
Complexity Lower Bounds through Balanced Graph Properties

Guy Moshkovitz∗

Abstract

In this paper we present a combinatorial approach for proving complexity lower bounds.

We mainly focus on the following instantiation of it. Consider a pair of properties of m-edge

regular hypergraphs. Suppose they are “indistinguishable” with respect to hypergraphs

with m − t edges, in the sense that every such hypergraph has the same number of super-

hypergraphs satisfying each property. Roughly speaking, we show that finding a pair of

distinct such properties implies an m/(t− 1) lower bound on the rank of explicit tensors.

We also show, albeit non-explicitly, that near-optimal rank lower bounds can be obtained

in this manner. Furthermore, we consider the t = 2 case and prove that it already implies

non-trivial lower bounds. In particular, we derive a (tight) lower bound of 3n/2 on the rank

of n×n×n tensors naturally associated with hypergraph forests (which apparently was not

known before; in fact, our bound also applies to the so-called border rank, and as such, is

not far from the best lower bounds known).

1 Introduction

It is a fundamental and long-standing open challenge to find a polynomial that provably has no

small arithmetic circuit. Roughly speaking, an arithmetic circuit is a description of a polyno-

mial using arithmetic operations—addition, subtraction, and multiplication—by applying those

repeatedly, starting from the variables (and any constant from the underlying field). Despite con-

siderable efforts, the number of arithmetic operations required to thus compute a polynomial—

its complexity—remains poorly understood. Specifically, the best lower bound known on the

complexity of an explicit1 n-variate polynomial is slightly super-linear Ω(n log n), even though

an easy counting argument shows that the complexity of almost all n-variate polynomials of

degree O(n) is exponential 2Ω(n). In fact, relatively little is known even on the more restricted

arithmetic formula, in which a previously computed polynomial can be used as an input to only

one subsequent arithmetic operation.

In this paper, we define and study a notion of “balance” of hypergraph properties, and show

that it has tight connections with complexity lower bounds. The exact meaning of “balance”

depends on the model of computation for which we would like to prove lower bounds, be it

∗Blavatnik School of Computer Science, Tel Aviv University, Israel. Supported by the Israel Science Founda-

tion.
1A polynomial p (or more accurately, a sequence (pn)n∈N of n-variate polynomials) is considered explicit if,

roughly, it is of degree polynomial in n, and there is a polynomial time Turing machine that when specified a

monomial, outputs its coefficient in p.
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an arithmetic circuit, an arithmetic formula, or other natural models. For concreteness and

simplicity we shall focus in this introduction, and throughout most of the paper, on the definition

of “balance” that implies lower bounds on tensor rank. (We stress that almost every result

we present in this paper is applicable, usually verbatim, to other models of computation; see

Section 7 for a discussion.)

Tensors. Let F denote an arbitrary field, and let A = (ae)e∈[n]d be a d-tensor with entries

in F. We say that a nonzero A is of rank 1 if there are d vectors v1, . . . , vd ∈ F
n such that

A = v1⊗· · ·⊗vd (where ⊗ denotes tensor product, i.e., A = (v1e1 · · · vded)e∈[n]d). The rank of A is

the least r so that A is a sum of r rank-1 tensors.2 Although the rank of matrices, or 2-tensors,

is well understood, not much is known on the rank of d-tensors for d > 2. For instance, while it

is known that almost all d-tensors are of rank ≈ nd−1/d (note that the maximum possible rank

is clearly at most nd−1), no rank lower bound better than (a folklore) Ω(n⌊d/2⌋) is known for an

explicit tensor. In particular, no explicit 3-tensor of super-linear ω(n) rank is known.

Perhaps surprisingly, rank lower bounds imply in some cases lower bounds for general arith-

metic computations. Results of Strassen [26] and Baur and Strassen [4] show that a lower bound

on the rank of a 3-tensor implies the same lower bound, up to a constant factor, on the com-

plexity of computing the naturally-associated polynomial by an arithmetic circuit (this has the

potential to lead to circuit lower bounds of up to Ω(n2)). For d-tensors, a result of Raz [22]

shows that a rank lower bound of nk implies a lower bound of nΩ(log( d
d−k

)) on the complexity

of computing the associated polynomial by an arithmetic formula, assuming d ≤ logn/ log logn

(this has the potential to lead to super-polynomial formula lower bounds). Currently, no known

rank lower bound is strong enough for these results to imply interesting general arithmetic lower

bounds.

1.1 Our results

A hypergraph3 is d-partite if its vertex set is partitioned into d classes so that every edge includes

exactly one vertex from each class (e.g., 2-partite hypergraphs are the usual bipartite graphs).

The adjacency tensor of a d-partite hypergraph, generalizing the adjacency matrix of a bipartite

graph, has the value 1 in the entries corresponding to the edges, and 0 elsewhere. The degree list

of a hypergraph H, denoted L(H), is the labeled sequence specifying the degree4 of each vertex

in H. (Clearly, different hypergraphs may have the same degree list.)

An important concept in this paper is that of a t-scope, which is a set of d-partite hypergraphs

of the form5

{G0 ·∪H | L(H) = L }
2This notion of tensor computation can be viewed as a restriction of an arithmetic formula, and in that context

is sometimes referred to as a depth-3 set-multilinear formula; see, e.g., [22] for a discussion.
3A (finite, simple) hypergraph is a collection of subsets, called edges, of some finite set of vertices. Unless

otherwise specified, we implicitly assume that all hypergraphs considered are over the same vertex set.
4The degree of a vertex is the number of edges containing it.
5The symbol ·∪ stands for disjoint union; i.e., G0 ∩H = ∅.
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for a d-partite hypergraph G0 and a degree list L of t-edge d-partite hypergraphs (in other

words, it is the set of super-hypergraphs of G0 with a given degree list, namely, L(G0) +L). As

a trivial example, note that a degree list L of a 1-edge hypergraph clearly determines a single

hypergraph H. Hence, any 1-scope contains either a single member, or none (in case G0 already

has that edge). A more interesting case is that of 2-scopes; for example, if a degree list L has

two vertices of degree 1 from each vertex class (and all others of degree 0), then there are exactly

2d−1 hypergraphs H (having two edges) such that L(H) = L. Hence, any 2-scope with such an

L contains at most 2d−1 hypergraphs, and in fact it is easy to see that the same holds for any

2-scope.

Let P,P ′ be two disjoint families (or properties) of d-partite hypergraphs over a given vertex

set. Suppose that for every t-scope, the number of hypergraphs from P that are in the scope is

the same as the number of hypergraphs from P ′ that are in the scope. In such a case, we refer

to the union P ·∪P ′ as a t-balanced family. We say that a hypergraph is t-balanceable if there is

a t-balanced family containing it. Our main result is the following (see Theorem 3.9).

Theorem 1.1 (Main Theorem). The rank of the adjacency tensor of any t-balanceable m-edge

hypergraph is at least
⌈

m
t−1

⌉

, over any field.6

Very intuitively, the above bound follows as no rank-1 tensor is able to “capture” any t of

the m edges in the balanceable hypergraph.

It should be noted that finding a balanced family actually implies lower bounds for many

more tensors, as follows (see Theorem 3.11).

Theorem 1.2. Let P ·∪P ′ be a t-balanced family, and suppose that its members have m edges.

Then the
⌈

m
t−1

⌉

rank lower bound holds for the adjacency tensor of any d-partite hypergraph

whose number of subgraphs from P and from P ′ differ, assuming the difference is not a multiple

of the characteristic of the field.

Weak balance. It is also possible to relax our definition and deduce lower bounds over fields

of characteristic 2. We say that a family of d-partite hypergraphs is weakly t-balanced if the

number of its members in every t-scope is even.7 Notice that any t-balanced family is clearly

also weakly t-balanced. Naturally, we say that a hypergraph is weakly t-balanceable if there is a

weakly t-balanced family containing it. This definition is sufficient to deduce the following lower

bound (see Theorem 3.10).

Theorem 1.3 (Main Theorem II). The rank of the adjacency tensor of any weakly t-balanceable

m-edge hypergraph is at least
⌈

m
t−1

⌉

over any field of characteristic 2.

Observe that a lower bound over the binary field GF(2) also implies a lower bound over the

integers: if a tensor A with {0, 1} entries is of rank at most r over the integers, meaning it can

6Note that this bound is well defined as there are no 1-balanceable hypergraphs, which follows from the fact

that every hypergraph appears in a singleton 1-scope, and thus cannot appear in only one of P or P ′.
7This definition is actually a bit simplified; the actual definition involves considering s-scopes for all s ≥ t (see

Definition 3.7), but as we will show in Corollary 4.12, for t a power of two, it turns out to be equivalent to the

simpler definition given here.
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be represented as a sum of r rank-1 tensors with integer entries, then reducing the latter modulo

2 implies that A is of rank at most r over GF(2) as well.

When constructing balanceable hypergraphs in this paper, we begin by first showing that

our hypergraphs are weakly balanceable—which already implies rank lower bounds—and only

then try to find a good bipartition of the containing family (i.e., into a pair P,P ′ as above),

thereby extending the lower bound result so as to hold over any field.

Constructing balanceable hypergraphs. One might wonder how large can lower bounds

deduced using the above theorems be. We show, albeit in a non-explicit manner, that there

exist balanceable hypergraphs with parameters that imply almost optimal rank lower bounds

(see Theorem 3.12).

Theorem 1.4. For every d ≥ 2, and every sufficiently large n, there exist t-balanceable d-

partite hypergraphs with m edges and n vertices in each vertex class, for some m and t such that
⌈

m
t−1

⌉

= Ω( nd−1

d log d).

Of course, our goal is to find explicit lower bounds. To that end, we construct some balance-

able hypergraphs in Section 5; in particular, we construct 2-balanceable hypergraphs. Observe

that showing a hypergraph to be 2-balanceable exactly determines the rank of its adjacency

tensor, since the adjacency tensor of a hypergraph with m edges is clearly of rank at most m

(in other words, showing a hypergraph to be 2-balanceable implies that its adjacency tensor is

“full rank”). We prove, for example, that any d-partite forest (see Subsection 5.2 for definitions)

is weakly 2-balanceable, assuming d > 2. A simple argument shows that any such hypergraph

has up to (dn − 1)/(d − 1) ≤ (3n − 1)/2 edges, where n is the number of vertices in a vertex

class. We also show that any binary 3-partite tree, which is a connected forest of maximum

degree 2, is (non-weakly) 2-balanceable. Since such hypergraphs having (3n− 1)/2 edges exist,

we deduce a tight rank lower bound of (3n − 1)/2 on their adjacency tensors that holds over

any field. In addition, we show that these constructions cannot be improved by much, as any

(weakly) 2-balanceable 3-partite hypergraph has in fact at most 3n edges, and hence in order to

obtain lower bounds greater than 3n for 3-tensors, one must consider t-balanceable hypergraphs

for t ≥ 3.

Known results on tensor rank. Previous work on the rank of tensors mainly focused on

some 3-tensors of interest. We next describe a particularly interesting one. Consider the problem

of computing the product of two ℓ × ℓ matrices (aij)i,j and (bij)i,j , that is, the ℓ × ℓ matrix

(
∑ℓ

k=1 ai,kbk,j)i,j . The arithmetic complexity of this problem has been studied extensively over

the years; it is known, following the above-mention [26, 4], to equal, up to a constant factor, to

the rank of the naturally-associated size-ℓ2 3-tensor. The best lower bounds known on the rank

of this tensor are 2.5ℓ2 − ℓ over any field, shown by Bläser [6] (whose proof relied on showing

that in any basis of the space of matrices, there must be a small subset that spans matrices

satisfying a certain invertibility condition), and 3ℓ2 −O(ℓ
5

3 ) over GF(2), shown by Shpilka [25]

(combining the above methods with techniques from linear codes). On the other hand, the best

rank upper bound known is O(ℓ2.38) by Coppersmith and Winograd [8].
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There are also results on the related notion of border rank of a tensor. Over the complex

numbers, the border rank of a tensor A is the smallest r so that every polynomial, acting on

tensors, that evaluates to zero on all tensors of rank at most r, also vanishes on A.8 It is clear

that the border rank of a tensor is never larger than its rank. The best lower bound known on the

border rank of the matrix multiplication tensor is 3ℓ2/2+ℓ/2−1; this was shown by Lickteig [16]

(the proof is based on an upper bound on the dimension of a related linear subspace).

As for tensors other than that of matrix multiplication, the best rank lower bound known

on n × n × n tensors, shown in [3], is 3n − O(logn), and it holds over any field. For lower

bound proofs that apply to a large family of (explicit) 3-tensors, see [11, 13] where rank lower

bounds of 3n/2 are shown for 2 × n × n tensors (using linear-algebraic tools). Furthermore,

Strassen [28] gave 3n/2 border rank lower bounds for 3× n× n tensors; this was later improved

by Griesser [10], but as far as we know, no explicit border rank lower bound better than 2n

for n × n × n tensors is known. We mention that although we obtain a modest lower bound

of 3n/2 on the (in fact, border-) rank of tensors, our proof applies to tensors corresponding to

hypergraph forests, which seems more natural compared to previous lower bounds.

Techniques. To prove Theorems 1.1, 1.2, and 1.3 we use the following algebraic zeroing ar-

gument. Consider the rd vectors that specify a rank-r computation of a d-tensor. It is not

hard to see that the functions mapping a rank-r computation—viewed as a sequence of rdn

field elements—to each entry of the computed tensor are in fact polynomials. If we are able

to construct a polynomial Q acting on d-tensors (i.e., Q has nd variables) such that composing

it on the aforementioned nd polynomials yields the zero polynomial, then rank lower bounds

follow—any tensor on which Q does not vanish must be of rank greater than r. We show that

by using our notion of balancedness, we can construct such a polynomial Q, and which is also

multilinear and homogeneous. Using the latter properties of Q, non-zeros can be easily found.

For example, using the fact that Q is multilinear, it is not hard to see that any of its monomials

naturally corresponds to a subset of the entries of a tensor; hence a tensor whose nonzero entires

are given by such a subset must, by homogeneity, be a non-zero of Q.

Polynomials that vanish on low-complexity arithmetic computations were considered in the

past, e.g., by Motzkin [18], Belage [5], Strassen [27], and Lipton [17], who proved not-quite-

explicit complexity lower bounds for univariate polynomials. For instance, Strassen gave a

near-optimal lower bound on univariate polynomials whose sequence of (integer) coefficients

grows double-exponentially. This result was proved by observing that there exists a polynomial

H that vanishes on sequences of coefficients of low-complexity polynomials such that H is of

moderate degree and has small integer coefficients. It was then shown that such an H cannot

vanish when evaluated on double-exponentially-sized inputs, which completed the proof. (In

fact, Theorem 3.12, showing the existence of a balanced family with good parameters, implies a

somewhat stronger existence results for such an H.) Also, Strassen’s result [28] mentioned above

was proved by explicitly describing such a polynomial, vanishing on low-rank 3× n× n tensors.

8It can also be defined as the least r so that the tensor is the limit of a sequence of tensors of rank at most r.

Thus, intuitively, a border rank lower bound on a tensor says that it cannot even be “approximated” by low-rank

tensors. For definitions over other fields see, e.g., [15].
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In another, more recent work, by Raz [21], such polynomials were used to show that a certain

polynomial mapping “eludes” being computed by small bounded-depth arithmetic circuits.

The polynomials we consider here are, compared to those used in the aforementioned papers,

more “well behaved” in that they are multilinear, homogeneous, and with unity coefficients. Our

results are based on the fact that the action of such well-behaved polynomials can be described

using t-scopes, for appropriate values of t.

Let us mention that some approaches for proving complexity lower bounds were suggested in

the past using, e.g., Raz’s elusive functions in [21], Valiant’s rigid matrices in [29], as well as the

algebraic geometry approach in [20]. The approach suggested in this paper is purely (hyper-)

graph-theoretical, and seems amenable to tools and techniques from that area.

As for the techniques we use in our constructions of balanceable hypergraphs, they are based

on the following observation. Think of hypergraphs from the same scope as being obtained from

one another by applying a “rewiring operation”, replacing a subgraph consisting of t edges with

a different subgraph having the same degree list. To prove that any d-partite forest (d > 2)

is weakly 2-balanceable, we show that every two of its edges can be rewired so as to obtain a

different forest. More formally, we give, for every 2-scope, a fixed-point-free involution on the

forests contained there.

While we do not know if all these forests are in fact 2-balanceable, we are able to show this—

as mention above—for binary trees. To do so, we define a notion of parity for binary trees, and

prove that applying the aforementioned rewiring involution always changes the parity. This

implies that the families of binary trees of even and of odd parity form a 2-balanced family.

This implies that each of their members is 2-balanceable, as desired.

1.2 Open questions

This paper raises some open questions of interest.

• The main open question is whether we can find explicit t-balanceable hypergraphs whose

number of edges m is large relative to t. In particular, can we find such a hypergraph

for which m/t is super-linear in the number of vertices? Showing this for 3-partite hyper-

graphs would lead to the first super-linear arithmetic circuit complexity lower bound for

polynomials of constant degree.

• A more modest goal would be to find explicit t-balanceable 3-partite hypergraphs for which

m/t > 3n, where n is the number of vertices in a vertex class (note that this is not possible

for t = 2 by Corollary 5.14). This would improve the best rank lower bounds known.

• Can we use our approach to prove new lower bounds for specific tensors/polynomials of

interest, such as the matrix multiplication tensor?

• Does the “natural proof” barrier pose significant restrictions on possible constructions

of balanceable hypergraphs? Razborov and Rudich [23] show that, under a reasonable

conjecture, any family of functions of high Boolean circuit complexity is, roughly speaking,

small (relative to the number of functions) or “complicated” (deciding membership in it
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is computationally hard). Although this barrier is currently not known to apply to lower

bounds on arithmetic complexity (or restrictions thereof), it might still have interesting

implications for families of balanceable hypergraphs.

• Another interesting question is whether the proof of Theorem 5.10, showing that binary

d-partite trees (d > 2) are 2-balanceable, can be extended to all trees/forests.

1.3 Outline

The rest of the paper is organized as follows. After some preliminaries, in which we define

the complexity of a partite hypergraph as the rank of its adjacency tensor, we formally de-

fine rewirings and balanced families of hypergraphs in Section 3. We state their connection to

complexity lower bounds, deferring the proof to Section 6 (where we also discuss some exten-

sions); moreover, we prove the existence of balanced families with good parameters. In Section 4

we present some properties of balanced families of hypergraphs, as well as give an equivalent

definition in terms of local hypergraph operations. We present explicit examples of balanced

families of hypergraphs in Section 5. Results for additional computational models are discussed

in Section 7.

2 Preliminaries

For the sake of brevity, and unless otherwise specified, we always take graph (some-

times partite graph) to mean a d-partite hypergraph, for some d ≥ 2.

We say that a partite graph is n-bounded if there are n vertices in each vertex class. The size

(or cardinality) of a graph G is, by definition, its number of edges, denoted |G|. A t-subgraph is

a subgraph of cardinality t.

For a positive integer n, we denote [n] the set {1, 2, . . . , n}. We denote N the set of non-

negative integers, and GF(2) the binary field. We use log(·) to denote logarithm in base 2. We

define the complexity of a partite graph as the rank of its adjacency tensor. It is easy to verify

the following nice property: The complexity of any induced subgraph9 of a graph G is at most

the complexity of G. Finally, we record the easy fact that the complexity of any n-bounded

d-partite graph is at most nd−1.

3 Basics

This section contains the basic definitions we use, namely, rewirings of partite graphs and bal-

anced families of graphs. We state the connection between these definitions and tensor rank

lower bounds, as well as prove that balanced families of graphs with good parameters exist.

9An induced subgraph of a (hyper-) graph is obtained by deleting a subset of the vertices (formally, by removing

every edge containing a vertex from the subset).
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3.1 Rewirings of partite graphs

Recall that the degree list of a hypergraph H, denoted L(H), is the labeled sequence specifying

the degree of each vertex in H. We first introduce the following straightforward terminology.

Definition 3.1. Two d-partite graphs are comparable if they have the same degree list.

That is, two graphs are comparable if they are spanned by the same vertices, and moreover,

the degree of each vertex in one graph is equal to its degree in the other graph. Observe

that comparable graphs have the same cardinality (i.e., same number of edges). Let us also

mention that for bipartite graphs, the equivalence classes of the comparable equivalence relation

were studied extensively over the years, under many guises, usually referred to as classes of

contingency tables or classes of (0, 1)-matrices with fixed row and column sums; see, e.g., [7] for

a survey.

Given a partite graph, we define a rewiring of a subgraph of it to be any graph obtained by

replacing the subgraph with a comparable one.

Definition 3.2 (Rewiring). Let G be a partite graph and let H be a subgraph of G. A rewiring

of H in G is any graph of the form (G \H) ·∪H ′ where H ′ is comparable to H.

Thus, intuitively, a rewiring of a subgraph H in G is obtained from G by “rearranging” the

vertices of H between the edges, while preserving the degree of each vertex. Clearly, G itself is

also a rewiring of any H in G; unless H contains at most one edge, there are in general many

other rewirings. We emphasize that any rewiring of a subgraph in G is, in particular, comparable

to G.

Remark. Not every graph H ′ that is comparable to H has a corresponding rewiring of H in

G. This is precisely because H ′ might include edges from G \H, so that replacing H with H ′

in G would result in multiple edges.

We next consider an especially important example, showing that complete subgraphs (i.e.,

cliques) have no non-trivial rewiring. A complete d-partite graph K(t1, . . . , td)—whose ith vertex

class has ti vertices—contains all possible edges, where every edge includes one vertex from each

vertex class (equivalently, this is the Cartesian product of the d vertex classes).

Claim 3.3. Let H be a complete partite graph, and suppose that H is contained in a partite

graph G. Then there is no rewiring of H in G other than G.

Proof. We prove that any complete graph is comparable only to itself. Observe that the

degree of each vertex in a complete graph is the maximum possible among all partite graphs on

the same vertex set. Thus, for any vertex in a graph comparable to a complete graph, every

possible edge that includes it must appear. This proves the claim.

Let us introduce another useful terminology, as follows.

Definition 3.4 (Scope). For a graph G and a subgraph H ⊆ G of cardinality t, we refer to the

set of all rewirings of H in G as a t-scope. If H is of cardinality at least t, we use t+-scope.
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Note that every t-scope Ψ can be parameterized by a pair (G0, L), where G0 is a graph and

L is a degree list of size-t graphs, so that

{G0 ·∪H | L(H) = L }.

We sometimes refer to G0 as the “fixed part” of the scope. Let us record the following basic

property of scopes.

Fact 3.5. All graphs in the same scope are comparable, and in particular, of the same cardinality.

As all graphs in a scope Ψ belong to the same equivalence class C of the comparable relation

(containing all graphs with a given degree list), we may in fact characterize Ψ as the subset of

C obtained by “fixing” a subgraph G0. That is, Ψ is the set of supergraphs of G0 in C,

Ψ = {G ∈ C | G0 ⊆ G }.

Also—avoiding any mention of G0 or L—notice that for two graphs G and G′ of cardinality at

least t, there is a t-scope containing both if and only if they are comparable and their difference

is of cardinality at most t (i.e., |G \G′| = |G′ \G| ≤ t).

3.2 Balanced families of graphs

Our main objects of study are defined as follows.

Definition 3.6. A family of graphs A is t-balanced if it can be bipartitioned A = A+ ·∪A− so

there is an equal number of graphs from A+ and from A− in every t+-scope.

That is, a family of graphs—henceforth abbreviated family—is balanced if it consists of

two disjoint parts that are “indistinguishable” when intersected with every t+-scope. As a

consequence of Fact 3.5, any t-balanced family can be decomposed into disjoint t-balanced

families, each containing graphs with a different degree list. In that sense, it is mainly interesting

to consider balanced families that contain only graphs with the same degree list (e.g., k-regular

graphs for any k), and in particular of the same cardinality. Notice that if A is a family of

comparable size-m graphs, then A is t-balanced if and only if for every graph G0 of cardinality

at most m− t, the number of supergraphs of G0 that lie in A+ (i.e., members of A that contain

G0) is the same as the number of supergraphs of G0 that lie in A−.
Also interesting is the following weaker definition.

Definition 3.7. A family of graphs is weakly t-balanced if the number of graphs from the family

in every t+-scope is even.

For equivalent definitions, see Section 4 (where we show, e.g., that one may consider only

t-scopes, as opposed to t+-scopes, in the definition of a t-balanced family).

There are clearly no nonempty 1-balanced families—not even in the weaker sense—as any

1-scope contains (at most) a single graph. On the other extreme, m-balanced families containing

size-m graphs are abound; they are easily characterized as follows.
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Example 3.8. Any graph G of cardinality m appears in a single m-scope, which contains every

graph comparable to G. Therefore, any two comparable graphs of cardinality m form an m-

balanced family. More generally, a family A of size-m graphs is m-balanced if and only if the

number of graphs from A with any given degree list is even.

In Claim 5.3 we give a simple example of a (rather large) t-balanced family of size-m graphs

where t is in fact somewhat smaller than m. On the negative side, following Claim 3.3, no graph

that contains a complete subgraph of cardinality at least t is a member of a (weakly) t-balanced

family. These examples naturally raise the question: can one find a t-balanced family containing

large graphs, for t that is small relative to the size of the graphs? The following theorem shows

that a positive answer to this question implies large complexity lower bounds. Call a graph

t-balanceable if it is a member of a t-balanced family.

Theorem 3.9 (Main Theorem). The complexity of any t-balanceable graph of cardinality m is

at least
⌈

m
t−1

⌉

over any field.

One can very intuitively interpret the above theorem as follows. Notice that when expressing

the adjacency tensor of a size-m graph as a sum of less than
⌈

m
t−1

⌉

rank-1 tensors, there must

be a rank-1 tensor that in a sense “captures” at least t edges. Roughly speaking, a t-balanceable

graph has no t edges that can be thus captured. In other words, the distinction between the two

families A+ and A− is “too subtle” for a low-rank computation to make (and for combinatorial

reasons, i.e., this holds regardless of the field underlying the computation).

In fact, lower bounds also follow from the weaker notion of balance. Call a graph weakly

t-balanceable if it is a member of a weakly t-balanced family.

Theorem 3.10 (Main Theorem II). The complexity of any weakly t-balanceable graph of cardi-

nality m is at least
⌈

m
t−1

⌉

over any field of characteristic 2.

We defer the proofs of the above theorems to Section 6.

Remark. It follows that any graph G that is balanceable (in a non-trivial manner, i.e.,

t-balanceable for some t ≤ |G|) is in particular of complexity at least 2, since in this case

|G| > t− 1, which implies
⌈

|G|
t−1

⌉

≥ 2. Furthermore, complete (partite) graphs are, by definition,

of complexity exactly 1. By the proof of Claim 3.3, any complete graph is comparable only to

itself, which means that no complete graph is (non-trivially) balanceable, as expected.

Further implications of balanced families. As discussed above, showing that a family of

graphs is balanced implies complexity lower bounds for each of its members. In fact, the same

lower bound applies also to any graph containing as an induced subgraph a graph in the family

(since the complexity of a graph is at least the complexity of any of its induced subgraphs).

The following theorem shows another way to derive lower bounds on the complexity of larger

graphs from a balanced family. To illustrate its usefulness, consider a graph that contains as a

non-induced subgraph a single t-balanceable graph, as well as a complete subgraph of cardinality

at least t. Notice that such a graph cannot be t-balanceable—even in the weak sense—and hence

10



Theorems 3.9 and 3.10 cannot be used to deduce lower bounds on its complexity. Nevertheless,

as we now show, the same complexity lower bound still applies to it.

Theorem 3.11. Let A be a weakly t-balanced family of size-m graphs. Any graph whose number

of subgraphs from A is odd is of complexity at least
⌈

m
t−1

⌉

over any field of characteristic 2.

Moreover, if A is t-balanced then the same holds also over any field of characteristic zero. In

fact, denoting A = A+ ·∪A− the associated bipartition, the lower bound holds already for graphs

whose number of subgraphs from A+ and from A− differ, assuming the difference is not a multiple

of the characteristic of the field.

As a corollary, it clearly follows that a graph containing an induced subgraph of cardinality

k that satisfies the conditions in Theorem 3.11 is of complexity at least
⌈

k
t−1

⌉

.

3.3 Existence of balanced families

We proceed to show that nonempty t-balanced families exist with t small relative to the size of

their graphs.

Theorem 3.12. For every d ≥ 2, and every sufficiently large n, there exist t-balanceable n-

bounded d-partite graphs of cardinality m for some m = Ω(nd) and t = O(nd log d).

Notice that balanceable graphs with parameters as above imply, using Theorem 3.9, a rank

lower bound of m
t = Ω( nd−1

d log d), over any field. Since the complexity of any n-bounded d-partite

graph is at most nd−1, we conclude that almost optimal complexity lower bounds can be obtained

in this manner.

Proof. Let t ≤ m be positive integers. Let G denote the set of all n-bounded d-partite graphs

of cardinality m (over a fixed vertex set), and let S denote the set of all t-scopes containing

such graphs. Define the function Λ : 2G → N
S, mapping families of graphs to sequences of

nonnegative integers, by

Λ(F) =
(

|F ∩Ψ|
)

Ψ∈S.

Suppose there are two distinct families F1,F2 ∈ G that are mapped by Λ to the same

sequence. In Proposition 4.7 we show the easy fact that for a pair of families containing the

same number of members in every t-scope, their symmetric difference is a t-balanced family.

Since F1 6= F2, the symmetric difference F1△F2 is nonempty. Therefore, to complete the proof

we need to show the existence of such a pair of families.

Let M denote the cardinality of the largest t-scope (containing size-m n-bounded d-partite

graphs). Notice that the image of Λ is of cardinality at most M |S|. Using the pigeonhole

principle, it follows from the above discussion that if M |S| < 2|G| then there exists a nonempty

t-balanced family. We therefore need to show that |S| · logM < |G|.
Let us estimate the above quantities. Recall that the t-scopes containing size-m graphs are

in bijection with the pairs (G0, L), where G0 is a graph of size m − t, and L is a degree list of

size-t graphs. Since the underlying vertex set has n vertices in each of the d vertex classes, it

follows that the number of such degree lists is at most
(

n+t−1
t

)d
(since any degree list specifies,

for each vertex class, a size-t multiset of vertices). Therefore, |S| ≤
(

nd

m−t

)(

n+t−1
t

)d
. Also, we

11



clearly have that |G| =
(

nd

m

)

. Finally, since any t-scope contains only rewirings of size-t graphs,

it follows that M ≤
(

nd

t

)

, being the number of size-t n-bounded d-partite graphs.

Before continuing, we will need two basic bounds. First, we give an easy lower bound on the

ratio of two “close” binomial coefficients.

Claim 3.13. Let c, k, n be positive integers and suppose that c ≤ k ≤ n/3. Then
(

n
k

)

(

n
k−c

) > 2c.

Proof. For all 1 ≤ i ≤ n/3,
(

n

i

)

=
n− i+ 1

i

(

n

i− 1

)

> 2

(

n

i− 1

)

.

Next is an upper bound on the number of large multisets over a given ground set.

Claim 3.14. For all positive integers n ≤ k,
(

n+ k − 1

k

)

<
(

6
k

n

)n
.

Proof. Using the bound
(

a
b

)

≤ (eab )
b, we have

(

n+ k − 1

k

)

≤
(

n+ k

k

)

=

(

n+ k

n

)

≤
(

e
(

1 +
k

n

))n
≤

(

2e
k

n

)n
.

We are now ready to prove that |S| · logM < |G|; as discussed above, it suffices to show that
(

nd

m− t

)(

n+ t− 1

t

)d

· log
(

nd

t

)

<

(

nd

m

)

.

Assume t ≤ m ≤ nd/3. By Claim 3.13,
(

nd

m

)

(

nd

m−t

)

> 2t.

Put t = ndq where q is a positive integer. By Claim 3.14,
(

n+ t− 1

t

)

<
(

6
t

n

)n
= (6dq)n.

Moreover,

log

(

nd

t

)

≤ t log
(

e
nd

t

)

≤ t log(nd) ≤ t2 = n2(dq)2 ≤ 6n(dq)2 ≤ (6dq)n.

Therefore, it is enough to show that (6dq)nd+n ≤ (6dq)2nd is less than 2t = 2ndq, or equivalently,

6dq < 2q/2. It is easy to check that choosing, e.g., q = ⌈16 log d⌉ (that is, t = nd · ⌈16 log d⌉) and
m = nd/3 completes the proof.
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4 Properties and equivalent definitions

In this section we present some basic properties of balanced families, as well as some equivalent

definitions. For explicit examples of balanced families, the reader may skip directly to Section 5.

We begin with a simple bound applicable to balanced families that contain large graphs. Note

that it follows from Claim 3.3 that no (weakly) t-balanceable graph contains a complete subgraph

of cardinality at least t. In particular, any graph isomorphic to K(1, . . . , 1, t, 1, . . . , 1) for some

t ≥ 1, which we refer to as a t-cluster, must be excluded from any (weakly) t-balanceable graph.

We first need the following easy fact concerning the extremal number of clusters.

Lemma 4.1. Every n-bounded d-partite graph of cardinality larger than (t− 1)nd−1 contains a

t-cluster.

Proof. Given a graph, define the degree of a set of vertices—each from a different vertex

class—as the number of edges that contain all of them. For any size-m graph and for every k

vertex classes, there must be a set of vertices, one from each of the k vertex classes, whose degree

is at least
⌈

m
nk

⌉

, since m
nk is the average degree of such a set. In particular, for k = d− 1, there

must be at least
⌈

m
nd−1

⌉

edges whose common intersection is of size at least (and thus exactly)

d−1. Since the latter is clearly equivalent to a cluster, any graph of cardinality m > (t−1)nd−1

must contain a t-cluster, as required.

Corollary 4.2. Any (weakly) t-balanceable n-bounded d-partite graph is of cardinality at most

(t− 1)nd−1.

We remark that one can alternatively prove the result above as a corollary of Theorem 3.9,

by using the fact that the complexity of any n-bounded d-partite graph is at most nd−1.

More generally, the extremal number of any type of complete graph K(n1, . . . , nd) where
∏

i ni ≥ t (i.e., not just t-clusters) is an upper bound on the cardinality of a (weakly) t-

balanceable graph. The extremal numbers of complete partite graphs have been investigated ex-

tensively (e.g., for bipartite graphs, finding these extremal numbers is known as the Zarankiewicz

problem). See, for instance, the paper [9] by Erdős for some results.

Symmetric differences. We now show that, in the definition of a balanced family, it is not

necessary to require that its subfamilies A+ and A− are disjoint. In other words, any pair of

not necessarily disjoint “indistinguishable” families form a balanced family.

Proposition 4.3. Let A1 and A2 be two (not necessarily disjoint) families of graphs. Suppose

that for every t+-scope Ψ it holds that |Ψ ∩ A1| = |Ψ ∩ A2|. Then the symmetric difference

A1△A2 is t-balanced.

Proof. We partition A1△A2 as (A1 \ A2) ·∪ (A2 \ A1) and note that for any t+-scope Ψ,

|Ψ ∩ (A1 \ A2)| = |Ψ ∩ A1| − |Ψ ∩ (A1 ∩ A2)| = |Ψ ∩ A2| − |Ψ ∩ (A1 ∩ A2)| = |Ψ ∩ (A2 \ A1)|.
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The union of disjoint balanced families is, quite clearly, balanced as well. The next proposi-

tion shows that the union of non-disjoint weakly balanced families can be made weakly balanced

by discarding their intersection.

Proposition 4.4. Let A1 and A2 be two weakly t-balanced families. Then their symmetric

difference A1△A2 = (A1 ∪ A2) \ (A1 ∩ A2) is weakly t-balanced.

Proof. Let Ψ be a t+-scope. Then

|Ψ ∩ (A1△A2)| = |(Ψ ∩ A1)△(Ψ ∩ A2)| = |Ψ ∩ A1|+ |Ψ ∩ A2| − 2|Ψ ∩ A1 ∩ A2|,

which is even.

4.1 Structure of scopes

In this subsection we give some results relating scopes and their sub-scopes (i.e., scopes contained

in them), and discuss applications to balanced families. Note that since any scope Ψ contains

only comparable graphs, any sub-scope of Ψ can be describe simply as a set of the form

{G ∈ Ψ | F0 ⊆ G }

for a graph F0. We begin with a simple result showing that any scope can be uniformly covered

by t-scopes, for any t.

Lemma 4.5. For all positive integers T ≥ t, any T -scope can be covered by t-scopes such that

every graph is covered exactly
(

T
t

)

times.

Proof. Let Ψ be a T -scope with fixed part G0, and consider the set of “partial completions”

of G0,

S := {G0 ·∪H0 | ∃G0 ·∪H ∈ Ψ . H0 ⊆ H and |H0| = T − t }.

Notice that for every member of S, the set of its supergraphs in Ψ is clearly a t-scope contained

in Ψ. Furthermore, any graph G0 ·∪H ∈ Ψ is a supergraph of precisely those members G0 ·∪H0

of S for which H0 ⊆ H. It follows that the aforementioned t-scopes (i.e., one for each member

of S) cover every graph in Ψ exactly
(

T
T−t

)

=
(

T
t

)

times.

The next result shows that, in the definition of a t-balanced family, it suffices to consider

t-scopes instead of t+-scopes. Thus, if two families of comparable graphs are such that every

graph of a certain size has the same number of supergraphs in each family, then the same is true

for all graph of smaller size.

Proposition 4.6. Let A = A+ ·∪A− be a family of graphs and suppose that for every t-scope Ψ

it holds that |Ψ ∩ A+| = |Ψ ∩ A−|. Then A is t-balanced.
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Proof. Let Ψ be a t′-scope for some t′ ≥ t. By Lemma 4.5, Ψ can be covered by some t-scopes

{Ψi}i such that each graph in Ψ is covered precisely k :=
(

t′

t

)

times. It follows that

k|Ψ ∩ A+| =
∑

i

|Ψi ∩ A+| =
∑

i

|Ψi ∩ A−| = k|Ψ ∩ A−|,

which completes the proof.

We record the relaxed (yet equivalent) definition of a balanced family obtained by combining

Proposition 4.3 and Proposition 4.6.

Proposition 4.7. Let A1 and A2 be two families of graphs. Suppose that for every t-scope Ψ

it holds that |Ψ ∩ A1| = |Ψ ∩ A2|. Then the symmetric difference A1△A2 is t-balanced.

Next we give a structure theorem for scopes, which would in particular imply that a result

similar to Proposition 4.6 also holds for weakly balanced families (the proof of Proposition 4.6

fails to apply if, for some scope, the number of times a graph is covered is even). We will

first need the following lemma showing that, among comparable graphs, it is always possible to

choose subgraphs of bounded cardinality in a “canonical” way.

Lemma 4.8. For all t ≥ 2, every (partite) graph G of cardinality at least t contains a subgraph

ϕ(G) = ϕt(G), obtained by removing between t and 2t − 2 edges, such that for every graph G′

that is comparable to G and contains ϕ(G), it holds that ϕ(G′) = ϕ(G).

Proof. We begin by defining, for every graph G of cardinality at least t, a subgraph I(G) =

It(G) ⊆ G of cardinality between t and 2t − 2. This will be used to define ϕ(G) later. Fix an

ordering of the vertex classes, and fix an ordering of the vertices in each vertex class by non-

increasing degree. Viewing edges of a partite graph as sequences in a straightforward manner,

consider the lexicographically-first edge e1 in G, and let k = k(G) denote the length of the

shortest prefix of e1 that is common to at most t edges. More formally—if e1 = {v1, . . . , vd},
where vi is from the ith vertex class, then k(G) is the smallest j such that the degree of the

prefix {v1, . . . , vj}, defined as |{ e ∈ G | {v1, . . . , vj} ⊆ e }|, is at most t. Now, consider the

lexicographically-first prefixes of length k in G such that the set of edges having either of those

prefixes is of cardinality at least t (i.e., the degrees of the prefixes sum up to at least t). We

define the subgraph I(G) as the latter set of edges, and claim that its cardinality is at most

2t− 2. Indeed, either I(G) is determined by a single length-k prefix of degree t, and then I(G)

is of cardinality exactly t, or else every length-k prefix is of degree at most t− 1, which implies

that I(G) is of cardinality at most 2t− 2, as desired.

We now show that if G′ is a rewiring of I(G) in G, obtained by replacing I(G) with a

comparable F (so G \ I(G) = G′ \ F ), then I(G′) = F . This would complete the proof, since for

any graph G′ that is comparable to G and contains ϕ(G) := G \ I(G), we have that ϕ(G′) =

G′ \ I(G′) = G \ I(G) = ϕ(G), as required. Observe that, by definition, if k = k(G) > 1 then all

edges in I(G) share a common prefix of length k − 1. In other words, I(G) has a single vertex

from each of the first k−1 vertex class. It follows that the same holds for F , as it is comparable

to I(G). It is then not hard to see that G′ has exactly the same prefixes of length k as G, which

implies that I(G′) = F , completing the proof.
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We use the above lemma to prove the following decomposition result for scopes.

Proposition 4.9. For all t ≥ 2, any t+-scope can be partitioned into si-scopes where si are

always at least t and at most 2t− 2.

Proof. Let Ψ be a t′-scope where t′ ≥ t, with fixed part G0. To define a partition of Ψ we need

to assign to each member of Ψ a (sub-) scope, such that all these scopes are pairwise disjoint.

Equivalently, we need to assign to each member of Ψ a subgraph whose every supergraph in

Ψ is also assigned it. We thus assign to each member G0 ·∪H ∈ Ψ the subgraph G0 ·∪ϕ(H),

where ϕ(H) = ϕt(H) ⊆ H is defined as in Lemma 4.8; notice that the corresponding scope is

an s-scope for some t ≤ s ≤ 2t − 2, as needed. It is therefore enough to prove the following

assertion. For every H ′ comparable to H, if H ′ contains ϕ(H) then ϕ(H ′) = ϕ(H). Since the

latter follows from Lemma 4.8, we are done.

While we do not know if it is in fact enough to consider subgraphs of cardinality exactly

t when considering weakly t-balanced families (as is the case for t-balanced families), we can

deduce, as an immediate corollary of Proposition 4.9, that it is enough to consider t′-scopes for
t′ which is at most 2t− 2.

Corollary 4.10. Let A be a family of graphs and suppose that for every t′-scope Ψ, where

t ≤ t′ ≤ 2t− 2, it holds that |Ψ ∩ A| is even. Then A is weakly t-balanced.

Before continuing, let us give a simple example showing that while scopes can in general

be partitioned into sub-scopes in many different ways, it is not true that every scope can be

partitioned into t-scopes for any t.

Example 4.11. Let Ψ be the set of 2-regular n-bounded bipartite graphs where n ≥ 3. Notice

that Ψ is a scope with an empty fixed part (i.e., an equivalence class of the comparable relation).

Denote T = 2n the cardinality of the graphs in Ψ (i.e., Ψ is a T -scope). We put t = T − 1,

and claim that Ψ cannot be partitioned into t-scopes. Consider any two t-scopes in Ψ, and let

G0 and G′
0 denote their fixed parts, so that |G0| = |G′

0| = 1. Notice that the intersection of

the two scopes is precisely the collection of supergraphs in Ψ of G0 ∪ G′
0. The latter graph is

of cardinality at most 2, and it clearly can be completed to a cycle C2n on all vertices, which

is a graph in Ψ. It follows that every two t-scopes in Ψ intersect. Since there can be no single

t-scope that covers all of Ψ (there is no edge that appears in all graphs in Ψ, since for any two

vertices u, v there is a cycle C2n in which u and v are not adjacent), it follows that no partition

of Ψ into t-scopes is possible.

We now prove that if t is a power of two (i.e., t = 2a for some positive integer a), it is in fact

enough to consider only t-scopes in the definition of weakly t-balanced families.

Corollary 4.12. Let t be a power of two, and let A be a family of graphs. Suppose that for

every t-scope Ψ it holds that |Ψ ∩ A| is even. Then A is weakly t-balanced.

Proof. Let Ψ be a t′-scope for t′ ≥ t. From Lemma 4.5 it is easy to see that if k :=
(

t′

t

)

is

odd then |Ψ∩A| is even. It follows from Lucas’ Theorem that k is odd if and only if every digit
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in the base-2 expansion of t′ is at least the corresponding digit of t. Since t is a power of 2, it

holds that k is odd if t′ is smaller than 2t. By Corollary 4.10, we may assume that t′ is at most

2t− 2 < 2t, which completes the proof.

4.2 Amplification of balanceable graphs

Let G be a t-balanceable n-bounded p-partite graph. It is not hard to see that adding a new

vertex to all edges of G (and also n − 1 degree-0 vertices in the new vertex class) results in an

n-bounded (p + 1)-partite graph that is t-balanceable as well. Notice that the new graph has

the same cardinality as G, and so cannot be used to deduce a larger complexity lower bound.

In this subsection we show that if there is an explicit construction of a t-balanceable n-bounded

p-partite graph G, then there is also an explicit construction of a t-balanceable n-bounded

kp-partite graph G′ of a much larger cardinality (provided k > 1).

Let us mention that the implied lower bound on the complexity of G′ can be (rather eas-

ily) shown directly from the definition. However, here we prove the stronger claim that G′ is
balanceable, which for example implies (the same) lower bound for many more graphs using

Theorem 3.11.

We begin with some simple results relating p-partite graphs and kp-partite graphs. Let p ≥ 2,

k, n be positive integers. Fix a bijection ϕ mapping [nk] to [n]k. We also use ϕ to denote the

bijection from [nk]p to [n]kp naturally induced by ϕ, as well as to denote the induced bijection

from nk-bounded p-partite graphs to n-bounded kp-partite graphs, obtained by replacing every

vertex v from an nk-sized vertex class with a sequence ϕ(v) of k vertices from n-sized vertex

classes (more formally, ϕ(v) is a set of vertices, each from a different n-sized vertex class).

Lemma 4.13. If G and G′ are comparable then so are ϕ(G) and ϕ(G′).

Proof. Let v be a vertex of ϕ(G), and let Sv be set of vertices u of G such that v ∈ ϕ(u).

Denoting degH(v) the degree of v in a graph H, it is not hard to see that

degϕ(G)(v) =
∑

u∈Sv

degG(u) =
∑

u∈Sv

degG′(u) = degϕ(G′)(v),

which completes the proof.

As a consequence of the above, we next show that scopes containing kp-partite graphs are

very much related to scopes containing p-partite graphs. In what follows, we use ϕ to also denote

a bijection between families of graphs, i.e., ϕ(F) = {ϕ(G) | G ∈ F }.

Lemma 4.14. For every t, any t-scope containing n-bounded kp-partite graphs can be partitioned

into images of t-scopes under ϕ.

Proof. Notice that every n-bounded kp-partite graph is of the form ϕ(G) for some nk-bounded

p-partite graph G. Let Ψ be a t-scope containing n-bounded kp-partite graphs, whose fixed part

is ϕ(G0). We define an equivalence relation on Ψ by considering ϕ(G), ϕ(G′) ∈ Ψ equivalent if
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G and G′ are comparable. We next show that each equivalence class of the above relation is the

image under ϕ of a t-scope, which would complete the proof.

Let ϕ(G) be a member of an equivalence class. We need to show that for every graph G′

that is comparable to G and contains G0, it holds that ϕ(G
′) is in the same equivalence class as

ϕ(G). Notice that by the definition of our equivalence relation, since G and G′ are comparable,

it suffices to show ϕ(G′) ∈ Ψ. By Lemma 4.13 we have that ϕ(G′) is comparable to ϕ(G) ∈ Ψ,

and since G′ contains G0, or equivalently, ϕ(G′) contains ϕ(G0), we conclude that ϕ(G′) ∈ Ψ,

as desired.

We next conclude that ϕ preserves balance.

Corollary 4.15. Let G be an nk-bounded p-partite graph. Then if G is (weakly) t-balanceable

then ϕ(G) is (weakly, respectively) t-balanceable.

Proof. Let A be a (weakly) t-balanced family containing G. It easily follows from Lemma 4.14

that ϕ(A) is also a (weakly, respectively) t-balanced family, which completes the proof.

Now, let G = (Gn)n∈N be a (sequence of) n-bounded p-partite graph. For an integer d ≥ 2,

we define the d-amplification of G, assuming d = kp, as the n-bounded d-partite graph ϕ(Gnk).

If d is not a multiple of p, that is, d = d′ + c where d′ is a multiple of p and 0 < c < p, we

define the d-amplification of G by adding c new vertices to all edges of the d′-amplification of

G (together with n− 1 degree-0 vertices in each of the c new vertex class). We next summarize

the parameters of the above amplification.

Corollary 4.16. Let G be an n-bounded p-partite graph of cardinality m = m(n), and suppose

that G is (weakly) t-balanceable. It holds that the d-amplification of G, which is an n-bounded

d-partite graph of cardinality m(n⌊d/p⌋), is also (weakly, respectively) t-balanceable.

It follows that while the implied complexity lower bound on G is r(n) :=
⌈

m(n)
t−1

⌉

, its d-

amplification is of complexity at least r(n⌊d/p⌋). Let us also note that the above corollary holds

even if we allow t to depend on n as well.

Remark. Notice that amplifying p-partite graphs can imply only so much with regards to

complexity lower bounds: since any p-partite graph is of complexity at most np−1, and in

particular r(n) :=
⌈

m(n)
t(n)−1

⌉

≤ np−1, it follows that its d-amplification implies a lower bound of

r(n⌊d/p⌋) ≤ (n⌊d/p⌋)p−1, which is no more than nd−⌈d/p⌉ (≪ nd−1 for p < d).

4.3 An equivalent definition of balanced families

In this subsection we present an equivalent definition of a balanced family in terms of local

operations on graphs.

Definition 4.17. A rewiring involution is a graph operation that, given a graph G and a

subgraph H ⊆ G, replaces H with a comparable graph—thus yielding a graph of the form

G′ = (G \H) ·∪H ′ for some H ′ comparable to H—and such that applying it on H ′ in G′ (i.e.,
applying it on G′ and H ′ ⊆ G′) yields back G.
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We next prove that a family is weakly balanced if and only if it is closed under a rewiring

involution that has no fixed points, i.e., always yields a different graph (in the notation above,

G 6= G′, or equivalently, H 6= H ′).

Proposition 4.18. A family of graphs A is weakly t-balanced if and only if there is a rewiring

involution such that applying it on any subgraph of cardinality at least t in a graph of A, yields

a different graph of A.

Proof. The proof easily follows by observing that a rewiring involution as in the statement is

equivalent to an involution without fixed points on the intersection of any t+-scope with A, and

using the obvious fact that a set is of even cardinality if and only if there exists an involution

on it without fixed points.

Proposition 4.18 implies a recursive definition of weakly balanceable graphs as follows. For

a rewiring involution f operating on subgraphs of cardinality at least t, say that a graph is

f -balanceable if any application of f yields a different f -balanceable graph. Then clearly, a

graph is weakly t-balanceable if and only if it is f -balanceable for some f .

Remark. Let f be a rewiring involution. Say that two graphs are f -equivalent if it is possible

to obtain one graph from the other by repeatedly applying f . Since f is its own inverse, this is

clearly an equivalence relation. Thus, any family closed under f is a disjoint union of equivalence

classes of this relation.

We can extend the above definition to balanced families as follows (recall that by Proposi-

tion 4.6 it is enough to consider t-scopes, instead of t+-scopes, in the definition of a t-balanced

family).

Fact 4.19. A family of graphs A = A+ ·∪A− is t-balanced if and only if there is a rewiring

involution such that applying it on any t-subgraph of a graph in A+ yields a graph in A−, and
vice versa.

It is in fact possible to define balanced families without an explicit mention of a bipartition

of its members, as follows. Consider an undirected graph (i.e., not a hypergraph) whose vertices

are the members of a weakly t-balanced family A. Suppose that A is closed under the fixed-

point-free rewiring involution f . For any two members G1 and G2 of A, if applying f on a

t-subgraph of G1 gives G2 then we add an (undirected) edge between the corresponding vertices

in our graph. We allow multiple edges.

Notice that this graph has no loops, and is regular of degree
(

m
t

)

if m is the cardinality of

all the graphs in A. We conclude the following.

Fact 4.20. The above graph has no odd-length cycles (i.e., it is a bipartite graph) if and only if

A is t-balanced.

5 Constructing balanceable graphs

In this section we present some explicit examples of balanced families of graphs. Let us first

establish a useful terminology. A graph transposition (or simply transposition) is the graph
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isomorphism10 that transposes a pair of vertices (from the same vertex set). That is, a transpo-

sition of the two vertices v1 and v2 maps any graph G to the graph obtained by replacing every

occurrence of v1 in the edges of G with v2, and vice versa (i.e., it swaps their labels).

Given a subgraph H ⊆ G, consider a transposition T on H that yields a graph disjoint

from G \ H. In this case, T can naturally be viewed as an operation on G that leaves G \ H

unaltered, yielding the graph G′ = (G \ H) ·∪T (H). Note that if T (H) is not disjoint from

G \H, this operation would not result in a (simple) graph, as multiple edges would arise. Also

note that G′ is in general not isomorphic to G, even though T (H) is isomorphic to H. The

following intuitively-phrased observation (which is based on the notion of a rewiring involution

from Definition 4.17) will be of use to us.

Fact 5.1. A transposition of a pair of vertices in a subgraph H is a rewiring involution, provided

the vertices are of the same degree in H, and that their choice is independent of H (their choice

may depend on the rest of the graph).

Combining the above fact with Proposition 4.18 immediately implies a criterion for showing

that a given family is weakly balanced, which we dub the Transposition Criterion and use

throughout this section.

Motivating example: irreducible graphs. The first example we present deals with graphs

satisfying a property known as irreducibility. This property has been considered in the past,

e.g., in the work of Mubayi [19] on so-called Turán densities. We show that irreducible graphs of

cardinalitym form a t-balanced family for t that is somewhat smaller thanm (recall Example 3.8,

in which m-balanced families are characterized). We remark that since t will be fairly close to

m (i.e.,
⌈

m
t−1

⌉

is small), this example would not imply significant lower bounds.

A graph G is irreducible if every vertex v (appearing with positive degree) has a unique set

of partial edges NG(v) = { e \ {v} | v ∈ e ∈ G }. That is, for every two vertices u, v appearing in

the same vertex class, NG(v) 6= NG(u). We now show that irreducibility is a balanced property

of graphs.

Claim 5.2. Let G be an irreducible, regular n-bounded graph of cardinality m. Then G is weakly

(m− n+ 2)-balanceable.

Proof. Notice that we may assume n ≥ 2 as otherwise the result is trivial. We show that

the family of graphs isomorphic to G is weakly (m− n+ 2)-balanced. Let H be a subgraph of

cardinality at least m−n+2 in a graph G′ that is isomorphic to G. Since G′ \H is of cardinality

at most n−2, it must have at least two degree-0 vertices from each vertex class. Let u, v be two

such vertices taken from an arbitrarily-chosen vertex class. Consider the graph obtained from

G by transposing u and v in H. Since every edge that includes either u or v appears in H, this

transposition is in fact a transposition on G′. This yields a graph isomorphic to G′, and thus

isomorphic to G as well. Furthermore, as G′ is irreducible, it is clear that such a transposition

10A graph isomorphism maps any (partite hyper-) graph G to the graph obtained by permuting the labels of

the vertices in each vertex class; more formally, it maps G to the graph { {π(v1), . . . , π(vd)} | {v1, . . . , vd} ∈ G }

where π is a permutation that maps each vertex to a vertex from the same vertex class.
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results in a graph different from G′. Since u and v are of the same degree in H, the proof follows

from the Transposition Criterion above.

Now that we have shown that any irreducible regular graph is weakly balanceable, we proceed

to show it is in fact balanceable by specifying an appropriate bipartition of a weakly balanced

family containing it.

Claim 5.3. In the notation of Claim 5.2, G is (m− n+ 2)-balanceable.

Proof. Let V = {v1, . . . , vn} be a vertex class of G. Since G is irreducible, every vertex

vi ∈ V has a unique set of partial edges NG(vi) = { e \ {vi} | vi ∈ e ∈ G }. Let A be the family

of graphs isomorphic to G that are obtained by permuting the vertices in V . Associate with

every graph G′ ∈ A the permutation on [n] mapping i to j if and only if NG′(vi) = NG(vj).

Consider the bipartition of A according to the parity of the permutation associated with each

member. Notice that transposing a pair of vertices of V in a graph from A always changes the

parity of the associated permutation. Similarly to the proof of Claim 5.2, the rewiring involution

that transposes (only) pairs of vertices from V shows that A is weakly (m − n + 2)-balanced,

and using Fact 4.19, we conclude that A is (m−n+2)-balanced, which completes the proof.

Notice that Claim 5.3 can alternatively be proved using Fact 4.20 by observing that a cycle

in the graph mentioned there corresponds to a sequence of transposition permutations whose

composition is the identity permutation; since the latter is an even permutation, it follows there

are no odd cycles.

5.1 2-balanced families

The rest of the examples we present in this section are (weakly) t-balanced for the smallest

possible t, namely t = 2. Such families have an especially interesting complexity implication,

as follows. It is straightforward from definition that the complexity of any graph is at most its

number of edges. Thus, the complexity of any (weakly) 2-balanceable graph is the maximum

possible, that is, as high as its cardinality. In particular, showing that a graph is (weakly)

2-balanceable allows us to exactly determine its complexity.

As a special case of Claim 5.3, we next record that the family of matchings (i.e., graphs

whose edges are pairwise disjoint) is 2-balanced.11

Claim 5.4. Any matching is 2-balanceable.

Proof. Notice that a graph is a matching if and only if every vertex of positive degree is of

degree exactly 1; thus, the cardinality of a matching is equal to the number of vertices of positive

degree from each vertex class. Furthermore, it is easy to see that any matching is an irreducible

graph. The proof then immediately follows from Claim 5.3

11Notice that when considering (weakly) t-balanced families, we may ignore all graphs of cardinality smaller

than t, as the definition depends only on t+-scopes, which do not contain such graphs. In particular, we may

always discard any single-edge graph in a balanced family.
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The largest n-bounded matchings are of course those without isolated vertices, that is, perfect

matchings, and are of cardinality n. We conclude (the easy fact) that any n-bounded perfect

matching is of complexity exactly n, over any field.

Remark. We can use the simple example above to deduce a (well-known) complexity lower

bound much larger than n for d-partite graphs, assuming d ≥ 4. By Corollary 4.16, the d-

amplification of an n-bounded bipartite perfect matching, which is an n-bounded d-partite

graph of cardinality n⌊d/2⌋, is of complexity exactly n⌊d/2⌋ over any field.

For bipartite graphs we can show the following: Any 2-balanced family of bipartite graphs is

in fact a family of matchings (this discussion applies to weak balance as well). By Claim 3.3, the

maximum degree of a t-balanceable bipartite graph is at most t−1 (as it may not contain a copy

of K(1, t); see also the discussion in the beginning of Section 4). In particular, any 2-balanceable

bipartite graph must be of maximum degree 1, that is, a matching. Put differently—for bipartite

graphs and t = 2, excluding the trivial obstruction of complete subgraphs already yields a (2-)

balanced family. Notice that, since the complexity of any n-bounded d-partite graph is at most

nd−1, the lower bound of n we have obtained is optimal for bipartite graphs (thus, considering

t-balanced families of bipartite graphs for t > 2 cannot yield better lower bounds).

Since the complexity of a graph is at least the complexity of any of its induced subgraphs,

we may conclude the following.

Corollary 5.5. Any graph that contains an induced matching of k edges is of complexity at

least k over any field.

In fact, using Theorem 3.11 we may deduce a (well-known) complexity lower bound of k over

any field even if the size-k induced subgraph is not a matching by itself, but merely contains an

odd number of perfect matchings.

5.2 Forests are balanceable

In this subsection we show that considering t-balanceable graphs even for t = 2 already allows

us to obtain non-trivial lower bounds—that is, larger than n for n-bounded graphs—even when

the graphs are 3-partite (as mentioned above, the complexity of n-bounded d-partite graphs for

d < 3 is at most n). Specifically, we next give an explicit description of a 2-balanced family, and

deduce lower bounds of up to 3n/2 on the complexity of n-bounded 3-partite graphs (and more

generally, d-partite graphs where d ≥ 3). Let us mention that, unlike the previous examples,

the balanced family we describe here contains, by definition, non-isomorphic graphs.

Interchanges. First, let us introduce terminology for the building block of rewiring operations.

We call a graph transposition that is applied on a subgraph of cardinality 2 (i.e., a pair of edges)

an interchange; the transposed vertices are said to be interchanged.

Example 5.6. If we identify edges of d-partite graphs with d-tuples then, for the edges (3, 1, 4)

and (2, 7, 1), interchanging the vertices 3 and 2 yields the edges (2, 1, 4) and (3, 7, 1).
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Figure 1: A 3-partite tree.

Remark. By a theorem of Ryser, any graph comparable to a graph G can be obtained by

applying a (finite) sequence of interchanges on G. (A formal proof for bipartite graphs, phrased

in a somewhat different language, was given in [24], where the term “interchange” first appeared

in this context; we also mention that for non-bipartite graphs, the analogous notion is called a

2-switch and a similar result was shown, e.g., by Havel [12].)

Forests and trees. Before defining hypergraph forests, we first introduce a straightforward

reduction. Given a 3-partite graph G, it will be useful to also view it as a graph Ḡ in the usual

graph-theoretic sense (i.e., Ḡ is not a hypergraph). We construct Ḡ, which is defined over the

vertex set of G, as follows. For each edge {u, v, w} ∈ G, we arbitrarily choose one of its vertices,

say v, and add to Ḡ the two incident edges {v, u} and {v, w}. Notice that if G contains a pair of

edges that intersect at two vertices then multiple edges may arise in Ḡ (we view a multiple edge

as forming a length-2 cycle). Observe that consecutive vertices on a path in Ḡ are also adjacent

(i.e., contained in the same edge) in G. It is worth mentioning that since G is a partite graph,

consecutive vertices on a path in Ḡ belong to different vertex classes (in graph-theoretical terms,

Ḡ is 3-colorable).

Finally, say that G is a forest (tree) if Ḡ is a forest (tree, respectively). Note that this is

well defined since the existence of a cycle in Ḡ (and whether it is connected) is independent of

the way we “break down” each edge of G.

Example 5.7. The 3-partite graph illustrated in Figure 1 is an n-bounded tree, for any odd n.

We next show that the family of 3-partite forests is weakly 2-balanced. By the Transposition

Criterion, and since we may restrict to subgraphs of precisely two edges when considering weakly

2-balanced families (see Corollary 4.10), it is enough to show that every two edges of a 3-partite

forest can be interchanged to give a different forest—where the choice of the pair of vertices to

interchange depends only on the subgraph without the two edges.

Theorem 5.8. Any 3-partite forest is weakly 2-balanceable.

For the proof we will need to define a certain operation (in fact, rewiring involution) on

forests which we call the tree-swap operation. Let e1, e2 be two edges in a 3-partite forest G.

A direct path between e1 and e2 in Ḡ is a path whose endpoints s, t satisfy s ∈ e1, t ∈ e2, and

are the only vertices on the path from these two edges. Observe that, since there is at most one
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Figure 2: A pair of edges in 3-partite tree, before and after applying the tree-swap on them.

path between any two edges in a forest, there must exist two vertices from the same vertex class

v1 ∈ e1 and v2 ∈ e2 neither of which on a direct path between e1 and e2. (Notice v1 6= v2, as

otherwise it forms a single-vertex direct path between the two edges.) We define the tree-swap

operation so as to interchange v1 and v2 (which is well defined, being independent of the choices

made in constructing Ḡ); if there is more than one such pair of vertices, we choose arbitrarily.

Note that the choice of v1 and v2 depends only on the degree list of G and on the subgraph of the

forest without e1 and e2. Also, note that we are indeed allowed to apply the above interchange

(i.e., by doing so we do not create multiple edges in G), since if one of the interchanged edges,

say (e2 \ {v2}) ·∪ {v1}, already appears in the graph then, since this edge intersects e2 at two

vertices, Ḡ has a cycle, which is a contradiction.

Intuitively, the tree-swap operation can be thought to swap the subtrees “rooted” at each of

the two interchanged vertices; see Figure 2 for an illustration.

Proof. We show that applying the tree-swap operation on any pair of edges, e1 and e2, in a

3-partite forest G yields a different forest G′. By the Transposition Criterion this would prove

the result. Suppose that the tree-swap interchanges the vertices v1 ∈ e1 and v2 ∈ e2 (recall

v1 6= v2), and denote e′1 = (e1 \ {v1}) ·∪ {v2}, e′2 = (e2 \ {v2}) ·∪ {v1} ∈ G′ the interchanges edges.

First we claim G′ 6= G. Indeed, equality would mean that G includes both e2 and e′2 (notice

e2 6= e′2), which intersect at two vertices and thus imply a cycle in Ḡ. Next, we show that Ḡ

and Ḡ′ have the same number of connected components. Since they obviously have the same

number of vertices and edges, it would follow from a well-known characterization of forests that

Ḡ′ is a forest as well.

Observe that Ḡ and Ḡ′ differ only in the edges of the form {v1, x} or {v2, x} where x ∈ e1∪e2.
It follows that the paths contained in Ḡ and in Ḡ′ are the same, except for those that include

at least one of the above “differentiating” edges. Let v be a vertex on one of these paths in

Ḡ, or equivalently, in the connected component of either v1 or v2. Clearly, all other connected

components are identical in the two graphs. Suppose that v is “directly” connected to a vertex

u ∈ e1 ∪ e2, in the sense that the (unique) path between v and u in Ḡ does not go through any

other vertex from e1 ∪ e2. Assuming v 6= v1, v2, this path does not include a “differentiating”

edge, and so v and u remain connected in Ḡ′. It follows that if u = v1 (we can think of v in this

case as belonging to the subtree “rooted” at v1), or if u ∈ e2 \ {v2}, then it is the case that v

is connected to v1 in Ḡ′. Otherwise, v is connected to v2 in Ḡ′. We conclude that the union of
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the connected components of v1 and v2 consists of the same vertices in Ḡ as in Ḡ′; moreover, it

consists of the same number of connected components—either one or two—in the two graphs,

which completes the proof.

We remark that one can naturally extend the definition of a forest to d-partite graphs for

d > 3, and similarly conclude that such a graph is weakly 2-balanceable. Another implication

of the proof above is that the family of 3-partite forests with any given number of connected

components is weakly 2-balanced as well. In particular, the family of 3-partite trees is weakly

2-balanced.

We may conclude that for a graph to have complexity any lower than the trivial upper

bound—its cardinality—over a field of characteristic 2 (or the integers), it must contain at least

one cycle. In particular, any graph containing an induced forest of cardinality k is of complexity

at least k over any field of characteristic 2. By Theorem 3.11, one can use the fact that the

family of forests is weakly 2-balanced to deduce the following: For a graph to be of complexity

smaller than k over a field of characteristic 2, it must contain an even number of size-k forests

of each possible degree list.

Remark. It follows from the fact that the family of forests (or trees) is weakly 2-balanced

that the number of non-trivial (i.e., containing more than one edge) 3-partite forests (or trees) is

even, regardless of the underlying vertex set. In fact, it follows that the number of such forests

(or trees) with any given degree list is even as well.

We in particular obtain the following corollary concerning trees, which are the largest forests.

Corollary 5.9. Any n-bounded 3-partite tree is of complexity exactly (3n− 1)/2 over any field

of characteristic 2.

Proof. Let G be a 3-partite tree on N vertices. Clearly, the number of edges in Ḡ is exactly

N−1. Since Ḡ has two edges per every edge of G, we conclude that the cardinality of G is exactly

(N − 1)/2. In particular, if G has N = 3n vertices then it is of cardinality (3n− 1)/2. Since any

3-partite tree is weakly 2-balanceable, the result immediately follows from Theorem 3.10.

It is not hard to see that n-bounded 3-partite trees exist; see, e.g., Example 5.7.

Say that a 3-partite tree is binary if its vertices are of degree at most 2 (i.e., each vertex is

contained in at most two edges). We next show that the family of binary 3-partite trees, which

is a subfamily of the above-mentioned weakly balanced family of forests, is in fact balanced.

Theorem 5.10. Any binary 3-partite tree is 2-balanceable.

Proof. We prove the result by giving an analogue for the parity of a permutation (which was

used to define the bipartition of the family of matchings via Claim 5.3). The proof shall follow

these steps: first, we define for every binary 3-partite tree G an ordering ⋖ on the vertices

v1, . . . , vN , and denote πG the permutation on [N ] mapping i to j if and only if vi is in the jth

position according to ⋖ . We then bipartition the family of binary 3-partite trees according to

the parity of the associated permutation, from which the proof would follow, using Fact 4.19,

by showing that this parity changes whenever we apply the tree-swap operation.
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Figure 3: A rooted binary 3-partite tree (left) and the corresponding rooted binary tree (right).

Given a binary 3-partite tree G, we next show that Ḡ can be made into a binary tree TG,

in which every non-leaf vertex has exactly two children. Fix an arbitrary vertex of degree 1,

referred to as the root (henceforth, all trees are implicitly rooted). To construct TG, we first

“break down” the unique edge of G containing the root in such a way that both new edges

are adjacent to the root12; the remaining two vertices are referred to as children (of the root).

We obtain TG by continuing in the same manner for (the subtrees rooted at) each of the two

children.13 Moreover, we consistently distinguish between left and right children in TG as follows.

For a parent vertex from the vertex class numbered i ∈ {0, 1, 2}, its child from the vertex class

numbered i− 1 mod 3 is designated as its left child (and the other child is of course designated

as the right child). We mention that this construction may in fact be reversed so as to obtain G

from TG (up to a circular relabeling of the vertex classes); this bijection is illustrated in Figure 3.

Let us define an ordering ⋖ on the vertices of a binary 3-partite tree G, which is what is

known as the inorder of the tree TG. In more detail, let u, v be two vertices of G; we denote

u ⋖ v, and say that u is to the left of v, if in the tree rooted at the common ancestor of u and

v in TG, either u is in the left subtree, or (in case u itself is the common ancestor) v is in the

right subtree. See Figure 4 for an illustration.

Let G be a binary 3-partite tree. To prove the result, we need to show that when applying

the tree-swap operation on any pair of edges in G, the parity of the permutation πG changes,

or equivalently, the number of inversions—pairs of vertices whose inorder changes—is odd.

Suppose that applying the tree-swap operation on {e1, e2} ⊆ G interchanges the vertices v1 ∈ e1
and v2 ∈ e2. We consider two possible cases in TG.

Case 1: v1 is not an ancestor of v2 and vice versa. We claim that both v1 and v2 are children

in their respective edges. Indeed, if v1, say, were the parent in e1 then one of the children in

12Formally, if v is the root and {u, v, w} ∈ G, we add to TG the two edges {u, v} and {v, w}.
13Formally, denoting T x

H the binary tree obtained from the 3-partite H having vertex x as its root, and denoting

G′ = G \ {u, v, w}, we have TG = T v
G = {{u, v}, {v, w}} ∪ Tu

G′ ∪ Tw
G′ , where T x

H is empty if x is of degree 0.
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Figure 4: The inorder of a tree.

e1 would have to be an endpoint of the direct path between e1 and e2, implying that v1 is an

ancestor of v2, in contradiction to our assumption.

Intuitively, one can think of the tree-swap operation in this case as swapping the subtrees

in TG rooted at each of the interchanged vertices. Let us be more formal. Consider the set of

vertices below a given vertex v, that is, the vertices in the subtree rooted at v, with v removed.

Note that the number of vertices in any (sub-) tree is odd, and so there is an even number

of vertices below any vertex. One way to prove that the parity of πG changes after applying

the tree-swap is by observing that the tree-swap acts on πG by “flipping” two non-overlapping

intervals of odd length—corresponding to the sets of vertices below v1 and below v2—which can

be seen to be a permutation of odd parity. We next give an alternative proof, which will be

useful when considering Case 2.

Denote T ∗ the set of vertices below v1. The inorder between any two vertices in T ∗ does

not change after applying the tree-swap, as no edge in their paths to their common ancestor is

altered, which means that any inversion involving a vertex from T ∗ must involve exactly one

such vertex. Now, let u /∈ {v1, v2} be a vertex outside of T . Note that the common ancestor

of u and any vertex from T ∗ is exactly the common ancestor of u and v1, while after applying

the tree-swap, it is exactly the common ancestor of u and v2. It follows that the number of

inversions involving such vertices u is a multiple of |T ∗|, and thus even. Furthermore, assuming

v1⋖ v2, it is easy to see that a vertex x ∈ T ∗ changes its inorder with respect to v1 if and only if

x is in the right subtree of v1, which is further equivalent to x changing its inorder with respect

to v2. Hence the number of inversions involving u ∈ {v1, v2} and a vertex from T ∗ is again even.

We conclude that when considering the parity of the number of inversions, there is no loss of

generality in removing the vertices below v1 from TG. Applying the same argument for the set of

vertices below v2, we thus may assume v1 and v2 to be leaves in TG. The tree-swap then reduces

to a transposition of v1 and v2 (which we may think of as simply switching the labels of v1 and

v2). Applying a graph transposition has the effect of applying a transposition permutation on

πG, thus changing its parity, as desired.
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Figure 5: TG with edges pointing toward the root, before and after re-rooting.

Case 2: v1 is an ancestor of v2. We claim that v1 is the parent in e1. Indeed, if v1 were a child

then, since it is an ancestor of v2, it would have been an endpoint of the direct path between

e1 and e2, which contradicts the definition of a tree-swap. Also, by the same argument, v2 is a

child in e2. Notice that v1 remains a parent after applying the tree-swap operation, as its path

to the root is unaltered.

No inversion can involve a vertex outside the subtree T rooted at v1, as no edge in a path

from such a vertex to an ancestor is altered. Thus, we may consider only pairs of vertices that

are both from T . In other words, if G′ denotes the 3-partite graph corresponding to T , we may

consider only inversions due to applying the tree-swap on G′. As in the previous case, we may

assume that v2 is a leaf. Since v1 is of degree 1 in G′ (albeit of degree 2 in G, unless it is the root

of G), it is not hard to see that applying the tree-swap operation is equivalent to transposing v1
and v2 in G′, followed by rooting G′ at v1 which is now a leaf. Similarly to the previous case, the

first step results in an odd number of inversions. It therefore remains to show that the second

step results in an even number of inversions, and this is proved in the following claim (which we

remark is heavily dependent on the way we distinguish between left and right children).

Claim 5.11. The number of inversions due to a re-rooting of a binary 3-partite tree at any leaf

(i.e., taking any degree-1 vertex as the new root) is even.

Proof. Let G be a binary 3-partite tree. Let v denote the root of G, and let uL, uR denote

its left and right children in TG, respectively. Assume that the future root is in the left subtree

of v (the other case is treated similarly). Let TL, TR denote the set of vertices in the left and

right subtrees of v in TG, respectively. We next specify a partition of the set of pairs of vertices

{x, y} that involve at least one vertex outside of TL, and show that the number of inversions

in each part is even. This would complete the proof since by applying our claim by induction

on the tree rooted at uL (which includes the future root), it would follow that the number of

inversions involving both vertices from TL is also even. The partition is as follows.

• x, y ∈ TR. There are no inversions involving both vertices from TR, as the common ancestor

of x and y is in TR.
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• x ∈ TR, y ∈ {v, uL}. After rooting, uL becomes the parent of v and uR. Because of the

circular ordering of the vertex classes, it is not hard to see that v turns into a right child,

and uR into a left child (see Figure 5). Hence any vertex in TR is now to the left of both

v and uL. Therefore, the number of inversions here is 2|TR|.

• x = v, y = uL. By the previous argument, v becomes the right child of uL after rooting,

which means uL remains to the left of v.

• x /∈ TL, y ∈ TL \ {uL}. A vertex in TL \ {uL} changes its inorder with respect to a vertex

in TR if and only if it does so with respect to v, since, after rooting, the common ancestor

of v and any vertex from TR is uL. It follows that the numbers of inversions here is a

multiple of the number of vertices outside TL, and thus even.

Note that the above is indeed a partition of the pairs involving a vertex outside TL, which follows

from the fact that the first three parts (items) cover exactly the pairs both of whose vertices are

outside TL, as well as the pairs that consist of uL and a single vertex outside TL.

Since we have shown that any application of the tree-swap operation changes the parity of

the number of inverted pairs, the proof is complete.

Using Theorem 3.9 we can thus conclude that any binary 3-partite tree of cardinality m is of

complexity m over any field. In particular, we may deduce the following corollary for n-bounded

binary 3-partite trees (e.g., the tree in Example 5.7), whose proof is essentially the same as that

of Corollary 5.9.

Corollary 5.12. Any n-bounded binary 3-partite tree is of complexity exactly (3n − 1)/2 over

any field.

A limitation of 2-balancedeness. We close this section with a proof showing that the above

results are essentially tight for 2-balanceable 3-partite graphs, in the sense described below. Let

G be a 3-partite graph. Recall that we may view Ḡ as being properly vertex-colored by 3 colors,

corresponding to the partition into vertex classes. Also, observe that if Ḡ contains a cycle then,

by possibly “breaking down“ the edges of G differently, we may construct Ḡ so as to contain a

cycle with at most one edge {u, v} per every edge {u, v, w} of G. We refer to such a cycle as a

cycle of G (thus, intuitively, a cycle of G uses each edge of G at most once). We call a cycle of

G diverse if it has a vertex with each color.

Proposition 5.13. No 3-partite graph having a diverse cycle is (weakly) 2-balanceable.

Proof. Let A be a weakly 2-balanced family of 3-partite graphs. We claim that if there is

a member of A having a diverse cycle of length k ≥ 3 then there must also be a member of A
having either a diverse cycle of length k− 1 or a cycle of length 2. Notice that a cycle of length

2 is a complete partite graph (it is synonymous with a 2-cluster K(1, 1, 2)), and so no member

of a weakly 2-balanced family of 3-partite graphs has it. Therefore, proving the above claim

would complete the proof.
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Let G ∈ A have a diverse cycle C of length at least 4. Observe that there must be three

consecutive vertices of C that are colored with a different color each. Indeed, going over the

vertices in the cycle, starting from an arbitrary vertex, until the first time vertices of all three

colors have been encountered clearly yields a vertex triple as required.

We claim that we can choose the above vertex triple so that the middle vertex is not uniquely

colored, i.e., is not the only vertex of C with its color. Indeed, if there is a uniquely colored

vertex v of C, then the rest of the vertices of C are properly colored using only two colors. Let

u be a vertex adjacent to v in C. Note that u is not uniquely colored, since otherwise the rest

of the vertices—of which there are at least two—would be properly colored using a single color.

Thus, by taking the three consecutive vertices of C whose middle vertex is u we obtain a vertex

triple as required.

Let H ⊆ G denote the pair of edges in G corresponding to the aforementioned vertex triple.

Since the two edges of H intersect, there is only a single other rewiring G′ 6= G of H in G (or

else G already contains one of the “cross edges”, and so has a length-2 cycle and we are done).

Because A is (weakly) 2-balanced, it follows that G′ is a member of A as well. It is not hard to

see that G′ has a cycle C ′ of length k− 1 ≥ 3, bypassing the vertex u in which the two edges of

H intersect, which follows from the fact that the two vertices adjacent to u in C are from two

different vertex classes. Furthermore, since C ′ has the same vertices as C except for u, and since

u is not uniquely colored in C, it follows that C ′ is also diverse. Finally, by a similar argument,

if G has a cycle of length 3, then A must contain a member having a cycle of length 2, and the

proof is complete.

We next derive a simple upper bound on the cardinality of a 2-balanceable 3-partite graph.

Corollary 5.14. Any (weakly) 2-balanceable n-bounded 3-partite graph is of cardinality at

most 3n.

Proof. Let G be a weakly 2-balanceable 3-partite graph, and suppose it has a diverse cycle C.

We claim that for any edge e := {u, v, w} ∈ G corresponding to an edge {u, v} of C, the vertex

w must be of degree 1 in G. Indeed, if G has another edge e′ containing w, then, similarly to

the above proof, the subgraph {e, e′} ⊆ G has a single other rewiring G′ in G; it is not hard to

see that G′ has a diverse cycle, contradicting the fact that it is weakly 2-balanceable.

Consider all the cycles of G, and denote H ⊆ G the corresponding edges of G. Clearly,

the remaining edges of G form a forest. Observe that the forest has at most 3n− |H| vertices,
which follows from the fact that every edge of H includes a vertex that appears only in H (i.e.,

of degree 1 in G). We conclude that the cardinality of G is at most |H| + (3n − |H| − 1)/2 =

(3n+ |H| − 1)/2 ≤ (6n− 1)/2.

6 Proofs of the Main Theorems

In this section we prove the Main Theorems, Theorem 3.9 and Theorem 3.10, as well as Theo-

rem 3.11. We start by naturally associating any family of graphs A with a polynomial QA that
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acts on tensors. We then use our notion of balance—we show that if A is a balanced family

then QA vanishes on all low-rank tensors. The desired complexity lower bounds are obtained

by showing that QA does not vanish on, e.g., the adjacency tensor of any member of A.

Let us be more formal. Fix positive integers d ≥ 2, n, and let F be an arbitrary field.

Let Q ∈ F[X] be a polynomial in the variables X = (Xe)e∈[n]d ; notice we may interpret Q

as acting on d-tensors over F. Given a family A of n-bounded d-partite graphs, where we

naturally identify each such graph with a subset of [n]d, consider the multilinear polynomial

QA :=
∑

G∈A
∏

e∈GXe. Below we describe the behavior of multilinear polynomials on low-rank

tensors, and then deduce that QA vanishes on all them if A is a balanced family. But first, we

will need the following characterization of tensor rank.

Let r be a nonnegative integer. Define the mapping L
r ∈ F

rdn → F
nd

by

L
r : α = (αi

j,k)i∈[r],j∈[d],k∈[n] 7→
(

r
∑

i=1

d
∏

j=1

αi
j,ej

)

e=(e1,...,ed)∈[n]d
.

Lemma 6.1. A d-tensor A = (ae)e∈[n]d over a field F is of rank at most r if and only if it lies

in the image of Lr.

Proof. By definition, A is of rank at most r if there exist r tensor products of vectors in F
n,

v11 ⊗ · · · ⊗ v1d, . . . , v
r
1 ⊗ · · · ⊗ vrd, whose sum is A. Denoting vij = (αi

j,1, . . . , α
i
j,n) where αi

j,k ∈ F,

the above is equivalent to the fact that for every e = (e1, . . . , ed) ∈ [n]d,

ae = α1
1,e1 · · ·α

1
d,ed

+ · · ·+ αr
1,e1 · · ·α

r
d,ed

,

which completes the proof.

It follows from the above characterization that the restriction of Q ∈ F[X] to tensors of rank

at most r is a polynomial as well, namely, Q ◦ Lr := Q(Lr(α)). We now show that this composed

polynomial can in fact be described using the terminology of scopes.

Proposition 6.2. Let t > 1 and m be positive integers, and let Lr(α) be defined as above where

r <
⌈

m
t−1

⌉

. Let Q ∈ F[X] be a multilinear polynomial in the variables X = (Xe)e∈[n]d ,

Q =
∑

G

CG

∏

e∈G
Xe ,

where the summation is over all graphs G ⊆ [n]d of cardinality at least m. Then for every

monomial in α there are t+-scopes {Ψi}i so that its coefficient in Q ◦ Lr ∈ F[α] is

∑

i

∑

G∈Ψi

CG .

Proof. Consider a monomial of Q,
∏

e∈G
Xe.
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Evaluating the monomial on L
r(α) gives

∏

e∈G
L
r(α)e =

∏

e∈G

r
∑

i=1

d
∏

j=1

αi
j,ej .

Expanding the multiplication by distributivity, it is not hard to see that each resulting term

corresponds to a coloring G of G with colors from {1, . . . , r}, or an r-coloring, and is of the form

p(G) :=
r
∏

i=1

∏

e∈Gi

d
∏

j=1

αi
j,ej ,

where Gi denotes the color-i subgraph in G. Denoting G the underlying graph of the colored

graph G, we deduce that

Q(Lr(α)) =
∑

G

CG

∏

e∈G
L
r(α)e =

∑

G

CG

∑

G:G=G

p(G),

where the innermost sum in the right hand side is over all r-colorings of G. Equivalently,

Q(Lr(α)) =
∑

G
CG · p(G),

where the sum is over all r-colored graphs of cardinality at least m.

Say that two r-colored graphs are comparable if for every color i ∈ [r], their color-i subgraphs

are comparable.

Lemma 6.3. The r-colored graphs G and H are comparable if and only if p(G) = p(H).

Proof. By definition, p(G) = p(H) if and only if for every 1 ≤ i ≤ r, and for every 1 ≤ j ≤ d,

∏

e∈Gi

αi
j,ej =

∏

e∈Hi

αi
j,ej ,

where Gi, Hi denote the color-i subgraphs of G and H, respectively. By commutativity, equality

holds in the above equation if and only if there is the equality of multisets

{ ej | e ∈ Gi } = { ej | e ∈ Hi },

or equivalently, if and only if the same vertices, and with the same degrees, appear in the jth

vertex class of Gi and Hi. Since the latter is the same as saying that the graphs Gi and Hi are

comparable, the proof is complete.

Thus, each monomial of Q(Lr(α)) corresponds to an equivalence class Φ of the comparable

equivalence relation on r-colored graphs of cardinality at least m, and its coefficient is

∑

G∈Φ
CG .
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Note that for every color i, the color-i subgraphs of the members of Φ are comparable graphs,

and in particular, are of the same cardinality. This also implies that all members of Φ are of the

same cardinality. Observe that in any coloring of a graph of cardinality at least m by r <
⌈

m
t−1

⌉

colors there must be a monochromatic subgraph of cardinality at least t. Suppose there are t′ ≥ t

edges colored c ∈ [r] in all members of Φ. Define an equivalence relation ∼ on Φ as follows.

Say that two colored graphs satisfy ∼ if they are equal (i.e., same edges and identically colored)

except, perhaps, for their c-colored edges. This clearly implies a partition of Φ into equivalence

classes. It is not hard to see that for any such equivalence class, the underlying graphs of its

members form a t′-scope.
We conclude that for each monomial of Q(Lr(α)) there are t+-scopes {Ψi}i, corresponding

to the equivalence classes of ∼, such that its coefficient is

∑

i

∑

G∈Ψi

CG,

as desired.

We deduce the following for the polynomial QA (recall QA =
∑

G∈A
∏

e∈GXe) when A is

balanced.

Corollary 6.4. Let A be a weakly t-balanced family whose graphs are of cardinality at least m,

and fix r <
⌈

m
t−1

⌉

. Then QA ◦ Lr ∈ F[α] is the zero polynomial if F is of characteristic 2.

Proof. It follows from Proposition 6.2 that each monomial of QA ◦ Lr has coefficient of the

form
∑

Ψ|Ψ ∩ A|, where the sum is over some t+-scopes. Hence all these coefficients are even,

and so vanish assuming characteristic 2.

When A is balanced, we may consider a variant of QA which would allow us to deduce a

stronger result.

Corollary 6.5. Let A = A+ ·∪A− be a t-balanced family whose graphs are of cardinality at least

m, and fix r <
⌈

m
t−1

⌉

. Denote Q′
A = QA+ −QA− . Then Q′

A ◦ Lr ∈ F[α] is the zero polynomial,

for any field F.

Proof. By Proposition 6.2, the coefficients in Q′
A ◦ Lr are of the form

∑

Ψ|Ψ∩A+|−|Ψ∩A−|,
where the sum is over some t+-scopes. Hence all these coefficients are zero (for any field F).

Intuitively, any nonzero function that vanishes on L
r carries a lot of information on tensors of

rank at most r. In particular, if it is a multilinear, homogeneous polynomial then any monomial

in its support corresponds to a tensor of rank larger than r, which proves the Main Theorems

as follows.

Proof of Theorem 3.10. Let G be a graph that is contained in a weakly t-balanced family

A. We assume without loss of generality that the graphs in A are all of the same cardinality

m (recall Fact 3.5). Evaluate QA = QA(X) on (the adjacency tensor of) G, by setting Xe = 1

if e ∈ G, and Xe = 0 otherwise. It is easy to verify that, since QA is both homogeneous and
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multilinear, the above evaluates to 1. This completes the proof since QA vanishes, over any

field of characteristic 2, on (the adjacency tensors of) all graphs of complexity smaller than
⌈

m
t−1

⌉

.

Note that evaluating the above-mentioned (homogeneous, multilinear) QA on an arbitrary

graph G′ yields the number of graphs from A that are subgraphs of G′; hence, if this number is

odd then G′ is also of complexity at least
⌈

m
t−1

⌉

over any field of characteristic 2. This proves

the first part of Theorem 3.11.

Proof of Theorem 3.9. Let G be a graph that is contained in a t-balanced family A whose

graphs are, without loss of generality, all of the same cardinality m. Let Q′
A be the polynomial

given in Corollary 6.5. Then, similarly to the previous proof, Q′
A evaluates on G to either 1 or

−1, while Q′
A vanishes, over any field F, on all graphs of complexity smaller than

⌈

m
t−1

⌉

.

Similarly to the previous comment, for a balanced family A = A+ ·∪A−, if a graph G′

contains a different number of subgraphs from A+ and A− then G′ is of complexity at least
⌈

m
t−1

⌉

over any field of characteristic zero—and also over any field of characteristic p, assuming

the difference between these two numbers is not a multiple of p; in particular, if the difference

is 1 then the conclusion holds over any field. This completes the proof of Theorem 3.11.

6.1 Extensions

The above proofs of the Main Theorems in fact imply somewhat stronger results, as follows.

• The same lower bounds hold also over any commutative rings (instead of fields) with

multiplicative identity 1 6= 0.

• The same lower bounds hold even if we replace, in the definition of an adjacency tensor,

any unity entry by any nonzero entry. More formally, suppose we associate any n-bounded

d-partite graph G with some d-tensor (ae)e∈[n]d over a field F where ae is nonzero if and

only if e ∈ G (identifying G with a subset of [n]d). Then for any weakly t-balanceable

graph of cardinality m, the associated tensor is of rank at least
⌈

m
t−1

⌉

assuming F is of

characteristic 2. Moreover, if G is balanceable then the same holds for any field F.

• The same lower bounds hold also for the border rank over an algebraically closed field. The

border rank of a tensor A is the smallest r so that every polynomial that evaluates to the

zero polynomial on L
r also vanishes on A (this is the same as saying that the tensor lies

in the so-called Zariski closure of the image of Lr). Clearly, the border rank of a tensor

is at most its rank, and so proving border rank lower bounds is harder. We mention it is

known that the border rank of a tensor A can be interpreted as the smallest rank of tensor

that “approximates” A; that is, showing that A is of border rank larger than r also implies

that no sequence of rank-r tensors converges to A (see also [15], extending the work of

Alder [2]).

Remark. Interpreting the balanced families in Section 5 algebraically, that is, as the support

of a polynomial, it is not hard to see that the family of bipartite perfect matchings, shown to be
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2-balanced in Claim 5.4, corresponds to the determinant polynomial. Furthermore, the family of

trees, shown to be weakly 2-balanced in Theorem 5.8 (see also Theorem 5.10), and which consist

of d-partite graphs for d > 2 is, when interpreted algebraically, reminiscent of the polynomial

implied by the well-known Matrix-Tree Theorem.

Although we do not do so in this paper, it may also be interesting to consider the following

alternative notions of vanishing of Q ◦ Lr for a polynomial Q.

• Over a finite field of odd characteristic. That is, Q ◦ Lr is the zero polynomial over a

field of characteristic p 6= 2. Further assuming that the coefficients of Q are in {−1, 0, 1}
naturally suggests a notion of a “p-modular” balanced family A, where the number of

graphs from A in every scope is a multiple of p. As in Corollary 6.4, a complexity lower

bound on the members of A holds over any field of characteristic p (and thus also over Z).

• A vanishing—over a finite field, say GF(2)—as a function (i.e., all evaluations are zero).

In other words, Q ◦ Lr = 0 in the quotient ring GF(2)[α]/(αi
j,k

2 − αi
j,k)i,j,k. Accordingly,

one might generalize Definition 3.1 of comparable graphs, so that two equally-sized graphs

would be considered comparable if they are simply spanned by the same vertices—without

the requirement on their degrees (this follows by considering, in the proof of Lemma 6.3,

equality of sets instead of multisets). While this would imply complexity lower bounds

over any field of characteristic 2, lower bounds obtained using this redefinition may not be

generalizable to arbitrary fields.

• A vanishing where r is extremely large. A simple counting argument we describe below

implies the existence of a nonzero polynomial Q over any field F that evaluates to the

zero polynomial on L
r for r as large as

⌈

nd−1

d

⌉

− 1 (and in fact, using an additional

observation, even as large as
⌈

nd

nd−d+1

⌉

− 1), which is somewhat larger than the rank lower

bound Ω( nd−1

d log d) implied by Theorem 3.12. However, such a polynomial Q might not be

multilinear (and its coefficients might not be in {−1, 0, 1}). In particular, if F is a finite

field, Q might evaluate to zero on all inputs, and hence could not be used to deduce

complexity lower bounds. Let us describe such a counting argument using the notion

of algebraic dependence. By definition, the polynomials (Lr(α)e)e∈[n]d are algebraically

dependent if and only if there exists a nonzero polynomial Q that evaluates on them to

the zero polynomial (in algebraic-geometric terms, the algebraic set consisting of such

vanishing polynomials is said to be secant to a Segre variety). It is known that if the

number of polynomials L
r(α)e is larger than the number of their variables (that is; if

nd > rdn) then they are indeed algebraically dependent, and this holds for r =
⌈

nd−1

d

⌉

−1.

7 Results for more computational models

In this section we show that the definition of a balanced family can be naturally extended to

imply complexity lower bounds with respect to various arithmetical computational models. We

exemplify this by considering the case of homogeneous arithmetic circuits. An arithmetic circuit
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is said to be homogeneous if every intermediate polynomial it computes is homogeneous. It

is well known (this is implicit in the work of Strassen [26]) that if a degree-d homogeneous

polynomial has an arithmetic circuit of size s (i.e., that uses s arithmetical operations) then it

has a homogeneous arithmetic circuit of size at most O(d2s). Therefore, large lower bounds on

the size of homogeneous arithmetic circuits can imply large lower bounds on the size of general

arithmetic circuits.

In this section we take d-graph (or sometimes simply graph) to mean a (not necessarily

partite) d-uniform hypergraph, i.e., where each edge includes precisely d ≥ 2 vertices. All the

graphs we consider are defined over the same vertex set [n] for some positive integer n. The

adjacency polynomial of a d-graph G is the polynomial

PG(x1, . . . , xn) =
∑

e∈G

∏

v∈e
xv.

Directed graphs. A directed edge is a pair (T,H), whose tail T and head H are sets of

vertices. A directed graph is a collection of directed edges. A directed edge (T,H) is an

orientation of an edge e if it partitions e, that is, e = T ·∪H, and moreover, |T |, |H| ≤
⌊

2
3 |e|

⌋

.

An orientation of a graph is obtained by orienting each of its edges. For a directed graph ~H,

we denote H its underlying graph. We say that two directed graphs are comparable if they have

the same multiset of tails, and similarly for heads (i.e., each tail that appears in one graph also

appears as a tail in the other graph the same number of times, and similarly for heads).

Balanced families. Let A = A+ ·∪A− be a family of d-graphs. We say that A is t-balanced if

the following holds. For every graph G and every oriented t-subgraph14 ~H of G, the number of

directed graphs ~H ′ comparable to ~H such that (G \H) ·∪H ′ lies in A+ is the same as for A−. It
is not too hard to see that a family of d-partite hypergraphs that is t-balanced according to this

definition is in particular t-balanced according to the definition in Section 3. The definition here

is more restrictive since, intuitively, in order to obtain the rewirings of a t-subgraph, one cannot

simply rearrange its vertices between the edges arbitrarily, but instead must only rearrange

entire “blocks” as given by the orientation of each of the t edges. We next show that arithmetic

circuit lower bounds can be obtained through balanced families.

Theorem 7.1. Let F be a d-graph of cardinality m, and suppose that F is contained in a

t-balanced family (as defined above). Then the size of any homogeneous arithmetic circuit com-

puting PF is Ω(m/t), over any field.

We in fact prove a stronger result, which we describe next. Consider a representation of a

degree-d homogeneous polynomial as a sum
∑

i PiQi where Pi, Qi are homogeneous polynomials

of degree at most
⌊

2
3d

⌋

. Let us call such a representation systematic. By a result of Raz [21], if

a degree-d (d ≥ 2) homogeneous polynomial p has a homogeneous arithmetic circuit of size s,

then p has a systematic representation using O(s) summands (see the proof of Proposition 2.7

14That is, every orientation of every t-subgraph.
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in [21]).15 Theorem 7.1 thus follows from the stronger theorem below.

Theorem 7.2. In the notation of Theorem 7.1, the number of summands in any systematic

representation of PF is at least
⌈

m
t−1

⌉

, over any field.

We sketch an algebraic proof along the lines of those in Section 6.

Proof. (Sketch) Let p be a multilinear homogeneous polynomial of degree d (d ≥ 2) over a

field F, and consider a systematic representation p =
∑s

i=1 PiQi with s summands (without

loss of generality, deg(PiQi) = d for all i). For every 1 ≤ i ≤ s, denote (αi
T )T , (β

i
H)H ∈ F

the coefficients of the multilinear monomials in Pi and Qi, respectively (we will only consider

multilinear monomials in this proof). It follows that the coefficient of the (multilinear) monomial
∏

i∈e xi in p = p(x1, . . . , xn) is given by

βe :=
s

∑

i=1

∑

T ·∪H=e

αi
Tβ

i
H ,

where the innermost summation is over all orientations of e (in fact, over all orientations (T,H)

of e where |T | = deg(Pi) and |H| = deg(Qi)).

Let A = A+ ·∪A− be a t-balanced family of size-m d-graphs. Let QA = QA(Xe) be a (ho-

mogeneous, multilinear) polynomial over F whose variables correspond to edges of the complete

d-graph (over [n]), and whose support corresponds to A, namely,

QA =
∑

G∈A+

∏

e∈G
Xe −

∑

G∈A−

∏

e∈G
Xe.

Viewing the βe’s as polynomials in the variables α := (αi
T , β

i
H)i∈[s],T,H , we consider the composed

polynomial Q′ := QA(βe) ∈ F[α]. Expanding any monomial
∏

e∈G βe, it is easy to see that every

term determines, for each edge of G, both a color (from [s]) and an orientation.

Fix s <
⌈

m
t−1

⌉

, so that every s-colored oriented graph contains at least t monochromatic

(directed) edges. Using an argument similar to that at the end of the proof of Proposition 6.2,

which, roughly speaking, reduces the analysis of “color-wise comparable” colored (directed)

graphs to that of comparable (directed) graphs, as well as using an argument similar to that

used in the proof of Proposition 4.6, the following can be shown. Consider any t-subgraph ~H

of an oriented graph ~G. Assume that the number of directed graphs ~G′—obtained by replacing
~H with a comparable directed graph—whose underlying graph is from A+ is the same as from

A−. Then each coefficient of Q′ vanishes (for any F). It is easy to see that this assumption is

equivalent to A being t-balanced.

We conclude that QA vanishes on the coefficients βe of all degree-d multilinear homogeneous

polynomials that require less than
⌈

m
t−1

⌉

summands for their systematic representation. Since

QA does not vanish on any graph in its support (i.e., if F ∈ A then evaluating QA(Xe) by

setting Xe = 1 if e ∈ F and Xe = 0 otherwise—these are the coefficients of PF—yields ±1), the

proof is complete.

15Note that the statement in [21] includes an extra factor due to homogenization and reduction to depth-4,

which are not used here. We also do not use the fact that the Pi’s and Qi’s can all be computed by an arithmetic

circuit of size O(s).
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Notice that the above proof clearly applies even if we add arbitrary non-multilinear mono-

mials to the adjacency polynomial of a balanceable graph.

One can also obtain a variant of the above theorem by considering depth-4 arithmetic circuits

instead of general ones. Suppose that we modify the definition of an edge orientation so as to

partition any edge into O(
√
d) blocks, each containing O(

√
d) vertices. Then it follows from the

work of Koiran [14] (extending the work of Agrawal and Vinay [1]) that if we manage to obtain

a lower bound of s on a d-graph (i.e., by putting it in a t-balanced family of size-m graphs

where
⌈

m
t−1

⌉

= s), then a complexity lower bound of sΩ(1/
√
d log d) follows for general arithmetic

circuits.

It is rather straightforward to generalize the above arguments to many other natural compu-

tational models, by appropriately modifying the definition of an edge orientation. For example,

it is not hard to see that for (homogeneous) depth-3 arithmetic circuits, the corresponding notion

of an edge orientation simply orders its vertices.

Remark. It is not hard to check that Theorem 3.12 can be extended to apply to balanced

families as defined in this section. Namely, there exists a t-balanced family of size-m n-vertex

d-graphs for m = Ω
((

n
d

))

and t = O
((

n
d′

))

where d′ =
⌊

2
3d

⌋

.
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