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Abstract

We show that all non-negative submodular functions have high noise-stability. As a consequence,
we obtain a polynomial-time learning algorithm for this class with respect to any product distribution on
{−1, 1}n (for any constant accuracy parameter ε). Our algorithm also succeeds in the agnostic setting.
Previous work on learning submodular functions required either query access or strong assumptions
about the types of submodular functions to be learned (and did not hold in the agnostic setting).

1 Introduction

A function f : 2[n] → R is submodular if

∀S ,T ⊆ [n] : f (S ∪ T ) + f (S ∩ T ) ≤ f (S ) + f (T ).

Submodular functions have been extensively studied in the context of combinatorial optimization [Edm71,
NWF78, FNW78, Lov83] where the functions under consideration (such as the cut function of a graph) are
submodular. An equivalent formulation of submodularity is that of decreasing marginal returns,

∀S ⊆ T ⊆ [n], i ∈ [n] \ T : f (T ∪ {i}) − f (T ) ≤ f (S ∪ {i}) − f (S ),

and thus submodular functions are also a topic of study in economics and the algorithmic game theory
community [DNS06, MR07]. In most contexts, the submodular functions considered are non-negative
[DNS06, FMV07, MR07, Von09, OV11, BH11, GHRU11], and we will be focusing on non-negative sub-
modular functions as well.

The main contribution of this paper is a proof that non-negative submodular functions are noise sta-
ble. Informally, a noise stable function f is one whose value on a random input x does not change much
if x is subjected to a small, random perturbation. Noise stability is a fundamental topic in the analysis
of Boolean functions with applications in hardness of approximation, learning theory, social choice, and
pseudorandomness [KKL88, Hås01, BKS99, O’D04, KOS04, MOO10].

In order to define noise stability, we first define a noise operator that acts on {-1, 1}n.
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Definition 1 (Noise operators). For any product distribution Π = Π1×Π2×· · ·×Πn over {-1, 1}n, ρ ∈ [−1, 1],
x ∈ {-1, 1}n, let the random variable y drawn from the distribution Nρ(x) over {-1, 1}n have yi = xi with
probability ρ and be randomly drawn from Πi with probability 1−ρ. The noise operator Tρ on f : {-1, 1}n →
R is defined by letting Tρ f : {-1, 1}n → R be the function given by Tρ f (x) = Ey∼Nρ(x) f (y).

N.B.: For the uniform distribution y ∼ Nρ(x) has yi = xi with probability 1/2 + ρ/2, and yi = −xi with
probability 1/2 − ρ/2.

Now we can precisely define noise stability:

Definition 2 (Noise stability). The noise stability of f at noise rate ρ is defined to be

Sρ( f ) = 〈 f ,Tρ f 〉 = Ex∼Π[ f (x)Tρ f (x)].

The precise statement of our main theorem is as follows:

Theorem 3. Let Π = Π1 × Π2 × · · · × Πn be a product distribution over {-1, 1}n with minimum probability
pmin and let f : {-1, 1}n → R+ be a submodular function. Then for all, ρ ∈ [−1, 1],

Sρ( f ) ≥ (2ρ − 1 + 2pmin(1 − ρ))‖ f ‖2.

N.B.: For the uniform distribution we get the bound Sρ( f ) ≥ ρ‖ f ‖2.
Given the high noise-stability of submodular functions, we can apply known results from computational

learning theory to show that submodular functions are well-approximated by low-degree polynomials and
can be learned agnostically. Our main learning result is as follows:

Corollary 4. Let C be the class of non-negative submodular functions with ‖ f ‖2 = 1 and let D be any
distribution on {-1, 1}n ×R such that the marginal distribution over {-1, 1}n is a product distribution with
minimum probability bounded by a constant. Then for all f ∈ C, there is a statistical query algorithm that
outputs a hypothesis h with probability 1 − δ such that

E(x,y)∼D[|h(x) − y|] ≤ opt + ε,

in time poly(nO(1/ε2), log(1/δ)),

Here opt is the L1-error of the best fitting concept in the concept class. (See Section 4 for the precise
definition.) Note that the above algorithm will succeed given only statistical query access [Kea98] to the
underlying function to be learned. Also, note that the algorithm can estimate the L2-norm of f to very high
accuracy using Chernoff-Hoeffding bounds and scale the function so that its L2-norm is 1. It can be shown
that having L2 norm 1 is equivalent to being bounded for submodular functions.

1.1 Related Work

Recently the study of learning submodular functions was initiated in two very different contexts. Gupta et al.
[GHRU11] gave an algorithm for learning bounded submodular functions that arose as a technical necessity
for differentially privately releasing the class of disjunctions. Their learning algorithm requires value query
access to the target function, but their algorithm works even when the value queries are answered with
additive error (value queries that are answered with additive error at most τ are said to be τ-tolerant).
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Theorem 5 ([GHRU11]). Let α, β > 0 and let Π be any product distribution over [n]. There is a learning
algorithm that when given (α/4-tolerant) value query access to any submodular function f : 2[n] → [0, 1],
outputs a hypothesis h in time nO(log(1/β)/α2) such that,

Pr
S∼Π

[
| f (S ) − h(S )| ≤ ε

]
≥ 1 − δ.

The learning algorithm of Gupta et al. crucially relies on its query access to the submodular function
in order to break the function down into Lipschitz continuous parts that are easier to learn. Compare this
to Corollary 4, which has similar learning guarantees, but where the learner only has access to statistical
queries and can learn in the agnostic model of learning. (See Section 4.)

The other recent work [BH11] on learning submodular functions was motivated by bundle pricing and
used passive supervised learning as a model for learning consumer valuations of added options. In par-
ticular, they have a polynomial-time algorithm that can learn (using random examples only) monotone,
non-negative, submodular functions within a multiplicative factor of

√
n over arbitrary distributions. As

such, their results are incomparable to ours (it is also not clear if their result holds in the agnostic setting).

1.2 Applications to Differential Privacy

We discuss some applications to differential privacy in Section 5. In particular, we obtain a simple proof of
Gupta et al. [GHRU11]’s recent result on releasing disjunctions with improved parameters.

2 Preliminaries

Throughout, we will identify sets S ⊆ [n] with their indicator vectors 1(S ) ∈ {-1, 1}n where 1(S )i = 1 if
i ∈ S and 1(S )i = −1 if i < S (as opposed to the usual (0, 1)-indicator vectors). For any distribution over Π

over {-1, 1}n, we define the inner product on functions f , g : {-1, 1}n → R by 〈 f , g〉 = Ex∼Π[ f (x)g(x)] and the
L2-norm of a function of f as ‖ f ‖2 =

√
〈 f , f 〉 =

√
Ex∼Π[ f (x)2].

Definition 6 (Minimum probability). Let Π = Π1×Π2× · · · ×Πn be a product distribution over {-1, 1}n, and
let pi := Prxi∼Πi[xi = 1], then pmin = mini∈[n]{pi}.

3 Submodular Functions are Noise Stable

We will start by showing that submodular functions are noise stable under the uniform distribution as a
warm-up as the notation is less cumbersome in this setting. In Section 3.2 we will prove Theorem 3 in the
general setting of arbitrary product distributions.

3.1 Uniform Distribution

For the rest of Section 3.1 we will assume that the distribution over inputs is uniform.
Let the Fourier expansion of f be given by

∑
S⊆[n] f̂ (S )χS , it can be shown that

Tρ f (x) =
∑

S⊆[n]

ρ|S | f̂ (S )χS (x), and thus Sρ( f ) =
∑

S⊆[n]

ρ|S | f̂ (S )2.

The following lemma is our key observation.
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Lemma 7. Let f : {-1, 1}n → R be a submodular function. Then for all x ∈ {-1, 1}n, ρ ∈ [−1, 1],

Tρ f (x) ≥ ρ f (x) + ((1 − ρ)/2)( f (−1n) + f (1n)).

For f : {-1, 1}n → R+, Tρ f (x) ≥ ρ f (x).

Proof. We will use capital letters for sets and lower-case letters for indicators of sets, (e.g., z ∈ {-1, 1}n

and Z is the corresponding set, 1(Z) = z). We will be viewing the domain of f as both 2[n] and {-1, 1}n.
For a fixed x ∈ {-1, 1}n, let πx : [n] → [n] be a permutation such that xπ(1) ≥ · · · ≥ xπ(n), and then define
X j = {π(1) , . . . , π( j)}. (N.B.: X0 = ∅ and Xn = [n].) Finally, we define xπ(0) = 1 and xπ(n+1) = −1. Note that
there is exactly one value j ∈ {0 , . . . , n} for which xπ( j) , xπ( j+1).

Ey∼Nρ(x) f (y) = f (∅) + Ey∼Nρ(x)

n∑
j=1

f (Y ∩ X j) − f (Y ∩ X j−1)

≥ f (∅) + Ey∼Nρ(x)

n∑
j=1

f (Y ∩ {π( j)} ∪ X j−1) − f (X j−1)

= f (∅) +

n∑
j=1

1 + ρxπ( j)

2
( f (X j) − f (X j−1))

=

n∑
j=0

ρ

2
(xπ( j) − xπ( j+1)) f (X j) +

1 − ρ
2

( f (X0) + f (Xn))

= ρ f (X) +
1 − ρ

2
( f (X0) + f (Xn)).

where the inequality is due to the submodularity of f . �

Remark. The proof technique is not new (for instance it was used by Madiman and Tetali [MT10] to show a
large class of Shannon-type inequalities for the joint entropy function). In fact, it can be viewed as a special
case of the “Threshold Lemma” [Von09]. However, to the best of our knowledge the statement of Lemma 7
has never been expressed using the language of noise operators.

Corollary 8. Let f : {-1, 1}n → R be a submodular function. Then for all ρ ∈ [−1, 1],

Sρ( f ) ≥ ρ‖ f ‖2 + ((1 − ρ)/2)( f (−1n) + f (1n))E[ f ].

3.2 Product Distributions

For the rest of Section 3.2 we will assume that the distribution is a product distribution Π = Π1×Π2×· · ·×Πn

on {-1, 1}n with minimum probability pmin.

Lemma 9. Let Π = Π1×Π2× · · ·×Πn be a product distribution over {-1, 1}n with minimum probability pmin

and let f : {-1, 1}n → R+ be a submodular function. Then for all x ∈ {-1, 1}n, ρ ∈ [−1, 1],

Tρ f (x) ≥ ((2ρ − 1) + 2pmin(1 − ρ)) f (x)
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Proof. As before we use capital letters for sets and lower-case letters for indicators of sets. For a fixed
x ∈ {-1, 1}n, let πx : [n] → [n] be a permutation such that xπ(1) ≥ · · · ≥ xπ(n), and then define X j =

{π(1) , . . . , π( j)}. (N.B.: X0 = ∅ and Xn = [n].)

Ey∼Nρ(x) f (y) = f (∅) + Ey∼Nρ(x)

n∑
j=1

f (Y ∩ X j) − f (Y ∩ X j−1)

≥ f (∅) + Ey∼Nρ(x)

n∑
j=1

f (Y ∩ {π( j)} ∪ X j−1) − f (X j−1)

= f (∅) +

n∑
j=1

[
1
2

+
1
2

xπ( j) − (1 − ρ)(1 − pπ( j))]( f (X j) − f (X j−1))

=

n−1∑
j=1

(
(1 − ρ)(xπ( j) pπ( j) − xπ( j+1) pπ( j+1)) − (

1
2
− ρ)(xπ( j) − xπ( j+1))

)
f (X j)

+

(
1
2
−

xπ(1)

2
+ xπ(1)(1 − ρ)(1 − pπ(1))

)
f (∅)

+

(
1
2

+
xπ(n)

2
− xπ(n)(1 − ρ)(1 − pπ(n))

)
f ([n])

≥ (2ρ − 1 + 2pmin(1 − ρ)) f (X).

The first inequality comes from using submodularity in each term of the summation. The equality after that
comes from moving the expectation inside and observing that it is non-zero only if π( j) ∈ X j . Finally,
the last line follows by the non-negativity of f and observing that for any values of xπ(1) and xπ(n), the
coefficients of f (∅) and f ([n]) are non-negative and greater than (2ρ − 1 + 2pmin(1 − ρ)). �

As with Fourier analysis over the uniform distribution, it can be easily verified that

Sρ( f ) = 〈 f ,Tρ f 〉 =
∑

S⊆[n]

ρ|S | f̂ (S )2

over any product distribution Π, where the Fourier coefficients are now defined with respect to the Gram-
Schmidt orthonormalization of the χ basis with respect to the the Π-norm [Bah61, FJS91]. Thus, once
again we get a lower-bound on the noise-stability of submodular functions as an immediate consequence of
Lemma 9.

Theorem 10 (Theorem 3 Restated). Let Π = Π1 ×Π2 × · · · ×Πn be a product distribution over {-1, 1}n with
minimum probability pmin and let f : {-1, 1}n → R+ be a submodular function. Then for all, ρ ∈ [−1, 1],

Sρ( f ) ≥ (2ρ − 1 + 2pmin(1 − ρ))‖ f ‖2.

4 Learning

In the agnostic learning framework [KSS94], the learner receives labelled examples (x, y) drawn from a
fixed distribution over example-label pairs.
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Definition 11 (Agnostic Learning). Let D be any distribution on {-1, 1}n ×R such that the marginal distri-
bution over {-1, 1}n is a product distribution Π. Define

opt = min
f∈C
E(x,y)∼D

[
| f (x) − y|

]
.

That is, opt is the error of the best fitting L1-approximation in C with respect toD.
We say that an algorithm A agnostically learns a concept class C over Π if the following holds for any

D with marginal Π: if A is given random examples drawn from D, then with high probability A outputs a
hypothesis h such that E(x,y)∼D

[
|h(x) − y|

]
≤ opt + ε.

The following lemma, considered folklore (see [KOS04]), shows that noise stable functions are well-
approximated by low-degree polynomials.

Lemma 12. Let Π = Π1 ×Π2 × · · · ×Πn be a product distribution over {-1, 1}n, and let f : {-1, 1}n → R be a
function such that ‖ f ‖2 = 1 and Sρ( f ) ≥ 1 − 2γ. Then there exists a multilinear polynomial p : {-1, 1}n → R
of degree 2/(1 − ρ) such that

Ex∼Π

[
( f − p)2

]
<

(
2

1 − e−2

)
γ.

The “L1 Polynomial Regression Algorithm” due to Kalai et al. [KKMS08] shows that one can agnosti-
cally learn low-degree polynomials.

Theorem 13 ([KKMS08]). Suppose Ex∼DX [( f−p)2] < ε2 for some degree d polynomial p, some distribution
D on X × R with marginal DX , and any f in the concept class C. Then, with probability 1 − δ, the L1
Polynomial Regression Algorithm outputs a hypothesis h such that E(x,y)∼D

[
|h(x) − y|

]
≤ opt + ε in time

poly(nd/ε, log(1/δ)).

Corollary 14. Let C be the class of non-negative submodular functions with ‖ f ‖2 = 1 and let D be any
distribution on {-1, 1}n ×R such that the marginal distribution over {-1, 1}n is a product distribution with
minimum probability bounded by a constant. Then for all f ∈ C, the L1 Polynomial Regression Algorithm
outputs a hypothesis h with probability 1 − δ such that

E(x,y)∼D
[
|h(x) − y|

]
≤ opt + ε,

given random examples in time poly(nO(1/ε2)/ε, log(1/δ)) .

We note that the L1 Polynomial Regression Algorithm can be implemented as a statistical query algo-
rithm [Kal11]. (N.B.: The access offered to the learning algorithm by the statistical query model is much
weaker than that offered by random examples or the tolerant value query model. The tolerant value query
model allows arbitrary value queries that get answered with some noise, whereas the statistical query model
requires that the queries to be of the form g : {-1, 1}n ×R→ R where g is computable by a poly(n, 1/ε)-size
circuit, and the answer is E(x,y)∼D[g(x, y)] with some noise.)

Corollary 15 (Corollary 4 Restated). Let C be the class of non-negative submodular functions with ‖ f ‖2 = 1
and let D be any distribution on {-1, 1}n ×R such that the marginal distribution over {-1, 1}n is a product
distribution with minimum probability bounded by a constant. Then for all f ∈ C, there is a statistical query
algorithm that outputs a hypothesis h with probability 1 − δ such that

E(x,y)∼D[|h(x) − y|] ≤ opt + ε,

in time poly(nO(1/ε2), log(1/δ)).
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5 Private Query Release and Low-Degree Polynomials

In this section, we make a simple observation connecting approximability by low-degree polynomials with
private query release.

In the context of differential privacy, we will call D ⊂ X a database and two databases D,D′ ⊂ X are
adjacent if one can be obtained from the other by adding a single item.

Definition 16 (Differential privacy [DMNS06]). An algorithm A : X∗ → R is ε-differentially private if for
all Q ⊂ R and every pair of adjacent databases D,D′, we have Pr[A(D) ∈ Q] ≤ eε Pr[A(D′) ∈ Q].

A counting query over a database D is just the average value of a query over each entry in the database.

Definition 17 (Counting Query Function). Let c : X → R be a real-valued query function. For a fixed
r ∈ X, let qr(c) := c(r). For a class of queries C and a fixed database D ⊂ X, the counting query function
CQD : C → R is the function defined by CQD(c) := 1

n
∑

r∈D qr(c) = 1
n
∑

r∈D c(r).

A counting query releasing algorithm’s objective is to release a data structure H whose answers on
queries c ∈ C are close to those of the counting query over the original database D.

Definition 18 (Counting query release [GHRU11]). Let C be a class of queries c from X → R, and let Π

be a distribution on C. We say that an algorithm A (α, β)-releases C over a database D of size n, if for
H = A(D),

Pr
c∼Π

[
|CQD(c) − H(c)| ≤ α

]
≥ 1 − β.

The following proposition is implicit in [GHRU11] using results of [BDMN05] and [KLN+08].

Proposition 19. For a given concept class C with distribution Π, if there is a query learning algorithm
for the concept class {CQD : D ⊂ X} using q τ-tolerant value queries that outputs a hypothesis H s.t.
Prc∈Π[|CQD(c) − H(c)| ≤ α] ≥ 1 − β, then there is an ε-differentially private algorithm that (α, β)-releases
C for any database of size |D| ≥ q(log q + log(1/δ))/ετ.

For instance, Gupta et al. [GHRU11] show that for C, the class of disjunctions, the class {CQD : D ⊂ X}
is a submodular function. Thus, their tolerant value query learning algorithm for submodular functions leads
to a private counting query release algorithm.

We make the following observation. For a given concept class C with distribution Π, if for every r ∈ X,
qr is well-approximated by a low-degree polynomial with respect to Π, then CQD is also well-approximated
by a low-degree polynomial with respect to Π. As statistical queries are strictly weaker than tolerant value
queries, the L1 Polynomial Regression Algorithm satisfies the requirements of Proposition 19, and we have
a private counting query release algorithm for C. We note that it is easy to see that a O(log(1/α))-degree
polynomial can L1-approximate qr to within α, when C is the class of disjunctions, and Π is the uniform
distribution. Thus, we are able to retrieve the result of Gupta et al. [GHRU11] on releasing disjunctions
easily with an improved running-time of |X|O(log(1/α)) as opposed |X|O(1/α2).
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