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Abstract

Let G = 〈S〉 be a solvable permutation group given as input by the generating set
S. I.e. G is a solvable subgroup of the symmetric group Sn. We give a deterministic
polynomial-time algorithm that computes an expanding generating set of size Õ(n2) for

G. More precisely, given a λ < 1, we can compute a subset T ⊂ G of size Õ(n2)
(

1
λ

)O(1)

such that the undirected Cayley graph Cay(G,T ) is a λ-spectral expander (the Õ
notation suppresses logO(1) n factors). In particular, this construction yields ε-bias
spaces with improved size bounds for the groups Znd for any constant ε > 0.

We also note that for any permutation group G ≤ Sn given by a generating set, in

deterministic polynomial time we can compute an
(
n
λ

)O(1)
size expanding generating

set T , such that Cay(G,T ) is a λ-spectral expander; here the constant in the exponent
is large but independent of λ.

1 Introduction

Let G be a finite group, and let S = 〈g1, g2, . . . , gk〉 be a generating set for G. The undirected
Cayley graph Cay(G,S∪S−1) is an undirected multigraph with vertex set G and edges of the
form {x, xgi} for each x ∈ G and gi ∈ S. Since S is a generating set for G, Cay(G,S ∪ S−1)
is a connected regular multigraph.

For a regular undirected graph X = (V,E) of degree D on n vertices, its normalized
adjacency matrix AX is a symmetric matrix with largest eigenvalue 1. For 0 < λ < 1, the
graph X is an (n,D, λ)-spectral expander if the second largest eigenvalue of AX , in absolute
value, is bounded by λ.

Expander graphs are of great interest and importance in theoretical computer science,
especially in the study of randomness in computation; the monograph by Hoory, Linial, and
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Wigderson [HLW06] is an excellent reference. A central problem is the explicit construction
of expander graph families [HLW06, LPS88]. By explicit it is meant that the family of
graphs has efficient deterministic constructions, where the notion of efficiency depends upon
the application at hand, e.g. [Rei08]. Explicit constructions with the best known and
near optimal expansion and degree parameters (the so-called Ramanujan graphs) are Cayley
expander families [LPS88].

Alon and Roichman, in [AR94], show that every finite group has a logarithmic size
expanding generating set using the probabilistic method. For any finite group G and λ > 0,
they show that with high probability a random multiset S of size O(log |G|) picked uniformly
at random from G is a λ-spectral expander. Algorithmically, if G is given as input by its
multiplication table there is a randomized Las Vegas algorithm for computing S: we pick
the multiset S of O(log |G|) many element from G and check in deterministic time |G|O(1)

that Cay(G, T ) is a λ-spectral expander.
Wigderson and Xiao gave a derandomization of this algorithm in [WX08](also see [AMN11]

for an alternative proof of [WX08]). Given λ > 0 and a finite group G by a multiplication
table, they show that in deterministic time |G|O(1) a multiset S of size O(log |G|) can be
computed such that Cay(G, T ) is a λ-spectral expander.

This paper

Suppose the finite group G is a subgroup of the symmetric group Sn or the matrix group
GLn(Fp) and G is given as input by a generating set S, and not explicitly by a multiplication
table. The question we address is whether we can compute an O(log |G|) size expanding
generating set for G in deterministic polynomial time. Notice that if we can randomly (or
nearly randomly) sample from the group G in polynomial time, then the Alon Roichman
theorem implies that an O(log |G|) size sample will be an expanding generating set with high
probability (though we do not know how to certify this in polynomial time).

This problem can be seen as a generalization of the construction of small bias spaces in,
say Fn2 [AGHP92]. It is easily proved (see e.g. [HLW06]), using some character theory of finite
abelian groups, that ε-bias spaces are precisely expanding generating sets for Fn2 (and this
holds for any finite abelian group). Interestingly, the best known explicit construction of ε-
bias spaces is of size O(n2/ε), whereas the Alon-Roichman theorem guarantees the existence
of ε-bias spaces of size O(n).

Subsequently, Azar, Motwani and Naor [AMN98] gave a construction of ε-bias spaces
for finite abelian groups of the form Znd using Linnik’s theorem and Weil’s character sum
bounds. The size of the ε-bias space they give is O((d+ n2)C) where the constant C comes
from Linnik’s theorem and the current best known bound for C is 11/2.

In this paper we prove a more general result. Given any solvable subgroup G of Sn,
where G is given by a generating set, we construct an expanding generating set T for G such
that Cay(G, T ) is a λ-spectral expander for constant λ. Furthermore, |T | is Õ(n2) which is
close to some of the best known ε-bias space construction for Fn2 [AGHP92, ABN+92]. We
note that for even for a general permutation group G ≤ Sn given by a generator set, we
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can compute (in deterministic polynomial time) an (n
λ
)O(1) size generating set T such that

Cay(G, T ) is λ-spectral.
It is interesting to ask if we can obtain expanding generator sets of smaller size in de-

terministic polynomial time. For an upper bound, by the Alon-Roichman theorem we know
that there exist expanding generator sets for any G of size O(log |G|) which is bounded by

O(n log n) = Õ(n). In general, given G an algorithmic question is to ask for a minimum size
expanding generating set for G that makes the Cayley graph λ-spectral.

In this connection, it is interesting to note the following negative result that Lubotzky and
Weiss in [LW93] have shown about solvable groups as expanders: Let {Gi} be any infinite
family of finite solvable groups {Gi} such that each Gi has derived series of length bounded
by some constant `. Further, suppose that Σi is an arbitrary generating set for Gi such that
its size |Σi| ≤ k for each i and some constant k. Then the Cayley graphs Cay(Gi,Σi) do
not form a family of expanders. In contrast, they also exhibit an infinite family of solvable
groups in [LW93] that give rise to constant-degree Cayley expanders.

Coming back to our present paper, the main ingredients of our construction are the
following:

� Let G be a finite group and N be a normal subgroup of G. Given expanding generating
sets S1 and S2 for N and G/N respectively such that the corresponding Cayley graphs
are λ-spectral expanders, we give a simple polynomial-time algorithm to construct an
expanding generating set S for G such that Cay(G,S) is also λ-spectral. Moreover,
|S| is bounded by a constant factor of |S1|+ |S2|.

� We compute the derived series for the given solvable group G ≤ Sn in polynomial time
using a standard algorithm [Luk93]. This series is of O(log n) length due to Dixon’s
theorem. Let the derived series for G be

G = G0 BG1 B · · ·BGk = {1}.

Assuming that we already have an expanding generating set for each quotient group
Gi/Gi+1 (which is abelian) of size Õ(n2), we apply the previous step repeatedly to

obtain an expanding generating set for G of size Õ(n2). We can do this because the
derived series is a normal series.

� Finally, we consider the abelian quotient groups Gi/Gi+1 and give a polynomial time

algorithm to construct an expanding generating set for it of size Õ(n2). This construc-
tion applies a series decomposition of abelian groups as well as makes use of the Ajtai
et al construction of expanding generating sets for Zt [AIK+90]. In particular, we note
that our construction improves the Azar-Motwani-Naor construction of ε-bias spaces
for Znd for any constant ε > 0 [AMN98].

We present the above three steps of the construction in the next three sections.
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2 Combining Expanders for N and G/N

Let G be any finite group and N be a normal subgroup of G (i.e. g−1Ng = N for all g ∈ G).
We denote this by G B N B {1}. Let A ⊂ N be an expanding generating set for N and

Cay(N,A) be a λ-spectral expander. Similarly, suppose B ⊂ G such that B̂ = {Nx | x ∈ B}
is an expanding generating set for the quotient group G/N and Cay(G/N, B̂) is also a λ-
spectral expander. Let X = {x1, x2, . . . , xk} denote a set of distinct coset representatives for
the normal subgroup N in G. In this section we show that A∪B is an expanding generating
set for G. More precisely, we will show that Cay(G,A ∪B) is a 1+λ

2
-spectral expander.

In order to analyze the spectral expansion of the Cayley graph Cay(G,A∪B) it is useful
to view vectors in C|G| as elements of the group algebra C[G]. The group algebra C[G]
consists of linear combinations

∑
g∈G αgg for αg ∈ C. Addition in C[G] is component-wise,

and clearly C[G] is a |G|-dimensional vector space over C. The product of
∑

g∈G αgg and∑
h∈G βhh is defined naturally as:

∑
g,h∈G αgβhgh.

Let S ⊂ G be any symmetric subset and let MS denote the normalized adjacency matrix
of the undirected Cayley graph Cay(G,S). Now, each element a ∈ G defines the linear
map Ma : C[G] → C[G] by Ma(

∑
g αgg) =

∑
g αgga. Clearly, MS = 1

|S|
∑

a∈SMa and

MS(
∑

g αgg) = 1
|S|
∑

a∈S
∑

g αgga.

In order to analyze the spectral expansion of Cay(G,A ∪B) we consider the basis {xn |
x ∈ X,n ∈ N} of C[G]. The element uN = 1

|N |
∑

n∈N n of C[G] corresponds to the uniform
distribution supported on N . It has the following important properties:

1. For all a ∈ N Ma(uN) = uN because Na = N for each a ∈ N .

2. For any b ∈ G consider the linear map σb : C[G] → C[G] defined by conjugation:
σb(
∑

g αgg) =
∑

g αgb
−1gb. Since N CG the linear map σb is an automorphism of N .

It follows that for all b ∈ G σb(uN) = uN .

Now, consider the subspaces U and W of C[G] defined as follows:

U =

{(∑
x∈X

αxx

)
uN

}

W =

{∑
x∈X

x

(∑
n∈N

βn,xn

) ∣∣∣ ∑
n

βn,x = 0, ∀x ∈ X

}

It is easy to see that U and W are indeed subspaces of C[G]. Furthermore, we note that
every vector in U is orthogonal to every vector in W , i.e. U ⊥ W . This follows easily from
the fact that xuN is orthogonal to x

∑
n∈N βn,xn whenever

∑
n∈N βn,xn is orthogonal to uN .

Note that
∑

n∈N βn,xn is indeed orthogonal to uN when
∑

n∈N βn,x = 0. We claim that C[G]
is a direct sum of its subspaces U and W .

Proposition 2.1. The group algebra C[G] has a direct sum decomposition C[G] = U +W .
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Proof. Since U ⊥ W , it suffices to check that dim(U) + dim(W ) = |G|. The set {xuN | x ∈
X} forms an orthogonal basis for U since for any x 6= y ∈ X, xuN is orthogonal to yuN .
The cardinality of this basis is |X|.

Let z1, . . . , z|N |−1 be the |N |− 1 vectors orthogonal to the uniform distribution uN in the
eigenbasis for the Cayley graph Cay(N,A). It is easy to see that the set {xzj | x ∈ X, 1 ≤
j ≤ |N | − 1} of size |X|(|N | − 1) forms a basis for W .

We will now prove the main result of this section.

Lemma 2.2. Let G be any finite group and N be a normal subgroup of G and λ < 1/2 be any
constant. Suppose A is an expanding generator set for N so that Cay(N,A) is a λ-spectral

expander. Furthermore, suppose B ⊆ G such that B̂ = {Nx | x ∈ B} is an expanding

generator for the quotient group G/N and Cay(G/N, B̂) is also a λ-spectral expander. Then

A ∪ B is an expanding generating set for G such that Cay(G,A ∪ B) is a (1+λ)(max |A|,|B|)
|A|+|B| -

spectral expander. In particular, if |A| = |B| then Cay(G,A∪B) is a (1+λ)
2

-spectral expander.1

Proof. We will give the proof only for the case when |A| = |B| (the general case is identical).
Let v ∈ C[G] be any vector such that v ⊥ 1 and M denote the adjacency matrix of

the Cayley graph Cay(G,A ∪ B). Our goal is to show that ‖Mv‖ ≤ 1+λ
2
‖v‖. Notice that

the adjacency matrix M can be written as 1
2

(MA +MB) where MA = 1
|A|
∑

a∈AMa and

MB = 1
|B|
∑

b∈BMb.
2

Claim. For any two vectors u ∈ U and w ∈ W , we have MAu ∈ U , MAw ∈ W , MBu ∈ U ,
MBw ∈ W , i.e. U and W are invariant under the transformations MA and MB.

Proof. Consider vectors of the form u = xuN ∈ U and w = x
∑

n∈N βn,xn, where x ∈ X
is arbitrary. By linearity, it suffices to prove for each a ∈ A and b ∈ B that Mau ∈ U ,
Mbu ∈ U , Maw ∈ W , and Mbw ∈ W . Notice that Mau = xuNa = xuN = u since uNa = uN .
Furthermore, we can write Maw = x

∑
n∈N βn,xna = x

∑
n′∈N γn′,xn

′, where γn′,x = βn,x and
n′ = na. Since

∑
n′∈N γn′,x =

∑
n∈N βn,x = 0 it follows that Maw ∈ W . Now, consider

Mbu = ub. For x ∈ X and b ∈ B the element xb can be uniquely written as xbnx,b, where
xb ∈ X and nx,b ∈ N .

Mbu = xuNb = xb(b−1uNb)

= xbnx,bσb(uN) = xbnx,buN = xbuN ∈ U.

Finally,

1The sizes of A and B is not a serious issue for us. Since we consider multisets as expanding generating
sets, notice that we always ensure |A| and |B| are within a factor of 2 of each other by scaling the smaller
multiset appropriately. Indeed, in our construction we can even ensure when we apply this lemma that the
multisets A and B are of the same cardinality which is a power of 2.

2In the case when |A| 6= |B|, the adjacency matrix M will be |A|
|A|+|B|MA + |B|

|A|+|B|MB .
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Mbw = x(
∑
n∈N

βn,xn)b = xb(
∑
n∈N

βn,xb
−1nb)

= xbnx,b
∑
n∈N

βbnb−1,xn

= xb
∑
n∈N

γn,xn ∈ W.

Here, we note that γn,x = βn′,x and n′ = b(n−1
x,bn)b−1. Hence

∑
n∈N γn,x = 0, which puts

Mbw in the subspace W as claimed.

Claim. Let u ∈ U such that u ⊥ 1 and w ∈ W . Then:

1. ‖MAu‖ ≤ ‖u‖.

2. ‖MBw‖ ≤ ‖w‖.

3. ‖MBu‖ ≤ λ‖u‖.

4. ‖MAw‖ ≤ λ‖w‖.

Proof. Since MA is the normalized adjacency matrix of the Cayley graph Cay(G,A) and MB

is the normalized adjacency matrix of the Cayley graph Cay(G,B), it follows that for any
vectors u and w we have the bounds ‖MAu‖ ≤ ‖u‖ and ‖MBw‖ ≤ ‖w‖.

Now we prove the third part. Let u = (
∑

x αxx)uN be any vector in U such that u ⊥ 1.
Then

∑
x∈X αx = 0. Now consider the vector û =

∑
x∈X αxNx in the group algebra C[G/N ].

Notice that û ⊥ 1. Let MB̂ denote the normalized adjacency matrix of Cay(G/N, B̂). Since
it is a λ-spectral expander it follows that ‖MB̂û‖ ≤ λ‖û‖. Writing out MB̂û we get MB̂û =

1
|B|
∑

b∈B
∑

x∈X αxNxb = 1
|B|
∑

b∈B
∑

x∈X αxNxb, because xb = xbnx,b and Nxb = Nxb (as

N is a normal subgroup). Hence the norm of the vector 1
|B|
∑

b∈B
∑

x∈X αxNxb is bounded

by λ‖û‖. Equivalently, the norm of the vector 1
|B|
∑

b∈B
∑

x∈X αxxb is bounded by λ‖û‖. On
the other hand, we have

MBu =
1

|B|
∑
b

(∑
x

αxx

)
uNb =

1

|B|
∑
b

(∑
x

αxxb

)
b−1uNb

=
1

|B|

(∑
b

∑
x

αxxbnx,b

)
uN =

1

|B|

(∑
b

∑
x

αxxb

)
uN
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For any vector (
∑

x∈X γxx)uN ∈ U it is easy to see that the norm ‖(
∑

x∈X γxx)uN‖ =
‖
∑

x∈X γxx‖‖uN‖. Therefore,

‖MBu‖ = ‖ 1

|B|
∑
b

∑
x

αxxb‖‖uN‖

≤ λ‖
∑
x∈X

αxx‖‖uN‖

= λ‖u‖.

We now show the fourth part. For each x ∈ X it is useful to consider the following
subspaces of C[G]

C[xN ] = {x
∑
n∈N

θnn | θn ∈ C}.

For any distinct x 6= x′ ∈ X, since xN∩x′N = ∅, vectors in C[xN ] have support disjoint from
vectors in C[x′N ]. Hence C[xN ] ⊥ C[x′N ] which implies that the subspaces C[xN ], x ∈ X
are pairwise mutually orthogonal. Furthermore, the matrix MA maps C[xN ] to C[xN ] for
each x ∈ X.

Now, consider any vector w =
∑

x∈X x (
∑

n βn,xn) in W . Letting wx = x
(∑

n∈N βn,xn
)
∈

C[xN ] for each x ∈ X we note that MAwx ∈ C[xN ] for each x ∈ X. Hence, by Pythogoras
theorem we have ‖w‖2 =

∑
x∈X ‖wx‖2 and ‖MAw‖2 =

∑
x∈X ‖MAwx‖2. Since MAwx =

xMA

(∑
n∈N βn,xn

)
, it follows that ‖MAwx‖ = ‖MA

(∑
n∈N βn,xn

)
‖ ≤ λ‖

∑
n∈N βn,xn‖ =

λ‖wx‖.
Putting it together, it follows that ‖MAw‖2 ≤ λ2

(∑
x∈X ‖wx‖2

)
= λ2‖w‖2.

We now complete the proof of the lemma. Consider any vector v ∈ C[G] such that v ⊥ 1.
Let v = u+w where u ∈ U and w ∈ W . Let 〈, 〉 denote the inner product in C[G]. Then we
have

‖Mv‖2 =
1

4
‖(MA +MB)v‖2

=
1

4
〈(MA +MB)v, (MA +MB)v〉

=
1

4
〈MAv,MAv〉+

1

4
〈MBv,MBv〉+

1

2
〈MAv,MBv〉

We consider each of the three summands in the above expression.

〈MAv,MAv〉 = 〈MA(u+ w),MA(u+ w)〉
= 〈MAu,MAu〉+ 〈MAw,MAw〉+ 2〈MAu,MAw〉.

By Claim 2 and the fact that U ⊥ W , 〈MAu,MAw〉 = 0. Thus we get

〈MAv,MAv〉 = 〈MAu,MAu〉+ 〈MAw,MAw〉
≤ ‖u‖2 + λ2‖w‖2, from Claim 2.
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By an identical argument Claims 2 and 2 imply 〈MBv,MBv〉 ≤ λ2‖u‖2 + ‖w‖2. Finally

〈MAv,MBv〉 = 〈MA(u+ w),MB(u+ w)〉
= 〈MAu,MBu〉+ 〈MAw,MBw〉+ 〈MAu,MBw〉+ 〈MAw,MBu〉
= 〈MAu,MBu〉+ 〈MAw,MBw〉
≤ ‖MAu‖‖MBu‖+ ‖MAw‖‖MBw‖ (by Cauchy-Schwarz inequality)

≤ λ‖u‖2 + λ‖w‖2, which follows from Claim 2

Combining all the inequalities, we get

‖Mv‖2 ≤ 1

4

(
1 + 2λ+ λ2

) (
‖u‖2 + ‖w‖2

)
=

(1 + λ)2

4
‖v‖2.

Hence, it follows that ‖Mv‖ ≤ 1+λ
2
‖v‖.

2.1 A Derandomized Squaring Step

Notice that Cay(G,A ∪ B) is only a 1+λ
2

-spectral expander. We can compute another ex-
panding generating set S for G from A∪B, using derandomized squaring [RV05], such that
Cay(G,S) is a λ-spectral expander. We recall a result in [RV05, Observation 4.3,Theorem
4.4] about derandomized squaring applied to Cayley graphs which we recall in some detail.

Theorem 2.3 ([RV05]). Let G be a finite group and U be an expanding generating set such
that Cay(G,U) is a λ′-spectral expander and H be a consistently labeled d-regular graph
with vertex set {1, 2, . . . , |U |} for a constant d such that H is a µ-spectral expander. Then
Cay(G,U)sH is a directed Cayley graph for the same group G and with generating set
S = {uiuj | (i, j) ∈ E(H)}. Furthermore, if A is the normalized adjacency matrix for
Cay(G,U)sH then for any vector v ∈ C|G| such that v ⊥ 1:

‖Av‖ ≤ (λ′2 + µ)‖v‖.

Observe that in the definition of the directed Cayley graph Cay(G,U)sH (in the state-
ment above) there is an identification of the vertex set {1, 2, . . . , |U |} of H with the generator
multiset U indexed as U = {u1, u2, . . . , u|U |}.

Alternatively, we can also identify the vertex set {1, 2, . . . , |U |} of H with the generator
multiset U indexed as U = {u−1

1 , u−1
2 , . . . , u−1

|U |}, since U is closed under inverses and, as

a multiset, we assume for each u ∈ U both u and u−1 occur with same multiplicity. Let
us denote this directed Cayley graph by Cay(G,U−1)sH. Clearly, by the above result of
[RV05] the graph Cay(G,U−1)sH also has the same expansion property. I.e. if A′ denotes
its normalized adjacency matrix for Cay(G,U−1)sH then for any vector v ∈ C|G| such that
v ⊥ 1:

‖A′v‖ ≤ (λ′2 + µ)‖v‖.

We summarize the above discussion in the following lemma.
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Lemma 2.4. Let G be a finite group and U be a generator multiset for G such that for each
u ∈ U both u and u−1 occur with the same multiplicity (i.e. U is symmetric and preserves
multiplicities). Suppose Cay(G,U) is a λ′-spectral expander. Let H be a consistently labeled
d-regular graph with vertex set {1, 2, . . . , |U |} for a constant d such that H is a µ-spectral
expander. Then Cay(G,S) is an undirected Cayley graph for the same group G and with
generating set S = {uiuj | (i, j) ∈ E(H)} ∪ {u−1

i u−1
j | (i, j) ∈ E(H)}. Furthermore,

Cay(G,S) is a (λ′2 + µ)-spectral expander of degree 2d|U |.

We can, for instance, use the graphs given by the following lemma for H in the above
construction.

Lemma 2.5. [[RV05]] For some constant Q = 4q, there exists a sequence of consistently
labelled Q-regular graphs on Qm vertices whose second largest eigenvalue is bounded by 1/100
such that given a vertex v ∈ [Qm] and an edge label x ∈ [Q], we can compute the xth neighbour
of v in time polynomial in m.

Suppose Cay(G,U) is a 3/4-spectral expander and we take H given by the above lemma
for derandomized squaring, then it is easy to see that with a constant number of squaring
operations we will obtain a generating set S for G such that |S| = O(|U |) and Cay(G,S)
is a 1/4-spectral expander. Putting this together with Lemma 2.2 we obtain the following
consequence which we will use repeatedly in the rest of the paper.

Lemma 2.6. Let G be a finite group and N be a normal subgroup of G such that N = 〈A〉
and Cay(N,A) is a 1/4-spectral expander. Further, let B ⊆ G and B̂ = {Nx | x ∈ B} such

that G/N = 〈B̂〉 and Cay(G/N, B̂) is a 1/4-spectral expander. Then in time polynomial3 in
|A|+ |B|, we can construct an expanding generating set S for G, such that |S| = O(|A|+ |B|)
and Cay(G,S) is a 1/4-spectral expander.

2.2 Expanding Generator Sets for any Permutation Group

Before we return to the problem of computing expanding generating sets for solvable permu-
tation groups, we briefly describe construction of expanding generating sets for any permuta-
tion group G = 〈S〉. We require the following result on expansion of vertex-transitive graphs;
recall that a graph X is said to be vertex transitive if its automorphism group Aut(X) acts
transitively on its vertex set.

Theorem 2.7. [Bab91] For any vertex-transitive undirected graph of degree d and diameter
∆ the second largest eigenvalue of its normalized adjacency matrix is bounded in absolute
value by 1− 1

16.5d∆2 .

We note the well-known fact that an undirected Cayley graph Cay(G,S) is vertex tran-
sitive, given any generator set S for the group G. In particular, if G ≤ Sn we know by the

3Though the lemma holds for any finite group G, the caveat is that the group operations in G should be
polynomial-time computable. Since we focus on permutation groups in this paper we will require it only for
quotient groups G = H/N where H and N are subgroups of Sn.
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Schreier-Sims algorithm [Luk93] that in deterministic polynomial time we can compute a
strong generator set S ′ for G, where |S ′| ≤ n2. In particular, S ′ has the property that every
element of G is expressible as a product of n elements of S ′. As a consequence, the diameter
of the Cayley graph Cay(G,S ′) is bounded by 2n. Hence by Theorem 2.7, the second largest
eigenvalue of Cay(G,S ′) is bounded by 1− 1

66n4 . Now we will apply derandomized squaring
[RV05] to get a spectral gap 1− λ for any λ > 0.

First, we apply derandomized squaring repeatedly for at most 8 log n times to get a gener-
ator set T for G. By Lemma 2.4 and [RV05, Theorem 4.4] it follows that the corresponding
Cayley graph Cay(G, T ) has a spectral gap of at least 1/4. Further, by Lemma 2.4, the
size of T is O(n16q), assuming that we use the expander graphs given by Lemma 2.5 for
derandomized squaring.

We cannot use a constant-degree expander to increase the spectral gap beyond a con-
stant. For 1−λ > 1/4, we will apply the derandomized squaring using a non-constant degree
expander as described in [RV05, Section 5]. By the analysis of [RV05], if we apply deran-
domized squaring m times with a suitable non-constant degree expander then the second
largest eigenvalue (in absolute value) will be bounded by (7/8)2m . In order to bound this by
λ we can set m = 4 + log log 1

λ
. Also, for the ith derandomized squaring step the degree of

the auxiliary expander expander graph turns out to be 4q2
i
, 1 ≤ i ≤ m. Hence the overall

degree of the final Cayley graph will become n16q4q(2
m+1−1). Then by Lemma 2.4, the size of

the generating set will be |T | = n16q
(

1
λ

)O(1)
. To summarize, we have the following theorem.

Theorem 2.8. Given G ≤ Sn by a generating set S ′ and λ > 0, we can deterministically
compute (in time poly(n, |S ′|)) an expanding generating set T for G such that Cay(G, T ) is

a λ-spectral expander and |T | = n16q
(

1
λ

)O(1)
(where q is the constant in Lemma 2.5).

3 Normal Series and Solvable Permutation Groups

Let G ≤ Sn such that
G = G0 . G1 . · · · . Gr = {1}

is a normal series for G. I.e. Gi is a normal subgroup of G for each i and hence Gi is a
normal subgroup of Gj for each j < i.

Lemma 3.1. Let G ≤ Sn with normal series {Gi}ri=0 as above. Further, for each i let Bi

be a generating set for Gi/Gi+1 such that Cay(Gi/Gi+1, Bi) is a 1/4-spectral expander. Let
s = r · maxi{|Bi|}. Then in deterministic time polynomial in n and s we can compute a
generating set B for G such that Cay(G,B) is a 1/4-spectral expander and |B| = clog rs for
some constant c > 0.

Proof. The proof is an easy application of Lemma 2.6. First suppose we have three indices
k, `,m such that GkBG`BGm and Cay(Gk/G`, S) and Cay(G`/Gm, T ) both are 1/4-spectral
expanders. Then notice that we have the groups Gk/GmBG`/GmB{1} and the group Gk

G`
is

isomorphic to Gk/Gm

G`/Gm
via a natural isomorphism. Hence Cay(Gk/Gm

G`/Gm
, Ŝ) is also a 1/4-spectral
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expander, where Ŝ is the image of S under the said natural isomorphism. Therefore, we can
apply Lemma 2.6 by setting G to Gk/Gm and N to G`/Gm to get a generating set U for
Gk/Gm such that Cay(Gk/Gm, U) is 1/4-spectral and |U | ≤ c(|S|+ |T |).

To apply this inductively to the entire normal series, assume wlog its length r = 2t.
Inductively assume that in the normal series

G = G0 BG2i BG2·2i BG3·2i · · · . Gr = {1},

for each quotient group Gj2i/G(j+1)2i we have an expanding generating set of size cis that
makes Gj2i/G(j+1)2i 1/4-spectral. Now, consider the three groups G(2j)2iBG(2j+1)2iBG(2j+2)2i

and setting k = 2j2i, ` = (2j + 1)2i and m = (2j + 2)2i in the above argument we get
expanding generator sets for G2j2i/G(2j+2)2i of size ci+1s that makes it 1/4-spectral. The
lemma follows by induction.

3.1 Solvable permutation groups

Now we apply the above lemma to solvable permutation groups. Let G be any finite solvable
group. The derived series for G is the following chain of subgroups of G:

G = G0 . G1 . · · · . Gk = {1}

where, for each i, Gi+1 is the commutator subgroup of Gi. I.e. Gi+1 is the normal subgroup
of Gi generated by all elements of the form xyx−1y−1 for x, y ∈ Gi. It turns out that Gi+1 is
the minimal normal subgroup of Gi such that Gi/Gi+1 is abelian. Furthermore, the derived
series is also a normal series. I.e. each Gi is in fact a normal subgroup of G itself. It also
implies that Gi is a normal subgroup of Gj for each j < i.

Our algorithm will crucially exploit a property of the derived series of solvable groups
G ≤ Sn. This is a theorem of Dixon [Dix68] which states that the length k of the derived
series of a solvable subgroup of Sn is bounded by 5 log3 n.

Lemma 3.2. Suppose G ≤ Sn is a solvable group with derived series

G = G0 . G1 . · · · . Gk = {1}

such that for each i we have an expanding generating set Bi for the abelian quotient group
Gi/Gi+1 such that Cay(Gi/Gi+1, Bi) is a 1/4-spectral expander. Let s = kmaxi{|Bi|}. Then
in deterministic time polynomial in n and s we can compute a generating set B for G such
that Cay(G,B) is a 1/4-spectral expander and |B| = 2O(log k)s = (log n)O(1)s.

Proof. Follows by a direct application of Lemma 3.1.

Given a solvable permutation group G ≤ Sn by a generating set the polynomial-time
algorithm for computing an expanding generating set will proceed as follows: in deterministic
polynomial-time we first compute [Luk93] generating sets for each subgroup {Gi}1≤i≤k in the
derived series for G. In order to apply the above lemma it suffices to compute an expanding
generating set Bi for Gi/Gi+1 such that Cay(Gi/Gi+1, Bi) is 1/4-spectral. We deal with this
problem in the next section.
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4 Abelian Quotient Groups

As explained above we are now left with the problem of computing expanding generating
sets for the abelian quotient groups Gi/Gi+1. We prove a couple of easy lemmas that will
allow us to further simplify the problem.

Lemma 4.1. Let H and N be subgroups of Sn such that N is a normal subgroup of H and
H/N is abelian. Let p1 < p2 < . . . < pk be the set of all primes bounded by n and e = dlog ne.
There is an onto homomorphism φ from the product group Znpe1 × Znpe2 × · · · × Znpek onto the

abelian quotient group H/N .

Proof. Since H is a subgroup of Sn it has a generating set of size at most n − 1. Let
{x1, x2, . . . , xn} be a generator (multi)set for H. Each permutation xi can be written as a
product of disjoint cycles and the order, ri, of xi is the lcm of the lengths of these disjoint
cycles. Thus we can write for each i

ri = pei11 pei22 · · · p
eik
2 ,

where the key point to note is that p
eij
j ≤ n for each i and j because ri is the lcm of the

disjoint cycles of permutation xi. Clearly, eij ≤ e = dlog ne.

Now, define the elements yij = x
ri/p

eij
j

i . Notice that the order, o(yij), of yij is p
eij
j .

Let (a11, . . . , an1, . . . , a1k, . . . , ank) be an element of the product group Znpe1×Z
n
pe2
×· · ·×Znpek ,

where for each i we have (a1i, . . . , ani) ∈ Znpei . Let bij = p
e−eij
j aij for each i and j. Now define

the mapping φ as

φ(a11, . . . , an1, . . . , a1k, . . . , ank) = N(
k∏
j=1

n∏
i=1

y
aij
ij ).

Since H/N is abelian, it is easy to see that φ is a homomorphism. To see that φ is onto,
consider Nxf11 . . . xf`` ∈ H/N . Clearly, the cyclic subgroup generated by xi is the direct

product of its pj-Sylow subgroups generated by yij for 1 ≤ j ≤ k. Hence xfii = yai1i1 . . . yaikik
for some (ai1, . . . , aik) ∈ Zpei11

× . . . × Zpeikk
. This vector (a11, . . . , ank) is a preimage of

Nxf11 . . . xf`` , implying that φ is onto.

Suppose H1 and H2 are two finite groups such that φ : H1 → H2 is an onto homomor-
phism. In the next lemma we show that the φ-image of an expanding generating set for H1,
is an expanding generating set for H2.

Lemma 4.2. Suppose H1 and H2 are two finite groups such that φ : H1 → H2 is an
onto homomorphism. Furthermore, suppose Cay(H1, S) is a λ-spectral expander. Then
Cay(H2, φ(S)) is also a λ-spectral expander.

Proof. Let N = Ker(φ) be the kernel of the onto homomorphism φ. Then H1/N is iso-

morphic to H2 and the lemma is equivalent to the claim that Cay(H1/N, Ŝ) is a λ-spectral
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expander, where Ŝ = {Ns | s ∈ S} is the corresponding generating set for H1/N . We
can check by a direct calculation that all eigenvalues of the normalized adjacency matrix of
Cay(H1/N, Ŝ) are also eigenvalues of Cay(H1, S). This claim also follows from well-known
results in the “expanders monograph” [HLW06, Lemma 11.15,Proposition 11.17]. In order
to apply these results we note that H1 naturally defines a permutation action on the quo-
tient group H1/N by h : Nx 7→ Nxh for each h ∈ H1 and Nx ∈ H1/N . Then the Cayley

graph Cay(H1/N, Ŝ) is just the Schreier graph for this action and the generating set S of

H1 and, by [HLW06, Proposition 11.17], all eigenvalues of Cay(H1/N, Ŝ) are eigenvalues of
Cay(H1, S) and the lemma follows.

Now, suppose H,N ≤ Sn are groups given by generating sets where N CH and H/N is
abelian. By Lemmas 4.1 and 4.2, it suffices to describe a polynomial (in n) time algorithm

for computing an expanding generating set of size Õ(n2) for the product group Znpe1 × Znpe2 ×
· · · × Znpek . In the following section we solve this problem. Our solution improves the Azar-

Motwani-Naor construction of ε-bias spaces for Znd [AMN98] for constant ε > 0, that we
describe in Section 5.

4.1 Improved small-bias spaces for abelian groups

In this section we give a deterministic polynomial (in n) time construction of an Õ(n2) size
expanding generating set for the product group Znpe1 × Znpe2 × . . .× Znpek .

Consider the following normal series for this product group given by the subgroups
Ki = Zn

pe−i
1

× Zn
pe−i
2

× . . .× Zn
pe−i
k

for 0 ≤ i ≤ e. Clearly,

K0 . K1 . · · · . Ke = {1}

This is obviously a normal series since K0 = Znpe1 × Znpe2 × . . .× Znpek is abelian. Furthermore,

Ki/Ki+1 = Znp1 × Znp2 × . . .× Znpk .
Since the length of this series is e = dlog ne we can apply Lemma 3.1 to construct an

expanding generating set of size Õ(n2) for K0 in polynomial time assuming that we can

compute an expanding generating set of size Õ(n2) for Znp1 ×Znp2 × . . .×Znpk in deterministic
polynomial time.

Thus, it suffices to efficiently compute an Õ(n2)-size expanding generating set for the
product group Znp1 × Znp2 × . . .× Znpk .

In [AIK+90], Ajtai et al, using some number theory, gave a deterministic polynomial time
expanding generating set construction for the cyclic group Zt, where t is given in binary.

Theorem 4.3. Let t be a positive integer given in binary as an input. Then there is a de-
terministic polynomial-time (i.e. in poly(log t) time) algorithm that computes an expanding
generating set T for Zt of size O(log∗ t log t), where log∗ t is the least positive integer such
that a tower of k 2’s bounds t. Furthermore, Cay(Zt, T ) is λ-spectral for each constant λ.

Now, consider the group Zp1p2...pk . Since p1p2 . . . pk can be represented by O(n log n) bits

in binary, we apply the above theorem to compute an expanding generating set of size Õ(n)
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for Zp1p2...pk in poly(n) time. Let m = O(log n) be a positive integer to be fixed in the
analysis later. Consider the product group M0 = Zmp1 × Zmp2 × . . .Z

m
pk

and for 1 ≤ i ≤ m let
Mi = Zm−ip1

× Zm−ip2
× . . .× Zm−ipk

. Clearly, the groups Mi form a normal series for M0:

M0 BM1 B · · ·BMm = {1}.

and the quotient groups areMi/Mi+1 = Zp1×Zp2×. . .×Zpk = Zp1p2...pk . Since we can compute

in poly(n) time an expanding generating set for Zp1p2···pk of size Õ(n) by Theorem 4.3, we
can again apply Lemma 3.1 to this normal series and, given λ > 0, compute in polynomial
(in n) time an expanding generating set of size Õ(n) for the product group M0 such that the
corresponding Cayley graph is λ-spectral.

Now we are ready to describe the expanding generating set construction for Znp1 × Znp2 ×
. . .× Znpk .

4.1.1 The final construction

For 1 ≤ i ≤ k let mi be the least positive integer such that pmi
i > cn (where c is a suitably

large constant). Thus, pmi
i ≤ cn2 for each i. For each i, Fpmi

i
be the finite field of pmi

i elements
which can be deterministically constructed in polynomial time since it is polynomial sized.
Clearly, there is an onto homomorphism ψ from the group Zmp1 × Zmp2 × . . . × Zmpk to the
additive group of Fpm1

1
× Fpm2

2
× . . . × Fpmk

k
. Thus, if S is the expanding generator set of

size Õ(n) constructed above for Zmp1 × Zmp2 × . . . × Zmpk it follows that ψ(S) is an expanding

generator multiset of size Õ(n) for the additive group Fpm1
1
× Fpm2

2
× . . . × Fpmk

k
. Define

T ⊂ Fpm1
1
× Fpm2

2
× . . . × Fpmk

k
to be any (say, the lexicographically first) set of cn many

k-tuples such that for any two tuples (x1, x2, . . . , xk) and (x′1, x
′
2, . . . , x

′
k) in T are distinct in

all coordinates. I.e. xj 6= x′j for all j ∈ [k]. It is obvious that we can construct T by picking
the first cn such tuples in lexicographic order.

Now we will define the expanding generating set R. Let x = (x1, x2, . . . , xk) ∈ T and
y = (y1, y2, . . . , yk) ∈ ψ(S). Define vi = (yi, 〈xi, yi〉, 〈x2

i , yi〉, . . . , 〈xn−1
i , yi〉) where xji ∈ Fpmi

i

and 〈xji , yi〉 is the inner product modulo pi of the elements xji and yi seen as pi-tuples in
Zmi
pi
∼= Fpmi

i
. Hence, vi is an n-tuple and vi ∈ Znpi . Now define

R = {(v1, v2, . . . , vk) | x ∈ T, y ∈ ψ(S)}.

Notice that |R| = Õ(n2). We claim that R is an expanding generating set for the product
group Znp1 × Znp2 × . . . × Znpk . Let (χ1, χ2, . . . , χk) be a nontrivial character of the product
group Znp1 × Znp2 × . . . × Znpk , i.e. there is at least one j such that χj is nontrivial. Let ωi
be a primitive pthi root of unity. Recall that, since χi is a character there is a corresponding

vector βi ∈ Znpi , i.e. χi : Znpi → C and χi(u) = ω
〈βi,u〉
i for u ∈ Znpi and the inner product in

the exponent is a modulo pi inner product. The character χi is nontrivial if and only if βi is
a nonzero element of Znpi .

Since the characters (χ1, χ2, . . . , χk) of the abelian group Znp1 × Znp2 × . . . × Znpk are also
the eigenvectors for the group (for any generating set for it). In particular, for the set R
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as well the characters are the eigenvectors, and the nontrivial characters are orthogonal to
1. Thus, in order to prove that R is an expanding generating set for Znp1 × Znp2 × . . .× Znpk ,
it is enough to bound the following exponential sum estimate for the nontrivial characters
(χ1, χ2, . . . , χk) since that directly bounds the second largest eigenvalue in absolute value.

∣∣Ex∈T,y∈ψ(S)[χ1(v1)χ2(v2) . . . χk(v)]
∣∣ =

∣∣∣Ex∈T,y∈ψ(S)[ω
〈β1,v1〉
1 . . . ω

〈βk,vk〉
k ]

∣∣∣
=

∣∣∣Ex∈T,y∈ψ(S)[ω
〈p1(x1),y1〉
1 . . . ω

〈pk(xk),yk〉
k ]

∣∣∣
≤ Ex∈T

∣∣∣Ey∈ψ(S)[ω
〈p1(x1),y1〉
1 . . . ω

〈pk(xk),yk〉
k ]

∣∣∣ ,
where pi(x) =

∑n−1
`=0 βi,`x

` ∈ Fpmi [x] for βi = (βi,1, βi,2, . . . , βi,n). Since the character is
nontrivial suppose βj 6= 0, which means pj is a nonzero polynomial of degree at most n− 1.
Hence the probability that pj(xj) = 0, when x is picked from T is bounded by n

cn
.

On the other hand, when pj(xj) 6= 0 the tuple (p1(x1), . . . , pk(xk)) defines a nontriv-
ial character of the group Zmp1 × . . . × Zmpk . Since S is an expanding generating set for
the abelian group Zmp1 × . . . × Zmpk , the character defined by (p1(x1), . . . , pk(xk)) is also an
eigenvector for Zmp1 × . . . × Zmpk , in particular w.r.t. generating set S. Hence, we have that∣∣∣Ey∈S[ω

〈p1(x1),y1〉
1 . . . ω

〈pk(xk),yk〉
k ]

∣∣∣ ≤ ε, where the parameter ε can be fixed to an arbitrary small

constant by Theorem 4.3. Hence the above estimate is bounded by n
cn

+ ε = 1
c

+ ε which
can be made an arbitrarily small constant by choosing c suitably. To summarize, the above
discussion along with Lemmas 4.1 and 4.2 directly yields the following theorem.

Theorem 4.4. Let p1, p2, . . . , pk be all primes bounded by n and λ > 0 any constant. In
deterministic polynomial (in n) time we can construct an expanding generating set of size

Õ(n2) for the product group Znp1 × · · ·×Znpk that makes it λ spectral. Consequently, if H and
N are subgroups of Sn given by generating sets and H/N is abelian then in deterministic

polynomial time we can compute an expanding generator set of size Õ(n2) for H/N that
makes it λ spectral.

Finally, we state the main theorem which follows directly from the above theorem and
Lemma 3.2.

Theorem 4.5. Let G ≤ Sn be a solvable permutation group given by a generator set and
λ > 0 any constant. Then in deterministic polynomial time we can compute an expanding
generating set S of size Õ(n2) such that the Cayley graph Cay(G,S) is a λ-spectral expander.

In the above theorem, one can observe the explicit dependence of λ in |S| in the same

manner as we have described in Section 2.2. In particular, the size of S is Õ(n2)
(

1
λ

)O(1)
.

5 Comparison with known results

In [AMN98] Azar, Motwani, and Naor first considered the construction of ε-bias spaces for
abelian groups, specifically for the group Znd . For arbitrary d and any ε > 0 they construct
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ε-bias spaces of size O((d + n2/ε2)C), where C is the constant in Linnik’s Theorem. The
construction involves finding a suitable prime (or prime power) promised by Linnik’s theorem
which can take time upto O((d + n2)C). The current best known bound for C is ≤ 11/2
(and assuming ERH it is 2). Their construction yields a polynomial-size ε-bias space for
d = nO(1). In fact when d = O(log n)O(1), their construction is of size O(n2).

It is interesting to compare with our results in Section 4.1: Let d be any positive integer
with prime factorization pe11 p

e2
2 · · · p

ek
k such that each pi is O(log n) bit sized and each ei is

bounded by O(log n). Then note that we can efficiently find the prime factorization of d.
Now, it follows from the construction described in Section 4.1 that in polynomial time we can
compute an Õ(n2) size ε-bias space for Znd for any constant ε > 0. Notice that for constant ε
this is a significant improvement upon the construction in [AMN98] for such d, in particular
for d = nO(1). Also, we note that for d = O(log n)O(1) and constant ε, our construction yields

an Õ(n) size ε-bias space. The reason is that we get an O(log∗ n log log n) size expanding
generating set for Zp1p2...pk (where p1, p2, . . . , pk are the distinct prime factors of d) using
[AIK+90].
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Construction of a thin set with small Fourier coeffciients, Bull. London Math.
Soc. 22 (1990), 583–590.

[AMN98] Yossi Azar, Rajeev Motwani, and Joseph Naor, Approximating Probability Dis-
tributions Using Small Sample Spaces, Combinatorica 18 (1998), no. 2, 151–171.

[AMN11] Vikraman Arvind, Partha Mukhopadhyay, and Prajakta Nimbhorkar, Erdös-
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