
Public Key Locally Decodable Codes with Short Keys∗

Brett Hemenway † Rafail Ostrovsky ‡

Martin J. Strauss§ Mary Wootters¶

September 5, 2011

Abstract

This work considers locally decodable codes in the computationally bounded channel
model. The computationally bounded channel model, introduced by Lipton in 1994,
views the channel as an adversary which is restricted to polynomial-time computa-
tion. Assuming the existence of IND-CPA secure public-key encryption, we present a
construction of public-key locally decodable codes, with constant codeword expansion,
tolerating constant error rate, with locality O(λ), and negligible probability of decod-
ing failure, for security parameter λ. Hemenway and Ostrovsky gave a construction
of locally decodable codes in the public-key model with constant codeword expansion
and locality O(λ2), but their construction had two major drawbacks. The keys in
their scheme were proportional to n, the length of the message, and their schemes were
based on the Φ-hiding assumption. Our keys are of length proportional to the security
parameter instead of the message, and our construction relies only on the existence
of IND-CPA secure encryption rather than on specific number-theoretic assumptions.
Our scheme also decreases the locality from O(λ2) to O(λ). Our construction can be
modified to give a generic transformation of any private-key locally decodable code to
a public-key locally decodable code based only on the existence of an IND-CPA secure
public-key encryption scheme.

Keywords: public-key cryptography, locally decodable codes, bounded channel

∗A preliminary version of this work appeared in the proceedings of RANDOM 2011
†E-mail: bhemen@umich.edu. Supported in part by ONR under contract N00014-11-1-0392
‡E-mail: rafail@cs.ucla.edu. This material is based upon work supported in part by NSF grants 0830803

and 09165174, US-Israel BSF grant 2008411, grants from OKAWA Foundation, IBM, Lockheed-Martin
Corporation and the Defense Advanced Research Projects Agency through the U.S. Office of Naval Research
under Contract N00014-11-1-0392. The views expressed are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
§E-mail: martinjs@umich.edu. Supported in part by NSF grant CCF 0743372 and DARPA/ONR grant

N66001-08-1-2065
¶E-mail: wootters@umich.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 118 (2011)

1 Introduction

Error-correcting codes were designed to facilitate message transmission through noisy chan-
nels. An error-correcting code consists of two algorithms, an encoding algorithm which
takes a message and adds redundancy transforming it into a (longer) codeword. A decod-
ing algorithm takes a (corrupted) codeword and recovers the original message. Although
error-correcting codes were designed for data transmission, they have seen widespread use
in storage applications. In storage environments, random access to the data is often of
importance. A code that can recover a single bit of the underlying message by reading a
small number of bits of a corrupted codeword is called locally decodable. Locally decod-
able codes were introduced in the context of Probabilistically-Checkable Proofs (PCPs)
[BFLS91, Sud92, PS94], and were formalized explicitly in the work of Katz and Trevisan
[KT00]. In current applications, where random access is needed, the underlying data is bro-
ken into small blocks and each block is encoded separately using a standard error-correcting
code. This technique allows for local recovery, since to recover a single bit of the message,
the decoder needs to only read a single block. However, a small number of errors concen-
trated on a single block may destroy part of the message. Locally decodable codes can be
seen as a way to achieve the best of both worlds: the robustness of encoding the database as
a single codeword, while still providing random-access into the underlying message. These
benefits come at a price, and Despite significant research (see [Tre04, Yek10] for surveys)
locally decodable codes have much larger codeword expansion than their classical counter-
parts. The most efficient 3-query LDCs are given by Efremenko [Efr09], and have codeword
expansion of exp(exp(O(

√
log n log log n))) for messages of length n. While these codes have

found many applications towards Probabilistically-Checkable Proofs and Private Informa-
tion Retrieval, their expansion rate is far too large for data storage applications. Recent
work by Kopparty, Saraf and Yekhanin [KSY11] gives constant rate locally decodable codes
with locality O(nε). These codes provide a drastic reduction in codeword expansion at the
price of fairly high locality.

There are a number of models for the introduction of errors. Shannon’s original work
[Sha48], considered errors that were introduced by a binary symmetric channel, where every
by of a codeword was independently “flipped” with some constant probability. This model
is relatively weak; a significantly stronger model is Hamming’s adversarial model. In the
adversarial model, the channel is viewed as an adversary who is attempting to corrupt a
codeword. The channel’s only limitation is on the number of symbols it is allowed to corrupt.
Shannon’s random errors and Hamming’s worst-case errors provide two extreme models,
and much work has gone into designing codes that are robust against some intermediate
forms of error.

We will focus on the computationally-bounded channel model proposed by Lipton
[Lip94, GLD04]. In this model, like in Hamming’s model, we view the channel as an adver-
sary who is attempting to cause a decoding error. As in Hamming’s model the channel is re-
stricted in the number of symbols (or bits) it can corrupt, but we further restrict the channel
to feasible (polynomial-time) computations. This computationally-bounded channel model
has been studied in the context of classical error-correction [Lip94, GLD04, MPSW05], and
locally decodable codes [OPS07, HO08].

In this work, we present a construction of locally decodable codes in the computationally-

1

bounded channel model with constant codeword expansion and locality O(λ) where λ is
the security parameter. In addition to improved locality, our results offer significant im-
provements over previous constructions constructions of locally decodable codes in the
computationally-bounded channel model. Our codeword expansion matches that of [HO08],
but we address the two main drawbacks of that construction. Our keys are much shorter
(O(λ) instead of O(n)), and our construction requires only the existence of an IND-CPA
secure cryptosystem, while their result relies on the relatively strong Φ-hiding assumption
[CMS99].

1.1 Previous Work

The computationally bounded channel model was introduced by Lipton [Lip94, GLD04],
where he showed how a shared key can reduce worst-case (adversarial) noise to random
noise. Lipton’s construction worked as follows. The sender and receiver share a permutation
σ ∈ Sn, and a blinding factor r ∈ {0, 1}n. If ECC is an error-correcting code with
codewords of length n, robust against random noise, then m 7→ σ(ECC(m)) ⊕ r is an
encoding robust against adversarial noise. If the channel is not polynomially-bounded
the sender and receiver must share n log n + n bits to communicate an n-bit codeword.
If, however, the channel is polynomially-bounded, and one-way functions exist, then the
sender and receiver can share a (short) seed for a pseudo-random generator rather than the
large random objects σ and r.

One drawback of Lipton’s construction is that it requires the sender and receiver to
share a secret key. In [MPSW05], Micali, Peikert, Sudan and Wilson considered public-key
error correcting codes against a bounded channel. They observed that if Sign(sk, ·) is an
existentially unforgeable signature scheme, and ECC is a list-decodable error correcting
code, then ECC(m,Sign(sk,m)) can tolerate errors up to the list-decoding bound of ECC
against a computationally bounded channel. The receiver needs only to list decode the
corrupted codeword and choose the item in the list with a valid signature. Since the
channel is computationally bounded it cannot produce valid signatures, so with all but
negligible probability there will be only one message in the list with a valid signature. This
technique allowed them to create codes that could decode beyond the Shannon bound.

A new twist on the code-scrambling technique was employed by Guruswami and Smith
[GS10] to construct optimal rate error correcting codes against a bounded channel in the
setting where the sender and receiver do not share a key (and there is no public-key in-
frastructure). In the Guruswami and Smith construction, the sender chooses a random
permutation and blinding factor, but then embeds this “control information” into the code-
word itself and sends it along with the message. The difficulty lies in designing the code so
that the receiver can parse the codeword and extract the control information which then
allows the receiver to recover the intended message (called the “payload information”).
Guruswami and Smith’s codes work in a more limited channel model, requiring the channel
to be oblivious (independent of the actual codeword being sent) or restricted to using log-
arithmic space, and their codes are not locally decodable. This work considers a stronger
channel model (polynomial time) and considers codes that are locally decodable. Unlike
those of Guruswami and Smith, however, our codes require setup assumptions (a public-key
infrastructure) and only achieve constant (not optimal) rate.

2

Locally decodable codes were first studied in the computationally bounded channel
model by Ostrovsky, Pandey and Sahai [OPS07]. In their work, they showed how to adapt
Lipton’s code-scrambling to achieve locally decodable codes when the sender and receiver
share a secret key. Their constructions achieved constant ciphertext expansion and locality
ω(log2 λ).

In [HO08], Hemenway and Ostrovsky considered locally decodable codes in the public-
key setting. They used Private Information Retrieval (PIR) to implement a hidden permu-
tation in the public-key model. Their construction achieves constant ciphertext expansion,
and locality O(λ2). Their construction suffered from two major drawbacks, first the key-size
was O(n) since it consisted of PIR queries implementing a hidden permutation, and second
the only one of their constructions to achieve constant ciphertext expansion was based on
the Φ-hiding assumption [CMS99]. Prior to this work, however, these were the only locally
decodable codes in the public-key model.

The work of Bhattacharyya and Chakraborty [BC11] considers locally decodable codes
in the bounded channel model, but their work concerns negative results. They show that
public-key locally decodable codes with constant locality and linear decoding algorithm
must be smooth, and hence the restriction on the channel does not make the constructions
easier. The codes constructed in this paper have a non-linear decoding algorithm as well
as super-constant locality, so the negative results of [BC11] do not apply.

1.2 Our Contributions

We address the problem of constructing locally decodable codes in the public key com-
putationally bounded channel model. Prior to this work, the best known constructions of
locally decodable codes in the computationally bounded channel model were due to Hemen-
way and Ostrovsky [HO08]. While both their construction and ours yield locally decodable
codes in the computationally bounded channel model with constant codeword expansion,
our construction has a number of significant advantages over the previous constructions.

• Size of keys:
For security parameter λ, and messages of length n, our construction has keys that
are size O(λ), while [HO08] has keys that are of size O(n), indeed, this is a primary
drawback of their scheme.

• Locality:
For security parameter λ, and messages of length n, Our construction has locality
O(λ), improving the locality O(λ2) in [HO08]. To recover a single bit (or O(λ)) bits
of a message from a corrupted codeword requires readingO(λ) bits from the codeword.
This improves the locality of the construction in [HO08] which had locality O(λ2) for
the same parameters.

• Generality:
The scheme of [HO08] only achieves constant codeword expansion under the Φ-hiding
assumption, while our schemes require only the existence of IND-CPA secure encryp-
tion. Like [OPS07, HO08], our codes have constant ciphertext expansion and fail to
decode with negligable probability.

3

• Re-usability:
In previous schemes, relying on a hidden permutation [Lip94, GLD04, OPS07, HO08],
the permutation is fixed by the key, and thus an adversary who monitors the bits read
by the decoder can efficiently corrupt future codewords.1 In the private key setting
[Lip94, GLD04, OPS07] this can be remedied by forcing the sender and receiver to keep
state. Public-key schemes which rely on a hidden permutation cannot be modified
in the same way to permit re-usability. Indeed, even in the case of codes without
local decodability creating optimal rate codes in the bounded channel model that do
not require sender and receiver to keep state was indicated as a difficult problem in
[MPSW05].2

• Codeword Size:
Our codes have constant ciphertext expansion, matching the results of [HO08] in the
public-key setting and [OPS07] in the private-key setting.

• Probability of Incorrect Decoding:
In the computationally-bounded channel model it is standard to consider codes that
only fail to decode with negligible probability. This is the case for our construction,
as well as the constructions of [OPS07, HO08]. In the unbounded error model it is
traditional to consider codes with constant failure probability. We note, however, that
simply repeating the decoding and taking a majority vote can be used to decrease the
failure probability at cost of increasing the locality.

These claims require that the message length n be greater than λ2, (where λ is the
security parameter). This is a minor restriction, however, since the Locally Decodable
Codes are aimed at settings where the messages are large databases.

As in [Lip94, GLD04, OPS07, HO08] our construction can be viewed as a permutation
followed by a blinding. In these types of constructions, the difficulty is how the sender and
receiver can agree on the permutation and the blinding factor. The blinding can easily be
achieved by standard PKE, so the primary hurdle is how the sender and receiver can agree
on the permutation. In [OPS07] the sender and receiver were assumed to have agreed on the
permutation (or a seed for a pseudo-random permutation) prior to message transmission
(this is the secret-key model). In [HO08], the receiver was able to hide the permutation in
his public-key by publishing PIR queries for the permutation. This has the drawback that
the public-key size must be linear in the length of the message. In both [OPS07, HO08],
the permutation is fixed and remains the same for all messages. In this work we take
a different approach, similar to that of [GS10]. The sender generates a fresh (pseudo)
random permutation for each message and encodes the permutation into the message itself.
Codewords consist of two portions, the control portion (which specifies the permutation)
and the payload portion (which encodes the actual message). The difficulty is in showing
that the adversary cannot corrupt either the control portion or the payload portion, even
if the decoder only reads a small portion of the control information.

1 This notion of re-usability is different than [OPS07], where they call a code re-usable if it remains secure
against an adversary who sees multiple codewords, but who cannot see the read pattern of the decoder.

2Our solution does not solve the problem posed in [MPSW05], however, because while our codes transmit
data at a constant rate, they do not achieve the Shannon capacity of the channel.

4

1.3 Notation

If f : X → Y is a function, for any Z ⊂ X, we let f(Z) = {f(x) : x ∈ Z}. If A is a PPT

machine, then we use a
$← A to denote running the machine A and obtaining an output,

where a is distributed according to the internal randomness of A. If R is a set, and no

distribution is specified, we use r
$← R to denote sampling from the uniform distribution

on R. We say that a function ν is negligible if ν = o(n−c) for every constant c. For a string
x, we use |x| to denote the length (in bits) of x. For two strings x, y ∈ {0, 1}n we use x⊕ y
to denote coordinate-wise exclusive-or.

2 Locally Decodable Codes

In this section we define the codes and channel model we consider. The notion of local-
decodability arose in the construction of probabilistically-checkable proofs (PCPs), see for
example [BFLS91, Sud92, PS94]. The first formal definition of locally decodable codes was
put forward by Katz and Trevisan in [KT00]. Since then the study of locally decodable
codes has grown significantly. Good surveys of the study of locally decodable codes are
available [Tre04, Yek10].

Definition 1 (Adversarial Channels). An adversarial channel of error rate δ is a randomized
map A : {0, 1}n → {0, 1}n such that for all w, dist(w,A(w)) < δn. We say that the channel
is computationally bounded if A can be computed in time polynomial in n.

Definition 2 (Locally Decodable Codes). A code ECC = (ECCEnc,ECCDec) is a
called a [q, δ, ε] locally decodable code with rate r if for all adversarial channels A of error
rate δ we have

• For all x, and all i ∈ [k] it holds that Pr[ECCDec(A(x), i) = xi] ≥ 1− ε.

• ECCDec makes at most q queries to A(x).

• The ratio |x|/|ECCEnc(x)| = r.

Where xi denotes the ith bit of x.

Simply letting A be computationally bounded in Definition 2 is not sufficient since it
does not address A’s ability to see the public-key or adapt to previous read patterns.

Definition 3 (Public-Key Locally Decodable Codes).
A code PKLDC = (PKLDCGen,PKLDCEnc,PKLDCDec) is a called a [q, δ, ε] public-
key locally decodable code with rate r if all polynomial time adversarial channels A of error
rate δ have probability at most ε of winning the following game. The game consists of three
consecutive phases.

1. Key Generation Phase:

The challenger generates (pk, sk)
$← PKLDCGen(1λ), and gives pk to the adversary.

5

2. Query Phase:
The adversary can adaptively ask for encodings of messages x, and receives c =
PKLDCEnc(pk, x). For any i ∈ [n], the adversary can then ask for the decod-
ing of the ith bit of x from c, and learn the q indices in c that were queried by
PKLDCDec(sk, c, i).

3. Challenge Phase:
The adversary chooses a challenge message x, and receives c = PKLDCEnc(pk, x),
the adversary outputs c̃. The adversary wins if |c̃| = |c|, dist(c̃, c) ≤ δ|c|, and there
exists an i ∈ [n] such that PKLDCDec(sk, c̃, i) 6= xi.

We also require that

• PKLDCDec(sk, c) makes at most q queries to the codeword c.

• The ratio |x|/|PKLDCEnc(pk, x)| = r.

We will consider locally decodable codes in the computationally bounded channel model,
and we will focus on the case where the error rate δ is constant, the transmission rate r is
constant. If we specify that the probability ε of decoding error is a negligible function of
the security parameter, then with these constraints our goal is to minimize the locality q.

Remark: In the query phase, we allowed the adversary to see indices read by the
challenger when decoding a codeword created by the challenger itself. We could allow the
adversary to see the indices read by decoding algorithm on any string c. Proving security
in this more general setting could be achieved using the framework below by switching the
IND-CPA encryption scheme in our construction for an IND-CCA one.

3 Construction

Let PKE = (Gen,Enc,Dec) be a semantically secure public-key encryption, with plaintexts
of length 2λ, and ciphertexts of length 2dλ. Let ECC1 = (ECCEnc1,ECCDec1) be
an error correcting code with 2dλ bit messages and 2dd1λ bit codewords. Let ECC2 =
(ECCEnc2,ECCDec2) be an error correcting code with t bit messages and d2t bit code-
words, and let PRG be a pseudo-random generator taking values in the symmetric group
on d2n symbols. Thus PRG(·) : {0, 1}λ → Sd2n. Let P̃RG be a pseudo-random generator
from {0, 1}λ → {0, 1}d2n.

• Key Generation:

The algorithm PKLDCGen(1λ) samples (pk, sk)
$← Gen. The public key will be pk

along with the two function descriptions PRG, P̃RG, while the secret key will be sk.

• Encoding:
To encode a message m = m1 · · ·mn, the algorithm PKLDCEnc breaks m into
blocks of size t and set ci = ECCEnc2(mi) for i = 1, . . . , n/t. Set C = c1 · · · cn/t,
so |C| = d2n. Sample x1

$← {0, 1}λ. x2
$← {0, 1}λ, and let σ = PRG(x1), and

6

R = P̃RG(x2). Generate r
$← coins(Enc). The codeword will be

(ECCEnc1(Enc((x1, x2), r)), . . . ,ECCEnc1(Enc((x1, x2), r))︸ ︷︷ ︸
` copies

, R⊕ σ(C)).

So a codeword consists of ` copies of the “control information” ECCEnc1(Enc((x1, x2), r)),
followed by the “payload information” R⊕ σ(C).

• Decoding:
The algorithm PKLDCDec takes as input a codeword (c1, . . . , c`, P), and a desired
block i∗ ∈ {1, . . . , n/t}. First, the decoder must recover the control information.
For j from 1 to 2dd1λ, PKLDCDec chooses a block ij ∈ [`], and reads the jth bit
from the ijth control block. Concatenating these bits, the decoder has (a corrupted
version) of c = ECCEnc1(Enc((x1, x2), r)). The decoder decodes with ECCDec1,
and then decrypts using Dec to recover (x1, x2). The control information (x1, x2) will
be recovered correctly if no more than a δ1 fraction of the bits 2dd1λ bits read by
the decoder were corrupted. Second, once the decoder has the control information.

The decoder then recovers σ = PRG(x1), and R = ˜PRG(x2). The block i∗ consists
of the bits i∗t, . . . , (i∗ + 1)t − 1 of the message m, so the decoder reads the bits
Pσ(i∗d2t), . . . , Pσ(i∗+1)d2t−1 from the received codeword. The decoder then removes
the blinding factor

C = Pσ(i∗d2t) ⊕Rσ(i∗d2t) · · ·Pσ((i∗+1)d2t−1) ⊕Rσ((i∗+1)d2t−1)

At this point C is a codeword from ECC2, so the decoder simply outputs ECCDec2(C).
The locality is 2dd1λ+ d2t.

PKE IND-CPA encryption with 2λ bit messages and 2dλ bit ciphertexts

ECC1 Error Correcting code with 2dλ bit messages and 2dd1λ bit codewords

ECC2 Error Correcting code with t bit messages and d2t bit codewords

PRG A pseudo random generator, outputting a permutation in Sd2n

P̃RG A pseudo random generator, outputting a string in {0, 1}d2n

` The number of times the control information is repeated

t The blocksize of the payload information

Figure 1: Constituents of the code

Remarks: The above scheme admits many modifications. In particular, there are a
number of simple tradeoffs that can be made to increase the correctness of the scheme, while
decreasing the locality. The simplest way to increase the probability that an uncorrupted
copy of (x1, x2) is chosen, is to increase the number of code blocks read by the decoder. A
slightly different approach to increase the probability that an uncorrupted copy of (x1, x2)

7

is chosen, is to have the sender sign each encryption Enc(x1, x2, r), the receiver could then
read back values until one with a valid signature is found. This would require the receiver
to have the sender’s verification key, and would result in an scheme with better average
locality. Tradeoffs of this sort between locality (or codeword expansion) and correctness
are commonplace in coding theory, and we make no attempt to list them all here.

• Codeword Length: A codeword is of the form

(ECCEnc1(Enc((x1, x2), r)), . . . ,ECCEnc1(Enc((x1, x2), r))︸ ︷︷ ︸
2`dd1λ bits

, R⊕ σ(C)︸ ︷︷ ︸
d2n bits

).

Thus the total codeword length is 2`dd1λ + d2n, making the codeword expansion
2`dd1λ+d2n

n .

• Locality: The locality is 2dd1λ+ d2t. If we take t = O(λ), then we will successfully
recover with all but negligible probability (negligible ε), and the locality will be O(λ).

Theorem 1. The scheme PKLDC = (PKLDCGen,PKLDCEnc,PKLDCDec) is a
public-key locally decodable code with locality q = 2dd1λ + d2t, and error rate δ, with
failure probability

ε =

e δ1α1−1/(
δ1
α1

) δ1
α1

2α1dd1λ

+ ne
−2 (δ2−α2)

2d22t
2−1

d2t+1 + ν(λ)

for some negligible function ν(·). Where α1, α2 are any numbers with 0 ≤ α1, α2 ≤ 1,
satisfying

2α1dd1λ`+ α2d2n ≤ δ|C| = 2δ`dd1λ+ δd2n,

and δi is the error rate tolerated by ECCi for i ∈ {1, 2}. In particular, this means that for
all PPT algorithms A and for all i

Pr

 PKLDCDec(sk, C̃, i) 6= xi :

(pk, sk)
$← PKLDCGen(1λ)

C
$← PKLDCEnc(pk, x), C̃

$← A(C, pk)

 < ε

whenever C and C̃ have the same length, and differ in at most δ|C| bits.

Proof. Since the codewords are naturally divided into two types of information, control
information, and payload information, we distinguish between errors in each type. Let ec

be the event that the adversary succeeds in corrupting the control information read by the
decoder, and let epi be the event that the adversary succeeds in corrupting payload block
i. Given a corrupted codeword C̃ = (c̃1, . . . , c̃`, P̃), ec is the event that more than a δ1
fraction of the 2dd1λ control bits are corrupted, so the event ec corresponds to the event
that the adversary succeeds in making the decoder recover erroneous control information.
Similarly, epi is the event that more than a δ2 fraction of the bits of the payload block
Pσ(id2t) · · ·Pσ((i+1)d2t−1) are corrupted. Recall that δi is the error tolerance of ECCi, in

8

particular, ECCi successfully decodes from a δi fraction of corrupted bits. It is easy to see
that the probability of incorrect decoding is bounded above by Pr[ec] +

∑
i Pr[epi]).

We proceed via a series of games, and we argue that Pr[ec] and Pr[epi] are essentially
the same in each game.

game0 This is the actual corruption game.

game1 This game is identical to game0 except that we imagine the challenger playing the
role of both sender and receiver.

game2 This game is identical to game1 except that when decoding, the challenger selects
indices i1, . . . , i2dd1λ ∈ [`], and if more than δ1 fraction of the bits specified by them
are incorrect, the challenger outputs ⊥, otherwise the challenger continues to read
the appropriate payload blocks. Notice that the challenger no longer needs sk since
it does not decrypt the control block, but merely checks if it has been corrupted.
This can be done by a challenger who simply stores the uncorrupted codeword and
compares it to the corrupted word outputted by the channel.

game3 This game is identical to game2 except that when encoding the challenger does not
encrypt (x1, x2), but (0, 0), so in this game codewords look like

(ECCEnc1(Enc((0, 0), r1)), . . . ,ECCEnc1(Enc((0, 0), r`)), R⊕ σ(C)).

Notice that the challenger can still recognize the events ec and epi , by storing the
uncorrupted codeword and comparing it to the corrupted codeword without the need
for sk.

game4 This is identical to game3 except that in this game the challenger generates σ uni-
formly from Sd2n and R uniformly from {0, 1}d2n.

From an adversary’s perspective, game0 and game1 are identical. In game2, the proba-
bility of decryption failure may increase, but Pr[ec] and Pr[epi] remain unchanged. By the
semantic security of PKE , Pr[ec] and Pr[epi] can only change by a negligible amount between
game2 and game3. By the security of PRG, Pr[ec] and Pr[epi] can only change by a negligible
amount between game3 and game4.

Thus to prove the claim it remains only to bound Pr[ec] and Pr[epi] in game4. To bound
Pr[ec] and Pr epi] in this game, suppose A introduces α1 fraction of errors into the control
information and α2 error into the payload information. Since the adversary introduces at
most a δ fraction of errors into the entire codeword, we have

2α1dd1λ`+ α2d2n ≤ δ|C| = 2δ`dd1λ+ δd2n

Recall that the control information ECCEnc1(Enc((x1, x2), r)) is 2dd1λ bits long, and there
are ` copies of it in the codeword. Let Zj denote the event that the jth control bit read by
the decoder is corrupted, where the probability ranges over the decoder’s choice over which
of the ` copies the bit is read from. Then each Zj is an independent Bernoulli random

9

variable, and
∑2dd1λ

i=1 E(Zi) = 2α1dd1λ. A Chernoff bound yields

Pr[ec] = Pr

2dd1λ∑
j=1

Zj > 2δ1dd1λ

 <
e δ1α1−1/(

δ1
α1

) δ1
α1

2α1dd1λ

We observe that this will clearly be negligible in λ, whenever δ1 > α1, i.e. the error tol-
erance of ECC1 is greater than the proportion of the control information that is corrupted.
By choosing ` to be large enough and δ to be small enough, we can always ensure that this
is the case.

To analyze the probability that the adversary successfully corrupts a payload block,
we observe that since σ and R are uniform, the adversary’s corruptions are distributed
uniformly among the d2n payload bits. The number of errors in a given payload block is
distributed according the hypergeometric distribution with parameters (α2d2n, d2n, d2t).

Theorem 1 from [HS05] gives

Pr[epi] = Pr[#errors in block i > δ2d2t] < e
−2 (δ2−α2)

2d22t
2−1

d2t+1 .

It is easy to see that if δ2 > α2, then this drops exponentially quickly in t.

Corollary 1. If there exists IND-CPA secure encryption with constant ciphertext expan-
sion then for messages of length n ≥ λ2/2 there exists Public-Key Locally Decodable Codes
of constant rate tolerating a constant fraction of errors with locality q = O(λ2), and ε = ν(λ)
for some negligible function ν.

Proof. Taking ` = n/λ and t = λ, in the above construction, we have codeword expansion
of 2dd1 +d2, which is a constant depending only on the expansion of the encryption (d) and
the expansion of the two error correcting codes (d1, d2). The code has locality (dd1 + d2)λ.

The code recovers with probability

ε =

e δ1α1−1/(
δ1
α1

) δ1
α1

2α1dd1λ

+ ne
−2 (δ2−α2)

2d22t
2−1

d2t+1 + ν(λ)

when δi > αi for i ∈ {1, 2}. With t = λ, ε will be negligible in λ. So we just need to assure
that δi > αi. Recalling that α1, α2 were the fraction of errors in the control and payload
blocks respectively, we have the following relationship

2α1dd1λ`+ α2d2n ≤ δ|C| = 2δ(`dd1λ+ d2n) = δ(2dd1 + d2)n

With ` = nλ, this yields the trivial bounds:

α1 ≤ δ
2dd1 + d2

2dd1
, α2 ≤ δ

2dd1 + d2
d2

.

So it will be enough to choose δ such that

δ
2dd1 + d2

2dd1
≤ δ1, δ

2dd1 + d2
d2

≤ δ2.

10

This yields

δ ≤ min

(
2dd1δ1

2dd1 + d2
,

d2δ2
2dd1 + d2

)
.

Since δ1, δ2 are the constant error rates tolerated by the underlying error correcting codes,
and d1, d2 are the constant expansion rates of the underlying error correcting codes, the
error rate tolerated by PKLDC will also be constant.

To give a sense of the efficiency of this scheme, we can plug in concrete numbers. If
PKE is a cryptosystem with ciphertexts twice as long as messages (i.e. d = 2), and the
two error correcting codes can tolerate a 1/16 fraction of errors (δ1 = δ2 = 1/16) with rate
1/4, (d1 = d2 = 4), then PKLDC can tolerate an error rate of δ = 1

80 , with ciphertext
expansion of 20.

A similar construction works to convert any Secret Key Locally Decodable Code [OPS07]
to a PKLDC using only a standard IND-CPA secure cryptosystem.

4 Construction Based on Secret-Key Locally Decodable Codes

In this section, we show how to transform any Secret-Key Locally Decodable code for
messages of length n > λ2, into a public-key locally decodable code with similar parameters.

Let PKE = (Gen,Enc,Dec) be a semantically-secure public-key cryptosystem encrypting
messages of length λ, and ciphertexts of length dλ. Let ECC1 = (ECCEnc1,ECCDec1)
be an error correcting code with dλ bit messages and dd1λ bit codewords. Let SKLDC =
(SKLDCGen,SKLDCEnc,SKLDCDec) is a secret-key locally decodable code with
keys of length λ, encoding messages of length n, and locality q, codeword expansion d2
tolerating an error rate of δ2.

We construct a public-key locally decodable code as follows:

• Key Generation:

The algorithm PKLDCGen(1λ) samples (pk, sk)
$← Gen. The public key will be pk,

and the secret key will be sk.

• Encoding:

To encode a message m, generate sk′
$← SKLDCGen(1λ), For i ∈ [n]`,

Generate r
$← coins(Enc), and the codeword will be

(ECCEnc1(Enc(sk
′, r)), . . . ,ECCEnc1(Enc(sk

′, r))︸ ︷︷ ︸
` times

,SKLDCEnc(sk′,m)).

• Decoding:
The algorithm PKLDCDec takes as input a codeword

(c1, . . . , c`, P),

and a desired block i∗ ∈ {1, . . . , n/t}.

11

First, the decoder must recover the control information. For j from 1 to dd1λ,
PKLDCDec chooses a block ij ∈ [`], and reads the jth bit from the ijth con-
trol block. Concatenating these bits, the decoder has (a corrupted version) of c =
ECCEnc1(Enc(sk

′, r)). The decoder decodes with ECCDec1, and then decrypts
using Dec to recover (sk′). The control information (sk′) will be recovered correctly if
no more than a δ1 fraction of the bits dd1λ bits read by the decoder were corrupted.

Second, using the recovered key sk′, the decoder runs the local decoding procedure
SKLDC(sk′, P, i∗). The locality is dd1λ+ q where q is the locality of SKLDC.

Theorem 2. The construction above is a Public-Key Locally Decodable code with locality
dd1λ+ q, and codewords of size dd1λ`+ d2n tolerating error rate

δ ≤ min

(
δ1dd1λ`

2(dd1λ`+ d2n)
,

δ2d2n

dd1λ`+ d2n

)
.

Proof. Codewords are of length dd1λ`+ d2n, so an adversary who can corrupt a δ fraction
of the bits of can corrupt at most δ(dd1λ`+ d2n) bits of the entire codeword. The decoder
must be able to recover, even if the adversary focuses all the errors on SKLDC, so we
must have

δ(dd1λ`+ d2n) ≤ δ2d2n⇒ δ ≤ δ2d2n

dd1λ`+ d2n
.

We also need a decoder to recover sk′ with all but negligible probability, even if the adversary
focuses all its errors on the control portion of codeword. Recall that the control information
ECCEnc1(Enc(sk

′, r)) is dd1λ bits long, and there are ` copies of it in the codeword. Let
Zj denote the event that the jth control bit read by the decoder is corrupted, where the
probability ranges over the decoder’s choice over which of the ` copies the bit is read from.
Then each Zj is an independent Bernoulli random variable, and

∑dd1λ
i=1 E(Zi) = α1dd1λ. So

Chernoff tells us that

Pr[ec] = Pr

∑
j

Zj > δ1dd1λ

 <
 e

δ1
α1
−1(

δ1
α1

) δ1
α1

2α1dd1λ

Where α1 is the fraction of the control information that is corrupted. So, even if the
adversary focuses all the corruptions on the control information, we have

α1 ≤
δ(dd1λ`+ d2n)

dd1λ`
.

We observe that this will clearly be negligible in λ, whenever δ1 > α1, i.e. the error tolerance
of ECC1 is greater than the proportion of the control information that is corrupted. By
choosing ` to be large enough and δ to be small enough, we can always ensure that this is
the case. In particular, we require

δ <
δ1dd1λ`

dd1λ`+ d2n
.

12

Thus we have the required result whenever

δ < min

(
δ1dd1λ`

dd1λ`+ d2n
,

δ2d2n

dd1λ`+ d2n

)
,

Notice that δ will be constant whenever λ` = O(n), which will occur if ` = O(λ) and
n ≥ λ2.

5 Conclusion

In this work we showed how to design locally decodable codes in the computationally
bounded channel model, achieving constant expansion and tolerating a constant fraction of
errors, based on the existence of IND-CPA secure public-key encryption.

This is the first work giving public-key locally decodable codes in the bounded channel
model with keys that are independent of the size of the message, and the only public-key
locally decodable codes achieving constant rate based on standard assumptions.

Our constructions are also fairly efficient. The decoder must do a single decryption with
an IND-CPA secure cryptosystem, two evaluations of PRGs, and then decode two standard
error-correcting codes.

Our construction is easily modified to provide a transformation from any secret-key
locally decodable code to a public-key one.

13

References

[BC11] Rishiraj Bhattacharyya and Sourav Chakraborty. Constant query lo-
cally decodable codes against a computationally bounded adversary.
http://people.cs.uchicago.edu/ sourav/papers/LDCbounded.pdf, 2011.

[BFLS91] Laszlo Babi, Lance Fortnow, Leonid Levin, and Mario Szegedy. Checking com-
putations in polylogarithmic time. In STOC ’91, pages 21–31, 1991.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally pri-
vate information retrieval with polylogarithmic communication. In Advances
in Cryptology: EUROCRYPT ‘99, volume 1592 of Lecture Notes in Computer
Science, pages 402–414. Springer Verlag, 1999.

[Efr09] Klim Efremenko. 3-query locally decodable codes of subexponential length. In
STOC ’09, pages 39–44. ACM, 2009.

[GLD04] Parikshit Gopalan, Richard J. Lipton, and Yan Z. Ding. Error correction
against computationally bounded adversaries. Manuscript, 2004.

[GS10] Venkatesan Guruswami and Adam Smith. Codes for computationally simple
channels: Explicit constructions with optimal rate. In FOCS ’10, 2010.

[HO08] Brett Hemenway and Rafail Ostrovsky. Public-key locally-decodable codes. In
CRYPTO, pages 126–143, 2008.

[HS05] Don Hush and Clint Scovel. Concentration of the hypergeometric distribution.
Statistics and Probability Letters, 75:127–132, 2005.

[KSY11] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes
with sublinear-time decoding. In STOC ’11, 2011.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding proce-
dures for error-correcting codes. In STOC ’00: Proceedings of the 32nd Annual
Symposium on the Theory of Computing, pages 80–86, 2000.

[Lip94] Richard J. Lipton. A new approach to information theory. In STACS ’94:
Proceedings of the 11th Annual Symposium on Theoretical Aspects of Computer
Science, pages 699–708, London, UK, 1994. Springer-Verlag.

[MPSW05] Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal
error correction against computationally bounded noise. In Joe Kilian, editor,
TCC, volume 3378 of Lecture Notes in Computer Science, pages 1–16. Springer,
2005.

[OPS07] Rafail Ostrovsky, Omkant Pandey, and Amit Sahai. Private locally decod-
able codes. In ICALP ’07 : Proceedings of the 34th International Colloquium
on Automata, Languages and Programming, volume 4596 of Lecture Notes in
Computer Science, pages 387–298. Springer, 2007.

14

[PS94] Alexander Polishchuk and Daniel Spielman. Nearly linear size holographic
proofs. In STOC ’94, pages 194–203, 1994.

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–343, 623–656, 1948.

[Sud92] Madhu Sudan. Efficient Checking of Polynomials and Proofs and the Hardness
of Approximation Problems. PhD thesis, UC Berkeley, 1992.

[Tre04] Luca Trevisan. Some applications of coding theory in computational complex-
ity. Quaderni di Matematica, 13:347 – 424, 2004.

[Yek10] Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theo-
retical Computer Science, 2010.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

