G(S). We give these formulas right away and discuss the intuition behind them after their
definition. In the following, p is a tuple of two parameter-variables (p0, p1), and x and y are two
6-tuples of variables (x1, x2, x3, x

′
1, x

′
2, x

′
3) and (y1, y2, y3, y

′
1, y

′
2, y

′
3). Thus, the set of vertices of the

defined graph will be a subset of the 6-th power of S. For i ∈ {0, 1} and k ≥ 1, let Ek
i be the set

of k-tuples a = (a1, . . . , ak) ∈ {0, 1}k such that a1 + · · · + ak = i mod 2. The formula ϕ0(x;p) is
the disjunction of the following four formulas:

1. R3,0(x1, x2, x3) ∧
∨

a∈E3
0
(x′1 = pa1 ∧ x

′
2 = pa2 ∧ x

′
3 = pa3),

2. R3,1(x1, x2, x3) ∧
∨

a∈E3
1
(x′1 = pa1 ∧ x

′
2 = pa2 ∧ x

′
3 = pa3),

3. R2,0(x1, x2) ∧ x3 = p0 ∧
∨

a∈E2
0
(x′1 = pa1 ∧ x

′
2 = pa2) ∧ x

′
3 = p0.

2Here we use the fact that Ck can simulate counting quantifiers over tuples. See Lemma 4.9 in [32] for details.
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4. R2,1(x1, x2) ∧ x3 = p0 ∧
∨

a∈E2
1
(x′1 = pa1 ∧ x

′
2 = pa2) ∧ x

′
3 = p0.

The formula ϕ1(x,y;p) is the disjunction of the following formulas:

1.
∨1

i=0R3,i(x1, x2, x3) ∧
∨1

i=0R3,0(y1, y2, y3) ∧
∨3

i=1

∨3
j=1(xi = yj ∧ x

′
i 6= y′j),

2.
∨1

i=0R3,i(x1, x2, x3) ∧
∨1

i=0R2,i(y1, y2) ∧
∨3

i=1

∨2
j=1(xi = yj ∧ x

′
i 6= y′j),

3.
∨1

i=0R2,i(x1, x2) ∧
∨1

i=0R2,i(y1, y2) ∧
∨2

i=1

∨2
j=1(xi = yj ∧ x

′
i 6= y′j).

For an intuition, the 6-tuple (x1, x2, x3, x
′
1, x

′
2, x

′
3) encodes the vertex of G(S) that corresponds to

the equation that has x1, x2, x3 as variables, and x′1, x
′
2, x

′
3 as a satisfying assignment. We use the

parameters p0, p1 to encode both truth values and placeholders, as in the case of clauses 3 and 4 in
the definition of ϕ0 in which x3 and x′3 should not take any particular value. With this explanation,
the first clause in the definition of ϕ1 could read: “x1, x2, x3 and y1, y2, y3 appear together in two
different equations, and happen to share a variable that gets inconsistent values in their respective
assignments x′1, x

′
2, x

′
3 and y′1, y

′
2, y

′
3”.

The claim that these formulas define G(S) is formalized as follows:

Claim 17. Let S be a linear system over GF(2) with at least two variables, and let c = (c0, c1) be
any two of these variables. Then I(S, c) is a graph isomorphic to G(S).

At this point we have a reduction from systems of linear equations over GF(2) to the independent
set problem. Next we argue the reduction from this problem to vertex-cover and max-cut.

For vertex-cover there is not much more left to do: the same graph G(S) will do the job. Let us
compute the size of the smallest vertex-covers in G(S) and in G(S′), when S = S(H,d) for an even
d, and S′ = S(H,d′) for an odd d′. Let n be the number of vertices of H. Since H is 3-regular, the
number of edges is 3n/2. The number of variables in the systems S and S′ is 14n since there are
eight vertex-equations for every vertex, and four edge-equations for every edge. Both graphs G(S)
and G(S′) have 44n vertices since each of the 8n vertex-equations contributes four vertices, and
each of the 6n edge-equations contributes two vertices. Since S is satisfiable, the graph G(S) has
an independent set of size 14n, and therefore a vertex-cover of size 30n. On the other hand, since
S′ is unsatisfiable, the graph G(S) does not have an independent set of size 14n, and therefore it
does not have a vertex-cover of size 30n. Let us note that G(S) and G(S′) both have degree at
most 11.

If we write VERTEX-COVER(G) for the optimum value of VERTEX-COVER applied to graph G,
we have established the following:

Lemma 10. There exist constants ǫ > 0 and c, d > 0 such that for every large enough even n,
there exist graphs G0 and G1, with at most cn vertices and dn edges each and such that:

1. VERTEX-COVER(G0) 6= VERTEX-COVER(G1),

2. G0 ≡
⌊ǫn⌋
C G1.

Next we give the reduction from the independent set problem to max-cut. This will require a
small gadget construction that we found in [39]; other local reductions could work as well.

Starting at a graph G = (V,E), we add one new vertex v0 and edges {v0, v} for every vertex v
in G. Next, each edge {u, v} in G is replaced by a gadget that introduces two new vertices that
we call (u, v) and (v, u). The gadget corresponding to edge {u, v} connects (u, v) to u and (v, u)
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to v, and both (u, v) and (v, u) to v0 and to each other. Let G′ = (V ′, E′) be the resulting graph,
which has |V | + 2|E| + 1 vertices and |V | + 5|E| edges. The claim is that G has an independent
set of size m if and only if G′ has a partition that cuts at least m+ 4|E| edges. Indeed, if A ⊆ V
is an independent set of size m in G, then the number of edges of G′ with exactly one end-point
in A∪ {(u, v) : {u, v} ∈ E, u 6∈ A} ⊆ V ′ is at least m+ 4|E|. Conversely, if G′ has a partition that
cuts at least m+ 4|E| edges of G′, then the set of vertices in V that are on the side opposite to v0
can be made into an independent set of size m in G by arbitrarily removing one vertex from each
violated edge.

Showing that this construction is a Ck-interpretation for a small k is an easy exercise. If original
vertices u in V are represented by triples (u, u, p0), for a parameter p0, and the new vertices (u, v)
for {u, v} in E are represented by triples (u, v, p0), for the same parameter p0, then we can represent
the new vertex v0 by the triple (p1, p1, p1), for another parameter p1 6= p0. The edge relation is then
defined by a straightforward quantifier-free formula. The result is a C3-interpretation of width 3
with 2 parameters.

If we write MAX-CUT(G) for the optimum value of MAX-CUT applied to graph G, this shows:

Lemma 11. There exist constants ǫ > 0 and c, d > 0 such that for every large enough even n,
there exist graphs G0 and G1, with at most cn vertices and dn edges each such that:

1. MAX-CUT(G0) 6= MAX-CUT(G1),

2. G0 ≡
⌊ǫn⌋
C G1.

And finally this gives the promised lower-bound on the SA-rank of the linear programming
relaxations of the integer programs for max-cut and vertex-cover. In both cases take G0 and G1

as in the lemmas. For k = ⌊ǫn⌋, consider the k-th SA-levels P k
0 and P k

1 of the linear programming
relaxation of the corresponding integer programs for G0 and G1. Since G0 ≡k

C G1, we have
G0 ≡k−1

SA G1 by the Transfer Lemma. From Corollary 1, the optimum values over P k′

0 and P k′

1

are the same for k′ = k − 2 in one case and k′ = ⌊(k − 2)/2⌋ in the other. However, the optimum
values over PZ

0 and PZ

1 are not the same since VERTEX-COVER(G0) 6= VERTEX-COVER(G1) and
MAX-CUT(G0) 6= MAX-CUT(G1). Thus, the SA-rank is at least k′ + 1 in both cases, which is Ω(n).

8 Discussion and Open Problems

Isomorphism is in a sense the finest of all binary relations on finite structures. There are other
interesting relations between structures, such as embeddings and homomorphisms, that could well
be phrased as 0-1 linear programs and then appropriately relaxed. The SA-levels of these relaxations
would then yield tighter and tighter approximations. On the combinatorial side, embeddings and
homomorphisms also admit relaxations through corresponding pebble games with modified winning
conditions. In the case of homomorphisms, this is the existential k-pebble game popularized by
Kolaitis and Vardi in the context of constraint satisfaction problems [23]. Does a version of the
Transfer Lemma apply in this case too? While it would not be hard to establish one of the directions
(namely, from solutions to the linear program to winning strategies in the game), and a version
of this was actually anticipated in [4], it seems that the lack of counting in the homomorphism
game could be a serious obstacle at establishing the other. One could try to add some counting
mechanism to the game, but that would require a definition that mixes well with the concept of
homomorphism, which looks challenging.

30



On a different line of thought, perhaps the most promising outcome of the main result in this
paper is the connection it establishes between polyhedral combinatorics and finite model theory. In
Sections 6 and 7 we have shown how rather elementary arguments are able to exploit the knowledge
in one field to get results in the other. We hope that more sophisticated arguments could lead to
stronger results. Let us point out two interesting possibilities.

In the direction from polyhedral combinatorics to finite model theory, it would be interesting to
exploit the sophisticated constructions of integrality gap instances in the world of lift-and-project
methods. One of the admitted bottlenecks of the pebble-game technique for proving inexpressibility
results is the lack of general methods for building pairs of structures with different properties that
stay sufficiently indistinguishable. Perhaps the methods for building integrality gap instances,
say as in [10] through metric-embedding arguments from functional analysis, could be of use for
building such objects. A concrete example where this could be applied is to the problem of perfect
matchings on general graphs. In short, the question reduces to building, for every constant k ≥ 2,
a pair of ≡k

C-equivalent graphs G0 and G1 in which G0 has a perfect matching but G1 does not.
This would show that the class of general graphs having a perfect matching is not definable in the
logic Cω

∞ω, thus solving a problem in [8]. The recent progress in understanding the SA-levels of the
matching polytope could perhaps be also useful here [31].

In the direction from finite model theory to polyhedral combinatorics, new results could follow if
the indistinguishability result in [9] were strengthened to a pair of indistinguishable instances of the
unique-games problem with a large gap in their optimal values. With such a lower bound in hand,
it would be conceivable that the flexibility that the logic approach gives at handling reductions
could yield new and optimal integrality gap instances. For example, one would likely be able to
exploit the reductions from unique-games to vertex-cover in [21] to get instances where an optimal
integrality gap of 2 could resist up to Ω(n) levels of SA. At any rate, exploring the gap-creating
reductions underlying the proofs of the PCP-theorem and the applications of the unique-games
conjecture in the context of finite model theory appears to be an attractive line of research worth
pursuing in itself.
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