
Jacobian hits circuits: Hitting-sets, lower bounds for depth-D

occur-k formulas & depth-3 transcendence degree-k circuits

Manindra Agrawal ∗ Chandan Saha † Ramprasad Saptharishi ‡ Nitin Saxena §¶

Abstract

We present a single, common tool to strictly subsume all known cases of polynomial time
blackbox polynomial identity testing (PIT) that have been hitherto solved using diverse tools
and techniques. In particular, we show that polynomial time hitting-set generators for identity
testing of the two seemingly different and well studied models - depth-3 circuits with bounded
top fanin, and constant-depth constant-read multilinear formulas - can be constructed using one
common algebraic-geometry theme: Jacobian captures algebraic independence. By exploiting
the Jacobian, we design the first efficient hitting-set generators for broad generalizations of the
above-mentioned models, namely:

• depth-3 (ΣΠΣ) circuits with constant transcendence degree of the polynomials computed
by the product gates (no bounded top fanin restriction), and

• constant-depth constant-occur formulas (no multilinear restriction).

Constant-occur of a variable, as we define it, is a much more general concept than constant-
read. Also, earlier work on the latter model assumed that the formula is multilinear. Thus, our
work goes further beyond the results obtained by Saxena & Seshadhri (STOC 2011), Saraf &
Volkovich (STOC 2011), Anderson et al. (CCC 2011), Beecken et al. (ICALP 2011) and Grenet
et al. (FSTTCS 2011), and brings them under one unifying technique.

In addition, using the same Jacobian based approach, we prove exponential lower bounds for
the immanant (which includes permanent and determinant) on the same depth-3 and depth-4
models for which we give efficient PIT algorithms. Our results reinforce the intimate connection
between identity testing and lower bounds by exhibiting a concrete mathematical tool - the
Jacobian - that is equally effective in solving both the problems on certain interesting and
previously well-investigated (but not well understood) models of computation.

1 Introduction
A polynomial in many variables, when written down verbosely as a sum of monomials, might have a
humongous expression. Arithmetic circuits, on the other hand, provide a succinct way to represent
multivariate polynomials. An arithmetic circuit, consisting of addition (+) and multiplication (×)
gates, takes several variables as input and outputs a polynomial in those variables. The study of
arithmetic circuits - as to which algorithmic questions on polynomials can be resolved efficiently
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in this model of computation, and which polynomials do not admit any polynomial-sized circuit
representation - form the foundation of algebraic complexity theory.

One particular algorithmic question, the problem of polynomial identity testing (PIT), occupies
a pivotal position in the theory of arithmetic circuit complexity. It is the problem of deciding if
the output of a given arithmetic circuit is an identically zero polynomial. Being such an elemen-
tary problem, identity testing has enjoyed its status of prime importance by appearing in several
fundamental results including primality testing [AKS04], the PCP theorem [ALM+98] and the
IP = PSPACE result [LFKN90, Sha90], among many others like graph matching [Lov79, MVV87],
polynomial interpolation [CDGK91], matrix completion [IKS10], polynomial solvability [KY08], fac-
torization [SV10] and learning of arithmetic circuits [KS06]. What is more intriguing is that there is
an intimate connection between identity testing and lower bounds [KI03, HS80, AvM10], especially
the problem of separating the complexity classes VP from VNP (which must necessarily be shown
before showing P 6= NP [Val79, SV85]). Proving VP 6= VNP amounts to showing that an explicit
class of polynomials, like the Permanent, cannot be represented by polynomial-sized arithmetic
circuits, which in turn would follow if identity testing can be derandomized using a certain kind
of pseudo-random generator [Agr05, KI03]. (Note that identity testing has a simple and efficient
randomized algorithm - pick a random point and evaluate the circuit at it [Sch80, Zip79, DL78].)

During the past decade, the quest for derandomization of PIT has yielded several results on
restricted models of circuits. But, fortunately, the search has been made more focussed by a
result [AV08, VSBR83] which states that a polynomial time blackbox derandomization of identity
testing for depth-4 circuits (via a certain pseudo-random generator) implies a quasi-polynomial time
derandomization of PIT for poly-degree1 circuits. By polynomial time blackbox test, we mean:

A polynomial time hitting-set generator, which is a boolean Turing machine that pro-
duces a set of points with small integer coordinates. These points are then fed (one by
one) into the circuit, which internally uses any arithmetic, to output the evaluations
of the polynomial at those points. (For small characteristic p, one works with a field
extension, where each coordinate of a point is a small vector of integers in {0, .., p−1}.)

With depth-4 as the final frontier, the results that have been achieved so far include polynomial
time hitting-set generators for the following models:

• depth-2 (ΣΠ) circuits (equivalently, the class of sparse polynomials) [KS01],

• depth-3 (ΣΠΣ) circuits with constant top fanin [SS11],

• depth-4 (ΣΠΣΠ) multilinear circuits with constant top fanin [SV11],

• constant-depth constant-read multilinear formulas [AvMV11] (& sparse-substituted variants),

• circuits generated by sparse polynomials with constant transcendence degree [BMS11a].

To our knowledge, these are the only instances for which polynomial time hitting-set generators are
known. The result on depth-3 bounded top fanin circuits is based upon the Chinese Remaindering
technique of [KS07] and the ideal-theoretic framework studied in [SS10]. Their work followed after
a sequence of developments in rank bound estimates [DS05, KS08, SS09, KS09, SS10], some using
incidence geometry - although, this result [SS11] in particular is not rank based. On the other hand,
the work on constant-depth multilinear formulas [AvMV11, SV11] is obtained by building upon
and extending the techniques of other earlier results [KMSV10, SV09, SV08] on ‘read-once’ models.
At a high level, this involved a study of the structure of multilinear formulas under the application
of partial derivatives with respect to a carefully chosen set of variables and invoking depth-3 rank

1Circuits computing polynomials with degree bounded by a polynomial function in the size of the circuit.
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bounds (cf. [SY10] for details). More recently, a third technique has emerged in [BMS11a] which
is based upon the concept of algebraic independence of polynomials. They showed that for any
given poly-degree circuit C and sparse polynomials f1, . . . , fm with constant transcendence degree,
a hitting-set generator for C(f1, . . . , fm) can be constructed in polynomial time.

Our contribution - With these diverse techniques floating around the study of hitting-set
generators, one wonders: Could there be one single tool that is sufficiently powerful to capture all
these models? Is there any unique feature underlying these seemingly different models that can lend
itself to the conception of such a unifying tool? The answer to both these questions, as we show in
this work, is yes. The key to this lies in studying the properties of the Jacobian, a mathematical
object lying at the very core of algebraic independence. And as for the ‘unique feature’, notice
that in the above four models some parameter of the circuit is bounded - be it bounded top fanin,
bounded read of variables, or bounded transcendence degree. (Bounded depth should not be seen
as an extra restriction on the circuit model because of [AV08]). At an intuitive level, it seems to us
that it is this ‘bounded parameter’-ness of the circuit that makes the Jacobian perform at its best.

In the process of finding a universal technique, we strengthen the earlier results significantly.
We construct hitting-set generators not only for depth-3 circuits with bounded top fanin, but
also for circuits of the form C(T1, . . . , Tm), where C is a poly-degree circuit and T1, . . . , Tm are
products, of linear polynomials, with bounded transcendence degree. In case of depth-3 circuits,
C(T1, . . . , Tm) is simply T1 + . . .+ Tm. Further, we remove the restriction of multilinearity totally
from the constant-depth constant-read model and construct the first hitting-set generator for this
class. The condition of constant-read is also replaced by the more general notion of constant-occur.

At this point, one is faced with a natural question: how effective is this new tool in proving lower
bounds? The intimate connection between efficient algorithms and lower bounds has recurrently
appeared in various contexts [Wil11, Rag08, Uma03, PSZ00, IW97]. For arithmetic circuits, this
link is provably tight [KI03, Agr05, AV08]: Derandomizing identity testing is equivalent to proving
circuit lower bounds. Which means, one might have to look for techniques that are powerful
enough to handle the dual worlds of algorithm design and lower bounds with equal effectiveness -
for e.g. the partial derivative technique has been used to prove lower bounds and identity testing
(albeit non-blackbox) on restricted models (survey [CKW11]); the τ -conjecture is another such
example [GKPS11]. In this work, we demonstrate a third tool - the Jacobian - using which we
prove exponential lower bounds for the immanant (which includes determinant and permanent) on
the same depth-3 and depth-4 models for which we give efficient PIT algorithms. In particular,
this includes depth-4 constant-occur formulas, depth-4 circuits with constant transcendence degree
of the underlying sparse polynomials (which significantly generalizes the lower bound result in
[GKPS11]), and depth-3 circuits with constant transcendence degree of the polynomials computed
by the product gates. To our knowledge, all these lower bounds are new and it is not known how
to prove them using earlier techniques. (A gist of this paper is provided in Figure 1, Section 6.)

1.1 A tale of two PITs (& three lower bounds)

A set of polynomials f = {f1, · · · , fm} ⊂ F[x1, · · · , xn] (in short, F[x]) is algebraically independent
over F if there is no nonzero polynomial H ∈ F[y1, · · · , ym] such that H(f1, · · · , fm) is identically
zero. A maximal subset of f that is algebraically independent is a transcendence basis of f and the
size of such a basis is the transcendence degree2 of f (denoted trdegF f). Our first theorem states:

2Since algebraic independence satisfies the matroid property cf. [Oxl92], transcendence degree is well-defined.
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Theorem 1.1. Let C be a poly-degree circuit of size s and each of T1, . . . , Tm be a product of d linear
polynomials in F[x1, . . . , xn] such that trdegF {T1, . . . , Tm} ≤ r. A hitting-set for C(T1, . . . , Tm) can
be constructed in time polynomial in n and (sd)r, assuming char(F) = 0 or > dr.

If C is a single + gate, we get a hitting-set generator for depth-3 circuits with constant transcendence
degree of the polynomials computed by the product gates (there is no restriction on top fanin).

Our second result uses the following generalization of read-k formulas (where every variable
appears in at most k leaf nodes of the formula) to occur-k formulas. Two reasons behind this
generalization are: One, to accommodate the power of exponentiation - if we take the e-th power
of a read-k formula using a product gate, the ‘read’ of the resulting formula goes up to ek - we
would like to avoid this superfluous blow up in read. Two, a read-k formula has size O(kn), which
severely hinders its power of computation - for instance, determinant and permanent cannot even
be expressed in this model when k is a constant [Kal85]. This calls for the following definition.

Definition 1. An occur-k formula is a rooted tree with internal gates labelled by + and ×f (power-
product gate). A ×f gate, on inputs g1, . . . , gm with incoming edges labelled e1, . . . , em ∈ N,
computes ge11 · · · gemm . At the leaves of this tree are depth-2 formulas computing sparse polynomials
(leaf nodes), where every variable occurs in at most k of these sparse polynomials.

Size of a ×f gate is defined as the integer (e1+ · · ·+ em) associated with its incoming edges, while
size of a + gate is counted as one. Size of a leaf node is the size of the corresponding depth-2
formula. With these conventions, size of an occur-k formula is defined to be the total size of all
its gates (and leaf nodes) plus the number of edges. Depth is defined to be the number of layers
of + and ×f gates plus 2 (the ‘plus 2’ accounts for the depth-2 formulas at the leaves). Thus,
occur-k is more relaxed than the traditional read-k as it packs the “power of powering” (to borrow
from [GKPS11]), and the leaves are sparse polynomials (at most kn many) whose dependence on
its variables is arbitrary. E.g. (x31x2 + x21x

2
3 + x1x4)

e is not read-1 but is trivially depth-3 occur-1.

Theorem 1.2. A hitting-set for a depth-D occur-k formula of size s can be constructed in time
polynomial in sR, where R = (2k)2D·2D (assuming char(F) = 0 or > sR).

A tighter analysis for depth-4 occur-k formulas yields a better time complexity. Note that
a depth-4 occur-k formula allows unbounded top fanin. Also, it can be easily seen to subsume
ΣΠΣΠ(k) multilinear circuits studied by [SV11, KMSV10].

Theorem 1.3. A hitting-set for a depth-4 occur-k formula of size s can be constructed in time
polynomial in sk

2
(assuming char(F) = 0 or > s2k).

For constant-depth, the above theorems not only remove the restriction of multilinearity (and
relax read-k to occur-k), but further improve upon the time complexity of [AvMV11] and [SV11].

The hitting-set generator of [AvMV11] works in time nkO(k2)+O(kD), which is super-exponential

when k = Ω(sε/2D·2D) for any positive ε < 1 and a constant D, whereas the generator in Theorem
1.2 runs in sub-exponential time for the same choice of parameters. The running time of [SV11] is
sO(k3), which is slightly worse than that of Theorem 1.3.

Since any polynomial has an exponential-sized depth-2, occur-1 formula (just the sparse repre-
sentation), proving lower bounds on this model is an interesting proposition in its own right.

Definition 2. [LR34] For any character χ : Sn → C
×, the immanant of a matrix M = (xij)n×n

with respect to χ is defined as Immχ(M) =
∑

σ∈Sn
χ(σ)

∏n
i=1 xiσ(i).

Determinant & permanent are special cases of the immanant with χ as the alternating sign character
& the identity character, respectively. Denote Immχ(M) by Immn for an arbitrarily fixed χ.
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Theorem 1.4. Any depth-4 occur-k formula that computes Immn must have size s = 2Ω(n/k
2) over

any field of characteristic zero (even counting each ×f gate as size one).

Thus, if each variable occurs in at most n1/2−ε (0 < ε < 1/2) many underlying sparse polynomials,
it takes an exponential sized depth-4 circuit to compute Immn. Our next result is an exponential
lower bound on the model for which hitting-set was developed in [BMS11a] (but no lower bound
was shown). It is also an improvement over the result obtained in [GKPS11] which holds only for
more restricted depth-4 circuits over reals.

Theorem 1.5. Let C be any circuit. Let f1, . . . , fm be sparse polynomials (of any degree) with
sparsity bounded by s and their trdeg bounded by r. If C(f1, . . . , fm) computes Immn then s =
2Ω(n/r) over any field of characteristic zero.

Which means, any circuit involving fewer than n1−ε ΣΠ-polynomials at the last levels, must have
exponential size to compute Immn. (The models of Theorem 1.4 & 1.5 are incomparable). The
next result is on the model for which hitting-set is given by Theorem 1.1.

Theorem 1.6. Let C be any circuit and T1, . . . , Tm be products of linear polynomials. If C(T1, . . . ,
Tm) computes Immn then trdegF {T1, . . . , Tm} = Ω(n) over any field of characteristic zero.

Which means, any circuit involving o(n) ΠΣ-polynomials at the last levels cannot compute Immn.

1.2 Our ideas

The exact reasons why our techniques work, where older ones failed, are extremely technical.
However, we now give the motivating, but imprecise, ideas. To a set of products of sparse poly-
nomials {T1, . . . , Tm} we associate a polynomial – the Jacobian J(T1, . . . , Tr). It captures the
algebraic independence of T1, . . . , Tr (assuming this to be a transcendence basis of the Ti’s). If we
could find an r-variate linear map ϕ that keeps ϕ ◦ J(T1, . . . , Tr) nonzero, then ϕ(T1), . . . , ϕ(Tr)
are again algebraically independent and it can be shown that for any C: C(T1, . . . , Tm) = 0 iff
C(ϕ(T1), . . . , ϕ(Tm)) = 0. Since Ti’s are not sparse, the Jacobian is usually a difficult polynomial
to work with, and so is finding ϕ. However, for the special models in this paper we are able to
design ϕ - mainly because Jacobian (being defined via partial derivatives) has a nice ‘linearizing
effect’, on the circuit product gates, that factors itself. The ϕ ultimately provides a hitting-set for
C(T1, . . . , Tm), as we reduce to a situation where r is constant.

The initial idea for lower bounds is similar. Suppose Immn = C(T1, . . . , Tm). Then, by algebraic
dependence, J(Immn, T1, . . . , Tr) = 0. Our proofs then exploit the nature of this identity for the
special models. This part requires proving several combinatorial properties of the immanant.

2 Preliminaries: Jacobian and faithful homomorphisms
Our contribution, in this section, is an elementary proof of Theorem 2.1, which was originally proved
in [BMS11a] using Krull’s Hauptidealsatz. Here, we state the main properties of the Jacobian and
faithful homomorphisms without proofs - for details, refer to [BMS11b] (or Appendix A.1).

Definition 3. The Jacobian of polynomials f = {f1, · · · , fm} in F[x1, · · · , xn] is the matrix Jx(f) =
(∂xjfi)m×n, where ∂xjfi = ∂fi/∂xj. Let S ⊆ x = {x1, . . . , xn} and |S| = m. Then JS(f) denote
the minor of Jx(f) formed by the columns corresponding to the variables in S.

Fact 1 (Jacobian criterion). Let f ⊂ F[x] be a finite set of polynomials of degree at most d, and
trdegF f ≤ r. If char(F) = 0 or char(F) > dr, then trdegF f = rankF(x)Jx(f).
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Fact 2 (Chain rule). For any finite set of polynomials f ⊂ F[x] and a homomorphism Φ : F[x] →
F[y], we have Jy(Φ(f)) = Φ (Jx(f)) · Jy(Φ(x)).

Definition 4. A homomorphism Φ : F[x] → F[y] (y is another set of variables) is said to be
faithful to a finite set of polynomials f ⊂ F[x] if trdegF f = trdegFΦ(f).

Theorem 2.1 (Faithful is useful). Let f = {f1, · · · , fm} ⊂ F[x] and Φ be a homomorphism faithful
to f . For any polynomial C ∈ F[y1, · · · , ym], C(f) = 0 ⇔ C(Φ(f)) = 0.

Lemma 2.2 (Vandermonde is faithful). Let f ⊂ F[x] be a finite set of polynomials of degree at
most d, trdegF f ≤ r, and char(F) = 0 or > dr. Let Ψ : F[x] → F[z] be a homomorphism such that
rankF(x)Jx(f) = rankF(z)Ψ(Jx(f)).

Then, the map Φ : F[x] → F[z, t, y1, . . . , yr] that maps, for all i, xi 7→
(

∑r
j=1 yjt

ij
)

+ Ψ(xi) is

a homomorphism faithful to f .

The proof of the above lemma is based upon Facts 1, 2 and an application of ‘rank preserving’
linear maps [GR05]. See Appendix A.1.

3 Hitting-set for constant transcendence degree depth-3 circuits
Let C be any circuit and D be the circuit C(T1, · · · , Tm), where each Ti is of the form

∏d
j=1 ℓij ,

every ℓij is a linear polynomial in F[x1, . . . , xn]. Denote by T the set {T1, . . . , Tm} and by L(Ti) the
multiset of linear polynomials that constitute Ti. Suppose trdegFT = k ≤ r and Tk = {T1, . . . , Tk}
be a transcendence basis of T. Since Jx(Tk) has full rank (char(F) = 0 or char(F) > dr), without
loss of generality assume that the columns corresponding to xk = {x1, · · · , xk} form a nonzero k×k
minor of Jx(Tk). By Lemma 2.2, if we construct a Ψ : F[x] → F[z] that keeps Jxk

(Tk) nonzero
then Ψ can easily be extended to a homomorphism Φ : F[x] → F[z, t, y1, . . . , yr] that is faithful to
T. And hence, by Theorem 2.1, it would follow that Φ(D) = 0 if and only if D = 0.

If Ti =
∏d

j=1 ℓij then ∂xTi = Ti ·
(

∑d
j=1 ∂xℓij/ℓij

)

. By expanding, using this additive structure

of ∂xTi and the linearity of determinant wrt rows, the determinant Jxk
(Tk) takes the following

form,

Jxk
(Tk) =

∑

ℓ1∈L(T1),...,ℓk∈L(Tk)

T1 · · ·Tk

ℓ1 · · · ℓk
· Jxk

(ℓ1, · · · , ℓk). (1)

Call a set of linear polynomials independent if the correponding homogenous linear parts (i.e. the
constant-free parts) are F-linearly independent. The term Jxk

(ℓ1, · · · , ℓk) ensures that the above
sum is only over those ℓ1, · · · , ℓk that are independent linear polynomials (otherwise the Jacobian
vanishes). The sum has the form of a depth-3 circuit, call it H0, and we intend to construct a
low-variate Ψ such that Ψ(H0) 6= 0. We show that this is achieved by a Ψ that preserves the
independence of a ‘small’ set of linear polynomials - which we call a certificate of H0.

Certificate of H0: We can assume that the terms Jxk
(ℓ1, · · · , ℓk) in equation (1) are nonzero

field constants. Let L(H0) be the set of all linear polynomials occurring in the denominator terms
“ℓ1 · · · ℓk” of all the summands in sum (1). By adjusting the field constants at the numerators,
we can assume that no two linear polynomials in L(H0) are constant multiple of each other. This
means, the depth-3 circuit H0 has the form H0 = T ·

∑

L αL/ℓ1 · · · ℓk, where T :=
∏k

i=1 Tk, αL is a
nonzero field constant and the sum runs over some sets L = {ℓ1, · · · , ℓk} of k independent linear
polynomials in L(H0). Define, content of a depth-3 circuit G =

∑

i Pi, where Pi is a product of
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linear polynomials, as cont(G) := gcdi{Pi}, and let the simple part sim(G) := G/cont(G). Hence
cont(H0) = gcdL{T/ℓ1 · · · ℓk} and

sim(H0) = F0 ·
∑

L

αL

ℓ1 · · · ℓk
, where F0 =

T

cont(H0)
, (2)

Note that, since ℓ ∈ L(H0) iff ℓ||F0, F0 is simply the product of the linear polynomials in L(H0)
and so deg(F0) = |L(H0)|. For any ℓ ∈ L(H0), the terms in sim(H0) that survive modulo ℓ are
those with ℓ in the denominator “ℓ1 · · · ℓk” of the above expression. Hence, H1 := sim(H0) mod ℓ1 =
F0/ℓ1 ·

∑

ℓ2,··· ,ℓk
αL/ℓ2 · · · ℓk. We can treat H1 as a depth-3 circuit in one less variable: Suppose

that ℓ1 = c1x1 +
∑n

i=2 cixi where ci’s ∈ F and c1 6= 0, then we can replace x1 by −
∑n

i=2 cixi/c1
in sim(H0), particularly in F0/ℓ1 (of course, after dividing F0 by ℓ1) as well as in each of ℓ2, . . . , ℓk
in the denominators, so that H1 becomes a depth-3 circuit in F[x2, . . . , xn]. Therefore, it makes
perfect sense to talk about cont(H1) and sim(H1). Observe that ℓ2, · · · , ℓk remain independent
linear polynomials modulo ℓ1, and so H1 is a depth-3 circuit of the ‘same nature’ as H0 but with
one less linear polynomials in the denominators. Also, the linear polynomials in L(H1) is a subset
of the linear polynomials in L(H0) modulo ℓ1. Extending the above argument, it is possible to
define a sequence of circuits: Hi := sim(Hi−1) mod ℓ̃i, (1 ≤ i ≤ k) where ℓ̃i ∈ L(Hi−1). Further,
L(Hi) is a subset of L(Hi−1) modulo ℓ̃i, which implies that essentially there are independent
linear polynomials, say ℓ1, . . . , ℓk, in L(H0) such that ℓ̃i = ℓi mod (ℓ1, . . . , ℓi−1) and therefore Hi =
sim(Hi−1) mod (ℓ1, . . . , ℓi).

Lemma 3.1 (Certifying path). There exists independent linear polynomials {ℓ1, · · · , ℓk} ⊆ L(H0)
such that Hi 6= 0 mod (ℓ1, . . . , ℓi), ∀i ∈ [k], and Hk is a nonzero product of linear polynomials in
L(H0) modulo (ℓ1, · · · , ℓk).
Proof: Induction on k, see Appendix A.2.

A set {ℓ1, . . . , ℓk}, satisfying Lemma 3.1, is called a certifying path of H0. Fix a certifying
path {ℓ1, · · · , ℓk}. Let Ψ : F[x] → F[z1, . . . , zk+1] be such that Ψ(ℓ1), . . . ,Ψ(ℓk) are indepen-
dent linear polynomials in F[z] and for every ℓ ∈ ∪k

i=1L(Ti), ℓ 6= 0 mod (ℓ1, . . . , ℓk) iff Ψ(ℓ) 6=
0 mod (Ψ(ℓ1), . . . ,Ψ(ℓk)). We call such a Ψ a rank-(k+1) preserving map for H0. It can be shown
that one of the maps Ψb : xi 7→

∑k+1
j=1 zjb

ij , where b runs over dkn(k + 1)2 distinct elements of F,
is a rank-(k + 1) preserving map for H0. (It is a simple application of [GR05]. See Corollary A.2).

Theorem 3.2 (Certificate). If Ψ : F[x] → F[z1, ..., zk+1] is a rank-(k + 1) preserving map for H0,
then Ψ(H0) 6= 0.
Proof: Reverse induction on k, see Appendix A.2.

Proof of Theorem 1.1. As r ≥ k, we can assume that the rank-(k + 1) preserving map Ψ is
in fact a map from F[x] → F[z1, . . . , zr+1]. Therefore, by Lemma 2.2, Φ is a map from F[x] →
F[y1, . . . yr, t, z1, . . . , zr+1] such that: D = 0 iff Φ(D) = 0. Since C is a poly-degree circuit of size s,
Φ(C(T1, . . . , Tm)) is a polynomial of degree at most dsO(1) resp. nrdsO(1) in the variables y, z resp.
t. Using [Sch80, Zip79, DL78] lemma, we can construct a hitting-set for Φ(D) in time polynomial
in n(sd)r. Since construction of Ψ takes time poly(ndr), the total time taken is poly(n, (sd)r).

4 Hitting-set for constant-depth constant-occur formulas

Bounding the top fanin - Let C belong to the class C of depth-D occur-k formulas of size
s. Observe that if C(x1, . . . , xn) is non-constant and nonzero, then there is an i such that C̃ :=
C(x1, · · · , xi−1, xi + 1, xi+1, · · · , xn) − C(x1, · · · , xn) 6= 0, assuming char(F) > sD (i.e. the bound
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on the degree of C). If C has a + gate on top then C(x) =
∑m

i=1 Ti, where Ti’s are computed by
×f gates at the next level. Since xi occurs in at most k of the Ti’s, C̃ has top fanin at most 2k. If
C has a ×f gate on top then C̃ has a + gate on top with fanin 2 and depth(C̃) = D+1. Therefore,
C̃ belongs to the class C̃ of depth-(D+1) occur-2k formulas of size at most (s2+s), and a + gate on
top with fanin bounded by 2k. Suppose H̃ is a hitting-set for the class C̃. Form a new set H ⊃ H̃ by
including points (α1 + 1, α2, . . . , αn), (α1, α2 + 1, . . . , αn), . . . , (α1, . . . , αn−1, αn + 1) in H for every
(α1, α2, . . . , αn) ∈ H̃. Observe that H is a hitting-set for C and size(H) = n · size(H̃). Therefore, it
is sufficient if we construct H̃. By reusing symbols, assume that C is a depth-D occur-k formula of
size s with a + gate on top having top fanin at most k.

Let C(x) =
∑k

i=1 Ti. The goal is to construct a Φ that is faithful to T = {T1, . . . , Tk}. Let
Tr = {T1, . . . , Tr} be a transcendence basis of T. Since Jx(Tr) has full rank (char(F) = 0 or
> sDr), assume that the columns corresponding to xr = {x1, . . . , xr} form a nonzero minor of
Jx(Tr). By Lemma 2.2, it suffices to construct a Ψ that keeps Jxr(Tr) 6= 0.

Proof idea - Identify a gate with the polynomial it computes, and count level of a gate from the
top - the gates Ti’s are at level 2. Suppose each Ti is a ×f gate and Ti =

∏d
ℓ=1 P

ei,ℓ
i,ℓ , where Pi,ℓ’s

are gates at level 3. Since Ti is also an occur-k formula, x1, . . . , xr appear in at most kr of the
Pi,ℓ’s, say Pi,1, . . . Pi,kr. Hence, ∂jTi = (

∏d
ℓ=kr+1 P

ei,ℓ
i,ℓ ) · (∂j

∏kr
ℓ=1 P

ei,ℓ
i,ℓ ) for every 1 ≤ i, j ≤ r and

therefore, Jxr(Tr) = (
∏r

i=1

∏d
ℓ=kr+1 P

ei,ℓ
i,ℓ ) · det(∂j

∏kr
ℓ=1 P

ei,ℓ
i,ℓ ). Now notice that det(∂j

∏kr
ℓ=1 P

ei,ℓ
i,ℓ )

is a polynomial in Pi,ℓ and ∂jPi,ℓ, for 1 ≤ i, j ≤ r and 1 ≤ ℓ ≤ kr. (Note the irrelevance of the
exponents ei,ℓ’s.) So, if Ψ is faithful to the set P := {Pi,ℓ, ∂jPi,ℓ : 1 ≤ i, j ≤ r, 1 ≤ ℓ ≤ kr} and
the singleton sets {Pi,ℓ} for 1 ≤ i ≤ r, kr + 1 ≤ ℓ ≤ d, then Ψ(Jxr(Tr)) 6= 0. Observe that the
polynomials in P and the singleton sets are (zeroth and first order) derivatives of the gates at
level 3, and further these sets involve (the derivatives of) disjoint groups of level-3 gates. This
disjointness feature ensures that the number of such sets is at most s. Thus, we have reduced the
problem of constructing a faithful map Φ for T (gates at level 2) to the problem of constructing
a map Ψ that is faithful to at most s many sets each containing derivatives of gates at the third
level. Now, the idea is to carry forward this argument recursively to deeper levels: In the next
level of the recursion we reduce the problem to constructing a map that is faithful to at most s sets
containing (zeroth, first and second order) derivatives of disjoint groups of gates at level 4, and so
on. Eventually, the recursion reaches the level of the sparse polynomials (the leaf nodes) where a
faithful map can be constructed using ideas from [KS01].

Let us formalize this proof idea. For any multiset of variables S, let ∆Sf denote the partial
derivative of f with respect to the variables in S (including repetitions, as S is a multiset). Let
var(S) denote the set of distinct variables in S.

Lemma 4.1 (Gcd trick). Let G be any gate in C and S1, · · · , Sw be multisets of variables. Then
there exists another occur-k formula G′ for which, the vector of polynomials (∆S1G, · · · ,∆SwG) =
VG · (∆S1G

′, · · · ,∆SwG
′) such that

1. If G is a + gate then G′ is also a + gate whose children consist of at most k · |∪w
i=1var(Si)|

of the children of G, and VG = 1.

2. If G is a ×f gate, then G′ is also a ×f gate whose children consist of at most k · |∪w
i=1var(Si)|

of the children of G, and VG = G/G′.

Further, the gates constituting G′ and VG are disjoint.
Proof: Use properties of derivation and occur-k, see Appendix A.3.
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We say that a map is faithful to a collection of sets if it is faithful to every set in the collection.
Going by the ‘proof idea’, suppose at the ℓ-th level of the recursion we want to construct a Ψℓ

that is faithful to a collection of (at most) s sets of polynomials, each set containing at most rℓ
partial derivatives (of order up to cℓ) of the gates at level ℓ. Moreover, the sets involve derivatives
of disjoint groups of gates. To begin with: ℓ = 2 and we wish to construct a Ψ2 that is faithful to
just one set T, so r2 ≤ k and c2 = 0. The next lemma captures the evolution of the recursion.

Lemma 4.2 (Evolution via factoring). Let U be a set of rℓ derivatives (of orders up to cℓ) of gates
GU at level ℓ, and U ′ be a transcendence basis of U . Any |U ′| × |U ′| minor of Jx(U

′) is of the form
∏

i V
ei
i , where Vi’s are polynomials in at most rℓ+1 := (cℓ + 1) · 2cℓ+1k · rℓ

2 many derivatives (of
order up to cℓ+1 := cℓ + 1) of disjoint groups of children of GU .
Proof: Apply the gcd trick for each G ∈ GU , see Appendix A.3.

Let Cℓ denote the collection of sets for which we want to construct a faithful map Ψℓ at the ℓ-th level
of the recursion. The collection Cℓ+1 is formed from Cℓ using the above lemma: Vi is a polynomial
in a set of derivatives of gates at the (ℓ+ 1)-th level - denote this set of derivatives by Elem(Vi) -
then Cℓ+1 consists of the sets Elem(Vi) as U varies over all the sets in the collection Cℓ. It follows
from the lemma that the groups of gates whose derivatives form the different Elem(Vi)’s are disjoint
and therefore |Cℓ+1| ≤ s. Using Lemma 2.2 & 4.2, we can lift a map Ψℓ+1 to construct Ψℓ.

Corollary 4.3. If Ψℓ+1 is faithful to Cℓ+1 then Ψℓ : xi 7→
(

∑rℓ
j=1 yj,ℓ · (tℓ)

ij
)

+Ψℓ+1(xi) is faithful

to Cℓ, where {y1,ℓ, · · · , yrℓ,ℓ, tℓ} is a fresh set of variables.

Proof of Theorem 1.2. Unfolding the recursion, we eventually reach the level of the sparse polyno-
mials at depth D−2 and are required to construct a map ΨD−2 that is faithful to a collection CD−2

of at most s sets of derivatives of sparse polynomials, each set containing at most rD−2 elements.
Using the relation between rℓ+1 and rℓ from Lemma 4.2, it is easy to bound rD−2 by R = (2k)2D·2D .
Let U ∈ CD−2 with transcendence basis U ′. Any |U ′| × |U ′| minor of Jx(U

′) is a sparse polynomial
with sparsity bounded by sR and degree bounded by sR. Using [KS01], the nonzeroness of this
determinant is maintained by one of the maps Φp : xi 7→ u(sR+1)i mod p as p varies from 1 to a fixed
poly(sR). Since |CD−2| ≤ s, one of the maps Φp, 1 ≤ p ≤ s · poly(sR), preserves the rank of the

Jacobian of all U in CD−2 - fix such a Φp. Finally, ΨD−2 : xi 7→
∑R

j=1 yj,D−2t
ij
D−2+Φp(xi) is faithful

to CD−2. Now lift this map ΨD−2 to Ψ2 that is faithful to T using Corollary 4.3. The map Ψ2

reduces the number of variables to O(R) and hence an application of [Sch80, Zip79, DL78] lemma
leads to a hitting-set generator with running time poly(sR). For the Jacobian criterion to work we
need char(F) = 0 or > sR.

4.1 Restriction to the case of depth-4

Proof of Theorem 1.3. Let C =
∑k

i=1 Ti be a depth-4 occur-k formula, where Ti =
∏d

j=1 P
eij
ij ,

Pij ’s are sparse polynomials. The discussion at the beginning of this section justifies the assumption
that top fanin is k. Once again, assuming Tr to be a transcendence basis of T, we need to design
a Ψ such that Ψ(Jxr(Tr)) 6= 0. Let us count the number of Pij ’s that depend on the variables
xr, the remaining P

eij
ij ’s can be taken out common from every row of Jxr(Tr) while computing its

determinant - this is the first ‘taking common’ step. Let ciℓ be the number of Pij ’s present in Ti that
depend on xℓ. The total number of sparse polynomials depending on xr is therefore

∑

1≤i,ℓ≤r ciℓ.

From the condition of occur-k,
∑

i ciℓ ≤ k and hence
∑

i,ℓ ciℓ ≤ rk ≤ k2. Let ci :=
∑

j cij , be

the number of xr-dependent Pij ’s present in Ti. For an xr-dependent Pij , we can also take P
eij−1
ij
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common from the i-th row of Jxr(Tr) - call this the second ‘taking common’ step. The sparsity
of every entry of the i-th row of the residual matrix M - after the two ‘taking common’ steps - is
bounded by cis

ci , where s is the size of C. Thus, det(M) has sparsity at most r!·
∏r

i=1 cis
ci = sO(k2),

which implies that Jxr(Tr) is a product of at most s + 1 powers of sparse polynomials, each of
whose sparsity is bounded by sO(k2) and degree bounded by sk. As argued before, use [KS01] along
with Lemma 2.2 to construct a hitting-set for C in time sO(k2) (assuming char(F) = 0 or > s2k).

5 Lower bounds for the immanant
For convenience, we prove the lower bounds for Detn - determinant of an n×n matrix M = (xij) -
assuming zero characteristic. All our arguments apply to Immχ(M) for any character χ (Appendix
A.5). The following two lemmas are at the heart of our approach to proving lower bounds. Let
x := {xij : 1 ≤ i, j ≤ n} and T := {T1, . . . , Tm}, where Ti’s are polynomials in F[x]. (See Appendix
A.4 for the proofs.)

Lemma 5.1. Suppose Detn = C(T1, . . . , Tm), where C is any circuit and let Tr = {T1, . . . , Tr} be
a transcendence basis of T with r < n. Then, there exist a set of r + 1 variables xr+1 ⊂ x and an
equation

∑r+1
i=1 cifi ·Mi = 0 such that Mi’s are distinct first order principal minors of M , fi’s are

distinct r × r minors of Jxr+1(Tr), not all fi’s are zero, and ci ∈ F
∗.

Lemma 5.2. If M1, · · · ,Mt are distinct first order principal minors of M and
∑t

i=1 fi · Mi = 0
(not all fi’s are zero) then the total sparsity of the fi’s is at least 2n/2−t.

5.1 Lower bound on depth-4 occur-k formulas

Proof of Theorem 1.4. Let C be a depth-4 occur-k formula of size s that computes Detn. Since
Detn is irreducible we can assume a top + gate in C. Then C̃ := C(x11 +1, x12, . . . , xnn)−C(x) is
a depth-4 occur-2k formula of size at most 2s2 and top fanin bounded by 2k (similar argument as
at the beginning of Section 4). Moreover, C̃ computes the minor of M with respect to x11 which
is essentially Detn−1. By reusing symbols, assume that C is a depth-4 occur-k formula with top
fanin bounded by k, and C computes Detn.

Let C =
∑k

i=1 Ti = Detn, where Ti =
∏d

j=1 P
eij
ij , Pij ’s are sparse polynomials. Let Tr be a

transcendence basis of T = {T1, . . . , Tk}. By Lemma 5.1, we have an equation
∑r+1

i=1 cifi ·Mi = 0
such that fi’s are distinct r×r minors of Jxr+1(Tr) for some set of r+1 variables xr+1. Arguing in
the same way as in the proof of Theorem 1.3 (in Section 4.1), we can throw away certain common
terms from the minors fi’s and get another equation

∑r+1
i=1 giMi = 0, where the sparsity of each gi

is sO(k2). If we apply Lemma 5.2 on this equation, we get our desired result.

5.2 Lower bound on circuits generated by ΣΠ polynomials

Proof of Theorem 1.5. In Lemma 5.1, take the Ti’s to be sparse polynomials with sparsity bounded
by s. Then, in the equation

∑r+1
i=1 cifi ·Mi = 0, each fi has sparsity sO(r). Finally, apply Lemma 5.2

to obtain the desired lower bound.

5.3 Lower bound on circuits generated by ΠΣ polynomials

Proof of Theorem 1.6. Let T = {T1, · · · , Tm} be products of linear polynomials such that
C(T1, · · · , Tm) = Detn with Tk = {T1, · · · , Tk} being a transcendence basis. By Lemma 5.1,
we get

∑k+1
i=1 cifiMi = 0 where the fi’s are k × k minors of Jxk+1

(Tk) and wlog f1 6= 0. Like in
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Section 3, we can rewrite this equation in the form H0 := T ·
∑

L αL(Mk+1)/ℓ1 · · · ℓk = 0 where

αL(Mk+1) :=
∑k+1

i=1 αL,iMi is an F-linear combination of Mk+1 := {M1, · · · ,Mk+1}. Observe that
H0 is a sum of products of linear polynomials, with ‘coefficients’ being F-linear combinations of
Mk+1. And since f1 6= 0, the ‘coefficient’ of M1 in H0 is a nonzero depth-3 circuit.

The idea is to apply a similar treatment as in Section 3 to evolve H0. The invariant that
shall be maintained is that the coefficient of M1 (modulo some linear polynomials), which is a
depth-3 circuit, would stay nonzero. This would finally yield a non-trivial linear combination
αL(Mk+1) = 0 mod ℓk whence we can apply the following lemma. (See Appendix A.4.)

Lemma 5.3. If M1, · · · ,Mt are distinct first order principal minors of M and
∑t

i=1 αiMi =
0 mod ℓk (not all αi = 0) for independent linear polynomials ℓk, then t+ k ≥ n.

Formally, define the content of a circuitH = T
∑

L αL(Mk+1)/ℓ1 · · · ℓk as cont(H) := gcdL

{

T
ℓ1···ℓk

}

,

and define sim(H) := H/cont(H). Let sim(H0) have the form F0
∑

L αL(Mk+1)/ℓ1 · · · ℓk. The coef-
ficient ofM1 in the above expression is a nonzero depth-3 circuit, whose degree is |L(H0)|−k. There-
fore by Chinese remaindering, ∃ℓ1 ∈ L(H0) such that this coefficient is nonzero modulo ℓ1. Hence,
we can define H1 := sim(H0) mod ℓ1 which has the form H1 = F0/ℓ1 ·

∑

L∋ℓ1
αL(Mk+1)/ℓ2 · · · ℓk =

0 mod ℓ1. And like in Section 3, the above equation can be rewritten by replacing a variable occuring
in ℓ1 by a suitable linear combination of the rest. Thus, we may write H1 = F1

∑

L αL(Mk+1 mod
ℓ1)/ℓ2 · · · ℓk = 0, and maintaining the invariant that the coefficient of M1 mod ℓ1 is nonzero. Re-
peating this argument, we eventually obtain Hk := Fk ·αL(Mk+1 mod ℓk) = 0 while the coefficient
of M1 mod ℓk is nonzero. This implies that αL(Mk+1) = 0 mod ℓk is a non-trivial equation. And
Lemma 5.3 asserts that this is not possible unless 2k + 1 ≥ n or k ≥ (n− 1)/2.

6 Conclusion
We would like to note that the proof technique used to show the lower bound for depth-4 occur-k
formulas can be extended to prove an exponential lower bound for constant-depth constant-occur
formulas if the following conjecture is true (see Appendix B for details).

‘Determinant of immanants’ conjecture: Let M = (xij) be an n×n matrix, and let xi denote
the i-th diagonal variable xii. Let M

′ be a projection of M by setting c = o(n) of the variables in
M to constants. Suppose the elements xk := {x1, · · · , xk}, where k is a constant independent of
n, are partitioned into non-empty sets St := {S1, · · · , St}. Consider M(St), the set of all tth order
principal minors of M ′, each by choosing a t-tuple B ∈ S1 × · · · × St as pivots. Over all possible
choices of B, we get m := |S1| · · · |St| many minors. Then for any set of diagonal variables ym

disjoint from xk, Jym (M(St)) 6= 0.

In (Jacobian) spirit, the conjecture states that the tth-order principal minors NB1 , . . . , NBm are
algebraically independent, when n is sufficiently large (say, n > c+ k +m).

Spurred by the success of Jacobian in solving the hitting-set problem for constant-trdeg depth-3
circuits and constant-occur constant-depth formulas, one is naturally inspired to investigate the
strength of this approach against other ‘constant parameter’ models - the foremost of which is
constant top fanin depth-4 circuits (PIT even for fanin 2?).

Another problem, which is closely related to hitting-sets and lower bounds, is reconstruction of
arithmetic circuits [SY10, Chapter 5]. There is a quasi-polynomial time reconstruction algorithm
[KS09], for a polynomial computed by a depth-3 constant top fanin circuit, that outputs a depth-
3 circuit with quasi-polynomial top fanin. Could Jacobian be used as an effective tool to solve
reconstruction problems? If yes, then it would further reinforce the versatility of this tool.
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Figure 1: Comparison with the earlier efficient hitting-sets
Previous best This paper

Model Running time1 Extended Model2 Running time1 Immn lower bound

ΣΠΣ(k) circuits: sk C(T1, · · · , Tm)
?
= 0

sk trdeg {Ti} = Ω(n)
T1 + · · ·+ Tk

?
= 0 [SS11] poly-degree C & trdeg {Ti} ≤ k

ΣΠΣΠ(k) sk
3

ΣΠΣΠ
sk

2

s = 2Ω(n/k2)
multilinear circuits [SV11] occur-k formulas

depth-D, read-k sR depth-D, occur-k sR s = 2Ω(n)

multilinear formulas where R = kk
2

+ kD formulas where R = k2
D

for constant k,D

[AvMV11] assuming Conjecture B.1

C(f1, · · · , fm)
?
= 0 sk

poly-degree C, ΣΠ circuits fi’s [BMS11a] – – s = 2Ω(n/k)

& trdeg {fi} ≤ k
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A Missing Proofs

A.1 Preliminaries: Jacobian and faithful homomorphisms

Theorem 2.1 (restated). Let f = {f1, · · · , fm} ⊂ F[x] and Φ be a homomorphism faithful to f .
For any polynomial C ∈ F[y1, · · · , ym], C(f) = 0 ⇔ C(Φ(f)) = 0.

Proof. Since Φ is faithful to f , there is a transcendence basis (say, f1, . . . , fs) of f such that
Φ(f1), . . . ,Φ(fs) is a transcendence basis of Φ(f). The function field K = F(f) essentially con-
sists of elements that are polynomials in fs+1, . . . , fm with coefficients from F(f1, . . . , fs). Treating
C(f) as a nonzero element of K, there is an inverse Q ∈ K such that Q ·C = 1. Since Q is a polyno-
mial in fs+1, . . . , fm with coefficients from F(f1, . . . , fs), by clearing off the denominators of these
coefficients in Q, we get an equation Q̃ · C = P (f1, . . . , fs), where Q̃ is a nonzero polynomial in f
and P is a nonzero polynomial in f1, . . . , fs. Applying Φ to both sides of the equation, we conclude
that C(Φ(f)) = Φ(C(f)) 6= 0, otherwise P (Φ(f1), . . . ,Φ(fs)) = Φ(P (f1, . . . , fs)) = 0 which is not
possible as Φ(f1), . . . ,Φ(fs) are algebraically independent and P is a nontrivial polynomial.

Lemma A.1 (Vandermonde map). Let A be a r × n matrix with entries in a field F, and let t be
an indeterminate. Then, rankF(t)

(

A · (tij)i∈[n],j∈[r]
)

= rankFA.

Proof. Follows from Lemma 6.1 of [GR05].

Corollary A.2. Let V1, · · · , Vt be k-dimensional subspaces of linear polynomials in F[x1, · · · , xn].
For a constant α ∈ F, define the following linear homomorphism Ψα as

Ψα : xi 7→
k

∑

j=1

yjα
ij

If |F| > tnk2, then there exists an α such that Ψα is an isomorphism on each of V1, · · · , Vt.
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Lemma 2.2 (restated). Let f ⊂ F[x] be a finite set of polynomials of degree at most d, trdegF f ≤
r, and char(F) = 0 or > dr. Let Ψ : F[x] → F[z] be a homomorphism such that rankF(x)Jx(f) =
rankF(z)Ψ(Jx(f)).

Then, the map Φ : F[x] → F[z, t, y1, . . . , yr] that maps, for all i, xi 7→
(

∑r
j=1 yjt

ij
)

+ Ψ(xi) is

a homomorphism faithful to f .

Proof. Wlog let trdegFf = r, which then (by Jacobian criterion) is the rank of Jx(f). We intend
to show that the matrix Jy(Φ(f)) is of rank r, which would imply (by Jacobian criterion) that
trdegF(t,z) Φ(f) = r.

Consider the projection J ′ of Jy(Φ(f)) obtained by setting y1 = · · · = yr = 0.

J ′ = [Jy(Φ(f))]y=0
= [Φ (Jx(f)) · Jy(Φ(x))]y=0

(By chain rule)

= Ψ (Jx(f)) · Jy(Φ(x))

Observe that the matrix Jy(Φ(x)) is exactly the Vandermonde matrix that is present in Lemma A.1.
Also, Ψ(Jx(f)) has entries in F(z), and by assumption has the same rank as Jx(f). Hence, by
Lemma A.1,

rankF(t,z)J
′ = rankF(t,z) (Ψ(Jx(f)) · Jy(Φ(x))) = rankF(z)Ψ(Jx(f)) = r.

And since J ′ is just a projection of Jy(Φ(f)), the rank of the latter must also be r. Hence, Φ is
indeed faithful.

A.2 Hitting-set for constant transcendence degree depth-3 circuits

Lemma 3.1 (restated). There exists independent linear polynomials {ℓ1, · · · , ℓk} ⊆ L(H0) such
that Hi 6= 0 mod (ℓ1, . . . , ℓi), ∀i ∈ [k], and Hk is a nonzero product of linear polynomials in L(H0)
modulo (ℓ1, · · · , ℓk).

Proof. The proof is by induction on k and follows the sketch given while defining sim(·). The
degree of the nonzero polynomial sim(H0) is |L(H0)| − k. By Chinese remaindering, there exists
an ℓ1 ∈ L(H0) such that H1 := sim(H0) mod ℓ1 6= 0. In the base case (k = 1), it is easy to
see that H1 is a nonzero product of linear polynomials modulo ℓ1. For any larger k, the depth-3
polynomial H1 has exactly the same form as H0 but with k − 1 independent linear polynomials in
the denominators. Induct on this smaller value k−1, keeping in mind that L(Hi) ⊂ L(H0) modulo
(ℓ1, . . . , ℓi).

Let Ii and Ψ(Ii) denote the ideals generated by {ℓ1, . . . , ℓi} and {Ψ(ℓ1), . . . ,Ψ(ℓi)}, respectively.
A rank-(k + 1) preserving Ψ satisfies: ℓ 6= 0 mod Ii iff Ψ(ℓ) 6= 0 mod Ψ(Ii), for all 1 ≤ i ≤ k and
ℓ ∈ ∪k

i=1L(Ti).

Theorem 3.2 (restated). If Ψ : F[x] → F[z1, ..., zk+1] is a rank-(k + 1) preserving map for H0,
then Ψ(H0) 6= 0.

Proof. Let {ℓ1, . . . , ℓk} be the certifying path of H0 fixed above. The proof is by reverse induction
on k: Assuming Ψ(Hi) 6= 0 mod Ψ(Ii), we show that Ψ(Hi−1) 6= 0 mod Ψ(Ii−1) for k ≥ i ≥ 2.
The base case: By Lemma 3.1, Hk is a nonzero product of linear polynomials in L(H0) modulo
Ik, so by the definition of a rank-(k + 1) preserving map, Ψ(Hk) 6= 0 mod Ψ(Ik) (ideal generated
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by independent linear polynomials is an integral domain). By construction, Hi−1 = cont(Hi−1) ·
sim(Hi−1) = cont(Hi−1) · [qiℓi +Hi] mod Ii−1, for some polynomial qi. Which means, Ψ(Hi−1) =
Ψ(cont(Hi−1)) · [Ψ(qi)Ψ(ℓi) +Ψ(Hi)] mod Ψ(Ii−1). If [Ψ(qi)Ψ(ℓi) +Ψ(Hi)] = 0 mod Ψ(Ii−1), then
Ψ(Hi) = 0 mod Ψ(Ii) which contradicts the induction hypothesis. Also, by Lemma 3.1, Hi−1 6=
0 mod Ii−1 implying that cont(Hi−1) 6= 0 mod Ii−1. Since, i ≥ 2, the linear polynomials in the
term cont(Hi−1) belong to L(H0) modulo the ideal Ii−1, once again by using the rank-(k + 1)
preserving property of Ψ, we infer that Ψ(cont(Hi−1)) 6= 0 mod Ψ(Ii−1). Therefore, Ψ(Hi−1) 6=
0 mod Ψ(Ii−1). Finally, to obtain Ψ(H0) 6= 0 from Ψ(H1) 6= 0 mod Ψ(I1), use the same argument
as above and that Ψ(ℓ) 6= 0 for every ℓ ∈ ∪k

i=1L(Ti).

A.3 Hitting-set for constant-depth constant-occur formulas

Lemma 4.1 (restated). Let G be any gate in C and S1, · · · , Sw be multisets of variables. Then
there exists another occur-k formula G′ for which, the vector of polynomials (∆S1G, · · · ,∆SwG) =
VG · (∆S1G

′, · · · ,∆SwG
′) such that

1. If G is a + gate then G′ is also a + gate whose children consist of at most k · |∪w
i=1var(Si)|

of the children of G, and VG = 1.

2. If G is a ×f gate, then G′ is also a ×f gate whose children consist of at most k · |∪w
i=1var(Si)|

of the children of G, and VG = G/G′.

Further, the gates constituting G′ and VG are disjoint.

Proof. 1. Suppose G = H1 + · · · +Hm. Then at most k · | ∪ var(Si)| of its children depend on
the variables present in ∪var(Si); let G

′ be the sum of these children. Then, ∆SiG = ∆SiG
′

as the other gates are independent of the variables in ∪Si.

2. Suppose G = He1
1 · · ·Hem

m . Since G is a gate in an occur-k formula, at most k · | ∪ var(Si)|
of the Hi’s depend on the variables in ∪Si; call these H1, · · · , Ht. Let G

′ := He1
1 · · ·Het

t and
VG := G/G′. Then, ∆SiG = VG ·∆SiG

′ as claimed.

Lemma 4.2 (restated). Let U be a set of rℓ derivatives (of orders up to cℓ) of gates GU at level
ℓ, and U ′ be a transcendence basis of U . Any |U ′| × |U ′| minor of Jx(U

′) is of the form
∏

i V
ei
i ,

where Vi’s are polynomials in at most rℓ+1 := (cℓ +1) · 2cℓ+1k · rℓ
2 many derivatives (of order up to

cℓ+1 := cℓ + 1) of disjoint groups of children of GU .

Proof. Let G ∈ GU be a gate at level ℓ and {U1, . . . , UeG} ⊂ U ′ be the set of all the derivatives of G
present in U ′. Fix any |U ′|× |U ′| sub-matrix M of Jx(U

′). Consider the eG rows of M that contain
the derivatives of U1, . . . , UeG . These rows together contain a total of w := eG · |U ′| elements that
are up to (cℓ + 1)-order derivatives of G; view all the elements of these eG rows as a single vector
(∆S1G, · · · ,∆SwG) and apply Lemma 4.1 to express it as VG · (∆S1G

′, · · · ,∆SwG
′). Verify that

|∪w
i=1var(Si)| ≤ eG · cℓ + |U ′| ≤ eG · cℓ + rℓ. So, in det(M) we can take VG common from each of

these eG rows such that the elements present inside the determinant are of the form ∆SiG
′, where

G′ has at most k(eGcℓ + rℓ) children.
Since |Si| ≤ cℓ + 1, at most k(cℓ + 1) children of G′ depend on var(Si). If G′ is a + gate, then

∆SiG
′ is the sum of the derivatives of at most k(cℓ + 1) of its children (that depend on var(Si)).

If G′ is a ×f gate computing He1
1 · · ·Het

t (where t ≤ k(eGcℓ + rℓ)), then ∆SiG
′ is a polynomial

combination of the Hi’s and {∆THj}∅6=T⊆Si
for each Hj depending on var(Si). Hence in either
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case, ∆SiG
′ is a polynomial in the children of G′ and their at most (2cℓ+1 − 1) · k(cℓ + 1) many

derivatives (of order between one and (cℓ + 1)).
Summing over all the w elements ∆SiG

′, the elements of the eG rows of M are polynomials
in at most k(eGcℓ + rℓ) + w · (2cℓ+1 − 1)k(cℓ + 1) = k(eGcℓ + rℓ) + eG · |U ′| · (2cℓ+1 − 1)k(cℓ + 1)
derivatives of the children of G′. Going over all G ∈ GU , det(M) can be expressed as a product
∏

G∈GU
V eG
G and a polynomial V in at most k(rℓcℓ+r2ℓ )+r2ℓ · (2

cℓ+1−1)k(cℓ+1) ≤ (cℓ+1)2cℓ+1krℓ
2

derivatives (of order up to cℓ + 1) of a group of gates in level ℓ + 1. Further, the groups of gates
whose derivatives constitute the VG’s and V are mutually disjoint (by Lemma 4.1).

A.4 Lower bounds for the immanant

Lemma 5.1 (restated). Suppose Detn = C(T1, . . . , Tm), where C is any circuit and let Tr =
{T1, . . . , Tr} be a transcendence basis of T with r < n. Then, there exist a set of r + 1 variables
xr+1 ⊂ x and an equation

∑r+1
i=1 cifi ·Mi = 0 such that Mi’s are distinct first order principal minors

of M , fi’s are distinct r × r minors of Jxr+1(Tr), not all fi’s are zero, and ci ∈ F
∗.

Proof. In a column of a Jacobian matrix Jx(·), all the entries are differentiated with respect to a
variable x, we will say that the column is indexed by x. Let Tr = {T1, · · · , Tr} be a transcendence
basis of T. Amongst the nonzero r×r minors of Jx(Tr) (they exist by Jacobian criterion), pick one
(call the matrix associated with the minor, N) that maximizes the number of diagonal variables
{xii : 1 ≤ i ≤ n} indexing the columns of N . Let S denote the set of variables indexing the
columns of N . Since r < n, there exists a diagonal variable xjj /∈ S. Consider the (r+ 1)× (r+ 1)
minor of Jx({Detn} ∪ Tr) corresponding to the columns indexed by S′ := S ∪ {xjj} - call the
associated (r + 1) × (r + 1) matrix Ñ . Since, Detn = C(T), the polynomials Detn and T1, . . . , Tr

are algebraically dependent and hence det(Ñ) = 0. Expanding det(Ñ) along the first row of Ñ ,
which contains signed first order minors (cofactors) of M , we have an equation

∑r+1
i=1 cifiMi = 0,

where Mi’s are distinct minors of M , fi’s are distinct r× r minors of JS′(Tr), and ci ∈ F
∗. If Mi is

the principal minor of M with respect to the variable xjj then fi = det(N) 6= 0 (by construction).
It suffices to show that if Mi is a non-principal minor of M then fi = 0. Consider any non-

principal minorMi in the above sum, say it is the minor ofM with respect to xkℓ. The corresponding
fi is precisely the r×r minor of JS′(Tr) with respect to the columns S′\{xkℓ} = (S \ {xkℓ})∪{xjj}.
Hence, by the maximality assumption on the number of diagonal elements of M in S, fi = 0.

Lemma 5.2 (restated). If M1, · · · ,Mt are distinct first order principal minors of M and
∑t

i=1 fi ·
Mi = 0 (not all fi’s are zero) then the total sparsity of the fi’s is at least 2n/2−t.

Proof. The proof is by contradiction. The idea is to start with the equation
∑t

i=1 fiMi = 0
and apply two steps - sparsity reduction and fanin reduction - alternatively, till we arrive at a
contradiction in the form of an equation fj ·Mj = 0, where neither fj nor Mj is zero if the total
sparsity of the fi’s is less than 2n/2−t. With an equation of the form

∑τ
i=1 giNi = 0, we associate

four parameters τ, S, η and c. These parameters are as follows: τ is called the fanin of the equation,
S is the total sparsity of the gi’s (we always assume that not all the gi’s are zero), every Ni is a
distinct first order principal minor of a symbolic η × η matrix N = (xij), and c is the maximum
number of entries of N that are set as constants. To begin with, gi = fi and Ni = Mi for all
1 ≤ i ≤ t, so τ = t, S = s (the total sparsity of the fi’s), η = n, N = M and c = 0. In the ‘sparsity
reduction’ step, we start with an equation

∑τ
i=1 giNi = 0, with parameters τ, S, η, c and arrive at

an equation
∑τ ′

i=1 g
′
iN

′
i = 0 with parameters τ ′, S ′, η′, c′ such that τ ′ ≤ τ , S ′ ≤ S/2, η− 1 ≤ η′ ≤ η,
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and c′ ≤ c + 1. In the ‘fanin reduction’ step, we start with an equation
∑τ

i=1 giNi = 0, with

parameters τ, S, η, c and arrive at an equation
∑τ ′

i=1 g
′
iN

′
i = 0 with parameters τ ′, S

′, η′, c′ such
that one of the two cases happens - Case 1: τ ′ ≤ τ − 1, S

′ ≤ S, η′ = η − 1, and c′ = c; Case 2:
τ ′ = 1, S ′ ≤ S, η′ = η, and c′ ≤ c+ τ .

Naturally, starting with
∑t

i=1 fiMi = 0, the ‘sparsity reduction’ step can only be performed at
most log s many times (since the total sparsity of the gi’s reduces by at least a factor of half every
time this step is executed), whereas the ‘fanin reduction’ step can be performed at most t−1 times
(as the fanin goes down by at least one for every such step). Finally, when this process of alternating
steps ends, we have an equation of the form gi ·Ni = 0 (Case 2 of the fanin reduction step), where
gi 6= 0 and Ni is a principal minor of a symbolic matrix N of dimension at least n− (log s+ t− 1)
such that at most (log s+ t) entries of N are set as constants. Now, if log s+ t ≤ n− (log s+ t) the
Ni can never be zero (by Fact 3) and hence we arrive at a contradiction. Therefore, s > 2n/2−t.
Now, the details of the sparsity reduction and the fanin reduction steps.

Suppose, we have an equation
∑τ

i=1 giNi = 0 as mentioned above. Without loss of generality,
assume that the minor Ni is the minor of N with respect to the ith diagonal element of N . Call all
the variables xij in N with both i, j > τ as the white variables. These are the variables that are
present in every minor Ni in the sum

∑τ
i=1 giNi. The variables xij where both i, j ≤ τ are called

the black variables, and the remaining are the grey variables. By assumption, c of the variables in
N are set as constants.

Sparsity reduction step - Say x is a white variable that one of the gi’s depends on. Writing
each gi as a polynomial in x, there must be two distinct powers of x amongst the gi’s (for if not,
then x can be taken common across all gi’s). Let xℓ be the lowest degree and xh be the highest.
Dividing the entire equation

∑τ
i=1 giNi = 0 by xℓ, we can further assume that ℓ = 0. Each of

the gi’s and Ni’s can be expressed as, gi = gi,0 + x · gi,1 + · · · + xh · gi,h and Ni = Ni,0 + x · Ni,1,
where gi,j ’s and Ni,j ’s are x-free. Looking at the coefficients of x0 and xh+1 in the equation yields
∑τ

i=1 gi,0 ·Ni,0 = 0 and
∑τ

i=1 gi,h ·Ni,1 = 0. Note that Ni,0’s can be thought of as principal minors
of the η × η matrix N ′ obtained by setting x = 0 in N . And each of the Ni,1’s can be thought of
as minors of the (η − 1) × (η − 1) matrix N ′ which is the matrix associated with the minor of N
with respect to x. Since the monomials in gi,0 and xhgi,h are disjoint, either the total sparsity of
the gi,0’s or the total sparsity of the gi,h’s is ≤ S/2. Thus, one of the equations

∑τ
i=1 gi,0 ·Ni,0 = 0

or
∑τ

i=1 gi,h ·Ni,1 = 0 yields an equation of the form
∑τ ′

i=1 g
′
iN

′
i = 0 with parameters τ ′, S ′, η′, c′

as claimed before. (In case, we choose
∑τ

i=1 gi,h · Ni,1 = 0 as our next equation, we also set the
variables in the same columns and rows of x to constants in such a way that a gi,h stays nonzero.
This is certainly possible over a characteristic zero field [Sch80, Zip79].) The sparsity reduction
step is performed whenever the starting equation

∑τ
i=1 giNi = 0 has a white variable among the

gi’s. When all the gi’s are free of white variables, we perform the fanin reduction step.
Fanin reduction step - When we perform this step, all the gi’s consist of black and grey variables.

Pick a row R from N barring the first τ rows. Let y1, · · · , yτ be the grey variables occuring in
R (these are, respectively, the variables in the first τ columns of R). Starting with y2, divide the
equation

∑τ
i=1 giNi = 0 by the largest power of y2 common across all monomials in the gi’s, and

then set y2 = 0. This process lets us assume that there exists at least one gi which is not zero at
y2 = 0. On the residual equation, repeat the same process with y3 and then with y4 and so on
till yτ . Thus, we can assume without loss of generality that in the equation

∑τ
i=1 giNi = 0 there

is at least one gi that is not zero when y2, . . . , yτ are set to zero. Observe that if g1 is the only gi
that stays nonzero under the projection y2 = . . . = yτ = 0 then (g1N1)(y2=...=yτ=0) = 0, implying
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that N1 = 0 under the same projection - this is Case 2 of the fanin reduction step mentioned
earlier. Now, assume that there is a gi other than g1 (say, g2) that is nonzero under the projection
y2 = . . . = yτ = 0. Set all the remaining variables of row R to zero except y1 - these are the
white variables in R. Since the gi’s are free of white variables (or else, we would have performed
the ‘sparsity reduction’ step), none of the gi’s is effected by this projection. However, N1 being
a minor with respect to the first diagonal element of N , vanishes completely after the projection.
Any other Ni takes the form y1 · N

′
i , where N ′

i is a principal minor of a (η − 1) × (η − 1) matrix
N ′ which is the matrix associated with the minor of N with respect to y1. Therefore, after the
projection, the equation

∑τ
i=1 giNi = 0 becomes

∑τ
i=2 g̃i · y1N

′
i = 0 ⇒

∑τ
i=2 g̃i ·N

′
i = 0, where g̃i

is the image of gi under the above mentioned projection and further g̃2 6= 0. The g̃i’s might still
contain variables from the first column of N . So, as a final step, set these variables to values so
that a nonzero g̃i remains nonzero after this projection (the [Sch80, Zip79, DL78] lemma asserts

that such values exist in plenty). This gives us the desired form
∑τ ′

i=1 g
′
iN

′
i = 0 with parameters

τ ′, S ′, η′, c′ as claimed before (Case 1 of the fanin reduction step mentioned earlier).

Lemma 5.3 (restated). If M1, · · · ,Mt are distinct first order principal minors of M and
∑t

i=1 αiMi

= 0 mod ℓk (not all αi = 0) for independent linear polynomials ℓk, then t+ k ≥ n.

Proof. Assume that t + k < n (with t ≥ 1 it means k ≤ n − 2). Since ℓ1, · · · , ℓk are independent
linear polynomials, the equation may be rewritten as

∑t
i=1 αiM

′
i = 0 where (M ′

i)s are minors of
the matrix M ′ obtained by replacing k entries of M by linear polynomials in other variables. We
shall call these entries as corrupted entries. Without loss of generality, we shall assume that M ′

i is
the minor corresponding to the i-th diagonal variable and that all the αi’s are nonzero.

Claim A.3. Each of the first t rows and columns must have a corrupted entry.

Pf. Suppose the first row (without loss of generality) is free of any corrupted entry. Then, setting
the entire row to zero would make all M ′

i = 0 for i 6= 1. But since
∑

αiM
′
i = 0, this forces M ′

1 to
become zero under the projection as well. This leads to a contradiction as M ′

1 is a determinant of
an (n− 1)× (n− 1) symbolic matrix under a projection, and this can not be zero unless k ≥ n− 1
(by Fact 3). (Claim)

Since n − k > t, there must exist a set of t − 1 rows {R1, · · · , Rt−1} of M that are free of any
corrupted entries. For each of these rows, set the i-th variable of row Ri to 1, and every other
variable in R1, · · · , Rt−1 to zero. These projections make M ′

i = 0 for all i 6= t (as in these minors
an entire row vanishes). And since

∑t
i=1 αiM

′
i = 0, this forces M ′

t to become zero under this
projection as well. But under this projection, M ′

t just reduces (up to a sign) to the minor obtained
from M ′ by removing the columns {1, · · · , t} and rows {R1, · · · , Rt−1}∪{t}. This is a determinant
of an (n− t)× (n− t) symbolic matrix, containing at most k− t corrupted entries, thus k− t ≥ n− t
(by Fact 3). But then k ≥ n, which contradicts our initial assumption.

A.5 Extensions to immanants

All the lower bound proofs use some very basic properties of Detn. These properties are general
enough that they apply to any immanant. For any character χ : Sn → C

×, recall the definition of
the immanant of an n× n matrix M = (xij):

Immχ(M) =
∑

σ∈Sn

χ(σ)
n
∏

i=1

xi,σ(i)
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Since χ is a character, this in particular means that χ(σ) 6= 0 for any σ ∈ Sn

Definition 5 (Immanant minor). The minor of Immχ(M) with respect to the (i, j)-th entry is
defined as

(Immχ(M))i,j =
∑

σ∈Sn
σ(i)=j

χ(σ)
∏

k 6=i

xk,σ(k)

This may also be rewritten as a scalar multiple of Immχ′(Mij) for a suitable character χ′ :
Sn−1 → C

×, where Mij is the submatrix of M after removing the i-th row and j-th column. From
the definition, it follows directly that the partial derivative of Immχ(M) with respect to xij is
precisely the minor with respect to (i, j).

The only crucial fact of determinants that is used in all the proofs is that a symbolic n × n
determinant cannot be zero when less than n of its entries are altered.

Fact 3. Let M ′ be the matrix obtained by setting c < n entries of M to arbitrary polynomials in
F[x]. Then for any character χ : Sn → C

×, we have Immχ(M
′) 6= 0.

Proof. We shall say an entry of M ′ is corrupted if it is one of the c entries of M that has been
replaced by a polynomial. We shall prove this by carefully rearranging the rows and columns so
that all the corrupted entries are above the diagonal. Then, since all entries below the diagonal are
free, we may set all of them to zero and the immanant reduces to a single nonzero monomial.

Since less than n entries of M ′ have been altered, there exists a column that is free of any
corrupted entries. By relabelling the columns if necessary, let the first column be free of any
corrupted entry. Pick any row R that contains a corruption and relabel the rows to make this the
first row. This ensures that the first column is free of any corrupted entry, and the (n−1)× (n−1)
matrix defined by rows and columns, 2 through n, contain less than c−1 corruptions. By induction,
the c − 1 corruptions may be moved above the diagonal by suitable row/column relabelling. And
since the first column is untouched during the process, we now have all c corruptions above the
diagonal. Now setting all entries below the diagonal to zeroes reduces the immanant to a single
nonzero monomial.

With this fact, all our lower bound proofs of the determinant can be rewritten for any immanant.

B Conditional immanant lower bounds for depth-D occur-k for-
mulas

In this section, we present a lower bound for depth-D occur-k formulas similar in spirit to Theo-
rem 1.4 by assuming the following conjecture about determinant minors.

Conjecture B.1. Let M = (xij) be an n × n matrix, and let xi denote the i-th diagonal variable
xii. Let M ′ be a projection of M by setting c = o(n) of the variables in M to constants. Suppose
the elements x1, · · · , xk, where k is a constant independent of n, are partitioned into non-empty
sets S1, · · · , St. Consider M(St), the set of tth order principal minors of M ′, each by choosing a
t-tuple B ∈ S1 × · · · × St as pivots. Over all possible choices of B, we get m := |S1| · · · |St| many
minors. Then for any set of diagonal variables ym disjoint from xk, Jym (M(St)) 6= 0.
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The conjecture roughly states that the different tth-order principal minors are algebraically
independent. We will need a generalization of Lemma 5.1 for the purposes of this section.

Lemma B.2. Suppose {f1, · · · , fs, g1, · · · , gt} are algebraically dependent polynomials such that
trdeg {gt} = t. Let S ⊆ x be a fixed set of variables of size at least s + t. Then there exists a set
of s+ t variables xs+t ⊂ x and an equation of the form

r
∑

i=1

ci · Fi ·Gi = 0 where r ≤

(

s+ t

t

)

such that each ci ∈ F
∗, each Fi is a distinct s× s minor of Jxs+t∩S(fs), each Gi is a distinct t× t

minor of Jxs+t(gt), and not all Gi’s are zero.

Note that we are not asserting the nonzeroness of Fi’s. Also, Lemma 5.1 may be obtained from the
above lemma by taking f1 = Detn, s = 1 and S to be the set of diagonal variables.

Proof. The proof is along the lines of Lemma 5.1. Amongst the nonzero t × t minors of Jx(gt),
pick one (call the matrix associated with the minor, N) that maximizes the number of variables in
S indexing the columns of N . Without loss of generality, let xt be the set of variables indexing the
columns of N . Since |S| ≥ s+ t, there exists s other variables in S, say {x1+t, · · · , xs+t}. Consider
the (s + t) × (s + t) minor of Jx(fs ∪ gt) corresponding to the columns indexed by xs+t - call the
associated (s+ t)× (s+ t) matrix Ñ .

Since fs,gt are algebraically dependent, we have that det(Ñ) = 0. Expanding det(Ñ) over all
possible s× s minors in the first s rows, we have an equation

∑

U⊆xs+t,|U |=s

ci · FU ·GU = 0

where each FU is a distinct s×sminor of Jxs+t(fs), each GU is a distinct t×tminor of Jxs+t(gt), and
ci ∈ F

∗. If GU is the minor with respect to variables xt, then GU = det(N) 6= 0 (by construction).
It suffices to show that if FU is a minor indexed by variables outside S, then GU = 0. This follows,
just like in Lemma 5.1, by the maximality assumption on choice of xt.

The rest of this section shall be devoted to the proof of the following theorem.

Theorem B.3. Assuming Conjecture B.1, any depth-D occur-k formula that computes Detn must
have size s = 2Ω(n) over any field of characteristic zero.

Proof idea: The proof proceeds on the same lines as Theorem 1.4. If T1, · · · , Tk is a transcendence
basis of gates at level 2 computing the determinant, then Jx(Detn, T1, · · · , Tk) is a matrix of rank k.

This yields a non-trivial equation of the form
∑

N
(1)
i ·G

(1)
i = 0 where each of the N

(1)
i ’s are principal

minors of M = (xij) and G
(1)
i ’s are k × k minors of Jx(T1, · · · , Tk). Here is where we may use

Lemma 4.2 to remove common factors and obtain an equation of the form
∑

N
(1)
i · G̃i

(1)
= 0 where

G̃i
(1)

is a polynomial of constantly many derivatives of polynomials computed at the next level.

The above equation may be thought of as a polynomial relation amongst
{

N
(1)
i

}

∪
{

Elem(G̃i
(1)

)
}

.

Applying Lemma B.2 (with a suitable choice of S2), we get an equation of the form
∑

N
(2)
i ·G

(2)
i = 0

where each N
(2)
i is a minor of JS2

({

N
(1)
i

})

, and G
(2)
i s are Jacobians minors of

⋃

Elem(G̃i
(1)

).
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Again after removing common factors, this equation may be intepreted as a polynomial relation

amongst the entries of N
(2)
i (which are minors of order 2) and Elem(G̃i

(2)
).

Repeating this argument, we finally reach the level of sparse polynomials and obtain a non-

trivial equation
∑

N
(D−2)
i · G̃i

(D−2)
= 0, where each N

(D−2)
i is a Jacobian minor of (D − 3)-order

minors, and each G̃i
(D−2)

is a sparse polynomial. With a slightly more careful choice of the sets Si

in Lemma B.2, each of the minors N
(D−2)
i would be a minor of JSD−2

(M(S1, · · · , SD−3)). Assuming
Conjecture B.1, we can show that such an equation is not possible unless the sparsity of the fi’s is
large, using a similar argument as in Lemma 5.2.

Lemma B.4. Suppose Detn is computed by a depth-D occur-k formula of size s. Then there
exist variables x1, · · · , xR where R = R(k,D), a partition of xR into non-empty sets S1, · · · , SD′,
(D′ ≤ (D − 2)) polynomials f1, · · · , fm (not all zero) where m = |M(SD)|

O(R) and each fi has
sparsity at most sR, such that

m
∑

i=1

fi ·Ni = 0

where each Ni is a minor of Jx(M(SD′)) indexed by diagonal variables.

Proof. To begin with, Detn = C(T1, · · · , Tm) where T1, · · · , Tm are polynomials computed at the
first level. So Lemma 5.1 gives a starting equation, though we do not really have a sparsity bound
on the fi’s. The proof shall proceed by transforming this equation into another, involving lower
level polynomials, till we get a sparsity bound.

In general, we shall have an equation of the form Cℓ(M(S1, · · · , Sℓ−1), T
(ℓ)
1 , · · · , T

(ℓ)
rℓ ) = 0, where

each T
(ℓ)
i is a derivative (of order at most ℓ) of a polynomial computed at level ℓ of the circuit.

Without loss of generality, we may assume that
{

T
(ℓ)
1 , · · · , T

(ℓ)
rℓ

}

are algebraically independent. Let

mℓ := |S1| · · · |Sℓ−1|. Choose a set of diagonal elements Sℓ of size |M(S1, · · · , Sℓ−1)| + rℓ that is
disjoint from S1, · · · , Sℓ−1. Applying Lemma B.2 with Sℓ, we get an equation of the form

∑

i

c
(ℓ)
i N

(ℓ)
i ·G

(ℓ)
i = 0

where N
(ℓ)
i is an mℓ × mℓ minor of JSℓ

(M(Sℓ−1)) indexed by diagonal variables, each G
(ℓ)
i is an

rℓ × rℓ minor of JSℓ
(T

(ℓ)
rℓ ). Since C is an occur-k circuit, using an argument similar to Lemma 4.2,

the above equation may be rewritten as

Vℓ ·
∑

i

c
(ℓ)
i N

(ℓ)
i · G̃i

(ℓ)
= 0

where each G̃i
(ℓ)
’s is a polynomial function of at most rℓ+1 := (ℓ + 1)2ℓ+1 · k(rℓ + mℓ)rℓ many

derivatives of polynomials computed at level ℓ+1. Note that Vℓ cannot be zero as at least one G
(ℓ)
i

was guaranteed to be nonzero by Lemma B.2. Therefore,
∑

i c
(ℓ)
i N

(ℓ)
i ·G̃i

(ℓ)
= 0. Since each G̃i

(ℓ)
is a

polynomial function of rℓ+1 derivatives at the next level, we now have Cℓ+1(M(S1, · · · , Sℓ), T
(ℓ+1)
1 , · · · ,

T
(ℓ+1)
rℓ+1 ) = 0.
Unfolding this recursion, we finally reach the level of sparse polynomials, at which point we

have an equation of the form
∑

i

c
(D−2)
i N

(D−2)
i · G̃i

(D−2)
= 0
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and each G̃i
(D−2)

is a rD−2 × rD−2 Jacobian minor of sparse polynomials. Hence, each G̃i
(D−2)

is
itself a polynomial of sparsity bounded by srD−2 as claimed.

We now have to show that an equation of the form
∑

fi ·Ni = 0 is not possible unless one of the
fi’s has exponential sparsity. The above lemma guarantees that at least one of the fi’s are nonzero
in this equation, but it could be the case that some of the Ni’s are zero. This was not the case in
the depth-4 lower bound as each Ni was just a determinant minor. However, in this case they are
jacobians of minors. Conjecture B.1 asserts that the Ni’s are nonzero, even if few variables are set
to zero. This assumption would be enough to get the required lower bound.

Lemma B.5. Let |M(S1, · · · , SD)| =: m be a constant and let {Ni}i≤t be distinct m×m minors
of Jx(M(SD)) where the columns of Ni are indexed by a set Ti of diagonal variables of M disjoint
from

⋃D
j=1 Sj. Suppose f1, · · · , ft are polynomials such that

∑t
i=1 fi ·Ni = 0 (not all fi’s are zero).

Then, assuming Conjecture B.1 is true, the total sparsity of the fi’s is 2Ω(n).

Proof. The proof is along the lines of the proof of Lemma 5.2 and shall proceed by a similar series
of sparsity reduction and fanin reduction steps to arrive at a contradiction. Throughout the proof,
Conjecture B.1 shall assert that Ni’s stay nonzero (even when few variables are set to constants).
We briefly describe the sparsity reduction and the fanin reduction steps and the rest of the proof
would follow in essentially an identical fashion as the proof of Lemma 5.2.

Without loss of generality, assume that {x1, · · · , xr} is the union of the sets Si’s and Ti’s. Let
N refer to the matrix of indeterminates that the Ni’s are derived from. In our case, N would
be obtained by (possibly) setting few variables to constants in M = (xij). We’ll refer to all the
variables xij where both i, j > r as white variables; these are present in every entry of each Ni. The
variables xij where both i, j ≤ r shall be called black variables, and the rest called grey variables.
Here again, the sparsity reduction step shall be applied whenever one of the fi’s depends on a white
variable, otherwise the fanin reduction steps shall be applied.

Sparsity-reduction step - Suppose one of the fi’s depend on a white variable x. Then each Ni

can be written as Ni = Ni,0 + · · ·+ xmNi,m, and fi = fi,0 + · · ·+ fi,hx
h. One of the two equations

corresponding to the coefficient of x0 and xh+m yields a similar equation with sparsity reduced by a
factor of 1/2. Observe that Ni,0 is just Ni |x=0, and hence the polynomials {Ni,0} may be thought
of as corresponding Jacobian minors of N ′ obtained by setting x = 0 in N ′. Also, Ni,m is obtained
by replacing every entry of the matrix corresponding to Ni by its minor with respect x. And hence,
Ni,m can be thought of as a corresponding Jacobian minor of Nx obtained by taking the minor of
N with respect to x. Thus the two equations corresponding to the coefficient of x0 and xh+m are
indeed of the same form as

∑

fiNi = 0. (In the case of the coefficient of xh+m, we need to set
other variables in the row/column containing x as in the proof of Lemma 5.2)

Fanin reduction step - Without loss of generality, let x1 ∈ T1 \ T2. Pick a row R of N barring
the first r rows, and let y1, · · · , yr be the grey variables in R (where y1 is in the same column as x1).
By a similar process as in the proof of Lemma 5.2, we can assume that at least one fi is nonzero
when y2, · · · , yr are set to zero.

If one of the fi’s become zero when y2, · · · , yr = 0, then pick any white variable y in row R and
set every variable in row R to zero besides y. This would ensure that the fanin of the equation
reduces and each Ni is now ym · N ′

i . Each N ′
i may be thought of as being obtained from Ny, the

minor of N with respect to y. The other variables in the column of y can be set to values to ensure
that the fi’s stay nonzero to obtain an equation of the form

∑

f ′
iN

′
i = 0 of reduced fanin.
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If none of the fi’s become zero when y2, · · · , yr = 0, then set every variable in row R other than
y1 to zero. This ensures an entire column of the matrix corresponding to N1 becomes zero (as x1
indexes one of the columns of N1), and hence N1 becomes zero. On the other hand, N2 remains
nonzero and each surviving Ni can be written as ym1 ·N ′

i , where N ′
i is the corresponding Jacobian

minor of Ny1 . Again, the other variables in the column of y1 can be set to values to ensure that
fi’s stay nonzero and we obtain an equation

∑

f ′
iN

′
i = 0 of reduced fanin.

As in the proof of Lemma 5.2, we eventually obtain an equation of the form f1N1 = 0 where
f1 6= 0 thus implying that N1 = 0. The number of variables that have been set to constants is
bounded by t + logS where S is the initial total sparsity of the fi’s, and N1 is a Jacobian minor
of a symbolic matrix of dimension n − (logS + t − 1). Conjecture B.1 asserts that N1 would be
nonzero unless logS + t = Ω(n− (logS + t− 1)), or S = 2Ω(n).

That concludes the proof of Theorem B.3 as well.
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