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Abstract

One might think that, once we know something is computable, how efficiently it can be com-
puted is a practical question with little further philosophical importance. In this essay, I offer a
detailed case that one would be wrong. In particular, I argue that computational complexity the-
ory—the field that studies the resources (such as time, space, and randomness) needed to solve
computational problems—leads to new perspectives on the nature of mathematical knowledge,
the strong AI debate, computationalism, the problem of logical omniscience, Hume’s problem
of induction and Goodman’s grue riddle, the foundations of quantum mechanics, economic ra-
tionality, closed timelike curves, and several other topics of philosophical interest. I end by
discussing aspects of complexity theory itself that could benefit from philosophical analysis.
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1 Introduction

The view that machines cannot give rise to surprises is due, I believe, to a fallacy to
which philosophers and mathematicians are particularly subject. This is the assumption
that as soon as a fact is presented to a mind all consequences of that fact spring into the
mind simultaneously with it. It is a very useful assumption under many circumstances,
but one too easily forgets that it is false. —Alan M. Turing [116]

The theory of computing, created by Alan Turing, Alonzo Church, Kurt Gödel, and others in
the 1930s, didn’t only change civilization; it also had a lasting impact on philosophy. Indeed,
clarifying philosophical issues was the original point of their work; the technological payoffs only
came later! Today, it would be hard to imagine a serious discussion about (say) the philosophy of
mind, the foundations of mathematics, or the prospects of machine intelligence that was uninformed
by this revolution in human knowledge three-quarters of a century ago.

However, as computers became widely available starting in the 1960s, computer scientists in-
creasingly came to see computability theory as not asking quite the right questions. For almost
all the problems we actually want to solve turn out to be computable in Turing’s sense; the real
question is which problems are efficiently or feasibly computable. The latter question gave rise to a
new field, called computational complexity theory (not to be confused with the “other” complexity
theory, which studies complex systems such as cellular automata). Since the 1970s, computational
complexity theory has witnessed some spectacular discoveries, which include NP-completeness,
public-key cryptography, new types of mathematical proof (such as probabilistic, interactive, and
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zero-knowledge proofs), and the theoretical foundations of machine learning and quantum compu-
tation. To people who work on these topics, the work of Gödel and Turing may look in retrospect
like just a warmup to the “big” questions about computation.

Because of this, I find it surprising that complexity theory has not influenced philosophy to
anything like the extent computability theory has. The question arises: why hasn’t it? Several
possible answers spring to mind: maybe computability theory just had richer philosophical im-
plications. (Though as we’ll see, one can make a strong case for exactly the opposite.) Maybe
complexity has essentially the same philosophical implications as computability, and computability
got there first. Maybe outsiders are scared away from learning complexity theory by the “math
barrier.” Maybe the explanation is social: the world where Gödel, Turing, Wittgenstein, and
Russell participated in the same intellectual conversation vanished with World War II; after that,
theoretical computer science came to be driven by technology and lost touch with its philosophical
origins. Maybe recent advances in complexity theory simply haven’t had enough time to enter
philosophical consciousness.

However, I suspect that part of the answer is just complexity theorists’ failure to communicate
what they can add to philosophy’s conceptual arsenal. Hence this essay, whose modest goal is
to help correct that failure, by surveying some aspects of complexity theory that might interest
philosophers, as well as some philosophical problems that I think a complexity perspective can
clarify.

1.1 What This Essay Won’t Cover

Outside of computational complexity, there are at least three other major intersection points be-
tween philosophy and modern theoretical computer science. The first one is the semantics of
programming languages, which has large and obvious connections to the philosophy of language.1

The second is distributed systems theory, which provides both an application area and a rich source
of examples for philosophical work on reasoning about knowledge (see Fagin et al. [52] and Stalnaker
[114]). The third is Kolmogorov complexity (see Li and Vitányi [83]) which studies the length of
the shortest computer program that achieves some functionality, disregarding time, memory, and
other resources used by the program.2

In this essay, I won’t discuss any of these connections, except in passing (for example, Section
5 touches on logics of knowledge in the context of the “logical omniscience problem,” and Section 7
touches on Kolmogorov complexity in the context of PAC-learning). In defense of these omissions,
let me offer four excuses. First, these other connections fall outside my stated topic. Second, they
would make this essay even longer than it already is. Third, I lack requisite background. And
fourth, my impression is that philosophers—at least some philosophers—are already more aware
of these other connections than they are of the computational complexity connections that I want
to explain.

2 Complexity 101

Computational complexity theory is a huge, sprawling field; naturally this essay will only touch
on small parts of it. Readers who want to delve deeper into the subject are urged to consult one

1The Stanford Encyclopedia of Philosophy entry on “The Philosophy of Computer Science,”
plato.stanford.edu/entries/computer-science, devotes most of its space to this connection.

2A variant, “resource-bounded Kolmogorov complexity,” does take time and memory into account, and is part of
computational complexity theory proper.
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of the many outstanding textbooks, such as those of Sipser [113], Papadimitriou [93], Moore and
Mertens [89], or Arora and Barak [15]; or survey articles by Wigderson [123, 124] or Fortnow and
Homer [57].

One might think that, once we know something is computable, whether it takes 10 seconds or
20 seconds to compute is obviously the concern of engineers rather than philosophers. But that
conclusion would not be so obvious, if the question were one of 10 seconds versus 1010

10
seconds!

And indeed, in complexity theory, the quantitative gaps we care about are usually so vast that one
has to consider them qualitative gaps as well. Think, for example, of the difference between reading
a 400-page book and reading every possible such book, or between writing down a thousand-digit
number and counting to that number.

More precisely, complexity theory asks the question: how do the resources needed to solve
a problem scale with some measure n of the problem size: “reasonably” (like n or n2, say), or
“unreasonably” (like 2n or n!)? As an example, two n-digit integers can be multiplied using
∼ n2 computational steps (by the grade-school method), or even ∼ n log n log log n steps (by more
advanced methods [104]). Either method is considered efficient. By contrast, the fastest known

method for the reverse operation—factoring an n-digit integer into primes—uses ∼ 2n
1/3

steps,
which is considered inefficient.3 Famously, this conjectured gap between the inherent difficulties of
multiplying and factoring is the basis for most of the cryptography currently used on the Internet.

Theoretical computer scientists generally call an algorithm “efficient” if its running time can be
upper-bounded by any polynomial function of n, and “inefficient” if its running time can be lower-
bounded by any exponential function of n.4 These criteria have the great advantage of theoretical
convenience. While the exact complexity of a problem might depend on “low-level encoding
details,” such as whether our Turing machine has one or two memory tapes, or how the inputs
are represented as binary strings, where a problem falls on the polynomial/exponential dichotomy
can be shown to be independent of such choices.5 Equally important are the closure properties
of polynomial and exponential time: a polynomial-time algorithm that calls a polynomial-time
subroutine still yields an overall polynomial-time algorithm, while a polynomial-time algorithm
that calls an exponential-time subroutine (or vice versa) yields an exponential-time algorithm.
There are also more sophisticated reasons why theoretical computer scientists focus on polynomial
time (rather than, say, n2 time or nlogn time); we’ll explore some of those reasons in Section 5.1.

The polynomial/exponential distinction is open to obvious objections: an algorithm that took
1.00000001n steps would be much faster in practice than an algorithm that took n10000 steps!
Furthermore, there are many growth rates that fall between polynomial and exponential, such

as nlogn and 22
√

log n
. But empirically, polynomial-time turned out to correspond to “efficient

in practice,” and exponential-time to “inefficient in practice,” so often that complexity theorists
became comfortable making the identification. Why the identification works is an interesting
question in its own right, one to which we will return in Section 12.

A priori, insisting that programs terminate after reasonable amounts of time, that they use

3This method is called the number field sieve, and the quoted running time depends on plausible but unproved
conjectures in number theory. The best proven running time is ∼ 2

√
n. Both of these represent nontrivial improve-

ments over the näıve method of trying all possible divisors, which takes ∼ 2n steps. See Pomerance [97] for a good
survey of factoring algorithms.

4In some contexts, “exponential” means cn for some constant c > 1, but in most complexity-theoretic contexts it

can also mean cn
d

for constants c > 1 and d > 0.
5This is not to say that no details of the computational model matter: for example, some problems are known

to be solvable in polynomial time on a quantum computer, but not known to be solvable in polynomial time on a
classical computer! But in my view, the fact that the polynomial/exponential distinction can “notice” a modelling
choice of this magnitude is a feature of the distinction, not a bug.
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reasonable amounts of memory, etc. might sound like relatively-minor amendments to Turing’s
notion of computation. In practice, though, these requirements lead to a theory with a completely
different character than computability theory. Firstly, complexity has much closer connections
with the sciences: it lets us pose questions about (for example) evolution, quantum mechanics,
statistical physics, economics, or human language acquisition that would be meaningless from a
computability standpoint (since all the relevant problems are computable). Complexity also differs
from computability in the diversity of mathematical techniques used: while initially complexity (like
computability) drew mostly on mathematical logic, today it draws on probability, number theory,
combinatorics, representation theory, Fourier analysis, and nearly every other subject about which
yellow books are written. Of course, this contributes not only to complexity theory’s depth but
also to its perceived inaccessibility.

In this essay, I’ll argue that complexity theory has direct relevance to major issues in philosophy,
including syntax and semantics, the problem of induction, and the interpretation of quantum
mechanics. Or that, at least, whether complexity theory does or does not have such relevance is
an important question for philosophy! My personal view is that complexity will ultimately prove
more relevant to philosophy than computability was, precisely because of the rich connections with
the sciences mentioned earlier.

3 The Relevance of Polynomial Time

Anyone who doubts the importance of the polynomial/exponential distinction needs only ponder
how many basic intuitions in math, science, and philosophy already implicitly rely on that distinc-
tion. In this section I’ll give three examples.

3.1 The Entscheidungsproblem Revisited

The Entscheidungsproblem was the dream, enunciated by David Hilbert in the 1920s, of design-
ing a mechanical procedure to determine the truth or falsehood of any well-formed mathematical
statement. According to the usual story, Hilbert’s dream was irrevocably destroyed by the work
of Gödel and Turing in the 1930s. First, the Incompleteness Theorem showed that no recursively-
axiomatizable formal system can encode all and only the true mathematical statements. Second,
Turing’s results showed that, even if we settle for an incomplete system F , there is still no me-
chanical procedure to sort mathematical statements into the three categories “provable in F ,”
“disprovable in F ,” and “undecidable in F .”

However, there is a catch in the above story, which was first pointed out by Gödel himself, in
a 1956 letter to John von Neumann that has become famous in theoretical computer science since
its rediscovery in the 1980s (see Sipser [112] for an English translation). Given a formal system
F (such as Zermelo-Fraenkel set theory), Gödel wrote, consider the problem of deciding whether
a mathematical statement S has a proof in F with n symbols or fewer. Unlike Hilbert’s original
problem, this “truncated Entscheidungsproblem” is clearly decidable. For, if nothing else, we could
always just program a computer to search through all 2n possible bit-strings with n symbols, and
check whether any of them encodes a valid F -proof of S. The issue is “merely” that this approach
takes an astronomical amount of time: if n = 1000 (say), then the universe will have degenerated
into black holes and radiation long before a computer can check 21000 proofs!

But as Gödel also pointed out, it’s far from obvious how to prove that there isn’t a much
better approach: an approach that would avoid brute-force search, and find proofs of size n in time
polynomial in n. Furthermore:
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If there actually were a machine with [running time] ∼ Kn (or even only with ∼ Kn2)
[for some constant K independent of n], this would have consequences of the greatest
magnitude. That is to say, it would clearly indicate that, despite the unsolvability of
the Entscheidungsproblem, the mental effort of the mathematician in the case of yes-
or-no questions could be completely [added in a footnote: apart from the postulation
of axioms] replaced by machines. One would indeed have to simply select an n so large
that, if the machine yields no result, there would then also be no reason to think further
about the problem.

If we replace the “∼ Kn or ∼ Kn2” in Gödel’s challenge by ∼ Knc for an arbitrary constant
c, then we get precisely what computer science now knows as the P versus NP problem. Here P

(Polynomial-Time) is, roughly speaking, the class of all computational problems that are solvable
by a polynomial-time algorithm. Meanwhile, NP (Nondeterministic Polynomial-Time) is the class
of computational problems for which a solution can be recognized in polynomial time, even though
a solution might be very hard to find.6 (Think, for example, of factoring a large number, or solving
a jigsaw or Sudoku puzzle.) Clearly P ⊆ NP, so the question is whether the inclusion is strict. If
P = NP, then the ability to check the solutions to puzzles efficiently would imply the ability to find
solutions efficiently. An analogy would be if anyone able to appreciate a great symphony could
also compose one themselves!

Given the intuitive implausibility of such a scenario, essentially all complexity theorists proceed
(reasonably, in my opinion) on the assumption that P 6= NP, even if they publicly claim open-
mindedness about the question. Proving or disproving P 6= NP is one of the seven million-dollar
Clay Millennium Prize Problems7 (alongside the Riemann Hypothesis, the Poincaré Conjecture
proved in 2002 by Perelman, etc.), which should give some indication of the problem’s difficulty.8

Now return to the problem of whether a mathematical statement S has a proof with n symbols
or fewer, in some formal system F . A suitable formalization of this problem is easily seen to be in
NP. For finding a proof might be intractable, but if we’re given a purported proof, we can certainly
check in time polynomial in n whether each line of the proof follows by a simple logical manipulation
of previous lines. Indeed, this problem turns out to be NP-complete, which means that it belongs to
an enormous class of NP problems, first identified in the 1970s, that “capture the entire difficulty of
NP.” A few other examples of NP-complete problems are Sudoku and jigsaw puzzles, the Traveling
Salesperson Problem, and the satisfiability problem for propositional formulas.9 Asking whether

6Contrary to a common misconception, NP does not stand for “Non-Polynomial”! There are computational
problems that are known to require more than polynomial time (see Section 10), but the NP problems are not among
those. Indeed, the classes NP and “Non-Polynomial” have a nonempty intersection exactly if P 6= NP.

For detailed definitions of P, NP, and several hundred other complexity classes, see my Complexity Zoo website:
www.complexityzoo.com.

7For more information see www.claymath.org/millennium/P vs NP/
My own view is that P versus NP is manifestly the most important of the seven problems! For if P = NP, then by

Gödel’s argument, there is an excellent chance that we could program our computers to solve the other six problems
as well.

8One might ask: can we explain what makes the P 6= NP problem so hard, rather than just pointing out that many
smart people have tried to solve it and failed? After four decades of research, we do have partial explanations for the
problem’s difficulty, in the form of formal “barriers” that rule out large classes of proof techniques. Three barriers
identified so far are relativization [21] (which rules out diagonalization and other techniques with a “computability”
flavor), algebrization [8] (which rules out diagonalization even when combined with the main non-relativizing tech-
niques known today), and natural proofs [100] (which shows that many “combinatorial” techniques, if they worked,
could be turned around to get faster algorithms to distinguish random from pseudorandom functions).

9By contrast, and contrary to a common misconception, there is strong evidence that factoring integers is not

NP-complete. It is known that if P 6= NP, then there are NP problems that are neither in P nor NP-complete [80], and
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P = NP is equivalent to asking whether any NP-complete problem can be solved in polynomial
time, and is also equivalent to asking whether all of them can be.

In modern terms, then, Gödel is saying that if P = NP, then whenever a theorem had a proof
of reasonable length, we could find that proof in a reasonable amount of time. In such a situation,
we might say that “for all practical purposes,” Hilbert’s dream of mechanizing mathematics had
prevailed, despite the undecidability results of Gödel and Turing. If you accept this, then it seems
fair to say that until P versus NP is solved, the story of Hilbert’s Entscheidungsproblem—its rise,
its fall, and the consequences for philosophy—is not yet over.

3.2 Evolvability

Creationists often claim that Darwinian evolution is as vacuous an explanation for complex adap-
tations as “a tornado assembling a 747 airplane as it passes through a junkyard.” Why is this
claim false? There are several related ways of answering the question, but to me, one of the most
illuminating is the following. In principle, one could see a 747 assemble itself in a tornado-prone
junkyard—but before that happened, one would need to wait for an expected number of tornadoes
that grew exponentially with the number of pieces of self-assembling junk. (This is similar to how,
in thermodynamics, n gas particles in a box will eventually congregate themselves in one corner of
the box, but only after ∼ cn time for some constant c.) By contrast, evolutionary processes can
often be observed in simulations—and in some cases, even proved theoretically—to find interesting
solutions to optimization problems after a number of steps that grows only polynomially with the
number of variables.

Interestingly, in a 1972 letter to Hao Wang (see [120, p. 192]), Kurt Gödel expressed his own
doubts about evolution as follows:

I believe that mechanism in biology is a prejudice of our time which will be disproved.
In this case, one disproof, in my opinion, will consist in a mathematical theorem to
the effect that the formation within geological time of a human body by the laws of
physics (or any other laws of similar nature), starting from a random distribution of
the elementary particles and the field, is as unlikely as the separation by chance of the
atmosphere into its components.

Personally, I see no reason to accept Gödel’s intuition on this subject over the consensus of
modern biology! But pay attention to Gödel’s characteristically-careful phrasing. He does not ask
whether evolution can eventually form a human body (for he knows that it can, given exponential
time); instead, he asks whether it can do so on a “merely” geological timescale. Just as Gödel’s
letter to von Neumann anticipated the P versus NP problem, so Gödel’s letter to Wang might be
said to anticipate a recent effort, by the celebrated computer scientist Leslie Valiant, to construct
a quantitative “theory of evolvability” [118]. Building on Valiant’s earlier work in computational
learning theory (discussed in Section 7), evolvability tries to formalize and answer questions about
the speed of evolution. For example: “what sorts of adaptive behaviors can evolve, with high
probability, after only a polynomial number of generations? what sorts of behaviors can be
learned in polynomial time, but not via evolution?” While there are some interesting early results,
it should surprise no one that evolvability is nowhere close to being able to calculate, from first
principles, whether four billion years is a “reasonable” or “unreasonable” length of time for the
human brain to evolve out of the primordial soup.

factoring is one candidate for such a problem. This point will become relevant when we discuss quantum computing.
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As I see it, this difficulty reflects a general point about Gödel’s “evolvability” question. Namely,
even supposing Gödel was right, that the mechanistic worldview of modern biology was “as unlikely
as the separation by chance of the atmosphere into its components,” computational complexity
theory seems hopelessly far from being able to prove anything of the kind! In 1972, one could
have argued that this merely reflected the subject’s newness: no one had thought terribly deeply
yet about how to prove lower bounds on computation time. But by now, people have thought
deeply about it, and have identified huge obstacles to proving even such “obvious” and well-defined
conjectures as P 6= NP.10 (Section 4 will make a related point, about the difficulty of proving
nontrivial lower bounds on the time or memory needed by a computer program to pass the Turing
Test.)

3.3 Known Integers

My last example of the philosophical relevance of the polynomial/exponential distinction concerns
the concept of “knowledge” in mathematics.11 As of 2011, the “largest known prime number,” as
reported by GIMPS (the Great Internet Mersenne Prime Search),12 is p := 243112609 − 1. But on
reflection, what do mean by saying that p is “known”? Do we mean that, if we desired, we could
literally print out its decimal digits (using about 30, 000 pages)? That seems like too restrictive
a criterion. For, given a positive integer k together with a proof that q = 2k − 1 was prime, I
doubt most mathematicians would hesitate to call q a “known” prime, even if k were so large that
printing out its decimal digits (or storing them in a computer memory) were beyond the Earth’s
capacity. Should we call 22

1000
an “unknown power of 2,” just because it has too many decimal

digits to list before the Sun goes cold?
All that should really matter, one feels, is that

(a) the expression ‘243112609 − 1’ picks out a unique positive integer, and

(b) that integer has been proven (in this case, via computer, of course) to be prime.

But wait! If those are the criteria, then why can’t we immediately beat the largest-known-prime
record, like so?

p′ = The first prime larger than 243112609 − 1.

Clearly p′ exists, it is unambiguously defined, and it is prime. If we want, we can even write
a program that is guaranteed to find p′ and output its decimal digits, using a number of steps
that can be upper-bounded a priori.13 Yet our intuition stubbornly insists that 243112609 − 1 is a
“known” prime in a sense that p′ is not. Is there any principled basis for such a distinction?

The clearest basis that I can suggest is the following. We know an algorithm that takes as
input a positive integer k, and that outputs the decimal digits of p = 2k − 1 using a number of
steps that is polynomial—indeed, linear—in the number of digits of p. But we do not know any
similarly-efficient algorithm that provably outputs the first prime larger than 2k − 1.14

10Admittedly, one might be able to prove that Darwinian natural selection would require exponential time to
produce some functionality, without thereby proving that any algorithm would require exponential time.

11This section was inspired by a question of A. Rupinski on the website MathOverflow. See
mathoverflow.net/questions/62925/philosophical-question-related-to-largest-known-primes/

12www.mersenne.org
13For example, one could use Chebyshev’s Theorem (also called Bertrand’s Postulate), which says that for all N > 1

there exists a prime between N and 2N .
14Cramér’s Conjecture states that the spacing between two consecutive n-digit primes never exceeds ∼ log2 n.
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3.4 Summary

The point of these examples was to illustrate that, beyond its utility for theoretical computer
science, the polynomial/exponential gap is also a fertile territory for philosophy. I think of the
polynomial/exponential gap as occupying a “middle ground” between two other sorts of gaps: on
the one hand, small quantitative gaps (such as the gap between n steps and 2n steps); and on the
other hand, the gap between a finite number of steps and an infinite number. The trouble with
small quantitative gaps is that they are too sensitive to “mundane” modeling choices and the details
of technology. But the gap between finite and infinite has the opposite problem: it is serenely
insensitive to distinctions that we actually care about, such as that between finding a solution and
verifying it, or between classical and quantum physics.15 The polynomial/exponential gap avoids
both problems.

4 Computational Complexity and the Turing Test

Can a computer think? For almost a century, discussions about this question have often conflated
two issues. The first is the “metaphysical” issue:

Supposing a computer program passed the Turing Test (or as strong a variant of the
Turing Test as one wishes to define16), would we be right to ascribe to it “consciousness,”
“qualia,” “aboutness,” “intentionality,” “subjectivity,” “personhood,” or whatever other
charmed status we wish to ascribe to other humans and to ourselves?

The second is the “practical” issue:

Could a computer program that passed (a strong version of) the Turing Test actually
be written? Is there some fundamental reason why it couldn’t be?

Of course, it was precisely in an attempt to separate these issues that Turing proposed the
Turing Test in the first place! But despite his efforts, a familiar feature of anti-AI polemics to this
day is that they first assert AI’s metaphysical impossibility, then try to bolster that position with
claims about AI’s practical difficulties. “Sure,” they say, “a computer program might mimic a few
minutes of witty banter, but clearly it wouldn’t be conscious! For unlike a human being, it would
never show fear or anger or jealousy, or compose symphonies, or grow old, or fall in love...”

The obvious followup question—and what if a program did all those things?—is often left
unasked, or else answered by listing more things that a computer program could self-evidently
never do. Because of this, I believe that many people who think they consider AI a metaphysical
impossibility, really only consider it a practical impossibility: they simply have not carried the
requisite thought experiment far enough to see the difference between the two.17

This conjecture appears staggeringly difficult: it implies the Riemann Hypothesis, for example. But interestingly, if
Cramér’s Conjecture is proved, expressions like “the first prime larger than 2k − 1” will then define “known primes”
according to my criterion.

15In particular, it is easy to check that the set of computable functions does not depend on whether we define
computability with respect to a classical or a quantum Turing machine, or a deterministic or nondeterministic one.
At most, these choices can change a Turing machine’s running time by an exponential factor, which is irrelevant for
computability theory.

16That is, besides the usual teletype conversation, one might also add tests requiring vision, hearing, touch, smell,
speaking, handwriting, facial expressions, dancing, playing sports and musical instruments, etc., even though many
perfectly-intelligent humans would then be unable to pass the tests!

17One famous exception is John Searle [105], who has made it clear that, if (say) his best friend turned out to be
controlled by a microchip rather than a brain, then he would regard his friend as never having been a person at all.
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Thus, the anti-AI arguments that interest me most have always been the ones that target
the practical issue from the outset, by proposing empirical “sword-in-the-stone tests” (in Daniel
Dennett’s phrase [45]) that it is claimed humans can pass but computers cannot. The most famous
such test is probably the one based on Gödel’s Incompleteness Theorem, as proposed by John Lucas
[85] and elaborated by Roger Penrose in his books The Emperor’s New Mind [94] and Shadows of
the Mind [95].

Briefly, Lucas and Penrose argued that, according to the Incompleteness Theorem, one thing
that a computer making deductions via fixed formal rules can never do is to “see” the consistency of
its own rules. Yet this, they assert, is something that human mathematicians can do, via some sort
of intuitive perception of Platonic reality. Therefore humans (or at least, human mathematicians!)
can never be simulated by machines.

Critics pointed out numerous holes in this argument,18 to which Penrose responded at length
in Shadows of the Mind, in my opinion unconvincingly. However, even before we analyze some
proposed sword-in-the-stone test, it seems to me that there is a much more basic question. Namely,
what does one even mean in saying one has a task that “humans can perform but computers
cannot”?

4.1 The Lookup-Table Argument

The difficulty, as previously noticed by Block [30] and others, is the following. In practice, people
judge each other to be conscious after interacting for a very short time, perhaps as little as a few
seconds. This suggests that we can put a finite upper bound—to be generous, let us say 1020—on
the number of bits of information that two people A and B would ever realistically exchange, before
A had amassed enough evidence to conclude B was conscious.19 Now imagine a lookup table that
stores every possible history H of A and B’s conversation, and next to H, the action fB (H) that
B would take next given that history. Of course, like Borges’ Library of Babel, the lookup table
would consist almost entirely of meaningless nonsense, and it would also be much too large to fit
inside the observed universe. But all that matters for us is that the lookup table would be finite,
by the assumption that there is a finite upper bound on the conversation length. This implies that
the function fB is computable (indeed, it can be recognized by a finite automaton!). From these
simple considerations, we conclude that if there is a fundamental obstacle to computers passing

18See Dennett [45] and Chalmers [37] for example. To summarize:

(1) Why should we assume a computer operates within a knowably-sound formal system? If we grant a computer
the same freedom to make occasional mistakes that we grant humans, then the Incompleteness Theorem is no
longer relevant.

(2) Why should we assume that human mathematicians have “direct perception of Platonic reality”? Human
mathematicians (such as Frege) have been wrong before about the consistency of formal systems.

(3) A computer could, of course, be programmed to output “I believe that formal system F is consistent”—and
even to output answers to various followup questions about why it believes this. So in arguing that such
affirmations “wouldn’t really count” (because they wouldn’t reflect “true understanding”), AI critics such as
Lucas and Penrose are forced to retreat from their vision of an empirical “sword-in-the-stone test,” and fall
back on other, unspecified criteria related to the AI’s internal structure. But then why put the sword in the

stone in the first place?

19People interacting over the Internet, via email or instant messages, regularly judge each other to be humans
rather than spam-bots after exchanging a much smaller number of bits! In any case, cosmological considerations
suggest an upper bound of roughly 10122 bits in any observable process [34].
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the Turing Test, then it is not to be found in computability theory.20

In Shadows of the Mind [95, p. 83], Penrose recognizes this problem, but gives a puzzling and
unsatisfying response:

One could equally well envisage computers that contain nothing but lists of totally false
mathematical ‘theorems,’ or lists containing random jumbles of truths and falsehoods.
How are we to tell which computer to trust? The arguments that I am trying to make
here do not say that an effective simulation of the output of conscious human activity
(here mathematics) is impossible, since purely by chance the computer might ‘happen’
to get it right—even without any understanding whatsoever. But the odds against this
are absurdly enormous, and the issues that are being addressed here, namely how one
decides which mathematical statements are true and which are false, are not even being
touched...

The trouble with this response is that it amounts to a retreat from the sword-in-the-stone
test, back to murkier internal criteria. If, in the end, we are going to have to look inside the
computer anyway to determine whether it truly “understands” its answers, then why not dispense
with computability theory from the beginning? For computability theory only addresses whether
or not Turing machines exist to solve various problems, and we have already seen that that is not
the relevant issue.

To my mind, there is one obvious direction that Penrose could take from this point to avoid
incoherence—though disappointingly, it is not the direction he chooses. Namely, he could point out
that, while the lookup table “works,” it requires computational resources that grow exponentially
with the length of the conversation! This would lead to the following speculation:

(*) Any computer program that passed the Turing Test would need to be exponentially-
inefficient in the length of the test—as measured in time, memory usage, or simply the
number of bits needed to write the program down. In other words, the astronomical
lookup table is essentially the best one can do.

If true, speculation (*) would do what Penrose wants: it would imply that the human brain
cannot even be simulated by computer, within the resource constraints of the observable universe.
Furthermore, unlike the earlier computability claim, (*) has the advantage of not being trivially
false! Of course, to put it mildly, (*) is not trivially true either. For AI proponents, that is hardly
surprising: if you believe that the brain itself is basically an efficient,21 classical Turing machine,
then you have at hand a simple explanation for why no one has proved that the brain can’t be
simulated by such a machine! However, complexity theory also makes it clear that, even if we

20Some readers might notice a tension here: I explained in Section 2 that complexity theorists care about the
asymptotic behavior as the problem size n goes to infinity. So why am I now saying that, for the purposes of
the Turing Test, we should restrict attention to finite values of n such as 1020? There are two answers to this
question. The first is that, in contrast to mathematical problems like the factoring problem or the halting problem,
it is unclear whether it even makes sense to generalize the Turing Test to arbitrary conversation lengths: for the
Turing Test is defined in terms of human beings, and human conversational capacity is finite. The second answer is
that, to whatever extent it does make sense to generalize the Turing Test to arbitrary conversation lengths n, I am
interested in whether the asymptotic complexity of passing the test grows polynomially or exponentially with n (as
the remainder of the section explains).

21Here, by a Turing machineM being “efficient,” we mean thatM ’s running time, memory usage, and program size
are modest enough that there is no real problem of principle understanding how M could be simulated by a classical
physical system consisting of ∼ 1011 neurons and ∼ 1014 synapses. For example, a Turing machine containing a

lookup table of size 1010
20

would not be efficient in this sense.
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supposed (*) held, there would be little hope of proving it in our current state of mathematical
knowledge. After all, we cannot even prove plausible, well-defined conjectures such as P 6= NP.

4.2 Can Humans Solve NP-Complete Problems Efficiently?

At this point, I need to address a speculative possibility. If it turned out that humans could solve
arbitrary instances of NP-complete problems in polynomial time, then that would certainly con-
stitute strong empirical evidence that humans weren’t efficiently simulable by Turing machines.22

However, despite occasional claims to the contrary, I personally see no reason to believe that hu-
mans can solve NP-complete problems efficiently, and excellent reasons to believe the opposite.23

Recall, for example, that the integer factoring problem is in NP. Thus, if humans could solve
NP-complete problems, then presumably we ought to be able to factor enormous numbers as well!
But factoring does not exactly seem like the most promising candidate for a sword-in-the-stone test:
that is, a task that’s easy for humans but hard for existing computers. As far as anyone knows,
factoring is hard for humans and classical computers alike, although with a definite advantage on
the computers’ side.

The basic point can hardly be stressed enough: when complexity theorists talk about “in-
tractable” problems, they generally mean mathematical problems that all our experience leads us
to believe are at least as hard for humans as for computers. This suggests that, even if humans
were not efficiently simulable by Turing machines, the “direction” in which they were hard to simu-
late would almost certainly be different from the directions usually considered in complexity theory.
I see two (hypothetical) ways this could happen.

First, the tasks that humans were uniquely good at—like painting or writing poetry—could
be incomparable with mathematical tasks like solving NP-complete problems, in the sense that
neither was efficiently reducible to the other. This would mean, in particular, that there could
be no polynomial-time algorithm even to recognize great art or poetry (since if such an algorithm
existed, then the task of composing great art or poetry would be in NP). Within complexity
theory, it’s known that there exist pairs of problems that are incomparable in this sense. As one
plausible example, no one currently knows how to reduce the simulation of quantum computers to
the solution of NP-complete problems or vice versa.

Second, humans could have the ability to solve interesting special cases of NP-complete problems
faster than any Turing machine. So for example, even if computers were better than humans at
factoring large numbers or at solving randomly-generated Sudoku puzzles, humans might still be
better at search problems with “higher-level structure” or “semantics,” such as proving Fermat’s
Last Theorem or (ironically) designing faster computer algorithms. Indeed, even in limited domains
such as puzzle-solving, while computers can examine solutions millions of times faster, humans (for
now) are vastly better at noticing global patterns or symmetries in the puzzle that make a solution
either trivial or impossible. As an amusing example, consider the Pigeonhole Principle, which says

22And amusingly, if we could solve NP-complete problems, then we’d presumably find it much easier to prove that
computers couldn’t solve them!

23Indeed, it is not even clear to me that we should think of humans as being able to solve all P problems efficiently,
let alone NP-complete problems! Recall that P is the class of problems that are solvable in polynomial time by
a deterministic Turing machine. Many problems are known to belong to P for quite sophisticated reasons: two
examples are testing whether a number is prime (though not factoring it!) [9] and testing whether a graph has a
perfect matching. In principle, of course, a human could laboriously run the polynomial-time algorithms for such
problems using pencil and paper. But is the use of pencil and paper legitimate, where use of a computer would
not be? What is the computational power of the “unaided” human intellect? Recent work of Drucker [50], which
shows how to use a stock photography collection to increase the “effective memory” available for mental calculations,
provides a fascinating empirical perspective on these questions.
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that n+1 pigeons can’t be placed into n holes, with at most one pigeon per hole. It’s not hard to
construct a propositional Boolean formula ϕ that encodes the Pigeonhole Principle for some fixed
value of n (say, 1000). However, if you then feed ϕ to current Boolean satisfiability algorithms,
they’ll assiduously set to work trying out possibilities: “let’s see, if I put this pigeon here, and
that one there ... darn, it still doesn’t work!” And they’ll continue trying out possibilities for an
exponential number of steps, oblivious to the “global” reason why the goal can never be achieved.
Indeed, beginning in the 1980s, the field of proof complexity—a close cousin of computational
complexity—has been able to show that large classes of algorithms require exponential time to
prove the Pigeonhole Principle and similar propositional tautologies (see Beame and Pitassi [24]
for a survey).

Still, if we want to build our sword-in-the-stone test on the ability to detect “higher-level
patterns” in combinatorial search problems, then the burden is on us to explain what we mean
by higher-level patterns, and why we think that no polynomial-time Turing machine—even much
more sophisticated ones than we can imagine today—could ever detect those patterns as well. For
an initial attempt to understand NP-complete problems from a cognitive science perspective, see
Baum [22].

4.3 Summary

My conclusion is that, if you oppose the possibility of AI in principle, then either

(i) you can take the “metaphysical route” (as Searle [105] does with the Chinese Room), con-
ceding the possibility of a computer program passing every conceivable empirical test for
intelligence, but arguing that that isn’t enough, or

(ii) you can conjecture an astronomical lower bound on the resource requirements of such a
program—but here there is little question of proof for the foreseeable future.

Crucially, because of the lookup-table argument, one option you do not have is to assert the flat-
out impossibility of a computer program passing the Turing Test, with no mention of quantitative
complexity bounds.

5 The Problem of Logical Omniscience

Giving a formal account of knowledge is one of the central concerns in modern analytic philosophy;
the literature is too vast even to survey here (though see Fagin et al. [52] for a computer-science-
friendly overview). Typically, formal accounts of knowledge involve conventional “logical” axioms,
such as

• If you know P and you know Q, then you also know P ∧Q

supplemented by “modal” axioms having to do with knowledge itself, such as

• If you know P , then you also know that you know P

• If you don’t know P , then you know that you don’t know P 24

24Not surprisingly, this particular axiom has engendered controversy: it leaves no possibility for Rumsfeldian
“unknown unknowns.”

13



While the details differ, what most formal accounts of knowledge have in common is that they
treat an agent’s knowledge as closed under the application of various deduction rules like the ones
above. In other words, agents are considered logically omniscient : if they know certain facts, then
they also know all possible logical consequences of those facts.

Sadly and obviously, no mortal being has ever attained or even approximated this sort of
omniscience (recall the Turing quote from the beginning of Section 1). So for example, I can know
the rules of arithmetic without knowing Fermat’s Last Theorem, and I can know the rules of chess
without knowing whether White has a forced win. Furthermore, the difficulty is not (as sometimes
claimed) limited to a few domains, such as mathematics and games. As pointed out by Stalnaker
[114], if we assumed logical omniscience, then we couldn’t account for any contemplation of facts
already known to us—and thus, for the main activity and one of the main subjects of philosophy
itself!

We can now loosely state what Hintikka [67] called the problem of logical omniscience:

Can we give some formal account of “knowledge” able to accommodate people learning
new things without leaving their armchairs?

Of course, one vacuous “solution” would be to declare that your knowledge is simply a list of all
the true sentences25 that you “know”—and that, if the list happens not to be closed under logical
deductions, so be it! But this “solution” is no help at all at explaining how or why you know
things. Can’t we do better?

Intuitively, we want to say that your “knowledge” consists of various non-logical facts (“grass is
green”), together with some simple consequences of those facts (“grass is not pink”), but not nec-
essarily all the consequences, and certainly not all consequences that involve difficult mathematical
reasoning. Unfortunately, as soon as we try to formalize this idea, we run into problems.

The most obvious problem is the lack of a sharp boundary between the facts you know right away,
and those you “could” know, but only after significant thought. (Recall the discussion of “known
primes” from Section 3.3.) A related problem is the lack of a sharp boundary between the facts
you know “only if asked about them,” and those you know even if you’re not asked. Interestingly,
these two boundaries seem to cut across each other. For example, while you’ve probably already
encountered the fact that 91 is composite, it might take you some time to remember it; while you’ve
probably never encountered the fact that 83190 is composite, once asked you can probably assent
to it immediately.

But as discussed by Stalnaker [114], there’s a third problem that seems much more serious than
either of the two above. Namely, you might “know” a particular fact if asked about it one way, but
not if asked in a different way! To illustrate this, Stalnaker uses an example that we can recognize
immediately from the discussion of the P versus NP problem in Section 3.1. If I asked you whether
43× 37 = 1591, you could probably answer easily (e.g., by using (40 + 3) (40− 3) = 402 − 32). On
the other hand, if I instead asked you what the prime factors of 1591 were, you probably couldn’t
answer so easily.

But the answers to the two questions have the same content, even on a very fine-
grained notion of content. Suppose that we fix the threshold of accessibility so that
the information that 43 and 37 are the prime factors of 1591 is accessible in response to
the second question, but not accessible in response to the first. Do you know what the
prime factors of 1591 are or not? ... Our problem is that we are not just trying to say

25If we don’t require the sentences to be true, then presumably we’re talking about belief rather than knowledge.

14



what an agent would know upon being asked certain questions; rather, we are trying
to use the facts about an agent’s question answering capacities in order to get at what
the agent knows, even if the questions are not asked. [114, p. 253]

To add another example: does a typical four-year-old child “know” that addition of reals is
commutative? Certainly not if we asked her in those words—and if we tried to explain the words,
she probably wouldn’t understand us. Yet if we showed her a stack of books, and asked her
whether she could make the stack higher by shuffling the books, she probably wouldn’t make a
mistake that involved imagining addition was non-commutative. In that sense, we might say she
already “implicitly” knows what her math classes will later make explicit.

In my view, these and other examples strongly suggest that only a small part of what we
mean by “knowledge” is knowledge about the truth or falsehood of individual propositions. And
crucially, this remains so even if we restrict our attention to “purely verbalizable” knowledge—
indeed, knowledge used for answering factual questions—and not (say) knowledge of how to ride a
bike or swing a golf club, or knowledge of a person or a place.26 Many everyday uses of the word
“know” support this idea:

Do you know calculus?
Do you know Spanish?
Do you know the rules of bridge?

Each of the above questions could be interpreted as asking: do you possess an internal algorithm,
by which you can answer a large (and possibly-unbounded) set of questions of some form? While
this is rarely made explicit, the examples of this section and of Section 3.3 suggest adding the
proviso: . . . answer in a reasonable amount of time?

But suppose we accept that “knowing how” (or “knowing a good algorithm for”) is a more
fundamental concept than “knowing that.” How does that help us at all in solving the logical
omniscience problem? You might worry that we’re right back where we started. After all, if we
try to give a formal account of “knowing how,” then just like in the case of “knowing that,” it will
be tempting to write down axioms like the following:

If you know how to compute f (x) and g (x) efficiently, then you also know how to
compute f (x) + g (x) efficiently.

Naturally, we’ll then want to take the logical closure of those axioms. But then, before we know it,
won’t we have conjured into our imaginations a computationally-omniscient superbeing, who could
efficiently compute anything at all?

5.1 The Cobham Axioms

Happily, the above worry turns out to be unfounded. We can write down reasonable axioms for
“knowing how to compute efficiently,” and then go ahead and take the closure of those axioms,
without getting the unwanted consequence of computational omniscience. Explaining this point
will involve a digression into an old and fascinating corner of complexity theory—one that probably
holds independent interest for philosophers.

26For “knowing” a person suggests having actually met the person, while “knowing” a place suggests having visited
the place. Interestingly, in Hebrew, one uses a completely different verb for “know” in the sense of “being familiar
with” (makir) than for “know” in the intellectual sense (yodeya).
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As is well-known, in the 1930s Church and Kleene proposed definitions of the “computable
functions” that turned out to be precisely equivalent to Turing’s definition, but that differed from
Turing’s in making no explicit mention of machines. Rather than analyzing the process of com-
putation, the Church-Kleene approach was simply to list axioms that the computable functions of
natural numbers f : N → N ought to satisfy—for example, “if f (x) and g (x) are both computable,
then so is f (g (x))”—and then to define “the” computable functions as the smallest set satisfying
those axioms.

In 1965, Alan Cobham [41] asked whether the same could be done for the efficiently or feasibly
computable functions. As an answer, he offered axioms that precisely characterize what today we
call FP, or Function Polynomial-Time (though Cobham called it L). The class FP consists of all
functions of natural numbers f : N → N that are computable in polynomial time by a deterministic
Turing machine. Note that FP is “morally” the same as the class P (Polynomial-Time) defined
in Section 3.1: they differ only in that P is a class of decision problems (or equivalently, functions
f : N → {0, 1}), whereas FP is a class of functions with integer range.

What was noteworthy about Cobham’s characterization of polynomial time was that it didn’t
involve any explicit mention of either computing devices or bounds on their running time. Let
me now list a version of Cobham’s axioms, adapted from Arora, Impagliazzo, and Vazirani [16].
Each of the axioms talks about which functions of natural numbers f : N → N are “efficiently
computable.”

(1) Every constant function f is efficiently computable, as is every function which is nonzero only
finitely often.

(2) Pairing: If f (x) and g (x) are efficiently computable, then so is 〈f (x) , g (x)〉, where 〈, 〉 is
some standard pairing function for the natural numbers.

(3) Composition: If f (x) and g (x) are efficiently computable, then so is f (g (x)).

(4) Grab Bag: The following functions are all efficiently computable:

• the arithmetic functions x+ y and x× y

• |x| = ⌊log2 x⌋+ 1 (the number of bits in x’s binary representation)

• the projection functions Π1 (〈x, y〉) = x and Π2 (〈x, y〉) = y

• bit (〈x, i〉) (the ith bit of x’s binary representation, or 0 if i > |x|)
• diff (〈x, i〉) (the number obtained from x by flipping its ith bit)

• 2|x|
2
(called the “smash function”)

(5) Bounded Recursion: Suppose f (x) is efficiently computable, and |f (x)| ≤ |x| for all x ∈ N.
Then the function g (〈x, k〉), defined by

g (〈x, k〉) =
{

f (g (〈x, ⌊k/2⌋〉)) if k > 1
x if k = 1

,

is also efficiently computable.

A few comments about the Cobham axioms might be helpful. First, the axiom that “does most
of the work” is (5). Intuitively, given any natural number k ∈ N that we can generate starting
from the original input x ∈ N, the Bounded Recursion axiom lets us set up a “computational
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process” that runs for log2 k steps. Second, the role of the “smash function,” 2|x|
2
, is to let us map

n-bit integers to n2-bit integers to n4-bit integers and so on, and thereby (in combination with the
Bounded Recursion axiom) set up computational processes that run for arbitrary polynomial num-
bers of steps. Third, although addition and multiplication are included as “efficiently computable
functions,” it is crucial that exponentiation is not included. Indeed, if x and y are n-bit integers,
then xy might require exponentially many bits just to write down.

The basic result is then the following:

Theorem 1 ([41, 102]) The class FP, of functions f : N → N computable in polynomial time by
a deterministic Turing machine, satisfies axioms (1)-(5), and is the smallest class that does so.

To prove Theorem 1, one needs to do two things, neither of them difficult: first, show that any
function f that can be defined using the Cobham axioms can also be computed in polynomial time;
and second, show that the Cobham axioms are enough to simulate any polynomial-time Turing
machine.

One drawback of the Cobham axioms is that they seem to “sneak in the concept of polynomial-
time through the back door”—both through the “smash function,” and through the arbitrary-
looking condition |f (x)| ≤ |x| in axiom (5). In the 1990s, however, Leivant [81] and Bellantoni
and Cook [25] both gave more “elegant” logical characterizations of FP that avoid this problem.
So for example, Leivant showed that a function f belongs to FP, if and only if f is computed by a
program that can be proved correct in second-order logic with comprehension restricted to positive
quantifier-free formulas. Results like these provide further evidence—if any was needed—that
polynomial-time computability is an extremely natural notion: a “wide target in conceptual space”
that one hits even while aiming in purely logical directions.

Over the past few decades, the idea of defining complexity classes such as P and NP in “logical,
machine-free” ways has given rise to an entire field called descriptive complexity theory, which has
deep connections with finite model theory. While further discussion of descriptive complexity
theory would take us too far afield, see the book of Immerman [72] for the definitive introduction,
or Fagin [51] for a survey.

5.2 Omniscience Versus Infinity

Returning to our original topic, how exactly do axiomatic theories such as Cobham’s (or Church’s
and Kleene’s, for that matter) escape the problem of omniscience? One straightforward answer is
that, unlike the set of true sentences in some formal language, which is only countably infinite, the
set of functions f : N → N is uncountably infinite. And therefore, even if we define the “efficiently-
computable” functions f : N → N by taking a countably-infinite logical closure, we are sure to miss
some functions f (in fact, almost all of them!).

The observation above suggests a general strategy to tame the logical omniscience problem.
Namely, we could refuse to define an agent’s “knowledge” in terms of which individual questions
she can quickly answer, and insist on speaking instead about which infinite families of questions
she can quickly answer. In slogan form, we want to “fight omniscience with infinity.”

Let’s see how, by taking this route, we can give semi-plausible answers to the puzzles about
knowledge discussed earlier in this section. First, the reason why you can “know” that 1591 =
43× 37, but at the same time not “know” the prime factors of 1591, is that, when we speak about
knowing the answers to these questions, we really mean knowing how to answer them. And as we
saw, there need not be any contradiction in knowing a fast multiplication algorithm but not a fast
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factoring algorithm, even if we model your knowledge about algorithms as deductively closed. To
put it another way, by embedding the two questions

Q1 = “Is 1591 = 43× 37?”
Q2 = “What are the prime factors of 1591?”

into infinite families of related questions, we can break the symmetry between the knowledge en-
tailed in answering them.

Similarly, we could think of a child as possessing an internal algorithm which, given any state-
ment of the form x + y = y + x (for specific x and y values), immediately outputs true, without
even examining x and y. However, the child does not yet have the ability to process quantified
statements, such as “∀x, y ∈ R x+ y = y+x.” In that sense, she still lacks the explicit knowledge
that addition is commutative.

Although the “cure” for logical omniscience sketched above solves some puzzles, not surprisingly
it raises many puzzles of its own. So let me end this section by discussing three major objections
to the “infinity cure.”

The first objection is that we’ve simply pushed the problem of logical omniscience somewhere
else. For suppose an agent “knows” how to compute every function in some restricted class such
as FP. Then how can we ever make sense of the agent learning a new algorithm? One natural
response is that, even if you have the “latent ability” to compute a function f ∈ FP, you might not
know that you have the ability—either because you don’t know a suitable algorithm, or because
you do know an algorithm, but don’t know that it’s an algorithm for f . Of course, if we wanted to
pursue things to the bottom, we’d next need to tell a story about knowledge of algorithms, and how
logical omniscience is avoided there. However, I claim that this represents progress! For notice
that, even without such a story, we can already explain some failures of logical omniscience. For
example, the reason why you don’t know the factors of a large number might not be your ignorance
of a fast factoring method, but rather that no such method exists.

The second objection is that, when I advocated focusing on infinite families of questions rather
than single questions in isolation, I never specified which infinite families. The difficulty is that the
same question could be generalized in wildly different ways. As an example, consider the question

Q = “Is 432, 150 composite?”

Q is an instance of a computational problem that humans find very hard: “given a large integer
N , is N composite?” However, Q is also an instance of a computational problem that humans
find very easy: “given a large integer N ending in 0, is N composite?” And indeed, we’d expect a
person to know the answer to Q if she noticed that 432, 150 ends in 0, but not otherwise. To me,
what this example demonstrates is that, if we want to discuss an agent’s knowledge in terms of
individual questions such as Q, then the relevant issue will be whether there exists a generalization
G of Q, such that the agent knows a fast algorithm for answering questions of type G, and also
recognizes that Q is of type G.

The third objection is just the standard one about the relationship between asymptotic com-
plexity and finite statements. For example, if we model an agent’s knowledge using the Cobham
axioms, then we can indeed explain why the agent doesn’t know how to play perfect chess on an
n × n board, for arbitrary values of n.27 But on a standard 8 × 8 board, playing perfect chess

27For chess on an n× n board is known to be EXP-complete, and it is also known that P 6= EXP. See Section 10,
and particularly footnote 55, for more details.
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would “merely” require (say) ∼ 1060 computational steps, which is a constant, and therefore cer-
tainly polynomial! So strictly on the basis of the Cobham axioms, what explanation could we
possibly offer for why a rational agent, who knew the rules of 8 × 8 chess, didn’t also know how
to play it optimally? While this objection might sound devastating, it’s important to understand
that it’s no different from the usual objection leveled against complexity-theoretic arguments, and
can be given the usual response. Namely: asymptotic statements are always vulnerable to being
rendered irrelevant, if the constant factors turned out to be ridiculous. However, experience has
shown that, for whatever reasons, that happens rarely enough that one can usually take asymptotic
behavior as “having explanatory force until proven otherwise.” (Section 12 will say more about
the explanatory force of asymptotic claims, as a problem requiring philosophical analysis.)

5.3 Summary

Because of the difficulties pointed out in Section 5.2, my own view is that computational complexity
theory has not yet come close to “solving” the logical omniscience problem, in the sense of giving a
satisfying formal account of knowledge that also avoids making absurd predictions. I have no idea
whether such an account is even possible.28 However, what I’ve tried to show in this section is that
complexity theory provides a well-defined “limiting case” where the logical omniscience problem
is solvable, about as well as one could hope it to be. The limiting case is where the size of the
questions grows without bound, and the solution there is given by the Cobham axioms: “axioms
of knowing how” whose logical closure one can take without thereby inviting omniscience.

In other words, when we contemplate the omniscience problem, I claim that we’re in a situation
similar to one often faced in physics—where we might be at a loss to understand some phenomenon
(say, gravitational entropy), except in limiting cases such as black holes. In epistemology just like
in physics, the limiting cases that we do more-or-less understand offer an obvious starting point for
those wishing to tackle the general case.

6 Computationalism and Waterfalls

Over the past two decades, a certain argument about computation—which I’ll call the waterfall ar-
gument—has been widely discussed by philosophers of mind.29 Like Searle’s famous Chinese Room
argument [105], the waterfall argument seeks to show that computations are “inherently syntactic,”
and can never be “about” anything—and that for this reason, the doctrine of “computationalism”
is false.30 But unlike the Chinese Room, the waterfall argument supplements the bare appeal to
intuition by a further claim: namely, that the “meaning” of a computation, to whatever extent it
has one, is always relative to some external observer.

More concretely, consider a waterfall (though any other physical system with a large enough
state space would do as well). Here I do not mean a waterfall that was specially engineered

28Compare the pessimism expressed by Paul Graham [63] about knowledge representation more generally:

In practice formal logic is not much use, because despite some progress in the last 150 years we’re still
only able to formalize a small percentage of statements. We may never do that much better, for the
same reason 1980s-style “knowledge representation” could never have worked; many statements may
have no representation more concise than a huge, analog brain state.

29See Putnam [98, appendix] and Searle [106] for two instantiations of the argument (though the formal details of
either will not concern us here).

30“Computationalism” refers to the view that the mind is literally a computer, and that thought is literally a type
of computation.
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to perform computations, but really a naturally-occurring waterfall: say, Niagara Falls. Being
governed by laws of physics, the waterfall implements some mapping f from a set of possible initial
states to a set of possible final states. If we accept that the laws of physics are reversible, then
f must also be injective. Now suppose we restrict attention to some finite subset S of possible
initial states, with |S| = n. Then f is just a one-to-one mapping from S to some output set
T = f (S) with |T | = n. The “crucial observation” is now this: given any permutation σ from the
set of integers {1, . . . , n} to itself, there is some way to label the elements of S and T by integers in
{1, . . . , n}, such that we can interpret f as implementing σ. For example, if we let S = {s1, . . . , sn}
and f (si) = ti, then it suffices to label the initial state si by i and the final state ti by σ (i). But
the permutation σ could have any “semantics” we like: it might represent a program for playing
chess, or factoring integers, or simulating a different waterfall. Therefore “mere computation”
cannot give rise to semantic meaning. Here is how Searle [106, p. 57] expresses the conclusion:

If we are consistent in adopting the Turing test or some other “objective” criterion for
intelligent behavior, then the answer to such questions as “Can unintelligent bits of
matter produce intelligent behavior?” and even, “How exactly do they do it” are ludi-
crously obvious. Any thermostat, pocket calculator, or waterfall produces “intelligent
behavior,” and we know in each case how it works. Certain artifacts are designed
to behave as if they were intelligent, and since everything follows laws of nature, then
everything will have some description under which it behaves as if it were intelligent.
But this sense of “intelligent behavior” is of no psychological relevance at all.

The waterfall argument has been criticized on numerous grounds: see Haugeland [66], Block
[30], and especially Chalmers [37] (who parodied the argument by proving that a cake recipe, being
merely syntactic, can never give rise to the semantic attribute of crumbliness). To my mind,
though, perhaps the easiest way to demolish the waterfall argument is through computational
complexity considerations.

Indeed, suppose we actually wanted to use a waterfall to help us calculate chess moves. How
would we do that? In complexity terms, what we want is a reduction from the chess problem to
the waterfall-simulation problem. That is, we want an efficient algorithm that somehow encodes
a chess position P into an initial state sP ∈ S of the waterfall, in such a way that a good move
from P can be read out efficiently from the waterfall’s corresponding final state, f (sP ) ∈ T .31 But
what would such an algorithm look like? We cannot say for sure—certainly not without detailed
knowledge about f (i.e., the physics of waterfalls), as well as the means by which the S and T
elements are encoded as binary strings. But for any reasonable choice, it seems overwhelmingly
likely that any reduction algorithm would just solve the chess problem itself, without using the
waterfall in an essential way at all! A bit more precisely, I conjecture that, given any chess-playing
algorithm A that accesses a “waterfall oracle” W , there is an equally-good chess-playing algorithm
A′, with similar time and space requirements, that does not accessW . If this conjecture holds, then
it gives us a perfectly observer-independent way to formalize our intuition that the “semantics” of
waterfalls have nothing to do with chess.32

31Technically, this describes a restricted class of reductions, called nonadaptive reductions. An adaptive reduction
from chess to waterfalls might solve a chess problem by some procedure that involves initializing a waterfall and
observing its final state, then using the results of that aquatic computation to initialize a second waterfall and
observe its final state, and so on for some polynomial number of repetitions.

32The perceptive reader might suspect that we smuggled our conclusion into the assumption that the waterfall
states sP ∈ S and f (sP ) ∈ T were encoded as binary strings in a “reasonable” way (and not, for example, in a
way that encodes the solution to the chess problem). But a crucial lesson of complexity theory is that, when we
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6.1 “Reductions” That Do All The Work

Interestingly, the issue of “trivial” or “degenerate” reductions also arises within complexity theory,
so it might be instructive to see how it is handled there. Recall from Section 3.1 that a problem
is NP-complete if, loosely speaking, it is “maximally hard among all NP problems” (NP being the
class of problems for which solutions can be checked in polynomial time). More formally, we say
that L is NP-complete if

(i) L ∈ NP, and

(ii) given any other NP problem L′, there exists a polynomial-time algorithm to solve L′ using
access to an oracle that solves L. (Or more succinctly, L′ ∈ PL, where PL denotes the
complexity class P augmented by an L-oracle.)

The concept of NP-completeness had incredible explanatory power: it showed that thousands
of seemingly-unrelated problems from physics, biology, industrial optimization, mathematical logic,
and other fields were all identical from the standpoint of polynomial-time computation, and that
not one of these problems had an efficient solution unless P = NP. Thus, it was natural for
theoretical computer scientists to want to define an analogous concept of P-completeness. In other
words: among all the problems that are solvable in polynomial time, which ones are “maximally
hard”?

But how should P-completeness even be defined? To see the difficulty, suppose that, by analogy
with NP-completeness, we say that L is P-complete if

(i) L ∈ P and

(ii) L′ ∈ PL for every L′ ∈ P.

Then it is easy to see that the second condition is vacuous: every P problem is P-complete! For
in “reducing” L′ to L, a polynomial-time algorithm can always just ignore the L-oracle and solve
L′ by itself, much like our hypothetical chess program that ignored its waterfall oracle. Because
of this, condition (ii) must be replaced by a stronger condition; one popular choice is

(ii’) L′ ∈ LOGSPACEL for every L′ ∈ P.

Here LOGSPACE means, informally, the class of problems solvable by a deterministic Turing
machine with a read/write memory consisting of only log n bits, given an input of size n.33 It’s not
hard to show that LOGSPACE ⊆ P, and this containment is strongly believed to be strict (though
just like with P 6= NP, there is no proof yet). The key point is that, if we want a non-vacuous
notion of completeness, then the reducing complexity class needs to be weaker (either provably
or conjecturally) than the class being reduced to. In fact complexity classes even smaller than
LOGSPACE almost always suffice in practice.

discuss “computational problems,” we always make an implicit commitment about the input and output encodings
anyway! So for example, if positive integers were given as input via their prime factorizations, then the factoring
problem would be trivial (just apply the identity function). But who cares? If, in mathematically defining the
waterfall-simulation problem, we required input and output encodings that entailed solving chess problems, then it
would no longer be reasonable to call our problem (solely) a “waterfall-simulation problem” at all.

33Note that a LOGSPACE machine does not even have enough memory to store its input string! For this reason,
we think of the input string as being provided on a special read-only tape.
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In my view, there is an important lesson here for debates about computationalism. Suppose
we want to claim, for example, that a computation that plays chess is “equivalent” to some other
computation that simulates a waterfall. Then our claim is only non-vacuous if it’s possible to
exhibit the equivalence (i.e., give the reductions) within a model of computation that isn’t itself
powerful enough to solve the chess or waterfall problems.

7 PAC-Learning and the Problem of Induction

Centuries ago, David Hume [71] famously pointed out that learning from the past (and, by exten-
sion, science) seems logically impossible. For example, if we sample 500 ravens and every one of
them is black, why does that give us any grounds—even probabilistic grounds—for expecting the
501st raven to be black also? Any modern answer to this question would probably refer to Occam’s
razor, the principle that simpler hypotheses consistent with the data are more likely to be correct.
So for example, the hypothesis that all ravens are black is “simpler” than the hypothesis that most
ravens are green or purple, and that only the 500 we happened to see were black. Intuitively, it
seems Occam’s razor must be part of the solution to Hume’s problem; the difficulty is that such a
response leads to questions of its own:

(1) What do we mean by “simpler”?

(2) Why are simple explanations likely to be correct? Or, less ambitiously: what properties must
reality have for Occam’s Razor to “work”?

(3) How much data must we collect before we can find a “simple hypothesis” that will probably
predict future data? How do we go about finding such a hypothesis?

In my view, the theory of PAC (Probabilistically Approximately Correct) Learning, initiated
by Leslie Valiant [117] in 1984, has made large enough advances on all of these questions that it
deserves to be studied by anyone interested in induction.34 In this theory, we consider an idealized
“learner,” who is presented with points x1, . . . , xm drawn randomly from some large set S, together
with the “classifications” f (x1) , . . . , f (xm) of those points. The learner’s goal is to infer the
function f , well enough to be able to predict f (x) for most future points x ∈ S. As an example,
the learner might be a bank, S might be a set of people (represented by their credit histories), and
f (x) might represent whether or not person x will default on a loan.

For simplicity, we often assume that S is a set of binary strings, and that the function f maps
each x ∈ S to a single bit, f (x) ∈ {0, 1}. Both assumptions can be removed without significantly
changing the theory. The important assumptions are the following:

(1) Each of the sample points x1, . . . , xm is drawn independently from some (possibly-unknown)
“sample distribution” D over S. Furthermore, the future points x on which the learner will
need to predict f (x) are drawn from the same distribution.

(2) The function f belongs to a known “hypothesis class” H. This H represents “the set of
possibilities the learner is willing to entertain” (and is typically much smaller than the set of
all 2|S| possible functions from S to {0, 1}).

34See Kearns and Vazirani [77] for an excellent introduction to PAC-learning, and de Wolf [126] for previous work
applying PAC-learning to philosophy and linguistics: specifically, to fleshing out Chomsky’s “poverty of the stimulus”
argument. De Wolf also discusses several formalizations of Occam’s Razor other than the one based on PAC-learning.
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Under these assumptions, we have the following central result.

Theorem 2 (Valiant [117]) Fix a finite hypothesis class H, a Boolean function f : S → {0, 1}
in H, and a sample distribution D over S, as well as an error rate ε > 0 and failure probability
δ > 0 that the learner is willing to tolerate. Call a hypothesis h : S → {0, 1} “good” if

Pr
x∼D

[h (x) = f (x)] ≥ 1− ε.

Also, call sample points x1, . . . , xm “reliable” if any hypothesis h ∈ H that satisfies h (xi) = f (xi)
for all i ∈ {1, . . . ,m} is good. Then

m =
1

ε
ln

|H|
δ

sample points x1, . . . , xm drawn independently from D will be reliable with probability at least 1− δ.

Intuitively, Theorem 2 says that the behavior of f on a small number of randomly-chosen points
probably determines its behavior on most of the remaining points. In other words, if, by some
unspecified means, the learner manages to find any hypothesis h ∈ H that makes correct predictions
on all its past data points x1, . . . , xm, then providedm is large enough (and as it happens,m doesn’t
need to be very large), the learner can be statistically confident that h will also make the correct
predictions on most future points.

The part of Theorem 2 that bears the unmistakable imprint of complexity theory is the bound
on sample size, m ≥ 1

ε
ln |H|

δ
. This bound has three notable implications. First, even if the class H

contains exponentially many hypotheses (say, 2n), one can still learn an arbitrary function f ∈ H
using a linear amount of sample data, since m grows only logarithmically with |H|: in other words,
like the number of bits needed to write down an individual hypothesis. Second, one can make the
probability that the hypothesis h will fail to generalize exponentially small (say, δ = 2−n), at the
cost of increasing the sample size m by only a linear factor. Third, assuming the hypothesis does
generalize, its error rate ε decreases inversely with m. It is not hard to show that each of these
dependencies is tight, so that for example, if we demand either ε = 0 or δ = 0 then no finite m
suffices. This is the origin of the name “PAC-learning”: the most one can hope for is to output a
hypothesis that is “probably, approximately” correct.

The proof of Theorem 2 is easy: consider any hypothesis h ∈ H that is bad, meaning that

Pr
x∼D

[h (x) = f (x)] < 1− ε.

Then by the independence assumption,

Pr
x1,...,xm∼D

[h (x1) = f (x1) ∧ · · · ∧ h (xm) = f (xm)] < (1− ε)m .

Now, the number of bad hypotheses is no more than the total number of hypotheses, |H|. So by
the union bound, the probability that there exists a bad hypothesis that agrees with f on all of
x1, . . . , xm can be at most |H| · (1− ε)m. Therefore δ ≤ |H| · (1− ε)m, and all that remains is to
solve for m.

The relevance of Theorem 2 to Hume’s problem of induction is that the theorem describes a
nontrivial class of situations where induction is guaranteed to work with high probability. Theorem
2 also illuminates the role of Occam’s Razor in induction. In order to learn using a “reasonable”
number of sample points m, the hypothesis class H must have a sufficiently small cardinality. But
that is equivalent to saying that every hypothesis h ∈ H must have a succinct description—since
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the number of bits needed to specify an arbitrary hypothesis h ∈ H is simply ⌈log2 |H|⌉. If the
number of bits needed to specify a hypothesis is too large, then H will always be vulnerable to
the problem of overfitting : some hypotheses h ∈ H surviving contact with the sample data just by
chance.

As pointed out to me by Agust́ın Rayo, there are several possible interpretations of Occam’s
Razor that have nothing to do with descriptive complexity: for example, we might want our
hypotheses to be “simple” in terms of their ontological or ideological commitments. However, to
whatever extent we interpret Occam’s Razor as saying that shorter or lower-complexity hypotheses
are preferable, Theorem 2 comes closer than one might have thought possible to a mathematical
justification for why the Razor works.

Many philosophers might be familiar with alternative formal approaches to Occam’s Razor.
For example, within a Bayesian framework, one can choose a prior over all possible hypotheses that
gives greater weight to “simpler” hypotheses (where simplicity is measured, for example, by the
length of the shortest program that computes the predictions). However, while the PAC-learning
and Bayesian approaches are related, the PAC approach has the advantage of requiring only a
qualitative decision about which hypotheses one wants to consider, rather than a quantitative prior
over hypotheses. Given the hypothesis class H, one can then seek learning methods that work for
any f ∈ H. (On the other hand, the PAC approach requires an assumption about the probability
distribution over observations, while the Bayesian approach does not.)

7.1 Drawbacks of the Basic PAC Model

I’d now like to discuss three drawbacks of Theorem 2, since I think the drawbacks illuminate
philosophical aspects of induction as well as the advantages do.

The first drawback is that Theorem 2 works only for finite hypothesis classes. In science, how-
ever, hypotheses often involve continuous parameters, of which there is an uncountable infinity. Of
course, one could solve this problem by simply discretizing the parameters, but then the number of
hypotheses (and therefore the relevance of Theorem 2) would depend on how fine the discretization
was. Fortunately, we can avoid such difficulties by realizing that the learner only cares about the
“differences” between two hypotheses insofar as they lead to different predictions. This leads to
the fundamental notion of VC-dimension (after its originators, Vapnik and Chervonenkis [119]).

Definition 3 (VC-dimension) A hypothesis class H shatters the sample points {x1, . . . , xk} ⊆ S
if for all 2k possible settings of h (x1) , . . . , h (xk), there exists a hypothesis h ∈ H compatible with
those settings. Then VCdim (H), the VC-dimension of H, is the largest k for which there exists a
subset {x1, . . . , xk} ⊆ S that H shatters (or if no finite maximum exists, then VCdim (H) = ∞).

Clearly any finite hypothesis class has finite VC-dimension: indeed, VCdim (H) ≤ log2 |H|.
However, even an infinite hypothesis class can have finite VC-dimension if it is “sufficiently simple.”
For example, let H be the class of all functions ha,b : R → {0, 1} of the form

ha,b (x) =

{

1 if a ≤ x ≤ b
0 otherwise.

Then it is easy to check that VCdim (H) = 2.
With the notion of VC-dimension in hand, we can state a powerful (and harder-to-prove!)

generalization of Theorem 2, due to Blumer et al. [31].
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Theorem 4 (Blumer et al. [31]) For some universal constant K > 0, the bound on m in The-
orem 2 can be replaced by

m ≥ K VCdim (H)

ε
ln

1

δε
,

with the theorem now holding for any hypothesis class H, finite or infinite.

If H has infinite VC-dimension, then it is easy to construct a probability distribution D over
sample points such that no finite number m of samples from D suffices to PAC-learn a function
f ∈ H: one really is in the unfortunate situation described by Hume, of having no grounds at all
for predicting that the next raven will be black. In some sense, then, Theorem 4 is telling us that
finite VC-dimension is a necessary and sufficient condition for scientific induction to be possible.
Once again, Theorem 4 also has an interpretation in terms of Occam’s Razor, with the smallness
of the VC-dimension now playing the role of simplicity.

The second drawback of Theorem 2 is that it gives us no clues about how to find a hypothesis
h ∈ H consistent with the sample data. All it says is that, if we find such an h, then h will
probably be close to the truth. This illustrates that, even in the simple setup envisioned by PAC-
learning, induction cannot be merely a matter of seeing enough data and then “generalizing” from
it, because immense computations might be needed to find a suitable generalization! Indeed, there
are many natural learning problems—for example, inferring the rules of a regular or context-free
language from random examples of grammatical and ungrammatical sentences—for which it has
been shown that any polynomial-time algorithm for finding a hypothesis consistent with the data
would imply a polynomial-time algorithm for breaking widely-used cryptosystems such as RSA! 35

See Kearns and Valiant [76] for an example of such a result.
The third drawback of Theorem 2 is the assumption that the distribution D from which the

learner is tested is the same as the distribution from which the sample points were drawn. To
me, this is the most serious drawback, since it tells us that PAC-learning models the “learning”
performed by an undergraduate cramming for an exam by solving last year’s problems, or an
employer using a regression model to identify the characteristics of successful hires, or a cryptanalyst
breaking a code from a collection of plaintexts and ciphertexts. It does not, however, model the
“learning” of an Einstein or a Szilard, making predictions about phenomena that are different in
kind from anything yet observed. As David Deutsch stresses in his recent book The Beginning of
Infinity [48], the goal of science is not merely to summarize observations, and thereby let us make
predictions about similar observations. Rather, the goal is to discover explanations with “reach,”
meaning the ability to predict what would happen even in novel or hypothetical situations, like
the Sun suddenly disappearing or a quantum computer being built. In my view, developing a
compelling mathematical model of explanatory learning—a model that “is to explanation as the
PAC model is to prediction”—is an outstanding open problem.36

35In the setting of “proper learning”—where the learner needs to output a hypothesis in some specified format—it is
even known that many natural PAC-learning problems are NP-complete (see Pitt and Valiant [96] for example). But
in the “improper” setting—where the learner can describe its hypothesis using any polynomial-time algorithm—it is
only known how to show that PAC-learning problems are hard under cryptographic assumptions, and there may be
inherent reasons for this (see Applebaum, Barak, and Xiao [14]).

36Important progress toward this goal includes the work of Angluin [11] on learning finite automata from queries
and counterexamples, and that of Angluin et al. [12] on learning a circuit by injecting values. Both papers study
natural learning models that generalize the PAC model by allowing “controlled scientific experiments,” whose results
confirm or refute a hypothesis and thereby provide guidance about which experiments to do next.
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7.2 Computational Complexity, Bleen, and Grue

In 1955, Nelson Goodman [62] proposed what he called the “new riddle of induction,” which survives
the Occam’s Razor answer to Hume’s original induction problem. In Goodman’s riddle, we are
asked to consider the hypothesis “All emeralds are green.” The question is, why do we favor that
hypothesis over the following alternative, which is equally compatible with all our evidence of green
emeralds?

“All emeralds are green before January 1, 2030, and then blue afterwards.”

The obvious answer is that the second hypothesis adds superfluous complications, and is there-
fore disfavored by Occam’s Razor. To that, Goodman replies that the definitions of “simple” and
“complicated” depend on our language. In particular, suppose we had no words for green or blue,
but we did have a word grue, meaning “green before January 1, 2030, and blue afterwards,” and a
word bleen, meaning “blue before January 1, 2030, and green afterwards.” In that case, we could
only express the hypothesis “All emeralds are green” by saying

“All emeralds are grue before January 1, 2030, and then bleen afterwards.”

—a manifestly more complicated hypothesis than the simple “All emeralds are grue”!
I confess that, when I contemplate the grue riddle, I can’t help but recall the joke about the

Anti-Inductivists, who, when asked why they continue to believe that the future won’t resemble
the past, when that false belief has brought their civilization nothing but poverty and misery,
reply, “because anti-induction has never worked before!” Yes, if we artificially define our primitive
concepts “against the grain of the world,” then we shouldn’t be surprised if the world’s actual
behavior becomes more cumbersome to describe, or if we make wrong predictions. It would be as
if we were using a programming language that had no built-in function for multiplication, but only
for F (x, y) := 17x − y − x2 + 2xy. In that case, a normal person’s first instinct would be either
to switch programming languages, or else to define multiplication in terms of F , and forget about
F from that point onward!37 Now, there is a genuine philosophical problem here: why do grue,
bleen, and F (x, y) go “against the grain of the world,” whereas green, blue, and multiplication
go with the grain? But to me, that problem (like Wigner’s puzzlement over “the unreasonable
effectiveness of mathematics in natural sciences” [125]) is more about the world itself than about
human concepts, so we shouldn’t expect any purely linguistic analysis to resolve it.

What about computational complexity, then? In my view, while computational complexity
doesn’t solve the grue riddle, it does contribute a useful insight. Namely, that when we talk about
the simplicity or complexity of hypotheses, we should distinguish two issues:

(a) The asymptotic scaling of the hypothesis size, as the “size” n of our learning problem goes to
infinity.

(b) The constant-factor overheads.

37Suppose that our programming language provides only multiplication by constants, addition, and the function
F (x, y) := ax2 + bxy + cy2 + dx + ey + f . We can assume without loss of generality that d = e = f = 0. Then
provided ax2 + bxy+ cy2 factors into two independent linear terms, px+ qy and rx+ sy, we can express the product
xy as

F (sx− qy,−rx+ py)

(ps− qr)2
.
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In terms of the basic PAC model in Section 7, we can imagine a “hidden parameter” n, which
measures the number of bits needed to specify an individual point in the set S = Sn. (Other
ways to measure the “size” of a learning problem would also work, but this way is particularly
convenient.) For convenience, we can identify Sn with the set {0, 1}n of n-bit strings, so that
n = log2 |Sn|. We then need to consider, not just a single hypothesis class, but an infinite family
of hypothesis classes H = {H1,H2,H3, . . .}, one for each positive integer n. Here Hn consists of
hypothesis functions h that map Sn = {0, 1}n to {0, 1}.

Now let L be a language for specifying hypotheses in H: in other words, a mapping from (some
subset of) binary strings y ∈ {0, 1}∗ to H. Also, given a hypothesis h ∈ H, let

κL (h) := min {|y| : L (y) = h}

be the length of the shortest description of h in the language L. (Here |y| just means the number
of bits in y.) Finally, let

κL (n) := max {κL (h) : h ∈ Hn}
be the number of bits needed to specify an arbitrary hypothesis in Hn using the language L.
Clearly κL (n) ≥ ⌈log2 |Hn|⌉, with equality if and only if L is “optimal” (that is, if it represents
each hypothesis h ∈ Hn using as few bits as possible). The question that concerns us is how
quickly κL (n) grows as a function of n, for various choices of language L.

What does any of this have to do with the grue riddle? Well, we can think of the details of L
(its syntax, vocabulary, etc.) as affecting the “lower-order” behavior of the function κL (n). So for
example, suppose we are unlucky enough that L contains the words grue and bleen, but not blue
and green. That might increase κL (n) by a factor of ten or so—since now, every time we want
to mention “green” when specifying our hypothesis h, we instead need a wordy circumlocution
like “grue before January 1, 2030, and then bleen afterwards,” and similarly for blue.38 However,
a crucial lesson of complexity theory is that the “higher-order” behavior of κL (n)—for example,
whether it grows polynomially or exponentially with n—is almost completely unaffected by the
details of L! The reason is that, if two languages L1 and L2 differ only in their “low-level details,”
then translating a hypothesis from L1 to L2 or vice versa will increase the description length by
no more than a polynomial factor. Indeed, as in our grue example, there is usually a “universal
translation constant” c such that KL1 (h) ≤ cKL2 (h) or even KL1 (h) ≤ KL2 (h) + c for every
hypothesis h ∈ H.

The one exception to the above rule is if the languages L1 and L2 have different expressive
powers. For example, maybe L1 only allows nesting expressions to depth two, while L2 allows
nesting to arbitrary depths; or L1 only allows propositional connectives, while L2 also allows first-
order quantifiers. In those cases, KL1 (h) could indeed be much greater than KL2 (h) for some
hypotheses h, possibly even exponentially greater (KL1 (h) ≈ 2KL2

(h)). A rough analogy would be
this: suppose you hadn’t learned what differential equations were, and had no idea how to solve
them even approximately or numerically. In that case, Newtonian mechanics might seem just

38Though note that, if the language L is expressive enough to allow this, we can simply define green and blue in
terms of bleen and grue once, then refer back to those definitions whenever needed! In that case, taking bleen and
grue (rather than green and blue) to be the primitive concepts would increase κL (n) by only an additive constant,
rather than a multiplicative constant.

The above fact is related to a fundamental result from the theory of Kolmogorov complexity (see Li and Vitányi
[83] for example). Namely, if P and Q are any two Turing-universal programming languages, and if KP (x) and
KQ (x) are the lengths of the shortest programs in P and Q respectively that output a given string x ∈ {0, 1}∗, then
there exists a universal “translation constant” cPQ, such that |KP (x)−KQ (x)| ≤ cPQ for every x. This cPQ is just
the number of bits needed to write a P -interpreter for Q-programs or vice versa.
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as complicated to you as the Ptolemaic theory with epicycles, if not more complicated! For the
only way you could make predictions with Newtonian mechanics would be using a huge table of
“precomputed” differential equation solutions—and to you, that table would seem just as unwieldy
and inelegant as a table of epicycles. But notice that in this case, your perception would be the
result, not of some arbitrary choice of vocabulary, but of an objective gap in your mathematical
expressive powers.

To summarize, our choice of vocabulary—for example, whether we take green/blue or bleen/grue
as primitive concepts—could indeed matter if we want to use Occam’s Razor to predict the future
color of emeralds. But I think that complexity theory justifies us in treating grue as a “small-n
effect”: something that becomes less and less important in the asymptotic limit of more and more
complicated learning problems.

8 Quantum Computing

Quantum computing is a proposal for using quantum mechanics to solve certain computational
problems much faster than we know how to solve them today.39 To do so, one would need to build
a new type of computer, capable of exploiting the quantum effects of superposition and interference.
Building such a computer—one large enough to solve interesting problems—remains an enormous
challenge for physics and engineering, due to the fragility of quantum states and the need to isolate
them from their external environment.

In the meantime, though, theoretical computer scientists have extensively studied what we
could and couldn’t do with a quantum computer if we had one. For certain problems, remarkable
quantum algorithms are known to solve them in polynomial time, even though the best-known
classical algorithms require exponential time. Most famously, in 1994 Peter Shor [108] gave a
polynomial-time quantum algorithm for factoring integers, and as a byproduct, breaking most of
the cryptographic codes used on the Internet today. Besides the practical implications, Shor’s
algorithm also provided a key piece of evidence that switching from classical to quantum comput-
ers would enlarge the class of problems solvable in polynomial-time. For theoretical computer
scientists, this had a profound lesson: if we want to know the limits of efficient computation, we
may need to “leave our armchairs” and incorporate actual facts about physics (at a minimum, the
truth or falsehood of quantum mechanics!).40

Whether or not scalable quantum computers are built anytime soon, my own (biased) view is
that quantum computing represents one of the great scientific advances of our time. But here I want
to ask a different question: does quantum computing have any implications for philosophy—and
specifically, for the interpretation of quantum mechanics?

From one perspective, the answer seems like an obvious “no.” Whatever else it is, quantum
computing is “merely” an application of quantum mechanics, as that theory has existed in physics
textbooks for 80 years. Indeed, if you accept that quantum mechanics (as currently understood)
is true, then presumably you should also accept the possibility of quantum computers, and make
the same predictions about their operation as everyone else. Whether you describe the “reality”

39The authoritative reference for quantum computing is the book of Nielsen and Chuang [92]. For gentler intro-
ductions, try Mermin [86, 87] or the survey articles of Aharonov [10], Fortnow [56], or Watrous [122]. For a general
discussion of polynomial-time computation and the laws of physics (including speculative models beyond quantum
computation), see my survey article “NP-complete Problems and Physical Reality” [4].

40By contrast, if we only want to know what is computable in the physical universe, with no efficiency requirement,
then it remains entirely consistent with current knowledge that Church and Turing gave the correct answer in the
1930s—and that they did so without incorporating any physics beyond what is “accessible to intuition.”
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behind quantum processes via the Many-Worlds Interpretation, Bohmian mechanics, or some other
view (or, following Bohr’s Copenhagen Interpretation, refuse to discuss the “reality” at all), seems
irrelevant.

From a different perspective, though, a scalable quantum computer would test quantum me-
chanics in an extremely novel regime—and for that reason, it could indeed raise new philosophical
issues. The “regime” quantum computers would test is characterized not by an energy scale or
a temperature, but by computational complexity. One of the most striking facts about quantum
mechanics is that, to represent the state of n entangled particles, one needs a vector of size expo-
nential in n. For example, to specify the state of a thousand spin-1/2 particles, one needs 21000

complex numbers called “amplitudes,” one for every possible outcome of measuring the spins in the
{up,down} basis. The quantum state, denoted |ψ〉, is then a linear combination or “superposition”
of the possible outcomes, with each outcome |x〉 weighted by its amplitude αx:

|ψ〉 =
∑

x∈{up,down}1000

αx |x〉 .

Given |ψ〉, one can calculate the probability px that any particular outcome |x〉 will be observed,
via the rule px = |αx|2.41

Now, there are only about 1080 atoms in the visible universe, which is a much smaller number
than 21000. So assuming quantum mechanics is true, it seems Nature has to invest staggering
amounts of “computational effort” to keep track of small collections of particles—certainly more
than anything classical physics requires!42,43 In the early 1980s, Richard Feynman [54] and others
called attention to this point, noting that it underlay something that had long been apparent in
practice: the extraordinary difficulty of simulating quantum mechanics using conventional comput-
ers. But Feynman also raised the possibility of turning that difficulty around, by building our
computers out of quantum components. Such computers could conceivably solve certain prob-
lems faster than conventional computers: if nothing else, then at least the problem of simulating
quantum mechanics!

41This means, in particular, that the amplitudes satisfy the normalization condition
∑

x |αx|
2 = 1.

42One might object that even in the classical world, if we simply don’t know the value of (say) an n-bit string,
then we also describe our ignorance using exponentially-many numbers: namely, the probability px of each possible
string x ∈ {0, 1}n! And indeed, there is an extremely close connection between quantum mechanics and classical
probability theory; I often describe quantum mechanics as just “probability theory with complex numbers instead of
nonnegative reals.” However, a crucial difference is that we can always describe a classical string x as “really” having
a definite value; the vector of 2n probabilities px is then just a mental representation of our own ignorance. With
a quantum state, we do not have the same luxury, because of the phenomenon of interference between positive and
negative amplitudes.

43One might also object that, even in classical physics, it takes infinitely many bits to record the state of even a
single particle, if its position and momentum can be arbitrary real numbers. And indeed, Copeland [42], Hogarth
[68], Siegelmann [109], and other writers have speculated that the continuity of physical quantities might actually
allow “hypercomputations”—including solving the halting problem in a finite amount of time! From a modern
perspective, though, quantum mechanics and quantum gravity strongly suggest that the “continuity” of measurable

quantities such as positions and momenta is a theoretical artifact. In other words, it ought to suffice for simulation
purposes to approximate these quantities to some finite precision, probably related to the Planck scale of 10−33

centimeters or 10−43 seconds.
But the exponentiality of quantum states is different, for at least two reasons. Firstly, it doesn’t lead to computa-

tional speedups that are nearly as “unreasonable” as the hypercomputing speedups. Secondly, no one has any idea
where the theory in question (quantum mechanics) could break down, in a manner consistent with current experi-
ments. In other words, there is no known “killer obstacle” for quantum computing, analogous to the Planck scale
for hypercomputing. See Aaronson [2] for further discussion of this point, as well as a proposed complexity-theoretic
framework (called “Sure/Shor separators”) with which to study such obstacles.
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Thus, quantum computing is interesting not just because of its applications, but (even more, in
my opinion) because it is the first technology that would directly “probe” the exponentiality inherent
in the quantum description of Nature. One can make an analogy here to the experiments in
the 1980s that first convincingly violated the Bell Inequality. Like quantum algorithms today,
Bell’s refutation of local realism was “merely” a mathematical consequence of quantum mechanics.
But that refutation (and the experiments that it inspired) made conceptually-important aspects of
quantum mechanics no longer possible to ignore—and for that reason, it changed the philosophical
landscape. It seems overwhelmingly likely to me that quantum computing will do the same.

Indeed, we can extend the analogy further: just as there were “local realist diehards” who denied
that Bell Inequality violation would be possible (and tried to explain it away after it was achieved),
so today a vocal minority of computer scientists and physicists (including Leonid Levin [82], Oded
Goldreich [59], and Gerard ’t Hooft [70]) denies the possibility of scalable quantum computers,
even in principle. While they admit that quantum mechanics has survived every experimental test
for a century, these skeptics are confident that quantum mechanics will fail in the regime tested
by quantum computing—and that whatever new theory replaces it, that theory will allow only
classical computing.

As most quantum computing researchers are quick to point out in response, they would be
thrilled if the attempt to build scalable quantum computers led instead to a revision of quantum
mechanics! Such an outcome would probably constitute the largest revolution in physics since the
1920s, and ultimately be much more interesting than building a quantum computer. Of course, it
is also possible that scalable quantum computing will be given up as too difficult for “mundane”
technological reasons, rather than fundamental physics reasons. But that “mundane” possibility
is not what skeptics such as Levin, Goldreich, and ’t Hooft are talking about.

8.1 Quantum Computing and the Many-Worlds Interpretation

But let’s return to the original question: suppose the skeptics are wrong, and it is possible to build
scalable quantum computers. Would that have any relevance to the interpretation of quantum
mechanics? The best-known argument that the answer is “yes” was made by David Deutsch,
a quantum computing pioneer and staunch defender of the Many-Worlds Interpretation. To be
precise, Deutsch thinks that quantum mechanics straightforwardly implies the existence of parallel
universes, and that it does so independently of quantum computing: on his view, even the double-
slit experiment can only be explained in terms of two parallel universes interfering. However,
Deutsch also thinks that quantum computing adds emotional punch to the argument. Here is how
he put it in his 1997 book The Fabric of Reality [47, p. 217]:

Logically, the possibility of complex quantum computations adds nothing to a case
[for the Many-Worlds Interpretation] that is already unanswerable. But it does add
psychological impact. With Shor’s algorithm, the argument has been writ very large.
To those who still cling to a single-universe world-view, I issue this challenge: explain
how Shor’s algorithm works. I do not merely mean predict that it will work, which
is merely a matter of solving a few uncontroversial equations. I mean provide an
explanation. When Shor’s algorithm has factorized a number, using 10500 or so times
the computational resources that can be seen to be present, where was the number
factorized? There are only about 1080 atoms in the entire visible universe, an utterly
minuscule number compared with 10500. So if the visible universe were the extent of
physical reality, physical reality would not even remotely contain the resources required
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to factorize such a large number. Who did factorize it, then? How, and where, was
the computation performed?

There is plenty in the above paragraph for an enterprising philosopher to mine. In particular,
how should a nonbeliever in Many-Worlds answer Deutsch’s challenge? In the rest of this section,
I’ll focus on two possible responses.

The first response is to deny that, if Shor’s algorithm works as predicted, that can only be
explained by postulating “vast computational resources.” At the most obvious level, complexity
theorists have not yet ruled out the possibility of a fast classical factoring algorithm.44 More gen-
erally, that quantum computers can solve certain problems superpolynomially faster than classical
computers is not a theorem, but a (profound, plausible) conjecture.45,46 If the conjecture failed,
then the door would seem open to what we might call “polynomial-time hidden-variable theories”:
theories that reproduce the predictions of quantum mechanics without invoking any computations
outside P.47 These would be analogous to the local hidden variable theories that Einstein and
others had hoped for, before Bell ruled such theories out.

A second response to Deutsch’s challenge is that, even if we agree that Shor’s algorithm demon-
strates the reality of vast computational resources in Nature, it is not obvious that we should think
of those resources as “parallel universes.” Why not simply say that there is one universe, and that
it is quantum-mechanical? Doesn’t the parallel-universes language reflect an ironic parochialism:
a desire to impose a familiar science-fiction image on a mathematical theory that is stranger than
fiction, that doesn’t match any of our pre-quantum intuitions (including computational intuitions)
particularly well?

One can sharpen the point as follows: if one took the parallel-universes explanation of how a
quantum computer works too seriously (as many popular writers do!), then it would be natural to
make further inferences about quantum computing that are flat-out wrong. For example:

“Using only a thousand quantum bits (or qubits), a quantum computer could store 21000

classical bits.”

This is true only for a bizarre definition of the word “store”! The fundamental problem is that,
when you measure a quantum computer’s state, you see only one of the possible outcomes; the

44Indeed, one cannot rule that possibility out, without first proving P 6= NP! But even if P 6= NP, a fast classical
factoring algorithm might still exist, again because factoring is not thought to be NP-complete.

45A formal version of this conjecture is BPP 6= BQP, where BPP (Bounded-Error Probabilistic Polynomial-Time)
and BQP (Bounded-Error Quantum Polynomial-Time) are the classes of problems efficiently solvable by classical
randomized algorithms and quantum algorithms respectively. Bernstein and Vazirani [29] showed that P ⊆ BPP ⊆
BQP ⊆ PSPACE, where PSPACE is the class of problems solvable by a deterministic Turing machine using a polynomial
amount of memory (but possibly exponential time). For this reason, any proof of the BPP 6= BQP conjecture would
immediately imply P 6= PSPACE as well. The latter would be considered almost as great a breakthrough as P 6= NP.

46Complicating matters, there are quantum algorithms that provably achieve exponential speedups over any clas-
sical algorithm: one example is Simon’s algorithm [110], an important predecessor of Shor’s algorithm. However, all
such algorithms are formulated in the “black-box model” (see Beals et al. [23]), where the resource to be minimized is
the number of queries that an algorithm makes to a hypothetical black box. Because it is relatively easy to analyze,
the black-box model is a crucial source of insights about what might be true in the conventional Turing machine
model. However, it is also known that the black-box model sometimes misleads us about the “real” situation. As
a famous example, the complexity classes IP and PSPACE are equal [107], despite the existence of a black box that
separates them (see Fortnow [55] for discussion).

Besides the black-box model, unconditional exponential separations between quantum and classical complexities
are known in several other restricted models, including communication complexity [99].

47Technically, if the hidden-variable theory involved classical randomness, then it would correspond more closely to
the complexity class BPP (Bounded-Error Probabilistic Polynomial-Time). However, today there is strong evidence
that P = BPP (see Impagliazzo and Wigderson [74]).
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rest disappear. Indeed, a celebrated result called Holevo’s Theorem [69] says that, using n qubits,
there is no way to store more than n classical bits so that the bits can be reliably retrieved later.
In other words: for at least one natural definition of “information-carrying capacity,” qubits have
exactly the same capacity as bits.

To take another example:

“Unlike a classical computer, which can only factor numbers by trying the divisors one
by one, a quantum computer could try all possible divisors in parallel.”

If quantum computers can harness vast numbers of parallel worlds, then the above seems like a
reasonable guess as to how Shor’s algorithm works. But it’s not how it works at all. Notice that,
if Shor’s algorithm did work that way, then it could be used not only for factoring integers, but
also for the much larger task of solving NP-complete problems in polynomial time. (As mentioned
in footnote 9, the factoring problem is strongly believed not to be NP-complete.) But contrary to
a common misconception, quantum computers are neither known nor believed to be able to solve
NP-complete problems efficiently.48 As usual, the fundamental problem is that measuring reveals
just a single random outcome |x〉. To get around that problem, and ensure that the right outcome
is observed with high probability, a quantum algorithm needs to generate an interference pattern,
in which the computational paths leading to a given wrong outcome cancel each other out, while
the paths leading to a given right outcome reinforce each other. This is a delicate requirement,
and as far as anyone knows, it can only be achieved for a few problems, most of which (like the
factoring problem) have special structure arising from algebra or number theory.49

A Many-Worlder might retort: “sure, I agree that quantum computing involves harnessing the
parallel universes in subtle and non-obvious ways, but it’s still harnessing parallel universes!” But
even here, there’s a fascinating irony. Suppose we choose to think of a quantum algorithm in terms
of parallel universes. Then to put it crudely, not only must many universes interfere to give a large
final amplitude to the right answer; they must also, by interfering, lose their identities as parallel
universes! In other words, to whatever extent a collection of universes is useful for quantum
computation, to that extent it is arguable whether we ought to call them “parallel universes”
at all (as opposed to parts of one exponentially-large, self-interfering, quantum-mechanical blob).
Conversely, to whatever extent the universes have unambiguously separate identities, to that extent
they’re now “decohered” and out of causal contact with each other. Thus we can explain the
outputs of any future computations by invoking only one of the universes, and treating the others
as unrealized hypotheticals.

To clarify, I don’t regard either of the above objections to Deutsch’s argument as decisive, and
am unsure what I think about the matter. My purpose, in setting out the objections, was simply
to illustrate the potential of quantum computing theory to inform debates about the Many-Worlds
Interpretation.

9 New Computational Notions of Proof

Since the time of Euclid, there have been two main notions of mathematical proof:

48There is a remarkable quantum algorithm called Grover’s algorithm [64], which can search any space of 2N possible
solutions in only ∼ 2N/2 steps. However, Grover’s algorithm represents a quadratic (square-root) improvement over
classical brute-force search, rather than an exponential improvement. And without any further assumptions about
the structure of the search space, Grover’s algorithm is optimal, as shown by Bennett et al. [27].

49Those interested in further details of how Shor’s algorithm works, but still not ready for a mathematical exposition,
might want to try my popular essay “Shor, I’ll Do It” [1].
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(1) A “proof” is a verbal explanation that induces a sense of certainty (and ideally, understanding)
about the statement to be proved, in any human mathematician willing and able to follow it.

(2) A “proof” is a finite sequence of symbols encoding syntactic deductions in some formal system,
which start with axioms and end with the statement to be proved.

The tension between these two notions is a recurring theme in the philosophy of mathematics.
But theoretical computer science deals regularly with a third notion of proof—one that seems to
have received much less philosophical analysis than either of the two above. This notion is the
following:

(3) A “proof” is any computational process or protocol (real or imagined) that can terminate in
a certain way if and only if the statement to be proved is true.

9.1 Zero-Knowledge Proofs

As an example of this third notion, consider zero-knowledge proofs, introduced by Goldwasser,
Micali, and Rackoff [61]. Given two graphs G and H, each with n ≈ 10000 vertices, suppose that
an all-powerful but untrustworthy wizard Merlin wishes to convince a skeptical king Arthur that G
and H are not isomorphic. Of course, one way Merlin could do this would be to list all n! graphs
obtained by permuting the vertices of G, then note that none of these equal H. However, such a
proof would clearly exhaust Arthur’s patience (indeed, it could not even be written down within
the observable universe). Alternatively, Merlin could point Arthur to some property of G and H
that differentiates them: for example, maybe their adjacency matrices have different eigenvalue
spectra. Unfortunately, it is not known whether, if G and H are non-isomorphic, there is always
a differentiating property that Arthur can verify in time polynomial in n.

But as noticed by Goldreich, Micali, and Wigderson [60], there is something Merlin can do
instead: he can let Arthur challenge him. Merlin can say:

Arthur, send me a new graph K, which you obtained either by randomly permuting
the vertices of G, or randomly permuting the vertices of H. Then I guarantee that I
will tell you, without fail, whether K ∼= G or K ∼= H.

It is clear that, if G and H are really non-isomorphic, then Merlin can always answer such
challenges correctly, by the assumption that he (Merlin) has unlimited computational power. But
it is equally clear that, if G and H are isomorphic, then Merlin must answer some challenges
incorrectly, regardless of his computational power—since a random permutation of G is statistically
indistinguishable from a random permutation of H.

This protocol has at least four features that merit reflection by anyone interested in the nature
of mathematical proof.

First, the protocol is probabilistic. Merlin cannot convince Arthur with certainty that G and
H are non-isomorphic, since even if they were isomorphic, there’s a 1/2 probability that Merlin
would get lucky and answer a given challenge correctly (and hence, a 1/2k probability that he
would answer k challenges correctly). All Merlin can do is offer to repeat the protocol (say) 100
or 1000 times, and thereby make it less likely that his proof is unsound than that an asteroid will
strike the earth, killing both him and Arthur.

Second, the protocol is interactive. Unlike with proof notions (1) and (2), Arthur is no longer
a passive recipient of knowledge, but an active player who challenges the prover. We know from
experience that the ability to interrogate a seminar speaker—to ask questions that the speaker
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could not have anticipated, evaluate the responses, and then possibly ask followup questions—
often speeds up the process of figuring out whether the speaker knows what he or she is talking
about. Complexity theory affirms our intuition here, through its discovery of interactive proofs
for statements (such as “G and H are not isomorphic”) whose shortest known conventional proofs
are exponentially longer.

The third interesting feature of the graph non-isomorphism protocol—a feature seldommentioned—
is that its soundness implicitly relies on a physical assumption. Namely, if Merlin had the power
(whether through magic or through ordinary espionage) to “peer into Arthur’s study” and directly
observe whether Arthur started with G or H, then clearly he could answer every challenge correctly
even if G ∼= H. It follows that the persuasiveness of Merlin’s “proof” can only be as strong as
Arthur’s extramathematical belief that Merlin does not have such powers. By now, there are many
other examples in complexity theory of “proofs” whose validity rests on assumed limitations of the
provers.

But perhaps the most striking feature of the graph non-isomorphism protocol is that it is zero-
knowledge: a technical term formalizing our intuition that “Arthur learns nothing from the protocol,
beyond the truth of the statement being proved.”50 For all Merlin ever tells Arthur is which graph
he (Arthur) started with, G or H. But Arthur already knew which graph he started with! This
means that, not only does Arthur gain no “understanding” of what makes G andH non-isomorphic,
he does not even gain the ability to prove to a third party what Merlin proved to him. This is
another aspect of computational proofs that has no analogue with proof notions (1) or (2).

One might complain that, as interesting as the zero-knowledge property is, so far we’ve only
shown it’s achievable for an extremely specialized problem. And indeed, just like with factoring
integers, today there is strong evidence that the graph isomorphism problem is not NP-complete
[33].51,52 However, in the same paper that gave the graph non-isomorphism protocol, Goldreich,
Micali, and Wigderson [60] also gave a celebrated zero-knowledge protocol (now called the GMW
protocol) for the NP-complete problems. By the definition of NP-complete (see Section 3.1), the
GMW protocol meant that every mathematical statement that has a conventional proof (say, in
Zermelo-Fraenkel set theory) also has a zero-knowledge proof of comparable size! As an example
application, suppose you’ve just proved the Riemann Hypothesis. You want to convince the experts
of your triumph, but are paranoid about them stealing credit for it. In that case, “all” you need
to do is

(1) rewrite your proof in a formal language,

(2) encode the result as the solution to an NP-complete problem, and then

50Technically, the protocol is “honest-verifier zero-knowledge,” meaning that Arthur learns nothing from his con-
versation his Merlin besides the truth of the statement being proved, assuming Arthur follows the protocol correctly.
If Arthur cheats—for example, by sending a graph K for which he doesn’t already know an isomorphism either to G or
to H—then Merlin’s response could indeed tell Arthur something new. However, Goldreich, Micali, and Wigderson
[60] also gave a more sophisticated proof protocol for graph non-isomorphism, which remains zero-knowledge even in
the case where Arthur cheats.

51Indeed, there is not even a consensus belief that graph isomorphism is outside P! The main reason is that,
in contrast to factoring integers, graph isomorphism turns out to be extremely easy in practice. Indeed, finding
non-isomorphic graphs that can’t be distinguished by simple invariants is itself a hard problem! And in the past,
several problems (such as linear programming and primality testing) that were long known to be “efficiently solvable
for practical purposes” were eventually shown to be in P in the strict mathematical sense as well.

52There is also strong evidence that there are short conventional proofs for graph non-isomorphism—in other words,
that not just graph isomorphism but also graph non-isomorphism will ultimately turn out to be in NP [79].
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(3) like a 16th-century court mathematician challenging his competitors to a duel, invite the
experts to run the GMW protocol with you over the Internet!

Provided you answer all their challenges correctly, the experts can become statistically certain
that you possess a proof of the Riemann Hypothesis, without learning anything about that proof
besides an upper bound on its length.

Better yet, unlike the graph non-isomorphism protocol, the GMW protocol does not assume
a super-powerful wizard—only an ordinary polynomial-time being who happens to know a proof
of the relevant theorem. As a result, today the GMW protocol is much more than a theoretical
curiosity: it and its variants have found major applications in Internet cryptography, where clients
and servers often need to prove to each other that they are following a protocol correctly without
revealing secret information as they do so.

However, there is one important caveat: unlike the graph-nonisomorphism protocol, the GMW
protocol relies essentially on a cryptographic hypothesis. For here is how the GMW protocol works:
you (the prover) first publish thousands of encrypted messages, each one “committing” you to a
randomly-garbled piece of your claimed proof. You then offer to decrypt a tiny fraction of those
messages, as a way for skeptical observers to “spot-check” your proof, while learning nothing about
its structure besides the useless fact that, say, the 1729th step is valid (but how could it not be
valid?). If the skeptics want to increase their confidence that your proof is sound, then you simply
run the protocol over and over with them, using a fresh batch of encrypted messages each time. If
the skeptics could decrypt all the messages in a single batch, then they could piece together your
proof—but to do that, they would need to break the underlying cryptographic code.

9.2 Other New Notions

Let me mention four other notions of “proof” that complexity theorists have explored in depth over
the last twenty years, and that might merit philosophical attention.

• Multi-prover interactive proofs [26, 20], in which Arthur exchanges messages with two (or
more) computationally-powerful but untrustworthy wizards. Here, Arthur might become
convinced of some mathematical statement, but only under the assumption that the wizards
could not communicate with each other during the protocol. (The usual analogy is to a police
detective who puts two suspects in separate cells, to prevent them from coordinating their an-
swers.) Interestingly, in some multi-prover protocols, even non-communicating wizards could
successfully coordinate their responses to Arthur’s challenges (and thereby convince Arthur
of a falsehood) through the use of quantum entanglement [40]. However, other protocols are
conjectured to remain sound even against entangled wizards [78].

• Probabilistically checkable proofs [53, 18], which are mathematical proofs encoded in a special
error-correcting format, so that one can become confident of their validity by checking only
10 or 20 bits chosen randomly in a correlated way. The PCP (Probabilistically Checkable
Proofs) Theorem [17, 49], one of the crowning achievements of complexity theory, says that
any mathematical theorem, in any standard formal system such as Zermelo-Fraenkel set
theory, can be converted in polynomial time into a probabilistically-checkable format.

• Quantum proofs [121, 6], which are proofs that depend for their validity on the output of a
quantum computation—possibly, even a quantum computation that requires a special entan-
gled “proof state” fed to it as input. Because n quantum bits might require ∼ 2n classical
bits to simulate, quantum proofs have the property that it might never be possible to list all
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the “steps” that went into the proof, within the constraints of the visible universe. For this
reason, one’s belief in the mathematical statement being proved might depend on one’s belief
in the correctness of quantum mechanics as a physical theory.

• Computationally-sound proofs and arguments [35, 88], which rely for their validity on the
assumption that the prover was limited to polynomial-time computations—as well as the
mathematical conjecture that crafting a convincing argument for a falsehood would have
taken the prover more than polynomial time.

What implications do these new types of proof have for the foundations of mathematics? Do
they merely make more dramatic what “should have been obvious all along”: that, as David
Deutsch argues in The Beginning of Infinity [48], proofs are physical processes taking place in
brains or computers, which therefore have no validity independent of our beliefs about physics?
Are the issues raised essentially the same as those raised by “conventional” proofs that require
extensive computations, like Appel and Haken’s proof of the Four-Color Theorem [13]? Or does
appealing, in the course of a “mathematical proof,” to (say) the validity of quantum mechanics,
the randomness of apparently-random numbers, or the lack of certain superpowers on the part of
the prover represent something qualitatively new? Philosophical analysis is sought.

10 Complexity, Space, and Time

What can computational complexity tell us about the nature of space and time? A first answer
might be “not much”: after all, the definitions of standard complexity classes such as P can be
shown to be insensitive to such details as the number of spatial dimensions, and even whether the
speed of light is finite or infinite.53 On the other hand, I think complexity theory does offer insight
about the differences between space and time.

The class of problems solvable using a polynomial amount of memory (but possibly an expo-
nential amount of time54) is called PSPACE, for Polynomial Space. Examples of PSPACE problems
include simulating dynamical systems, deciding whether a regular grammar generates all possible
strings, and executing an optimal strategy in two-player games such as Reversi, Connect Four, and
Hex.55 It is not hard to show that PSPACE is at least as powerful as NP:

P ⊆ NP ⊆ PSPACE ⊆ EXP.

53More precisely, Turing machines with one-dimensional tapes are polynomially equivalent to Turing machines with
k-dimensional tapes for any k, and are also polynomially equivalent to random-access machines (which can “jump”
to any memory location in unit time, with no locality constraint).

On the other hand, if we care about polynomial differences in speed, and especially if we want to study parallel
computing models, details about the spatial layout of the computing and memory elements (as well as the speed of
communication among the elements) can become vitally important.

54Why “only” an exponential amount? Because a Turing machine with B bits of memory can run for no more
than 2B time steps. After that, the machine must either halt or else return to a configuration previously visited
(thereby entering an infinite loop).

55Note that, in order to speak about the computational complexity of such games, we first need to generalize them
to an n× n board! But if we do so, then for many natural games, the problem of determining which player has the
win from a given position is not only in PSPACE, but PSPACE-complete (i.e., it captures the entire difficulty of the
class PSPACE). For example, Reisch [101] showed that this is true for Hex.

What about a suitable generalization of chess to an n × n board? That’s also in PSPACE—but as far as anyone
knows, only if we impose a polynomial upper bound on the number of moves in a chess game. Without such a
restriction, Fraenkel and Lichtenstein [58] showed that chess is EXP-complete; with such a restriction, Storer [115]
showed that chess is PSPACE-complete.
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Here EXP represents the class of problems solvable using an exponential amount of time, and also
possibly an exponential amount of memory.56 Every one of the above containments is believed to
be strict, although the only one currently proved to be strict is P 6= EXP, by an important 1965
result of Hartmanis and Stearns [65] called the Time Hierarchy Theorem57,58.

Notice, in particular, that P 6= NP implies P 6= PSPACE. So while P 6= PSPACE is not yet
proved, it is an extremely secure conjecture by the standards of complexity theory. In slogan form,
complexity theorists believe that space is more powerful than time.

Now, some people have asked how such a claim could possibly be consistent with modern physics.
For didn’t Einstein teach us that space and time are merely two aspects of the same structure? One
immediate answer is that, even within relativity theory, space and time are not interchangeable:
space has a positive signature whereas time has a negative signature. In complexity theory, the
difference between space and time manifests itself in the straightforward fact that you can reuse
the same memory cells over and over, but you can’t reuse the same moments of time.59

Yet, as trivial as that observation sounds, it leads to an interesting thought. Suppose that
the laws of physics let us travel backwards in time. In such a case, it’s natural to imagine that
time would become a “reusable resource” just like space is—and that, as a result, arbitrary PSPACE

computations would fall within our grasp. But is that just an idle speculation, or can we rigorously
justify it?

56In this context, we call a function f (n) “exponential” if it can be upper-bounded by 2p(n), for some polynomial
p. Also, note that more than exponential memory would be useless here, since a Turing machine that runs for T
time steps can visit at most T memory cells.

57More generally, the Time Hierarchy Theorem shows that, if f and g are any two “sufficiently well-behaved”
functions that satisfy f (n) ≪ g (n) (for example: f (n) = n2 and g (n) = n3), then there are computational problems

solvable in g (n) time but not in f (n) time. The proof of this theorem uses diagonalization, and can be thought
of as a scaled-down version of Turing’s proof of the unsolvability of the halting problem. That is, we argue that,
if it were always possible to simulate a g (n)-time Turing machine by an f (n)-time Turing machine, then we could
construct a g (n)-time machine that “predicted its own output in advance” and then output something else—thereby
causing a contradiction.

Using similar arguments, we can show (for example) that there exist computational problems solvable using n3

bits of memory but not using n2 bits, and so on in most cases where we want to compare more or less of the same

computational resource. In complexity theory, the hard part is comparing two different resources: for example,

determinism versus nondeterminism (the P
?
= NP problem), time versus space (P

?
= PSPACE), or classical versus

quantum computation (BPP
?
= BQP). For in those cases diagonalization is no longer enough.

58The fact that P 6= EXP has an amusing implication, often attributed to Hartmanis: namely, at least one of the
three inequalities

(i) P 6= NP

(ii) NP 6= PSPACE

(iii) PSPACE 6= EXP

must be true, even though proving any one of them to be true individually would represent a titanic advance in
mathematics!

The above observation is sometimes offered as circumstantial evidence for P 6= NP. Of all our hundreds of unproved
beliefs about inequalities between pairs of complexity classes, a large fraction of them must be correct, simply to
avoid contradicting the hierarchy theorems. So then why not P 6= NP in particular (given that our intuition there is
stronger than our intuitions for most of the inequalities)?

59See my blog post www.scottaaronson.com/blog/?p=368 for more on this theme.
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10.1 Closed Timelike Curves

Philosophers, like science-fiction fans, have long been interested in the possibility of closed timelike
curves (CTCs), which arise in certain solutions to Einstein’s field equations of general relativity.60

On a traditional understanding, the central philosophical problem raised by CTCs is the grandfather
paradox. This is the situation where you go back in time to kill your own grandfather, therefore
you are never born, therefore your grandfather is not killed, therefore you are born, and so on.
Does this contradiction immediately imply that CTCs are impossible?

No, it doesn’t: we can only conclude that, if CTCs exist, then the laws of physics must somehow
prevent grandfather paradoxes from arising. How could they do so? One classic illustration is
that “when you go back in time to try and kill your grandfather, the gun jams”—or some other
“unlikely” event inevitably occurs to keep the state of the universe consistent. But why should
we imagine that such a convenient “out” will always be available, in every physical experiment
involving CTCs? Normally, we like to imagine that we have the freedom to design an experiment
however we wish, without Nature imposing conditions on the experiment (for example: “every gun
must jam sometimes”) whose reasons can only be understood in terms of distant or hypothetical
events.

In his 1991 paper “Quantum mechanics near closed timelike lines,” Deutsch [46] gave an elegant
proposal for eliminating grandfather paradoxes. In particular he showed that, as long as we
assume the laws of physics are quantum-mechanical (or even just classically probabilistic), every
experiment involving a CTC admits at least one fixed point : that is, a way to satisfy the conditions
of the experiment that ensures consistent evolution. Formally, if S is the mapping from quantum
states to themselves induced by “going around the CTC once,” then a fixed point is any quantum
mixed state61 ρ such that S (ρ) = ρ. The existence of such a ρ follows from simple linear-algebraic
arguments. As one illustration, the “resolution of the grandfather paradox” is now that you are
born with probability 1/2, and if you are born, you go back in time to kill your grandfather—from
which it follows that you are born with probability 1/2, and so on. Merely by treating states
as probabilistic (as, in some sense, they have to be in quantum mechanics62), we have made the
evolution of the universe consistent.

But Deutsch’s account of CTCs faces at least three serious difficulties. The first difficulty is that
the fixed points might not be unique: there could be many mixed states ρ such that S (ρ) = ρ, and
then the question arises of how Nature chooses one of them. To illustrate, consider the grandfather
anti-paradox : a bit b ∈ {0, 1} that travels around a CTC without changing. We can consistently
assume b = 0, or b = 1, or any probabilistic mixture of the two—and unlike the usual situation in
physics, here there is no possible boundary condition that could resolve the ambiguity.

The second difficulty, pointed out Bennett et al. [28], is that Deutsch’s proposal violates the

60Though it is not known whether those solutions are “physical”: for example, whether or not they can survive in
a quantum theory of gravity (see [90] for example).

61In quantum mechanics, a mixed state can be thought of as a classical probability distribution over quantum states.
However, an important twist is that the same mixed state can be represented by different probability distributions:
for example, an equal mixture of the states |0〉 and |1〉 is physically indistinguishable from an equal mixture of |0〉+|1〉√

2

and |0〉−|1〉√
2

. This is why mixed states are represented mathematically using Heisenberg’s density matrix formalism.
62In more detail, Deutsch’s proposal works if the state space consists of classical probability distributions D or

quantum mixed states ρ, but not if it consists of pure states |ψ〉. Thus, if one believed that only pure states were
fundamental in physics, and that probability distributions and mixed states always reflected subjective ignorance,
one might reject Deutsch’s proposal on that ground.
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statistical interpretation of quantum mixed states. So for example, if half of an entangled pair

|0〉A |0〉B + |1〉A |1〉B√
2

is placed inside the CTC, while the other half remains outside the CTC, then the process of finding
a fixed point will “break” the entanglement between the two halves. As a “remedy” for this
problem, Bennett et al. suggest requiring the CTC fixed point ρ to be independent of the entire
rest of the universe. To my mind, this remedy is so drastic that it basically amounts to defining
CTCs out of existence!

Motivated by these difficulties, Lloyd et al. [84] recently proposed a completely different account
of CTCs, based on postselected teleportation. Lloyd et al.’s account avoids both of the problems
above—though perhaps not surprisingly, introduces other problems of its own.63 My own view, for
whatever it is worth, is that Lloyd et al. are talking less about “true” CTCs as I would understand
the concept, as about postselected quantum-mechanical experiments that simulate CTCs in certain
interesting respects. If there are any controversies in physics that call out for expert philosophical
attention, surely this is one of them.

10.2 The Evolutionary Principle

Yet so far, we have not even mentioned what I see as the main difficulty with Deutsch’s account
of CTCs. This is that finding a fixed point might require Nature to solve an astronomically-hard
computational problem! To illustrate, consider a science-fiction scenario wherein you go back in
time and dictate Shakespeare’s plays to him. Shakespeare thanks you for saving him the effort,
publishes verbatim the plays that you dictated, and centuries later the plays come down to you,
whereupon you go back in time and dictate them to Shakespeare, etc.

Notice that, in contrast to the grandfather paradox, here there is no logical contradiction: the
story as we told it is entirely consistent. But most people find the story “paradoxical” anyway.
After all, somehow Hamlet gets written, without anyone ever doing the work of writing it! As
Deutsch [46] perceptively observed, if there is a “paradox” here, then it is not one of logic but of
computational complexity. Specifically, the story violates a commonsense principle that we can
loosely articulate as follows:

Knowledge requires a causal process to bring it into existence.

Like many other important principles, this one might not be recognized as a “principle” at all
before we contemplate situations that violate it! Deutsch [46] calls this principle the Evolutionary
Principle (EP). Note that some version of the EP was invoked both by William Paley’s blind-
watchmaker argument, and (ironically) by the arguments of Richard Dawkins [44] and other atheists
against the existence of an intelligent designer.

In my survey article “NP-Complete Problems and Physical Reality” [4], I proposed and defended
a complexity-theoretic analogue of the EP, which I called the NP Hardness Assumption:

There is no physical means to solve NP-complete problems in polynomial time.

The above statement implies P 6= NP, but is stronger in that it encompasses probabilistic comput-
ing, quantum computing, and any other computational model compatible with the laws of physics.

63In particular, in Lloyd et al.’s proposal, the only way to deal with the grandfather paradox is by some variant
of “the gun jams”: there are evolutions with no consistent solution, and it needs to be postulated that the laws of
physics are such that they never occur.
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See [4] for a survey of recent results bearing on the NP Hardness Assumption, analyses of claimed
counterexamples to the assumption, and possible implications of the assumption for physics.

10.3 Closed Timelike Curve Computation

But can we show more rigorously that closed timelike curves would violate the NP Hardness As-
sumption? Indeed, let us now show that, in a universe where arbitrary computations could be
performed inside a CTC, and where Nature had to find a fixed point for the CTC, we could solve
NP-complete problems using only polynomial resources.

We can model any NP-complete problem instance by a function f : {0, . . . , 2n − 1} → {0, 1},
which maps each possible solution x to the bit 1 if x is valid, or to 0 if x is invalid. (Here, for
convenience, we identify each n-bit solution string x with the nonnegative integer that x encodes
in binary.) Our task, then, is to find an x ∈ {0, . . . , 2n − 1} such that f (x) = 1. We can solve this
problem with just a single evaluation to f , provided we can run the following computer program
C inside a closed timelike curve [36, 4, 7]:

Given input x ∈ {0, . . . , 2n − 1}:
If f (x) = 1, then output x
Otherwise, output (x+ 1)mod2n

Assuming there exists at least one x such that f (x) = 1, the only fixed points of C—that is, the
only ways for C’s output to equal its input—are for C to input, and output, such a valid solution
x, which therefore appears in C’s output register “as if by magic.” (If there are no valid solutions,
then C’s fixed points will simply be uniform superpositions or probability distributions over all
x ∈ {0, . . . , 2n − 1}.)

Extending the above idea, John Watrous and I [7] (following a suggestion by Fortnow) recently
showed that a CTC computer in Deutsch’s model could solve all problems in PSPACE. (Recall that
PSPACE is believed to be even larger than NP.) More surprisingly, we also showed that PSPACE
constitutes the limit on what can be done with a CTC computer; and that this is true whether
the CTC computer is classical or quantum. One consequence of our results is that the “näıve
intuition” about CTC computers—that their effect would be to “make space and time equivalent
as computational resources”—is ultimately correct, although not for the näıve reasons.64 A second,
amusing consequence is that, once closed timelike curves are available, switching from classical to
quantum computers provides no additional benefit!

It is important to realize that our algorithms for solving hard problems with CTCs do not just
boil down to “using huge amounts of time to find the answer, then sending the answer back in time
to before the computer started.” For even in the exotic scenario of a time travel computer, we
still require that all resources used inside the CTC (time, memory, etc.) be polynomially-bounded.
Thus, the ability to solve hard problems comes solely from causal consistency : the requirement
that Nature must find some evolution for the CTC computer that avoids grandfather paradoxes.

In Lloyd et al.’s alternative account of CTCs based on postselection [84], hard problems can
also be solved, though for different reasons. In particular, building on an earlier result of mine

64Specifically, it is not true that in a CTC universe, a Turing machine tape head could just travel back and forth
in time the same way it travels back and forth in space. If one thinks this way, then one really has in mind a
second, “meta-time,” while the “original” time has become merely one more dimension of space. To put the point
differently: even though a CTC would make time cyclic, time would still retain its directionality. This is the reason
why, if we want to show that CTC computers have the power of PSPACE, we need a nontrivial argument involving
causal consistency.
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[5], Lloyd et al. show that the power of their model corresponds to a complexity class called PP

(Probabilistic Polynomial-Time), which is believed to be strictly smaller than PSPACE but strictly
larger than NP. Thus, one might say that Lloyd et al.’s model “improves” the computational
situation, but not by much!

So one might wonder: is there any way that the laws of physics could allow CTCs, without
opening the door to implausible computational powers? There remains at least one interesting
possibility, which was communicated to me by the philosopher Tim Maudlin.65 Maybe the laws
of physics have the property that, no matter what computations are performed inside a CTC,
Nature always has an “out” that avoids the grandfather paradox, but also avoids solving hard
computational problems—analogous to “the gun jamming” in the original grandfather paradox.
Such an out might involve (for example) an asteroid hitting the CTC computer, or the computer
failing for other mysterious reasons. Of course, any computer in the physical world has some
nonzero probability of failure, but ordinarily we imagine that the failure probability can be made
negligibly small. However, in situations where Nature is being “forced” to find a fixed point, maybe
“mysterious computer failures” would become the norm rather than the exception.

To summarize, I think that computational complexity theory changes the philosophical issues
raised by time travel into the past. While discussion traditionally focused on the grandfather
paradox, we have seen that there is no shortage of ways for Nature to avoid logical inconsistencies,
even in a universe with CTCs. The “real” problem, then, is how to escape the other paradoxes
that arise in the course of taming the grandfather paradox! Probably foremost among those is the
“computational complexity paradox,” of NP-complete and even harder problems getting solved as
if by magic.

11 Economics

In classical economics, agents are modeled as rational, Bayesian agents who take whatever actions
will maximize their expected utility Eω∈Ω [U (ω)], given their subjective probabilities {pω}ω∈Ω over
all possible states ω of the world.66 This, of course, is a caricature that seems almost designed
to be attacked, and it has been attacked from almost every angle. For example, humans are not
even close to rational Bayesian agents, but suffer from well-known cognitive biases, as explored by
Kahneman and Tversky [75] among others. Furthermore, the classical view seems to leave no room
for critiquing people’s beliefs (i.e., their prior probabilities) or their utility functions as irrational—
yet it is easy to cook up prior probabilities or utility functions that would lead to behavior that
almost anyone would consider insane. A third problem is that, in games with several cooperating
or competing agents who act simultaneously, classical economics guarantees the existence of at
least one Nash equilibrium among the agents’ strategies. But the usual situation is that there are
multiple equilibria, and then there is no general principle to predict which equilibrium will prevail,
even though the choice might mean the difference between war and peace.

Computational complexity theory can contribute to debates about the foundations of economics
by showing that, even in the idealized situation of rational agents who all have perfect information
about the state of the world, it will often be computationally intractable for those agents to act
in accordance with classical economics. Of course, some version of this observation has been
recognized in economics for a long time. There is a large literature on bounded rationality (going

65This possibility is also discussed at length in Deutsch’s paper [46].
66Here we assume for simplicity that the set Ω of possible states is countable; otherwise we could of course use a

continuous probability measure.
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back to the work of Herbert Simon [111]), which studies the behavior of economic agents whose
decision-making abilities are limited in one way or another.

11.1 Bounded Rationality and the Iterated Prisoners’ Dilemma

As one example of an insight to emerge from this literature, consider the Finite Iterated Prisoner’s
Dilemma. This is a game where two players meet for some fixed number of roundsN , which is finite
and common knowledge between the players. In each round, both players can either “Defect” or
“Cooperate” (not knowing the other player’s choice), after which they receive the following payoffs:

Defect2 Cooperate2
Defect1 1, 1 4, 0
Cooperate1 0, 4 3, 3

Both players remember the entire previous history of the interaction. It is clear that the players
will be jointly best off if they both cooperate, but equally clear that if N = 1, then cooperation
is not an equilibrium. On the other hand, if the number of rounds N were unknown or infinite,
then the players could rationally decide to cooperate, similarly to how humans decide to cooperate
in real life. That is, Player 1 reasons that if he defects, then Player 2 will retaliate by defecting
in future rounds, and vice versa. So over the long run, both players do best for themselves by
cooperating.

The “paradox” is now that, as soon as N becomes known, the above reasoning collapses. For
assuming the players are rational, they both realize that whatever else, neither has anything to
lose by defecting in round N—and therefore that is what they do. But since both players know
that both will defect in round N , neither one has anything to lose by defecting in round N − 1
either—and they can continue inductively in this way back to the first round. We therefore get
the “prediction” that both players will defect in every round, even though that is neither in the
players’ own interests, nor what actual humans do in experiments.

In 1985, Neyman [91] proposed an ingenious resolution of this paradox. Specifically, he showed
that if the two players have sufficiently small memories—technically, if they are finite automata
with k states, for 2 ≤ k < N—then cooperation becomes an equilibrium once again! The basic
intuition is that, if both players lack enough memory to count up to N , and both of them know
that, and both know that they both know that, and so on, then the inductive argument in the last
paragraph fails, since it assumes intermediate strategies that neither player can implement.

While complexity considerations vanquish some of the counterintuitive conclusions of classical
economics, equally interesting to me is that they do not vanquish others. As one example, I showed
in [3] that Robert Aumann’s celebrated agreement theorem [19]—perfect Bayesian agents with com-
mon priors can never “agree to disagree”—persists even in the presence of limited communication
between the agents.

There are many other interesting results in the bounded rationality literature, too many to do
them justice here (but see Rubinstein [103] for a survey). On the other hand, “bounded ratio-
nality” is something of a catch-all phrase, encompassing almost every imaginable deviation from
rationality—including human cognitive biases, limits on information-gathering and communication,
and the restriction of strategies to a specific form (for example, linear threshold functions). Many
of these deviations have little to do with computational complexity per se. So the question re-
mains of whether computational complexity specifically can provide new insights about economic
behavior.
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11.2 The Complexity of Equilibria

There are some very recent advances suggesting that the answer is yes. Consider the problem
of finding an equilibrium of a two-player game, given the n × n payoff matrix as input. In the
special case of zero-sum games (which von Neumann studied in 1928), it has long been known how
to solve this problem in an amount of time polynomial in n, for example by reduction to linear
programming. But in 2006, Daskalakis, Goldberg, and Papadimitriou [43] (with improvements by
Chen and Deng [39]) proved the spectacular result that, for a general (not necessarily zero-sum)
two-player game, finding a Nash equilibrium is “PPAD-complete.” Here PPAD (“Polynomial Parity
Argument, Directed”) is, roughly speaking, the class of all search problems for which a solution
is guaranteed to exist for the same combinatorial reason that every game has at least one Nash
equilibrium. Note that finding a Nash equilibrium cannot be NP-complete, for the technical reason
that NP is a class of decision problems, and the answer to the decision problem “does this game
have a Nash equilibrium?” is always yes. But Daskalakis et al.’s result says (informally) that the
search problem of finding a Nash problem is “as close to NP-hard as it could possibly be,” subject
to its decision version being trivial. Similar PPAD-completeness results are now known for other
fundamental economic problems, such as finding market-clearing prices in Arrow-Debreu markets
[38].

Of course, one can debate the economic relevance of these results: for example, how often does
the computational hardness that we now know67 to be inherent in economic equilibrium theorems
actually rear its head in practice? But one can similarly debate the economic relevance of the
equilibrium theorems themselves! In my opinion, if the theorem that Nash equilibria exist is
considered relevant to debates about (say) free markets versus government intervention, then the
theorem that finding those equilibria is PPAD-complete should be considered relevant also.

12 Conclusions

The purpose of this essay was to illustrate how philosophy could be enriched by taking compu-
tational complexity theory into account, much as it was enriched almost a century ago by taking
computability theory into account. In particular, I argued that computational complexity provides
new insights into the explanatory content of Darwinism, the nature of mathematical knowledge and
proof, computationalism, syntax versus semantics, the problem of logical omniscience, debates sur-
rounding the Turing Test and Chinese Room, the problem of induction, the foundations of quantum
mechanics, closed timelike curves, and economic rationality.

Indeed, one might say that the “real” question is which philosophical problems don’t have
important computational complexity aspects! My own opinion is that there probably are such
problems (even within analytic philosophy), and that one good candidate is the problem of what
we should take as “bedrock mathematical reality”: that is, the set of mathematical statements that
are objectively true or false, regardless of whether they can be proved or disproved in a given formal
system. To me, if we are not willing to say that a given Turing machine M either accepts, rejects,
or runs forever (when started on a blank tape)—and that which one it does is an objective fact,
independent of our formal axiomatic theories, the laws of physics, the biology of the human brain,
cultural conventions, etc.—then we have no basis to talk about any of those other things (axiomatic
theories, the laws of physics, and so on). Furthermore, M ’s resource requirements are irrelevant
here: even if M only halts after 22

10000
steps, its output is as mathematically definite as if it had

67Subject, as usual, to widely-believed complexity assumptions.
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halted after 10 steps.68

Can we say anything general about when a computational complexity perspective is helpful in
philosophy, and when it isn’t? Extrapolating from the examples in this essay, I would say that
computational complexity tends to be helpful when we want to know whether a particular fact
does any explanatory work : Sections 3.2, 3.3, 4, 6, and 7 all provided examples of this. Other
“philosophical applications” of complexity theory come from the Evolutionary Principle and the
NP Hardness Assumption discussed in Section 10.2. If we believe that certain problems are
computationally intractable, then we may be able to draw interesting conclusions from that belief
about economic rationality, quantum mechanics, the possibility of closed timelike curves, and other
issues. By contrast, computational complexity tends to be unhelpful when we only want to
know whether a particular fact “determines” another fact, and don’t care about the length of the
inferential chain.

12.1 Criticisms of Complexity Theory

Despite its explanatory reach, complexity theory has been criticized on various grounds. Here are
four of the most common criticisms:

(1) Complexity theory only makes asymptotic statements (statements about how the resources
needed to solve problem instances of size n scale as n goes to infinity). But as a matter of
logic, asymptotic statements need not have any implications whatsoever for the finite values
of n (say, 10, 000) that humans care actually about, nor can any finite amount of experimental
data confirm or refute an asymptotic claim.

(2) Many of (what we would like to be) complexity theory’s basic principles, such as P 6= NP, are
currently unproved mathematical conjectures, and will probably remain that way for a long
time.

(3) Complexity theory focuses on only a limited type of computer—the serial, deterministic Tur-
ing machine—and fails to incorporate the “messier” computational phenomena found in na-
ture.

(4) Complexity theory studies only the worst-case behavior of algorithms, and does not address
whether that behavior is representative, or whether it merely reflects a few “pathological”
inputs. So for example, even if P 6= NP, there might still be excellent heuristics to solve most
instances of NP-complete problems that actually arise in practice; complexity theory tells us
nothing about such possibilities one way or the other.

For whatever it’s worth, criticisms (3) and (4) have become much less accurate since the 1980s.
As discussed in this essay, complexity theory has by now branched out far beyond deterministic
Turing machines, to incorporate (for example) quantum mechanics, parallel and distributed com-
puting, and stochastic processes such as Darwinian evolution. Meanwhile, although worst-case
complexity remains the best-understood kind, today there is a large body of work—much of it
driven by cryptography—that studies the average-case hardness of computational problems, for
various probability distributions over inputs. And just as almost all complexity theorists believe

68The situation is very different for mathematical statements like the Continuum Hypothesis, which can’t obviously
be phrased as predictions about idealized computational processes (since they’re not expressible by first-order or even
second-order quantification over the integers). For those statements, it really is unclear to me what one means by
their truth or falsehood apart from their provability in some formal system.
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that P 6= NP, so almost all subscribe to the stronger belief that there exist hard-on-average NP

problems—indeed, that belief is one of the underpinnings of modern cryptography. A few prob-
lems, such as calculating discrete logarithms, are even known to be just as hard on random inputs
as they are on the hardest possible input (though whether such “worst-case/average-case equiva-
lence” holds for any NP-complete problem remains a major open question). For these reasons,
although speaking about average-case rather than worst-case complexity would complicate some of
the arguments in this essay, I don’t think it would change the conclusions much.69 See Bogdanov
and Trevisan [32] for an excellent recent survey of average-case complexity, and Impagliazzo [73] for
an evocative discussion of complexity theory’s “possible worlds” (for example, the “world” where
NP-complete problems turn out to be hard in the worst case but easy on average).

The broader point is that, even if we admit that criticisms (1)-(4) have merit, that does not
give us a license to dismiss complexity-theoretic arguments whenever we dislike them! In science,
we only ever deal with imperfect, approximate theories—and if we reject the conclusions of the best
approximate theory in some area, then the burden is on us to explain why.

To illustrate, suppose you believe that quantum computers will never give a speedup over
classical computers for any practical problem. Then as an explanation for your stance, you might
assert any of the following:

(a) Quantum mechanics is false or incomplete, and an attempt to build a scalable quantum
computer would instead lead to falsifying or extending quantum mechanics itself.

(b) There exist polynomial-time classical algorithms for factoring integers, and for all the other
problems that admit polynomial-time quantum algorithms. (In complexity terms, the classes
BPP and BQP are equal.)

(c) The “constant-factor overheads” involved in building a quantum computer are so large as to
negate their asymptotic advantages, for any problem of conceivable human interest.

(d) While we don’t yet know which of (a)-(c) holds, we can know on some a priori ground that
at least one of them has to hold.

The point is that, even if we can’t answer every possible shortcoming of a complexity-theoretic
analysis, we can still use it to clarify the choices: to force people to lay some cards on the table,
committing themselves either to a prediction that might be falsified or to a mathematical conjecture
that might be disproved. Of course, this is a common feature of all scientific theories, not something
specific to complexity theory. If complexity theory is unusual here, it is only in the number of
“predictions” it juggles that could be confirmed or refuted by mathematical proof (and indeed, only
by mathematical proof).70

12.2 Future Directions

Even if the various criticisms of complexity theory don’t negate its relevance, it would be great to
address those criticisms head-on—and more generally, to get a clearer understanding of the rela-
tionship between complexity theory and the real-world phenomena that it tries to explain. Toward
that end, I think the following questions would all benefit from careful philosophical analysis:

69On the other hand, it would presuppose that we knew how to define reasonable probability distributions over
inputs. But as discussed in Section 4.2, it seems hard to explain what we mean by “structured instances,” or “the
types of instances that normally arise in practice.”

70One other example that springs to mind, of a scientific theory many of whose “predictions” take the form of
mathematical conjectures, is string theory.
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• What is the empirical status of asymptotic claims? What sense can we give to an asymp-
totic statement “making predictions,” or being supported or ruled out by a finite number of
observations?

• How can we explain the empirical facts on which complexity theory relies: for example, that
we rarely see n10000 or 1.0000001n algorithms, or that the computational problems humans
care about tend to organize themselves into a relatively-small number of equivalence classes?

• Short of proof, how do people form intuitions about the truth or falsehood of mathematical
conjectures? What are those intuitions, in cases such as P 6= NP?

• Do the conceptual conclusions that people sometimes want to draw from conjectures such as
P 6= NP or BPP 6= BQP—for example, about the nature of mathematical creativity or the
interpretation of quantum mechanics—actually depend on those conjectures being true? Are
there easier-to-prove statements that would arguably support the same conclusions?

• If P 6= NP, then how have humans managed to make such enormous mathematical progress,
even in the face of the general intractability of theorem-proving? Is there a “selection effect,”
by which mathematicians favor problems with special structure that makes them easier to
solve than arbitrary problems? If so, then what does this structure consist of?

In short, I see plenty of scope for the converse essay to this one: “Why Computational Com-
plexity Theorists Should Care About Philosophy.”
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