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Abstract

In this paper we introduce a new type of probabilistic search algorithm, which we call the
Bellagio algorithm: a probabilistic algorithm which is guaranteed to run in expected polynomial
time, and to produce a correct and unique solution with high probability. We argue the appli-
cability of such algorithms for the problems of verifying delegated computation in a distributed
setting, and for generating cryptographic public-parameters and keys in distributed settings.
We exhibit several examples of Bellagio algorithms for problems for which no deterministic
polynomial time algorithms are known. In particular,we show such algorithms for:

• finding a unique generator for Z∗
p when p is a prime of the form kq + 1 for q is prime and

k = polylog(p). The algorithm runs in expected polynomial in log p time.

• finding a unique q’th non-residues of Z∗
p for any prime divisor q of p − 1, extending

Lenstra’s [11] algorithm for finding unique quadratic non-residue of Z∗
p. The algorithm

runs in expected polynomial time in log p and q. The tool we use is a new variant of the
Adleman-Manders-Miller probabilistic algorithm for taking q-th roots, which outputs a
unique solution to the input equations and runs in expected polynomial time in log p and
q.

• given a multi-variate polynomial P 6= 0, find a unique (with high probability) ~a such that
P (~a) 6= 0. Alternatively you may think of this as producing a unique polynomial time
verifiable certificate of inequality of polynomials.

More generally, we show a necessary and sufficient condition for the existence of a Bellagio
Algorithm for relation R: R has a Bellagio algorithm if and only if it is deterministically reducible
to some decision problem in BPP.
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1 Introduction

The study of whether in principle probabilistic algorithms for search problems are more powerful
than deterministic algorithms has taken central stage in complexity theory since the early 70’s.
Indeed, the verdict is still out on this question. A reasonable question to ask from an algorithmic
point of view is, assuming that useable randomness exists, are there any advantages offered by run-
ning deterministic algorithms rather than probabilistic algorithms ? Say, a probabilistic algorithm
offers a significant speedup over the deterministic one, should one still prefer the latter?

Whereas in the case of Monte Carlo algorithm for which correctness holds only with high prob-
ability, one may argue the superiority of a deterministic algorithm, the answer seems much less
obvious for Las Vegas probabilistic algorithms. Here, although only expected polynomial time run-
time guarantees are given, upon termination the output correctness can be verified in polynomial
time. Indeed, it is possible that the time to verify the correctness of the output of a Las Vegas
algorithm can be much shorter than the time to run a deterministic algorithm for the problem. To
exemplify this phenomena, consider primality testing viewed as a search procedure for a witness
of primality which can be verified in deterministic polynomial time. To verify the witness output
by the celebrated AKS algorithm (essentially the execution trace of its fastest variants) will take
time O(n6) whereas to verify the correctness of the witness produced by the elliptic curve [15, 7]
primality testing algorithm1 will take time O(n3) for primes of length n

Yet, as highlighted in a talk of Lenstra on finding standard models for representing finite fields[12,
11], there is an important observable difference between deterministic and Las Vegas algorithms.
For the same input, a deterministic algorithm will yield the same runtime and the same output in
each execution. In contrast, the input does not fully determine the runtime or more importantly
the output of a Las Vegas algorithm, which may vary depending on the particular randomness
used in a particular execution. Generally, a probabilistic algorithm run twice on the same input
with different randomness, is not unique and can (and usually does) return two different outputs.
For example, on the same prime p, two executions of the widely used probabilistic procedure for
finding a generator g for the cyclic group Z∗p will generally yield two different generators; two
executions of probabilistic primality certifying algorithms [1],[15]) will with high probability yield
two different certificates of primality; two executions of the Schwartz-Zipple ([25, 20]) procedure
on input polynomials f and g such that f 6= g, will with high probability output a different v such
that f(v) 6= g(v);

This raises a general goal – which is the focus of our work – to design expected polynomial time
probabilistic algorithms which for every given input produce the same output, called the canonical
output, regardless of the randomness used, which can be verified correct in deterministic polyno-
mial time. We remark that obviously a deterministic polynomial time algorithm will answer this
requirement. The challenge is to design probabilistic algorithms with unique outputs in those cases
were either no deterministic polynomial time algorithms are known, or the probabilistic algorithm
offer efficiency improvements.

1Las Vegas Assuming polynomial size gap between consecutive primes
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We believe that the uniqueness of output per a given input is of marked importance in distributed
settings where the same computation is performed by different parties on the same input but
possibly with access to different sources of randomness. Such settings come up in the context of
cryptography when a group of users may distrust other users randomness sources and yet they wish
to generate common cryptographic system-wide keys (or public parameters in the case of IBE), or
for the purpose of efficiently verifying the correctness of each others computation in delegated cloud
computation, volunteer computing, or in simulating each others scientific experiments.

• Cryptographic Keys: Say a group (or pair) of users wishes to choose a common crypto-
graphic key, a common generator g for Z∗p for a given prime p, but nobody trusts each others
“random choices” for g. An algorithm which finds a canonical g will come in handy.

• Volunteer Computation or Delegating Computation to Several Servers: Suppose
that we wish to delegate computation, for example in a cloud computing or a volunteer
computing infrastructure. In such infrastructures a central body uses the computational
power of other willing users. The Berkeley Open Infrastructure for Network Computing
(BOINC)[4, 5] is such a platform whose intent is to make it possible for researchers in fields
as diverse as physics, biology and mathematics to tap into the enormous processing power
of personal computers around the world. This is done by distributing the work, often in
the form of delegation of smaller tasks. It could be ,however, that the server to which we
delegated the work is corrupt and is returning a false answer to our query. We thus may
wish to check the correctness of the returned value. One approach is to have the server prove
that its output is correct. This is not always easy to do, and seems in general to require
interaction to reduce the verification time, or making non-standard assumptions. A simpler
approach, apparently used in practice in BOINC, is to delegate the work to many servers and
accept their outputs only if they all return the same answer. Clearly, this approach works
only if the algorithm the servers use produces a unique answer. A probabilistic algorithm
which is guaranteed to produce a canonical output will enable a simple measure of checking
correctness of probabilistic algorithm.

Before we describe our results, we remark that perhaps the most compelling challenge for finding
a ”unique output”, which we urge the reader to keep in mind, is on input n to find a unique
prime p ∈ [n, 2n] via an expected polynomial time algorithm. Currently, density theorems on the
distribution of primes imply that in expected n trials choosing at random x ∈ [n, 2n], we will find
an x which is a prime, which can be certified either probabilistically by [1, 15] or deterministically
[3]. Deterministically, the best algorithm known is by Lagarias and Odlyzko in time O(n

1
2
+o(1)).

A recent work by Tao proposes a strategy to determine in time O(n
1
2
−c) some c > 0 of how to tell

whether a given interval in [n, 2n] contains a prime as a way to improve Lagarias and Odlyzko’s
method, Nonetheless, this will still result in an exponential procedure for finding a prime.
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1.1 The Contributions of This paper

1.1.1 A New Notion: Bellagio Probabilistic Algorithms

We suggest the study of a new type of probabilistic algorithm, the Bellagio Algorithms2 A Bellagio
algorithm for a search problem V is probabilistic algorithm which runs in expected polynomial time
and which on the same input, produces a unique and correct output with high probability over the
randomized choices of the algorithm.

More formally, let V (·, ·) be a polynomial time computable function (in its first argument). We
say that V (x, ·) is satisfiable if there exists y such that V (x, y) = 1. V naturally defines a search
problem: on input x ∈ {0, 1}∗, find y such that V (x, y) = 1 if one exists and else output reject;
and a decision problem: on input x ∈ {0, 1}∗ output 1 if and only if V (x, ·) is satisfiable.
A Bellagio algorithm for search problem V is a probabilistic algorithm A such that (a) On every in-
put x, A terminates in expected polynomial time; (b) If V (x, ·) is satisfiable, then Prob[V (x,A(x)) 6=
1] = negl(|x|) where the probability is taken over A’s coin tosses, else A(x) outputs reject; (c)Let
A(x, r) denote an execution of A on input x with coins r. Then, Prob[A(x, r) 6= A(x, r′)] = negl(|x|)
where the probability is taken over the choices of r and r′. We call maxr{y = A(x, r)} the canonical
output of A on input x.

The first non-trivial example of a Bellagio search algorithm is contained in the work of Lenstra
and Bart de Smit’s [12, 11] on finding standard models for representing finite fields. They show a
probabilistic algorithm which on input prime p, outputs a unique quadratic non-residues. We note
that the obvious approach of picking a random z ∈ Z∗p and checking whether the Legendre symbol
of z is −1 terminates in expected O(1) trials and will clearly output a different z each time. It is
not known how to find a quadratic non-residue in deterministic polynomial time unless we assume
the ERH.

We emphasize that Lenstra et al. [12, 11] require their algorithm to always (with probability 1)
produce the same quadratic non-residue, whereas we relaxed the requirement of uniqueness to hold
only with high probability. This will be an important difference which plays out in our examples
of a Bellagio algorithm to find unique non-zero’s of polynomials and for our general theorem 4.

We proceed to exhibit three new simple examples of Bellagio algorithms with relevance to cryp-
tographic applications. We then provide a general necessary and sufficient condition which allows
the design of Bellagio algorithms: for any search problem for which there exists a deterministic
polynomial time (cook) reduction from the search problem to a BPP decision problem, a Bellagio
algorithm can be designed.

1.1.2 Three Examples of Bellagio Algorithms

Example 1:
2Bellagio is a well known unique casino in Las Vegas,NV
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First, we consider the search problem of finding a generator of Z∗pfor p for strong primes p where p−1
has a prime factor of size polylog(p). Such generators are of special interest to cryptography, since
many protocols based on the Diffie-Hellman problem [14] make use of generators to establish keys.
is especially common place in cryptographic applications. It is well known how to efficiently test if
a given element of Z∗p is a generator or not, given the factorization of p− 1. Furthermore, we know
that φ(p− 1) elements are generators of Z∗p, where φ(x) is Euler’s totient function, which implies
that the density of generators is O( 1

log log(p)) [19]. Thus, the following well known probabilistic
procedure on input p outputs a generator: choose at random an element in Z∗p and test if is a a
generator. If so output it, otherwise repeat. This procedure will always produce correct outputs
since the test ensures that the output is correct, and due to the large density of generators, will
terminate in expected polynomial time. However, it most likely outputting a different generator
in each execution. We remark that for general p, when the factorization of p − 1 is unknown, no
efficient algorithm for finding a generator is known.

Informal Theorem 13 Let p be a prime and q a prime such that q divides p − 1. There exists
a probabilistic (Bellagio) algorithm G for finding a generator of Z∗p for any input prime p of the
form qk + 1 where k is of size polylog(p). We will callG(p):=g̃p a canonical generator of Z∗p . The
algorithm runs in expected time polynomial in k and log(p) which This matches previous time
bounds achieved by existing probabilistic algorithm (without canonical outputs).

The idea of the proof is to follow what we call a Canonization strategy: start with a probabilistic
Las Vegas algorithm for finding generators and convert any of its (possible many) outputs whose
value depend on the particular coin tosses made, to a single canonical generator. See details in
section 3.

Example 2:

Second, we consider the problem of finding a unique qth non-residue in Z∗p when p is prime. We
call an element a ∈ Z∗p a q’th residue for q divisor of p− 1 if a ≡ bq (mod p) for some b ∈ Z∗p, and
a q’th non-residue otherwise. Efficiently testing whether a number is a q’th non-residue or not can
be done by checking whether a(p−1/q) 6≡ 1 (mod p). The density of the qth non-residues constitue
a q−1

q of the elements of Z∗pṪhus, to find a qth non-residue mod p, one can simply sample a random
element in Z∗p and tests if the sampled element is a qth non-residue till one is found. Clearly, when
the algorithm terminates it produces a qth non-residue; but if the algorithm is run twice on the
same p it will generally produce a different quadratic non-residue. The algorithm runs in expected
polynomial time in log p and in the value of q. Our aim is to find an equally efficient probabilistic
Bellagio algorithm NR.

As mentioned above, Lenstra’s algorithm [11] for finding a canonical non-residue (which we explain
in appendix A) is a Bellagio algorithm for the case of q = 2 – quadratic non-residues. We extend
it as follows.

3We remark that the case of strong primes where p − 1 is divisable by a large prime factor (as in the premise of
the theorem)
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Informal Theorem 2: There exists a probabilistic (Bellagio) algorithm NR that on inputs p and
q such that p is prime and q is a prime such that q divides p−1, finds a q’th non-residue in Z∗p. Call
the output NR(p, q) a canonical qth non-residue. The algorithm runs in time polynomial in q and
log(p). This matches previous time bound achieved by existing probabilistic algorithms (which do
not have canonical outputs). See details in section 5.

The crucial idea of the proof will be how to reduce the question of finding a unique qth non-
residue to repeated calls to a subroutine, which in itself should be a Bellagio algorithm , for taking
q’th roots in Z∗pṄamely, we need an algorithm that on inputs p, q, a compute a canonical b in Z∗p
such that bq = a mod p if one exists. One algorithm for computing qth roots, due to Adleman-
Manders-Miller[2], runs in expected time polynomial in q and log(p), is in itself probabilistic and
is guaranteed to produce one (but not necessarily the same one, in different executions) of the q
possible qth roots of a. To ensure that ultimately our q-th non-residue finding algorithm produces
a canonical output, we modify the AMM algorithm to produce a canonical b such that bq ≡ a
(mod p). The idea is: find all q-th roots (which explains the runtime dependence on the value of
q) and output the smallest one.4

Example 3:

In the above examples of finding a generator and finding a qth non-residue, under the Generalized
Riemann Hypothesis, one may alternatively deterministic algorithms which simply enumerate the
elements of Z∗p testing for being a generator and testing for being qth non-residue respectively. The
running time of such procedures is not known to be polynomial time, but Generalized Riemann
Hypothesis, small generators and q-th non-residues exist . Our third example is of a different
nature.

Consider the fundamental problem of Polynomial identity testing (PIT). Although deterministic
algorithms remain elusive, many randomized algorithms are known for this problem. Formally, we
are given an arithmetic circuit computing a multivariate polynomial over some field, and we have to
determine whether that polynomial is identically zero or not. This problem embodies many special
case algorithmic questions. For example, testing equivalence of read-once branching programs [8],
and more. There are two well-studied models in which the PIT problem is considered. The first
is the so-called black-box model in which the only access to the circuit is by asking for its value
on inputs of our choice. The second setting is the non black-box model in which the circuit is
given as input. The PIT problem is difficult in both settings, and its difficulty stems from that
the polynomial is not given explicitly as a list of coefficients in either setting, bur rather in a form
which allows evaluation without seeing the coefficients.

There are several randomized (black-box) algorithms designed for the problem [13, 25, 20] which
are generally referred to as the Schwartz- Zippel algorithm. They are based on the idea that
by substituting random values to the variables from a large enough domain, one gets, with high
probability, a zero value only if the polynomial is zero. Conversely, if the input polynomial is not

4We note that Lenstra [11] similarly used a square root taking algorithm to produce both square roots solutions
to the quadratic equation a = x2 mod p. In this case there are only two b and p− b solutions .
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identically zero, the Schwartz-Zippel algorithm outputs an assignment to the variables on which
the polynomial value is not zero, which in itself is a certificate (as polynomial time verifiable proof)
that the input polynomial is not identically zero. This is not a unique certificate however ! By
the very nature of the algorithm, to argue it is correct with high probability, the assignment must
be chosen at random, and thus two different executions deeming the polynomial non-zero will find
with high probability two different assignments proving this fact. For completion, we include the
Schwartz-Zippel lemma.

Lemma ([Zip79, Sch80]). Let f(x1, ..., xn) be a nonzero polynomial of degree at most dover field F
and let T ⊂ F . If we choose a = (a1, ..., an) ∈ Tn uniformly at random, then Pr[f(a) = 0] ≤ d/|T |.

The lemma suggests a randomized algorithm for PIT: given a degree d polynomial f, pick at
random a ∈ Tn and check whether f(a) = 0. If f 6= 0, the probability of error is at most d/|T |,
and otherwise, we are always correct.

One may define a natural search variant of the PIT decision problem which we call SPIT: on input
a polynomial f , if f is not the zero polynomial, output an assignment ~a such that f(~a) 6= 0 and
otherwise output reject. Our aim is to design a probabilistic Bellagio algorithm for SPIT which
on an input polynomial f with high probability finds a unique ~a for which f(~a) 6= 0 when f 6= 0,
and otherwise outputs reject.

Informal Theorem 3: Let ε > 0. There exists a probabilistic (Bellagio) algorithm SPIT which on
input a nonzero polynomial f(x1, ..., xn) of degree at most d over field F with T ⊂ F and |T | > m,
outputs with probability 1− ε a unique assignment a = (a1, ..., an) to the variables of f such that
f(a1, .., an) 6= 0. The algorithm runs in expected polynomial time in n, logm, r, ε−1.

We remark that the guarantee we give for the algorithm of theorem 3 will be different than the
previous two examples in two respects. First it addresses an underlying decision problem, PIT,
which is not even known to be in NP – when f is identically zero, we know of no short prof of
this fact. Thus, the algorithm of theorem 3 may assert the polynomial identically zero even if it
is not, with non-zero probability. Second, uniqueness is only guaranteed with high probability.
There is a negligible but non zero probability, that on two different executions of the algorithm,
the assignment which is output will be different even when in both executions the assertion is that
the input f is non-zero.

The idea is to take the Schwartz-Zippel algorithm and modify it to look for the lexicographically
first assignment which makes f non zero. To do this, we fix assignments to variable x1, ..., xn
one at a time, and at each time–say that at iteration i we established that x1, ...xi = a1, ..ai –
we run the Schwartz-Zippel algorithm on the polynomial in the n − i unassigned variables f ′ =
f(a1, ...ai, xi+1, ...xn) to test with high probability if f ′ is identically zero. If it is deemed non-zero
with high probability, we go on to fix the value of xi+1; otherwise we try the lexicographically next
value for xi and re-iterate. What we get then, is an algorithm that with high probability will find
the first input ~a ∈ Tn such that f(~a) 6= 0. It is important to observe that this idea will fail if
any of the calls to the Schwartz-Zippel algorithm will fail . The probability of this event can be
made negligibly small. In such unlikely case, one of two bad events can occur. We will either find
a different assignment a′ such that f(a′) 6= 0 or make an error and assert that f is identically zero.
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The definition of Bellagio algorithm made allowances for such event with negligible probability.

We remark that this is all the detail we shall give in this extended abstract for the proof of informal
theorem 3. Full description will be provided in the final paper.

1.1.3 A General Theorem

Viewing the algorithm outlined in Example 3 above more generally, it is essentially a reduction
of SPIT search problem to a sequence of calls to the Schwartz-Zipple algorithm on a sequence of
PIT decision problems. This is very reminiscient of the general methodology of reducing search to
decision for NP-complete problems.

In our context, it leads the way to a general paradigm for constructing Bellagio algorithms: Find
a decision problem in BPP to which your search problem can be reduced and you can construct a
Bellagio algorithm for the latter. In fact, this is a necessary condition. Namely, there will always
exist a BPP set to which a Bellagio search problem can be deterministically reduced via a Cook
reduction.

Informal Theorem 4: Any search problem V that is deterministically reducible in polynomial
time (via a Cook reduction) to a decision problem in BPP, can be solved by a Bellagio algorithm.
Conversely, if search problem V has a Bellagio algorithm then finding solutions for V is determin-
istically reducible to some BPP decision problem.

The idea is as follows: say the polynomial time reduction between search problem V and decision
problem L on input x makes a polynomial number of calls on instances z1, ...zkof L to a perfectly
correct and deterministic oracle for L. In such case, by definition, the reduction from search to
decision, produces a deterministic and thus unique solution y to the search problem such that
V (x, y) = 1 if V (x, ) is satisfiable. Now, replace each call to the perect oracle by a call to BPP
algorithm, and make sure that the error probability in each call is small enough so that the union
bound over the total in the polynomial number of calls, will give a negligible error in total. Then,
with overwhelming probability each call to the BPP algorithm on z1, ..., zk will return the same
answers in differene executions of the BPP algorithms with different randomness, and thus the
search algorithm will end up constructing a canonical y such that V (x, y) = 1 if V (x, ) is satisfiable.
Recall that for a BPP decision problem L, or every ε >, there exists a probabilistic Monte Carlo
algorithm A that for every input x: if x in L then Prob[A(x) = 1] > 1− ε and if x is not in L then
Prob[A(x) = 1] < ε, and the algorithm always terminates in polynomial time in ε−1, |x| so can set
the error bound as needed that.

We remark that in the case of finding non-zeros, the reduction underlying example 3 is indeed
the standard search-to-decision reduction, but theorem 4 allows for more general reductions. For
example, the best parallel algorithms for finding perfect matchings are based on randomized BPP
algorithm for testing whether a given determinant is formally zero or not, in a highly non-standard
fashion and satisfy the conditios of theorem 4 [17, 16, 18, 10].

Finally, note that insisting on a deterministic reduction is unavoidable, since each PPT algorithm
(for search) may be viewed as a PPT reduction to a trivial problem.
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The converse is almost immediate. Suppose that A is a Bellagio algorithm for V , and consider the
set L s.t. (x, i, b) ∈ L iff Pr[ith bit of A(x) = b] > 2/3. Then, (i) L is a BPP language, and (ii)
finding solutions wrt V is deterministically reducible to L.

1.2 Other Related Work

One approach to find a canonical element of some special type is to pick the smallest such element.
For example, if one shows that the smallest quadratic non-residue is found within the first polylog(p)
elements of Z∗p, we can efficiently find a canonical quadratic non-residue by going over all elements
of Z∗p one by one and checking whether they are non-residues until one is found.

Using this approach, two main results are known. The first holds under the assumption of the
Generalized Reimann Hypothesis(GRH). Assuming GRH, Ankeny [6] showed that the smallest
quadratic non-residue is of size O(log2(p)). Without any assumptions, the best known tool for
dealing with bounds on the smallest non-residue comes from the theory of character sums. Using
character sums, the best known bound is p

1
4
+o(1) due to Burgess [9].

As for the problem of the least generator of Z∗p, Shoup [22] showed that, assuming GRH, the
smallest generator is of size O(log6(p)). Hence if it is possible to verify whether an element is a
generator in polynomial time, then going over the elements by brute force until some generator is
found takes polynomial time, and gives a canonical generator. Without making any assumptions
the best bound is p

1
4
+o(1) similar to the case of the smallest non-residue.

Organization: The rest of this paper is organized as follows. Since definitions of a Bellagio algo-
rithm and general outline of the ideas of the proofs for theorem 3 and 4 appear in the introduction,
we restrict our attention in this extended abstract to the constructions underlying theorem 1 and 2.
In section 3 we define the problem of finding a canonical generator of Z∗p and present an algorithm
which solves this problem for primes of the form p = kq + 1 where q is prime and k = polylog(p).
We show an algorithm for canonically taking qth roots in Z∗p in section 4. In section 5 we present an
algorithm for finding a canonical q’th non-residue for any prime q dividing p− 1 . Various number
theoretic claims and propositions can be found in 2. For completion we describe and prove the
algorithm given by Lenstra for finding a canonical non-residue in Appendix A. We present several
open questions in 6.

2 Preliminaries

Throughout this section, let p be an odd prime unless stated otherwise. We begin by defining two
special types of elements of Z∗p - q’th non-residues and generators.

Definition 2.1. Let p be an odd prime. An element a of Z∗p is called a quadratic residue if a has
square root modulo p, that is if a ≡ b2 (mod p) for some b ∈ Z∗p. If a doesn’t have a square root
modulo p, it is called a quadratic non-residue. Similarly, for any q, an element a ∈ Z∗p is a q’th
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residue if a ≡ bq (mod p) for some b ∈ Z∗p, and a is a q’th non-residue if such element does not
exist.

Definition 2.2. Let p be an odd prime. A generator of Z∗p is an element g ∈ Z∗p such that every
element a ∈ Z∗p can be uniquely expressed as gx (mod p) where 1 ≤ x ≤ p− 1.

Definition 2.3. The order of an element a ∈ Z∗p is the smallest integer k such that ak ≡ 1 (mod p).

We denote the order of a by ord(a). We state several useful number theoretic propositions regarding
the order of an element:

Proposition 2.4. If ord(a) = n, ord(b) = m, where n and m are co-prime, then ord(ab) = n ·m.

Proposition 2.5. If ord(a) = k · l, then ord(ak) = l.

Proposition 2.6. If ord(a) = k, then ∀h ∈ {1, . . . , p− 1} we have ah ≡ 1 (mod p)⇔ k|h.

Proposition 2.7. An element a ∈ Z∗p is a quadratic non-residue if and only if a(p−1)/2 ≡ −1
(mod p).

Proposition 2.8. Let q be a prime such that q|p− 1. An element a ∈ Z∗p is a q’th residue if and
only if a(p−1)/q ≡ 1 (mod p). Equivalently, a ∈ Z∗p is a q’th non-residue if and only if a(p−1)/q 6≡ 1
(mod p).

Proof: Suppose a is a q’th residue, then there exists some b ∈ Z∗p s.t. a ≡ bq (mod p). Hence,
a(p−1)/q ≡ bp−1 ≡ 1 (mod p).

Conversely, Let a be such that a(p−1)/q ≡ 1 (mod p). Let g be a generator of Z∗p. Then a can be
written as gs for some integer s. Since g is a generator, its order is p− 1, and hence by proposition
2.5 the order of g(p−1)/q is q. We have that (g(p−1)/q)s = (gs)(p−1)/q ≡ a(p−1)/q ≡ 1 (mod p), hence
by proposition 2.6 the order of g(p−1)/q, which is q, divides s. Denote s = kq. Now a ≡ gkq = (gk)q

(mod p) . We get that a is a q’th residue, since (gk)q ≡ a (mod p).

The proof of the above proposition gives an important relation between quadratic non-residues and
generators of Z∗p. We see that if a is a q’th residue, then it is some power of gq for any generator
g. Formally:

Proposition 2.9. Let q be a prime such that q|p − 1, and let g be a generator of Z∗p. Let a ∈ Z∗p
and a = gs where 0 ≤ s ≤ p− 1. We have that a is a q’th residue if and only if q|s.

Corollary 2.10. Half of the elements of Z∗p are quadratic non-residues. More generally, q−1
q of

the elements of Z∗p are q’th non-residues for a prime q dividing p− 1.

Proposition 2.11. The number of generators of Z∗p is φ(p − 1) where φ(x) is Euler’s totient
function. The density of generators of Z∗p is O( 1

log log(p)) [19].
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Claim 2.12. Let g be a generator of Z∗p, and let k be such that k|p−1. The set {a ∈ Z∗p : ord(a)|k}
equals the set {g

p−1
k
·i : 1 ≤ i ≤ k}.

Proof: We show mutual inclusion of the two sets:
k: Let h = g

p−1
k
i for some 1 ≤ i ≤ k. Since hk = (g

p−1
k
i)k = (gk

p−1
k )i ≡ 1i ≡ 1 (mod p), proposition

2.6 gives us that ord(h)|k.
j: Let h be some element s.t. ord(h)|k. Since g is a generator of Z∗p, h = gm for some m ∈ Z∗p.
By proposition 2.6, ord(h)|k ⇒ hk = gmk ≡ 1 (mod p). Since g is a generator, ord(g) = p − 1,
thus by proposition 2.6, p − 1|mk , which implies that (p−1)

k |m. Denote m = p−1
k · t. If t ≤ k we

are done, otherwise write t = t1k + r where r ≤ k. We now have gm = g
p−1

k
·t = g

p−1
k
·(t1k+r) =

g(p−1)·t1g
p−1

k
r ≡ g

p−1
k
r (mod p). Since r ≤ k we are done.

Claim 2.13. An element g is a generator of Z∗p if and only if g(p−1)/q 6≡ 1 (mod p) for every prime
q dividing p− 1.

Proof: Let g be a generator of Z∗p, then ord(g) = p− 1 by definition. Hence for every k < p− 1,
gk 6≡ 1 (mod p). Thus, for every q|p− 1 we have that g(p−1)/q 6≡ 1 (mod p).

Conversely, let g be such that g(p−1)/q 6≡ 1 (mod p) for every prime q|p− 1. Suppose that g is not
a generator, hence ord(g) = k for some k < p− 1. Since the order of an element always divides the
order of the group Z∗p, we have that k|p − 1. Since k < p − 1, we must have that for some prime
divisor q of p − 1, k|p−1

q . By proposition 2.6 we get that g(p−1)/q ≡ 1 (mod p), a contradiction.
Hence ord(g) = p− 1 and g is a generator of Z∗p.

3 A Canonical Generator of Z∗p for p = kq +1, where q is prime and
k is of size polylog(p)

We would like to find a probabilistic (Bellagio) polynomial time algorithm G satisfying the following
requirement: For each prime input p there exists a generator g̃p of Z∗p such that for any randomness
ρ used by the algorithm, G(p, ρ) = g̃p, where by G(p, ρ) we mean G running on input p using
randomness ρ.

We restrict our attention to a specific case in which the factorization of p− 1 is of a special form.
Specifically, we give a polynomial time algorithm for finding a canonical generator for primes of the
form p = kq + 1, where q is prime and k is of size polylog(p). We note that in this case p− 1 can
be efficiently factored. We present an algorithm for finding a canonical generator in this case.

The algorithm is as follows: First, we find some element of large order b′ ∈ Z∗p, such that the order
of b′ is greater than q. We then use b′ to obtain an element b of order exactly q. Next, we find
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some canonical (in the sense that it will be unique per p) element c of order k 5. Such elements
are obtained by taking any randomly chosen generator to powers which are multiples of q. The
product b · c (mod p) will give us a canonical generator.

Our algorithm for finding a canonical generator, which we denote CGen, is given below. Without
loss of generality we assume that p− 1 is given in factored form, that is both k and q are known:

Algorithm 1 Calculate g̃p, a canonical generator of Z∗p, for p = kq + 1
Input: p prime, q prime, k such that p = kq + 1.

1: Go over elements b′ ∈ Z∗p one by one until one is found satisfying (b′)k 6≡ 1 (mod p). This
element is the smallest element in Z∗p satisfying ord(b′) ≥ q.

2: Find the order of b′ using Shoup’s algorithm. Denote ord(b′) := rq, and let b := (b′)r (mod p).
3: Find a generator g of Z∗p. This is done by picking a random element of Z∗p and checking if its

order is kq, using Shoup’s algorithm, repeatedly until such element is found.
4: Compute the set G =

{
gqi (mod p) : 1 ≤ i ≤ k

}
. Sort its elements in increasing order.

5: Find the smallest c ∈ G set s.t ord(c) = k by going over the sorted elements of G and checking
their order until one is found.

6: Return g̃p = b · c (mod p).

Theorem 1. Let p be a prime of the form kq+ 1, where q is prime. Algorithm 1 finds a canonical
generator of Z∗p in expected polynomial time O(log log(k) · log log(p) · log3(p)+k · log log(k) · log3(p)).
When k is of size polylog(p), the algorithm runs in expected polynomial time in log(p).

Proof: We begin by showing that the output of the algorithm, g̃p = b · c (mod p), is indeed a
generator of Z∗p. It suffices to show that b is of order q and c is of order k. This is because since q
is prime and k < q, we have that gcd(k, q)=1. Hence proposition 2.4 gives us that ord(b · c) = k · q
= p− 1, hence g̃p is a generator of Z∗p.

We first show that b is of order q. Let b′ be the element found in step 1. Since (b′)k 6≡ 1 (mod p),
by proposition 2.6 ord(b′) - k. Since ord(b′) | p− 1 and p− 1 is of the form k · q where q is prime,
this gives us that q|ord(b). Denote ord(b′) = rq. By proposition 2.5, ord(b) = ord((b′)r) = q.

It remains to show that c is of order k. Let g be the generator found in step 3. By proposition 2.5,
ord(gq) = k. Observe the set G = {gq·i : 1 ≤ i ≤ k}. Since gq ∈ G, the set of elements in G whose
order equals k is not empty, hence there is some smallest element c ∈ G of order k which we find in
step 5. Since c is defined to be of order k, this shows that our algorithm returns a generator of Z∗p.

We now show that the algorithm returns a canonical generator. To do so, we must show that for
any randomness used, the algorithm always returns the same result. Observe that the only use of
randomness is to select the generator in step 3. This generator is only used to construct the set
G in step 4. Thus, to show that the output of the algorithm is unique per prime p, we must show

5We use an algorithm shown by Shoup ([23], page 329) for the general case where the factorization of p − 1 is
known. Let p− 1 =

Qr
i=1 qei

i . Shoup shows that one can find the order of a ∈ Z∗p in time O(log(r) log3(p)). Since r
can be at most log(p), the algorithm works in time O(log log(p) log3(p))
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that for any two generators g1, g2 of Z∗p,
{
gqi1 : 1 ≤ i ≤ k

}
=
{
gqi2 : 1 ≤ i ≤ k

}
. This follows from

claim 2.12 which states {gq·i1 : 1 ≤ i ≤ k} = {a ∈ Z∗p : ord(a)|k} = {gq·i2 : 1 ≤ i ≤ k}.

It remains to show that the algorithm runs in time polynomial in log(p). Denote p−1 = q ·
∏r
i=1 k

ei
i .

Note that r can be at most log(p).

Step 1 : By claim 2.12, we know that the number of elements whose order divides k, which is equal
to the number of elements whose order is ≤ k, is k. Hence one of the first k+ 1 elements has order
at least q. We raise each of these elements to the power k and check whether they are equivalent
to 1 modulo p. Each check takes time O(log3(p)) required for performing exponentiation. Hence
finding b′ takes time k ·O(log3(p)).

Step 2 : Denote ord(b′) = rq. Finding the order of b′ takes O(log(r) log3(p)) time using Shoup’s
algorithm. Raising b′ to the power of r takes O(log3(p)) time. Hence finding b takes time
O(log(r) log3(p)).

Step 3 : We need to analyze the expected running time of this step. As stated in proposition 2.11, the
density of generators of Z∗p is O( 1

log log(p)). Thus, we expect to find some generator after O(log log(p))
tries. For each element we select, we check whether it is a generator by verifying that its order is
p−1 using Shoup’s algorithm, hence step 3 has expected running time O(log log(p) · log(r) log3(p)).

Step 4 : Given a generator g, calculating gq takes O(log3(p)). Once we have gq, we generate the
set G := {gq·i : 1 ≤ i ≤ k} by performing k exponentiations, which takes time k ·O(log3(p)). Since
sorting these elements takes time k · log(k), in total this step takes time k ·O(log3(p)).

Step 5 : Checking the order of elements in G takes O(log(r) log3(p)) time. Hence we find the
element c in time at most k ·O(log(r) log3(p)).

Step 6: Multiplying b and c to obtain g̃p takes O(log2(p)).

The above calculations gives us that the total running time of the algorithm is O(log log(p) ·
log(r) log3(p)) + k · O(log(r) log3(p))

)
. Since r is the number of prime divisors of k, we have that

r = O(log(k)). Taking into account that k is of size polylog(p), we can consider the running time
as: O(k · log log(k) · log3(p)). Hence the algorithm runs in time polynomial in log(p) when k is of
size polylog(p), as required.

We compare our algorithm to a different approach of calculating a canonical generator under the
GRH assumption. Assuming GRH, one can show that the smallest generator g ∈ Z∗p satisfies
g < c·log6(p) for some constant c > 0. Hence, assuming GRH, the algorithm which checks elements
of Z∗p one by one to see if they are generators runs in time O(log6(p)) ·O(log log(p) log3(p)). This
algorithm finds a canonical generator, the smallest one of Z∗p. We note that, even if the GRH
assumption holds, for values of k of size less then log6(p) our algorithm CGen runs faster than the
algorithm which finds the smallest generator.

Remark 1: The case where p−1 = 2k for some k is a simple case for finding a canonical generator.
This is because a simple argument, presented in [24] chapter 6.3, shows that every quadratic non-
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residue in Z∗p is a generator. Thus, in this case it suffices to find a canonical quadratic non-residue
of Z∗p which can be done using Lenstra’s algorithm given in appendix A.

Remark 2: A variant of an algorithm for computing a canonical generator on an input prime, is
to look for an algorithm G which generates pairs (p, g̃p) where p is prime and g̃p is a generator of
Z∗p. In this case the canonical property is that if (p1, g̃p1),(p2, g̃p2) are two outputs of G and p1 = p2,
then g̃p1 = g̃p2 .

Such an algorithm can work by using known methods for generating large primes p with known
factorization of p − 1, and then use this factorization to compute a canonical generator. Methods
for generating p with p− 1 in factored form work by first generating a random factored number n
and testing n+ 1 for primality. Details regarding this approach can be found in [23] pages 298-300.

4 Taking qth Roots Canonically in Z∗p

Our goal is to construct an probabilistic algorithm A which is given as input p, a prime divisor q
of p− 1 and a q’th residue a ∈ Z∗p and satisfies the following property: for any a ∈ Z∗p there exists
b ∈ Z∗p such that bq ≡ a (mod p) and for any randomness ρ used by A we have A(p, q, a, ρ) = b.

The main idea of our solution is to perform a canonization process on a probabilistic algorithm for
taking qth roots. This algorithm, which we denote AMM , is due to Adelman, Manders and Miller
[2]. The AMM algorithm takes a prime p, a prime divisor q of p− 1 and a q’th residue a. It makes
use of a q’th non-residue, γ, which it is either given as input or selects probabilistically. If it is
given γ as input, we denote the algorithm by AMM (γ). The output of the algorithm is an element
b such that a ≡ bq (mod p). The output of the AMM algorithm is effected by the choice of γ. The
AMM algorithm was first shown in [2]. The running time of the algorithm is O(q · log(p)4).

The canonization process makes use of the fact that given some q’th root of a ∈ Z∗p, we can construct
all q’th roots of a by obtaining all q’th roots of unity in Z∗p. Denote by E the set of all q’th roots
of 1 in Z∗p. |E| = q and it can be constructed in time polynomial in q given any q’th non residue
γ. Let b ∈ Z∗p such that a ≡ bq (mod p). All of the q’th roots of a are given by the elements
{b · e : e ∈ E}. Canonization process uses the AMM algorithm to obtain b, and use b to generate
the set {b · e : e ∈ E}. Picking the smallest element in this set provides a canonical way to take
q’th roots. We denote this algorithm by CAMM , or CAMM (γ,E) if γ and E are given as input.
See algorithm 2 for the formal definition of the algorithm.

Theorem 2. Let p be a prime, q a prime divisor of p − 1, a ∈ Z∗p a q’th residue. Algorithm 2
returns a canonical q’th root of a in expected polynomial time O(q · log4(p)).

Proof: We begin by showing that algorithm 2 returns a q’th root of a. We first show that the set
E is calculated correctly in step 2. By definition, E = {x ∈ Z∗p : ord(x) = q}∪{1}, hence contains
exactly all elements of Z∗p whose order divides q. Thus, by claim 2.12 |E| = q. This means that
once we find q distinct elements of Z∗p, each with order either q or 1, then we have found the set
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Algorithm 2 Taking q’th roots of a ∈ Z∗p canonically for q prime, q|p− 1.
Input: p prime, q a prime divisor of p− 1, a a qth residue in Z∗p.

Optional Input: E - the set of all q’th roots of 1 in Z∗p
Optional Input: γ - q’th non residue.

1: If γ was not given as input, pick elements γ ∈ Z∗p at random until one is found satisfying
γ(p−1)/q 6≡ 1 (mod p).

2: If E is not given as input, Let E = {γ
p−1

q
i : 1 ≤ i ≤ q}.

3: Set b← AMM (γ)(p, q, a).
4: Return min{b · e (mod p) : e ∈ E}.

E. Let γ be some q’th non-residue. We show that the set {γ
p−1

q
i : 1 ≤ i ≤ q} contains q elements,

each of order either q or 1, hence this set is E. Since γ is a q’th non-residue, γ
p−1

q 6≡ 1 (mod p).

However, (γ
p−1

q )q = γp−1 ≡ 1 (mod p), hence ord(γ
p−1

q )|q. Since q is prime, we must have that

ord(γ
p−1

q ) = q. Thus, the set {γ
p−1

q
i : 1 ≤ i ≤ q} has q distinct elements. Furthermore, For any i

we have that (γ
p−1

q
i)q = (γp−1)i ≡ 1 (mod p). Summing up, we get that E = {γ

p−1
q
i : 1 ≤ i ≤ q},

as required.

We now show that if a is a q’th residue, then all of its q’th roots are given by the set {b · e : e ∈
E}, where b is the q’th root obtained by running the AMM algorithm in step 3. Suppose that
a ≡ bq ≡ bq1 (mod p) where b1 ∈ Z∗p and b 6≡ b1 (mod p). We show that b1 = e · b where e ∈ E.
This holds since (b1b−1)q = bq1(bq)−1 ≡ a · a−1 ≡ 1 (mod p). Thus, the order of b1b−1 divides q,
and hence b1b−1 ∈ E, or equivalently b1 = e · b for some e ∈ E. Moreover, for any e ∈ E we have
that (b · e)q = bqeq ≡ a · 1 (mod p). Hence b · e is a q’th root of a. We conclude that all of the
q’th roots of a are given by the set {b · e (mod p) : e ∈ E}. Since the returned value is min{b · e
(mod p) : e ∈ E}, we indeed return a q’th root of a.

Next, we show that the algorithm always returns a canonical root of the q’th residue a. To see
this, observer that the randomness is only used to pick the q’th non-residue γ, which in turn is
used to create the set E and to obtain b using the AMM algorithm. Let γ1, γ2 be two q’th non-
residues in Z∗p. We have shown that for any q’th non residue γ, the set E which is defined as

{x ∈ Z∗p : ord(x) = q}∪{1} satisfies E = {γ
p−1

q
i : 1 ≤ i ≤ q}. Hence {γ

p−1
q
i

1 : 1 ≤ i ≤ q} = E =

{γ
p−1

q
i

2 : 1 ≤ i ≤ q}. That is, the set created in step 2 is the same no matter what q’th non-residue
is chosen using randomness ρ. Let b1 be the q’th root obtained by running the AMM algorithm on
input a using the q’th non-residue γ1, and similarly for b2. Denote by Qa all q’th roots of a in Z∗p.
We have shown that for any b ∈ Z∗p satisfying bq ≡ a (mod p), the set {b · e : e ∈ E} = Qa. Hence,
{b1 · e : e ∈ E} = Qa = {b2 · e : e ∈ E}. Thus, the minimal element of this set, which is returned
in step 4, is the same no matter which q’th non-residue was chosen, and the algorithm returns a
canonical q’th root.

To finish our proof, we show that the algorithm runs in time polynomial in q and log(p). By
corollary 2.10, q−1

q of the elements of Z∗p are q’th non-residues, hence we expect to find γ after
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two tries. Constructing the set E = {γ
p−1

q
i : 1 ≤ i ≤ q} takes q exponentiations, which require

O(q · log3(p)) time. The AMM algorithm requires time O(q · log4(p)). After we obtain a q’th root
b, we construct the set {b · e : e ∈ E}. Since |E| = q, this step requires q multiplications which take
O(q · log2(p)). Hence the total running time of the algorithm is O(q · log4(p)).

5 A Canonical q’th Non-residue of Z∗p

In a recent talk [11], Lenstra presented the idea of canonizing the output of probabilistic algorithms
in order to find a canonical quadratic non-residue. His algorithm and a proof of correctness can
be found in appendix A. Here, we want to find, given any prime p, a canonical q’th non-residue of
Z∗p, which we denote q̃p. Formally, we look for a probabilistic polynomial time algorithm NR such
that for any prime p and prime q|p − 1 there exists a q’th non residue q̃p ∈ Z∗p such that for any
randomness ρ, NR(p, q, ρ) = q̃p, where by NR(p, q, ρ) we mean NR running on input p, q using
randomness ρ.

We obtain such an algorithm by showing a reduction from the problem of finding a canonical q’th
non-residue to that of taking q’th roots. If the latter has canonical output then we can find q’th
non-residues canonically. We take qth roots canonically using the CAMM algorithm described
in the previous section. The reduction is obtained by showing that when taking q’th roots of -1
repetitively until we are eventually unable to do so, in which case we obtain a q’th non-residue. A
full overview follows.

The algorithm takes as input a prime p. We check whether -1 is a q’th non residue by checking if
−1(p−1)/q ≡ −1 (mod p). If it indeed a non-residue, return -1 as the canonical q’th non-residue.
If -1 is a quadratic residue, we probabilistically select a q’th non residue γ. Using γ, we construct
the set E = {x ∈ Z∗p : ord(x) = q}∪{1} as shown in the previous section. We run the CAMM
algorithm with input p,q and using -1 as the q’th residue. We use γ and E which the algorithm
requires instead of recalculating them. The CAMM algorithm returns a canonical q’th root of -1,
which we denote by b. If b is a q’th non-residue, we are done, otherwise we continue by canonically
taking a q’th root of b. Continue in this manner until some q’th non-residue is found. We return
that element as the canonical quadratic non-residue. Formally, see algorithm 3.

Algorithm 3 Calculate a canonical q’th non-residue of Z∗p for a prime q|p− 1
Input: p prime, q prime dividing p− 1

1: If −1(p−1)/q 6≡ 1 (mod p), return −1.
2: Pick elements γ ∈ Z∗p at random until one is found satisfying γ(p−1)/q 6≡ 1 (mod p).

3: Let E = {γ
p−1

q
i : 1 ≤ i ≤ q}.

4: Set a← −1.
5: Repeat until a(p−1)/q 6≡ 1 (mod p): Set b← CAMM

(γ,E)
q (p, q, a), and set a← b.

6: Return a
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Theorem 3. Let p be a prime. Algorithm 3 finds a canonical q’th non-residue of Z∗p in expected
polynomial time O(q · log5(p)).

Proof: We begin by showing that the algorithm must halt and return a q’th non-residue. If -1
is a q’th non-residue, we return it as our output. Otherwise, if it is a q’th residue, by proposition
2.9 we know that for some generator g we have gq

kQ ≡ −1 (mod p) where k > 0. Let b be the
q’th root obtained by performing the first iteration of step 5. Clearly, gq

k−1Q is also q’th root of -1.
Denote by E the set {x ∈ Z∗p : ord(x) = q}∪{1} as above. In the proof of theorem 2 we have shown
that all q’th roots of -1 are given by the set {gqk−1Q · e : e ∈ E}. Thus, b is of the form gq

k−1Q · e
for some e ∈ E. Furthermore, by claim 2.12 the set E can also be written as {g

p−1
q
i : 1 ≤ i ≤ q}.

Denote p− 1 = qm ·Q′ where m ≥ k. We now have that b is of the form gq
mQ′i · gqk−1Q. Continuing

inductively in this manner, we get that after t q’th root extractions we are left with an element
that can be expressed as g to a power of the form (

∑m
j=k−t+1 q

jaj) + qk−tQ, where aj are just
coefficients of the powers of q. The smallest power of q in this sum is decreased by one after each
iteration. After k iterations, the smallest power of q in this sum becomes 0, hence the square root
is of the form g(

P
j q

jaj)+Q. Since q - Q, we have that q - (
∑

j q
jaj) +Q, and hence by proposition

2.9 we have found a q’th non-residue, which the algorithm outputs.

The proof that the algorithm outputs a canonical q’th non residue is similar to that of Lenstra’s
algorithm for finding quadratic non-residues given the previous explanations, since step 5 is per-
formed in a canonical manner.

It remains to prove that the algorithm has expected running time polynomial in q and log(p). By
corollary 2.10, q−1

q of the elements of Z∗p are q’th non-residues, hence we expect to find one after

two tries, and each attempt takes time O(q · log2(p)). Constructing the set E = {γ
p−1

q
i : 1 ≤ i ≤ q}

takes q exponentiations, which require O(q · log3(p)) time. For the analysis of the other parts of
the algorithm, suppose that -1 is a q’th residue. Then, as previously explained, -1 is of the form
gq

k·Q where q - Q and k > 0. Since the exponent is smaller than p − 1, we get that k can be at
most log(p). We run the CAMM (γ,E) algorithm for taking q’th roots at most k times. Each time
that the CAMM (γ,E) algorithm is run requires a running time of O(q · log4(p)). Since k is at most
log(p), we get that the total expected running time of the algorithm is O(q · log4(p)), as required.

6 Open Problems

We find most intriguing question is the one stated in the introduction: find a Bellagio algorithm
for finding a prime in the interval n, 2n] on input n.

With respect to the question of finding a canonical generator of Z∗p—, we left open the question of
how to find a canonical generator of Z∗p for a general prime p. A good starting point may be to
study the case where p is of the form 2qr+ 1 where q, r are of size O(

√
p). When dealing with p of

this sort there are only a few possibilities for the order of an element. It can be either 2, q, r, 2q, 2r
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or 2qr. We note that it suffices to find a canonical element of a power which is a multiple of q and a
canonical element of power which is a multiple of r in order to find a canonical generator. Currently,
there is no known method of finding a canonical generator for the general case in time less then
p

1
4
+o(1), where this running time is obtained using the character sums analysis as mentioned in

section 1.2.

As discussed in the introduction, when the factorization of p− 1 is unknown, we do not know how
to obtain a certified generator, even without requiring the output to be canonical. It will be of
interest even to find a canonical generator in time as expensive as the best known factorization
algorithm, which is sub-exponential in log(p). In other words, can we find a suitable reduction
between factoring and finding a canonical generator?

Finding a reduction between having a black-box access to an algorithm which is guaranteed to
output a generator of Z∗p and finding a canonical generator would be quite interesting as well. Note
that the canonization process described within is not black box.
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A Lenstra’s Algorithm for Finding Canonical Quadratic Non-Residues

We want to find, given any prime p , a canonical quadratic non-residue of Z∗p, which we denote q̃p.
Formally, we look for a probabilistic polynomial time algorithm Q such that for any prime p there
exists a quadratic non-residue q̃p ∈ Z∗p such that for any randomness ρ, Q(p, ρ) = q̃p, where by
Q(p, ρ) we mean Q running on input p using randomness ρ.

Lenstra’s algorithm for finding q̃p makes use of an algorithm for calculating square roots modulo
a prime p, which we refer to as the Shanks-Tonelli algorithm (ST ) [21]. This algorithm takes as
input a prime p and a quadratic residue a. The ST algorithm also makes use of some quadratic
non-residue which it is either given as input or selects probabilistically. If a quadratic non-residue γ
is given as input, we denote the algorithm as ST (γ). Depending on the non-residue that it uses, the
algorithm returns an element b ∈ Z∗p satisfying a ≡ b2 (mod p). The ST algorithm has expected
running time polynomial in log(p). We describe a general form of this algorithm for taking q’th
roots for any prime q dividing p− 1 in appendix ??.

The main idea of Lenstra’s algorithm for finding a canonical quadratic non-residue is to continuously
take square roots of some element of Z∗p, in this case -1, using the ST algorithm. Since the ST
algorithm can return any one of the two square roots, depending on the quadratic non-residue
which it uses, we will make sure that it works in a canonical way. At some point, we will not be
able to take square roots any more, which means that we have found a quadratic non-residue.

We explain the algorithm in more detail. The algorithm takes as input a prime p. We check whether
-1 is a quadratic non-residue by checking if −1(p−1)/2 ≡ −1 (mod p). If it indeed a non-residue,
return -1 as the canonical non-residue. If not, then there is some x ∈ Z∗p such that x2 ≡ −1
(mod p). The algorithm probabilistically selects some quadratic non-residue γ by selecting random
elements until a quadratic non-residue is found, as explained in the beginning of this section. It
runs the ST (γ) square root algorithm on input p, using -1 as the quadratic residue, and using γ as
the quadratic non-residue which the algorithm requires. Note that both x and −x are square roots
of -1, and the algorithm may return any one of them, depending on γ. Clearly, given one we can
obtain the other. We compare the two square roots, taking the smaller square root, i.e. the one
smaller or equal to p−1

2 . Denote that root by b. If b is a non-residue, we are done, otherwise we
continue by taking a square root of b using the ST (γ) algorithm. Continue in this manner until some
quadratic non-residue is found. We return that element as the canonical quadratic non-residue.
Formally, the algorithm is described as follows:

Theorem 4 (Lenstra [11]). Let p be a prime. Algorithm 4 finds a canonical quadratic non-residue
of Z∗p in time polynomial in log(p).
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Algorithm 4 Calculate a canonical quadratic non-residue of Z∗p
1: Find the largest power of 2 dividing p− 1, denoted by k, and let p− 1 = 2k ·Q.
2: If −1(p−1)/2 ≡ −1 (mod p), return −1. Otherwise, set a← −1.
3: Pick elements γ ∈ Z∗p at random until one is found satisfying γ(p−1)/2 6≡ 1 (mod p).
4: Repeat k − 1 times: Set b← ST (γ)(p, a), and set a← min{b (mod p),−b (mod p)}.
5: Return a

Proof: We start by showing that the algorithm must terminate and return some quadratic non-
residue. If -1 is a quadratic non-residue, we return it. We deal with the case where -1 is a quadratic
residue. Write p−1 = 2k ·Q where Q is odd. Let g be any generator of Z∗p. Henceforth, we consider
-1 as g(p−1)/2 (mod p). We show that we can perform step 4 k− 1 times: Initially, the square roots
are g2k−2Q and −g2k−2Q. For g2k−2Q we can clearly take another square root. As for −g2k−2Q, we
can write it as g2k−1Q · g2k−2Q, and now it is apparent that a square root can be taken. After t
steps, a is of the form g(

Pk−1
i=k−t 2iaiQ)+2k−t−1Q where ai ∈ {0, 1}. Note that the smallest power in the

sum is reduced by one after each step. Hence, at the end of step 4 the square root is of the form
g(

Pk−1
i=1 2iaiQ)+Q. Hence, since Q is odd, our output a is g to some odd power, which by proposition

2.9 means that a is a quadratic non-residue.

We now show that algorithm 4 returns a canonical result. The only step which is effected by the
choice of randomness is step 3. Let ρ be the randomness used by the algorithm, and let γρ be the
resulting non-residue selected by the algorithm. To see that the canonical property holds it suffices
to show that step 4 of the algorithm is performed in a canonical way. To see this, observe that if
the Shanks-Tonelli algorithm is run on a ∈ Z∗p such that a ≡ x2 (mod p), it can return either x or
−x as its output, depending on γρ. Since in step 4 we always takes the smaller square root out of
the two, the resulting root b will be the same no matter what non-residue γρ was used by the ST
algorithm. Thus, the algorithm satisfies the canonical property.

It remains to show that the algorithm is efficient. Given p−1 := 2k ·Q, we can find k in time log(p).
Since half of the elements of Z∗p are quadratic non-residues, we expect to find a one in two tries.
Each attempt requires performing exponentiation, which takes log3(p) time. We then perform k−1
applications of the Shanks-Tonelli algorithm, which runs in time polynomial in log(p). Hence the
expected running time of the algorithm is polynomial in log(p), which completes the proof of the
claim.
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