ECCC
Electronic Colloquium on Computational Complexity
Login | Register | Classic Style



REPORTS > DETAIL:

Revision(s):

Revision #2 to TR11-090 | 16th October 2012 00:52

Submodular Functions Are Noise Stable

RSS-Feed




Revision #2
Authors: Mahdi Cheraghchi, Adam Klivans, Pravesh Kothari, Homin Lee
Accepted on: 16th October 2012 00:52
Downloads: 334
Keywords: 


Abstract:

We show that all non-negative submodular functions have high noise-stability.
As a consequence, we obtain a polynomial-time learning algorithm for
this class with respect to any product distribution on $\{-1,1\}^n$
(for any constant accuracy parameter $\epsilon$). Our algorithm also
succeeds in the agnostic setting. Previous work on learning
submodular functions required either query access or strong
assumptions about the types of submodular functions to be learned (and
did not hold in the agnostic setting).

Additionally we give simple algorithms that efficiently release
differentially private answers to all Boolean conjunctions and to all
halfspaces with constant average error, subsuming and improving the
recent work due to Gupta, Hardt, Roth and Ullman (STOC~2011).



Changes to previous version:

Corrected an error in Section 3.2 Lemma 9.


Revision #1 to TR11-090 | 13th June 2011 16:32

Submodular Functions Are Noise Stable





Revision #1
Authors: Mahdi Cheraghchi, Adam Klivans, Pravesh Kothari, Homin Lee
Accepted on: 13th June 2011 16:32
Downloads: 731
Keywords: 


Abstract:

We show that all non-negative submodular functions have high noise-stability. As a consequence, we obtain a polynomial-time learning algorithm for this class with respect to any product distribution on $\{-1,1\}^n$ (for any constant accuracy parameter $\epsilon$ ). Our algorithm also succeeds in the agnostic setting. Previous work on learning submodular functions required either query access or strong assumptions about the types of submodular functions to be learned (and did not hold in the agnostic setting).


Paper:

TR11-090 | 2nd June 2011 23:13

Submodular Functions Are Noise Stable





TR11-090
Authors: Mahdi Cheraghchi, Adam Klivans, Pravesh Kothari, Homin Lee
Publication: 10th June 2011 17:03
Downloads: 1351
Keywords: 


Abstract:

We show that all non-negative submodular functions have high noise-stability. As a consequence, we obtain a polynomial-time learning algorithm for this class with respect to any product distribution on $\{-1,1\}^n$ (for any constant accuracy parameter $\epsilon$ ). Our algorithm also succeeds in the agnostic setting. Previous work on learning submodular functions required either query access or strong assumptions about the types of submodular functions to be learned (and did not hold in the agnostic setting).



ISSN 1433-8092 | Imprint