
Testers and their Applications

Nader H. Bshouty
Department of Computer Science

Technion, Israel
bshouty@cs.technion.ac.il

February 7, 2012

Abstract

We develop a new notion called tester of a classM of functions f : A → C that maps the elements
a ∈ A in the domain A of the function to a finite number (the size of the tester) of elements b1, . . . , bt
in a smaller sub-domain B ⊂ A where the property f(a) 6= 0 is preserved for all f ∈ M. I.e., for all
f ∈M and a ∈ A if f(a) 6= 0 then f(bi) 6= 0 for some i.

We use tools from elementary algebra and algebraic function fields to construct testers of almost
optimal size in deterministic polynomial time in the size of the tester. We then apply testers to
deterministically construct new set of objects with some combinatorial and algebraic properties that
can be used to derandomize some algorithms.

We show that those new constructions are almost optimal and for many of them meet the union
bound of the problem. Constructions include, d-restriction problems, perfect hash, universal sets,
cover-free families, separating hash functions, polynomial restriction problems, black box polynomial
identity testing for polynomials and circuits over small fields and hitting sets.

Keywords: Combinatorial objects, Derandomization, d-Restriction problems, Perfect hash, Universal
sets, Cover-Free families, Separating hash functions, Hitting sets, Polynomial restriction problems.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 11 (2012)

Contents

1 Introduction 4

1.1 Testers . 4

1.2 d-Restriction Problems . 5

1.3 Black Box PIT . 9

1.4 Polynomial Restriction Problems . 11

1.5 Organization of this Paper . 13

2 Testers 14

2.1 Definition of Tester . 14

2.2 Preliminary Results for Testers . 15

2.3 Testers for Large Fields . 20

2.4 Testers for Subspaces of Large Fields . 27

2.5 Testers for Small Fields . 30

2.6 Symmetric and Reducible Testers . 32

2.6.1 Definition . 32

2.6.2 Classification . 33

2.7 Lower Bounds . 37

3 Constructing Testers in Polynomial Time 40

3.1 Time Complexity of Constructing Irreducible Polynomials and Fqt 40

3.2 Preliminary Results . 42

3.3 Reductions of the Problem . 43

3.4 Testers for q ≥ d+ 1 in Polynomial Time . 44

3.5 Testers for Subspaces of Fields in Polynomial Time . 47

3.6 Testers for q < d+ 1 in Polynomial Time . 49

3.7 Tester from any Field to any Field . 50

4 Applications of Tester for d-Restriction Problems 51

4.1 Perfect Hash . 51

2

4.2 (n, d)-Universal Set . 54

4.3 Cover-Free Families . 57

4.4 Separating Hash Family . 60

5 Application of Tester for Black Box PIT Sets over Small Field 62

5.1 Sets of Multivariate Polynomials . 63

5.2 Main Results . 63

5.3 Preliminary Results . 64

5.3.1 A Primitive Root in the Field . 64

5.3.2 Sidon Sequences . 65

5.3.3 The Operator φd . 67

5.4 The Reduction from Large Field to Small Field . 69

5.5 Lower and Upper Bounds . 70

5.5.1 Folklore Lower and Upper Bounds . 70

5.5.2 New Non-Constructive Upper Bounds . 73

5.6 Constructive Upper Bound for P(Fq, n) and P(Fq, n, r) 77

5.7 Constructive Upper Bound for P(Fq, n, d) and P(Fq, n, (d, r)) 78

5.8 Constructive Upper Bounds for P(Fq, n, s) and P(Fq, n, r, s) 80

5.9 Constructive Upper Bound for P(Fq, n, d, s) and P(Fq, n, (d, r), s) 82

5.10 Field Reduction of Other Circuit Classes . 83

6 Application of Tester for Polynomial Restriction Problems 84

6.1 Lower Bound for P(Fq, n, ((d, r), s)) . 85

6.2 Nonconstructive Upper Bound for P(Fq, n, (d, s)) . 86

6.3 Constructive Upper Bound for P(Fq, n, (d, s)) . 89

7 Conclusion and Future Work 94

8 Appendices 102

8.1 Appendix A. Algebraic Function Fields . 102

8.2 Appendix B. Toward Testers for q ≥ d+ 1 with Better Size 105

3

1 Introduction

1.1 Testers

A tester of a class of multivariate polynomial M over n variables is a set L of maps from a complex
(algebraic) structure An to a simple one Bn that preserve the property f(a) 6= 0 for every f ∈ M,
i.e., for all f ∈ M and a ∈ A if f(a) 6= 0 then f(`(a)) 6= 0 for some ` ∈ L. See a formal definition
in section 2 page 14. In this paper we study testers when A, the domain of the functions in M, is a
field or a subspace of a field and B ⊂ A is a small subfield. We use tools from elementary algebra and
algebraic function fields to construct testers of almost optimal size |L| in polynomial time.

One application of tester is the following: Suppose we need to construct a small set of vectors S ⊂ Σn

for some alphabet Σ that satisfies some property P . We map Σ into a field F and find a set of functions
MP where S ⊂ Fn satisfies property P if and only if S is a hitting set for MP , i.e., for every f ∈ MP

there is a ∈ S such that f(a) 6= 0. We then extend F to a larger field K (or F-algebra A). Find S′ ⊂ Kn

that is a hitting set for MP (which supposed to be easier). Then use tester to change the hitting set
S′ ⊂ Kn over K to a hitting set S ⊂ Fn over F.

In this paper we consider two main classes of multivariate polynomials over finite fields Fq with q
elements. The first class is P(Fq, n, d), the class of all multivariate polynomials with n variables and
total degree d. The second class is DML(Fq, n, d), the class of all multivariate polynomials f with dn
variables xi,j , i = 1, . . . , d, j = 1, . . . , n where each monomial in f is of the form x1,i1x2,i2 · · ·xd,id .
For the class P(Fq, n, d) we give the following testers that map elements from A = Fqt to B = Fq

Poly time 2t time Explicit Lower Bound
t q size=O() size=O() size=O() size=Ω()

All q ≥ d(t− 1) + 1 dt dt dt dt

I.S. q ≥ c(d+ 1)2, q P.S. d3t d2t dt dt

All q ≥ c(d+ 1)2, q P.S. d3t d2t d2t dt

I.S. q ≥ c(d+ 1) d4t d3t d2t dt

All q ≥ c(d+ 1) d4t d3t d3t dt

I.S. q ≥ d+ 1 d5t d4t d3t dt

All q ≥ d+ 1 d5t d4t d4t dt

All q < d+ 1 ∞

In the table I.S. stands for “infinite sequence of integers t” and P.S. stands for “perfect square”. The
second column in the above table gives bounds on q, the size of the field. The parameter c is any
constant greater than 1. Notice that when q < d+ 1 no tester exists for P(Fq, n, d). The third column
gives the size of testers that can be constructed in polynomial time. The forth column gives the size
of the testers that can be constructed in time 2t. This will be used for fields Fqr where r = O(log t).

4

The fifth column gives the size of the testers that can be explicitly constructed but are not known to be
polynomial time constructed. The last column gives lower bounds. For example, the second row and
third column in the table says that, for any constant c > 1, perfect square q ≥ c(d+ 1)2 there is a tester
L for P(Fq, n, d) of size O(d3t) for infinite sequence of integers t.

We then study testers for P(Fq, n, d) that map subspaces S ⊆ FqT of size qt to Fq for some T > t. We
were able to give better bounds for the size of such testers that can be constructed in polynomial time.
For small t those bounds match the size of the explicit constructions in the above table.

For the class DML(Fq, n, d) when q ≥ d+1 the testers for P(Fq, n, d) are also testers for DML(Fq, n, d).
For q ≤ d we give the following testers that map elements from A = Fqt to B = Fq

q Upper Bound Lower Bound
size = size =

2 21.66d · t 2d · t
3 21.12d · t 20.58d · t
4 20.87d · t 20.41d · t
5 20.72d · t 20.32d · t
7 20.55d · t 20.22d · t
q 2O(log q/q)d · t 2Ω(1/q)d · t

The upper bound and lower bounds are bounds on the size of the testers. The time complexity of
constructing the above testers is within poly(t) of their upper bound size.

1.2 d-Restriction Problems

We apply testers to the following problems

d-Restriction Problems: A d-restriction problem [53, 5] is a problem of the following form: Given an
alphabet Σ of size |Σ| = q, a length n and a classM of nonzero functions fi : Σd → {0, 1}, i = 1, 2, . . . , t.
Find a set A ⊆ Σn of small size such that: For any 1 ≤ i1 < i2 < · · · < id ≤ n and f ∈ M there is
a ∈ A such that f(ai1 , . . . , aid) 6= 0.

The d-restriction problems considered in this paper are perfect hash, universal sets, cover-free families
and separating hash functions. Using tester we achieve an asymptotically optimal construction for those
problems.

Perfect Hash: For d ≤ q we say that the set H of function h : [n]→ Fq is a (n, q, d)-perfect hashing [5]
(or (n, d, q)-splitter [53]) if for all subsets S ⊆ [n] of size |S| = d there is a hash function h ∈ H such that
h|S is injective (one-to-one) on S, i.e., |h|S(S)| = d. Obviously, perfect hash is a d-restriction problem
with the alphabet Σ = Fq where we regard each element in A ⊆ Fnq as a function.

5

In [53, 5] it was shown that there is an (n, d2, d)-perfect hashing of size O(d4 log d log n) that can be
constructed in poly(n, d) time. Wang and Xing [81] used algebraic function fields and gave an explicit1

(n, d4, d)-perfect hashing of size O((d2/ log d) log n) for infinite sequence of integers n. For any q the
only known polynomial time construction is of size O(d2 log d log n), [53, 5]. Blackburn and Wild [23]
gave an explicit optimal construction when q is very large compared to d and log n. In this paper we
use testers to give a polynomial time construction that is almost optimal for any q and n as described
in the following Table

poly time Union Lower
n q Size = Bound Bound

I.S. q ≥ c
4d

4 d2 logn
log q d logn

log q
logn
log q

all q ≥ c
4d

4 d4 logn
log q d logn

log q
logn
log q

I.S. q ≥ c
2d

2 d4 logn
log d d logn

log(2q/(d(d−1)))
logn
log q

all q ≥ c
2d

2 d6 logn
log d d logn

log(2q/(d(d−1)))
logn
log q

I.S. q ≥ d(d+1)
2 + 1 d6 logn

log d d log n logn
log q

all q ≥ d(d+1)
2 + 1 d8 logn

log d d log n logn
log q

In the table, I.S. means “for infinite sequence of integers n” and c > 1 is any constant. The union bound
is a non-constructive bound that can be achieved using probabilistic method by randomly uniformly
choosing hash functions [7].

Our results improve all the results in the literature and give the first polynomial time O(log n/ log q)
size construction for a fixed d and any n and q.

Universal sets: Another d-restriction problem is the problem of (n, d)-universal set over an alphabet of
size q. This problem is d-restriction problem whereM contains all the nonzero functions f : Σd → {0, 1}.
That is, A ⊆ Fnq is (n, k)-universal set if for every 1 ≤ i1 < i2 < · · · < id ≤ n and α1, . . . , αd ∈ Fq there
is a ∈ A such that ai1 = α1, ai2 = α2, . . . , aid = αd.

The lower bound Ω(qd−1 log n/ log q) for the size of (n, d)-universal set over Fq can be derived from [44].
The union bound gives the upper bound O(dqd log n). The best known polynomial time2 construction
for this problem gives a universal set of size dO(log d/ log q)qd log n for q < d and O(d5(log d)2 qd log n),
for q > d [53, 2]. For q < d the size of the construction in [53], dO(log d/ log q)qd log n, is better than
the size we get here. For q ≥ d we give a polynomial time construction of (n, d)-universal set of
size O(d4(qd/ log q) log n). When q = Ω(d2) and perfect square, for infinite number of integers n,

1In this paper, when we say “explicit construction” we mean a construction that uses elementary algebra and algebraic
function fields in which each step of the construction is indicated. But it is not clear if the construction is polynomial time
construction.

2In this paper, when we say polynomial time we mean poly(n) · s where s is the size of the construction.

6

we give a polynomial time construction of size O(d2(qd/ log q) log n) and an explicit construction of size
O(d(qd/ log q) log n). Although those results slightly improve the existing results from the literature, the
latter bound is a surprising result since it exceeds the union bound O(dqd log n) achieved by probabilistic
method. This shows that our new technique may lead to new combinatorial bounds that exceed the
union bounds.

The following Table summarizes the results

Poly Time Explicite
n q Size= Size=

I.S. q ≥ c(d+ 1)2, q P.S. d2qd logn
log q dqd logn

log q

all q ≥ c(d+ 1)2, q P.S. d2qd logn
log q d2qd logn

log q

I.S. q ≥ c(d+ 1) d3qd logn
log d d2qd logn

log d

all q ≥ c(d+ 1) d3qd logn
log d d3qd logn

log d

I.S. q ≥ d+ 1 d4qd logn
log d d3qd logn

log d

all q ≥ d+ 1 d4qd logn
log d d4qd logn

log d

all q ≤ d+ 1 d7q(1+cq/ log q)d log n d5q(1+cq/ log q)d log n

all q = 2 d722.66d log n d522.66d log n

In the table c ≥ 1 is any constant, I.S. means “for infinite sequence of integers n”, P.S. means “perfect
square” and cq is the constant from Theorem 21.

Cover-Free Families (CFF): Let X be a set with N elements and B be a set of subsets (blocks) of
X. We say that (X,B) is (w, r)-cover-free family ((w, r)-CFF), [43], if for any w blocks B1, . . . , Bw ∈ B
and any other r blocks A1, . . . , Ar ∈ B, we have

w⋂
i=1

Bi 6⊆
r⋃
j=1

Aj .

The goal is to find (w, r)-CFF with small N . Let N((w, r), n) denotes the minimum number of points
in any (w, r)-CFF having n blocks. When w = 1, the problem is called group testing. It is easy to see
that CFF is d-restriction problem.

The problem (w, r)-cover-free family is equivalent to the following problem: An (w, r)-cover-free family
is a set F ⊆ {0, 1}n such that for every 1 ≤ i1 < i2 < · · · < id ≤ n where d = w+ r and every J ⊂ [d] of
size |J | = w there is a ∈ F such that aik = 0 for all k 6∈ J and aij = 1 for all j ∈ J . Then N((w, r), n)
is the minimum size of such F .

There are several lower bounds for N((w, r), n). We give the one in [78]

N((w, r), n) ≥ Ω

(
d
(
d
w

)
log
(
d
w

) log n

)
.

7

It follows from [79], that for infinite sequence of integers n, a (w, r)-cover free family of size M =
O
(
(wr)log∗ n log n

)
can be constructed in polynomial time. In [48], Liu and Shen show that for fixed

d (and therefore fixed w, r) there is an explicit construction of size O(log n) for infinite sequence of
integers n. This also follows, for all n and fixed d, from the (n, d)-universal set constructed in [52].

In this paper we show: for any constant c > 1, the following (w, r)-CFF can be constructed in polynomial
time

Poly time Union Lower
n w Size= Bound Bound

I.S O(1) rw+2

log r log n rw+1 log n rw+1

log r log n

all O(1) rw+3

log r log n rw+1 log n rw+1

log r log n

I.S. o(r) w2(ce)wrw+2

log r log n rw+1

(w/e)w−1/2 log n rw+1

(w/e)w+1 log r
log n

all o(r) w3(ce)wrw+3

log r log n rw+1

(w/e)w−1/2 log n rw+1

(w/e)w+1 log r
log n

To the best of our knowledge, this is the first asymptotically optimal (within poly(r)) construction for
any d, w = O(1) and n. For w = o(r) our construction is within ro(w) of the lower bound.

Separating Hash Family: Let X and Σ be sets of size n and q, respectively. We call a set F of
functions f : X → Σ an (M ;n, q, {d1, d2, . . . , dr}) separating hash family (SHF), [75, 76], if |F| = M
and for all pairwise disjoint subsets C1, C2, . . . , Cr ⊆ X with |Ci| = di for i = 1, 2, . . . , r, there is at
least one function f ∈ F such that f(C1), f(C2), . . . , f(Cr) are pairwise disjoint subsets. The minimal
M is denoted by M(n, q, {d1, d2, . . . , dr}). It is easy to see that this problem is d-restriction problem.

In [22], Bazrafshan and Trund proved that for D1 = d1 + d2 + · · ·+ dr,

M(n, q, {d1, d2, . . . , dr}) = Ω

(
D1

log n

log q

)
.

In [79], Stinson et. al. proved that an (M ;n, q, {d1, d2}) separating hash families of size

M = O((d1d2)log∗ n log n)

can be constructed in polynomial time for infinite sequence of integers n and q > d1d2. The same proof
gives a polynomial time construction for any separating hash family of size

M = O(Dlog∗ n
2 log n)

where
D2 =

∑
1≤i1<i2≤r

di1di2

8

when q > D2.

In [48], Liu and Shen provide an explicit construction of (M ;n, q, {d1, d2}) separating hash family
using algebraic curves over finite fields. They show that for infinite sequence of integers n there is an
explicit (M ;n, q, {d1, d2}) separating hash families of size O(log n) for fixed d1 and d2. This also follows
from [52], an (n, d1 +d2)-universal set over {0, 1} is a separating hash family of size O(log n) for fixed d1

and d2. In this paper we give a polynomial time construction of an (M ;n, q, {d1, d2}) separating hash
family of size M = ((d1d2)4 log n/ log q) for any q ≥ d1d2(1 + o(1)) and any n.

We show, for constant c > 1 and q > D2, the following (M ;n, q, {d1, d2, . . . , dr}) separating hash families
can be constructed in polynomial time

poly time Union Lower
n q Size = Bound Bound [17]

I.S. q ≥ cD2
2 D2

logn
log q D1

logn
log q D1

logn
log q

all q ≥ cD2
2 D2

2
logn
log q D1

logn
log q D1

logn
log q

I.S. q ≥ cD2 D2
2

logn
log d D1

logn
log(q/D2)) D1

logn
log q

all q ≥ cD2 D3
2

logn
log d D1

logn
log(q/D2) D1

logn
log q

I.S. q ≥ D2 + 1 D3
2

logn
log q D1 log n D1

logn
log q

all q ≥ D2 + 1 D4
2

logn
log q D1 log n D1

logn
log q

We now turn to another application of tester.

1.3 Black Box PIT

The second application of tester is getting asymptotically optimal black box PIT sets for classes of mul-
tivariate polynomials over finite fields with substitutions from an extension field of optimal dimension.

The black box Polynomial Identity Testing (PIT) problem is the following: Given an arithmetic circuit
C that either identical to the zero function or from a class of circuits C over a field F, with input variables
x1, x2, . . . , xn and given a substitution oracle that for an input a ∈ Fn returns f(a). Determine whether
C computes the identically zero polynomial. We say that S ⊂ Fn is a black box PIT set for C if for
every f ∈ C there is a ∈ S such that f(a) 6= 0.

When the field is finite Fq many simple classes of circuits, such as circuits that compute monomials,
require black box PIT sets of exponential size. Therefore, many papers in the literature allow the
substitution oracle to receive assignment a from some extension field Fqt of Fq. We say that S ⊂ Fnqt is
a black box PIT set over Fqt for C if for every f ∈ C there is a ∈ S such that f(a) 6= 0. Our goal will be
to minimize the size of the black box PIT set |S| and minimize the dimension of the extension field t.

For this problem we use tester in the following way. First we construct an optimal black box PIT set

9

S for the class over a large field FqT . We then use a tester to map the assignments in S to assignments
in a smaller field Fqt .

Asymptotically Optimal Black Box PIT Sets for Polynomials: We study the following classes
of multivariate polynomials: P(Fq, n) is the class of all multivariate polynomials in Fq[x1, . . . , xn] of
variable degree (maximal degree of the variables) at most q − 1, P(Fq, n, (d, r)) is the class of all
multivariate polynomials in P(Fq, n) of degree at most d and variable degree at most r ≤ q − 1,
P(Fq, n, d) = P(Fq, n, (d, q− 1)), P(Fq, n, s) is the class of all multivariate polynomials in P(Fq, n) with
at most s monomials. Polynomials in the latter class are called in the literature “sparse multivariate
polynomials”. P(Fq, n, (d, r), s) is the class of all multivariate polynomials in P(Fq, n) of degree at most
d, variable degree at most r and with at most s monomials.

To the best of our knowledge all the algorithms in the literature that construct black box PIT sets
for the above classes are either randomized, deterministic for some fixed extension field Fqt or obtains
non-optimal results in both the extension field dimension and the size of the black box PIT set [34, 24,
80, 39, 45, 9]. In this paper we give polynomial time constructions of black box PIT sets of size that
are within poly(n) of the optimal size, Also, the dimensions of the extension fields are optimal.

The following table summarizes some of our main results. See other results in Section 5.

Class Extension Lower Upper Explicit Poly Time
Field Fqt Bound Bound Construction Construction

P(Fq, n) t ≥ logq n+ 2 qn

t
(log(qn))·qn

t
n·qn
t

n·qn
t

P(Fq, n, r) t ≥ logq n+ 2 (r+1)n

t
(log(rn))·(r+1)n

t
n·(r+1)n

t
n·(r+1)n

t

P(Fq, n, (d, r)) t ≥ logq(d+ 1) R(n,d,r)
t

(log d)·R(n,d,r)
t

dnd+1

t
dnd+1

t

P(Fq, n, s) t ≥ logq n+ 2 n·s
t

(logn)n·s
t

q5n6·s
t

n7q29(log2 q)·s
t

P(Fq, n, r, s) t ≥ logq n+ 2 n log(r+1)
log q · st

n(logn) log(r+1)
log q · st

n6r5 log(r+1)
log q · st

n7r5q24(log2 r)·s
t

P(Fq, n, (d, r), s) t ≥ logq(d+ 1) d logn
log q ·

s
t

d(log d) logn
log q · st

d6 logn
log q ·

s
t

q24d7(log2 n)·s
t

Notice that our polynomial time constructions (column 6 in the above table) are optimal in the largest
parameters (qn, (r+1)n, nd and s in the last three rows of the table). For sparse polynomials P(Fq, n, s),
P(Fq, n, r, s) and P(Fq, n, (d, r), s), all the results in the literature give black box PIT sets of size that
are at least quadratic in the size s. Also, the tight tradeoff with the field dimension (·/t) in each row of
the table was not known before. The bound on the dimension of the field extension in the second column
is logq(degree) + 1 and is known to be the best possible dimension (even for randomized algorithms)
if one uses Schwartz-Zippel Lemma. Therefore, our constructions are tight in the dimension of the
field extension. For the class P(Fq, n, (d, r), s) (the last row of the table), the best known result in the
literature [45, 9] used field extension of dimension that depends on the number of the variables n. Our
result uses field extension of dimension logq(d+ 1) that is independent of the number of variables. Also
notice, that when q ≥ d+ 1 no extension field is needed. This will be further studied in [12] to give new

10

Pseudorandom generators over small fields.

In this paper we also develop a new bound that beats the upper bound of Schwartz-Zippel Lemma (See
Lemma 70). This new bound gives a randomized algorithm for polynomial size black box PIT set even
over field extension of dimension 2 (See the Table in Lemma 73). Our new bound also significantly
improves the upper bounds when the size of the sparse multivariate polynomial is small.

Reduction of Black Box PIT Sets over Large Field to Sets over Small Field: We give several
polynomial time reductions of black box PIT sets over large fields to black box PIT sets over small fields.
For example, consider a subclass C ⊆ P(Fq, n, d) and t such that qt ≥ d+ 1. We give a polynomial time
algorithm that takes a black box PIT set S of size w for C over an extended field FqT and constructs a
black box PIT set for C over Fqt of size O(d5 · wT/t).
In particular, we apply this result to the results in [70, 73, 74, 6] and get black box PIT sets over smaller
fields as indicated in the following table

Circuit Field Size of New Field New Size Ref.
Class size ≥ PIT set size ≥ of PIT set

ΣΠΣ(k, d, n) dnk2 poly(n) · dk d+ 1 poly(n) · dk+5 [70]

ΣrPkROF kn3 (kn)O(r+logn) kn+ 1 (kn)O(r+logn) [73]

ML ΣΠΣΠ(k) n2 nO(k3) n+ 1 nO(k3) [74]

Rk ML n2 nk
O(k)+O(k logn) n+ 1 nk

O(k)+O(k logn) [6]

The classes in the table are: ΣΠΣ(k, d, n) is the class of depth-3 circuits with n variables, degree d
and top fanin k. PkROF is the class of read once formulas (ROF, each variable appears at most once
in the formula) with n variables in which we are allowed to replace each variable xi with a univariate
polynomial Ti(xi) of degree at most k. ΣrPkROF is the sum of r PkROF formulas. Multilinear (ML)
ΣΠΣΠ(k) is the class of depth 4 circuits with n variables in which the fan-in of the top Σ gate is a
constant k and each multiplication gate computes a multilinear polynomial. Rk ML is the class of
multilinear formulas with n variables where each variable appears at most k times in the formula.

The table shows the reduction to a smaller field. For example, in the first row in the table, in [70],
Saxena and Seshadhri gave a black box PIT set for ΣΠΣ(k, d, n) over fields of size at least dnk2. We
apply our reduction to give a black box PIT set for ΣΠΣ(k, d, n) over fields of size at least d+ 1. Notice
that our field size is independent of n and when the field Fq satisfies q ≥ d + 1, no extension field is
needed.

1.4 Polynomial Restriction Problems

We now give another application of tester. Our new problem is called polynomial restriction problem
and is a generalization of the d-restriction problem. In the d-restriction problems all the functions

11

that determine the restrictions on the combinatorial structure depend on the same d variables. In the
polynomial restriction problem the functions that determine the restrictions may depend on all the vari-
ables but are multivariate polynomials with some bounded parameters (such as degree, variable degree
and size). Obviously, d-restriction problems are also polynomial restriction problems with polynomials
of degree d. We show that also for those problems several polynomial time constructions are almost
optimal. We now give a formal definition

Restriction Problem: A restriction problem is a problem of the following form: Given an alphabet
Σ of size |Σ| = q, an integer n and a class M of nonzero functions f : Σn → {0, 1}. Find a small set
A ⊆ Σn such that: For every f ∈M there is a ∈ A such that f(a) 6= 0.

We will study restriction problems when M is a class of multivariate polynomials over Fq.

(s, d)-Sparse (d, r)-Degree Polynomial Restriction Problem: Let P(Fq, n, ((d, r), s)) be the class
of all multivariate polynomials in Fq[x1, . . . , xn] of degree d and variable degree at most r with at most s
monomials of degree d and any number of monomials of degree less than d. We denote P(Fq, n, ((d, q−
1), s)) by P(Fq, n, (d, s)).

The (s, d)-sparse (d, r)-degree polynomial problem over Fq problem is the following: Given the class
P(Fq, n, ((d, r), s)). Find a small set S ⊂ Fnq such that for every f ∈ P(Fq, n, ((d, r), s)) there is a ∈ S
such that f(a) 6= 0. This problem can be regarded as black box PIT over Fq, hitting set problem or
polynomial restriction problem. We will call S a hitting set for P(Fq, n, ((d, r), s)). We note that this
class is not studied in the literature. Also notice that if f(x) ∈ P(Fq, n, (d, r), s) then for any vector of
constants α ∈ Fnq we have f(x + α) ∈ P(Fq, n, ((d, r), s)). The class P(Fq, n, ((d, r), s)) is much larger
than P(Fq, n, (d, r), s) since we allow any number of monomials of degree less than d in f and therefore
the union bound does not give good bounds for this class. We develop new techniques that find lower
and upper bounds for the size of a hitting set for this class and apply tester to construct almost optimal
size hitting set.

The following table summarizes the results for the size of the hitting sets for M = P(Fq, n, ((d, r), s))
when r ≤ p− 1 where p is the characteristic of the field.

Lower Upper Explicit Poly Time
Fq, d Bound Bound Construction Construction

q = 2 2ds log n 22ds log n 22.66ds log n 22.66ds log2 n

q = 2` ≤ d πdq,rs
logn
log q d(2πq,1)ds log n 2(1+cq)ds log n 2(1+cq)ds log2 n

q ≤ d πdq,rs
logn
log q d(2πq,1)ds log n 2(1+cq)dd!s log n 2(1+cq)dd!s log2 n

q ≤ d = O(1) s log n s log n s log n s log n

q ≥ d+ 1 ds logn
log q d2s logn

log(q/d) d6s logn
log q q24d7s · log2 n

q ≥ d+ 1 = O(1) s logn
log q s logn

log(q/d) s logn
log q s logn

log q

12

In the table, the constant πq,r satisfies

1 +
1

q − 1
≤ πq,r :=

(
q

q − r

)1/r

≤ q1/(q−1) = 1 +
ln q

q − 1
+O

(
log2 q

q2

)
≤ 2.

and the constant cq satisfies

cq =
∞∑
i=0

log(q2i + 1)

q2i
=

log (q + 1)

q
+O

(
log q

q2

)
< 1.66.

In the table all the bounds are tight in the parameter s, the number of monomials of degree d. The
explicit constructions (see footnote in page 6) are also tight in log n where in the polynomial time con-
structions we get (log n)2. This is because our algorithm requires an element of the field of multiplicative
order nO(d). When d = O(1) (rows 4 and 6 in the table) nd is polynomial and finding such element can
be done in polynomial time.

1.5 Organization of this Paper

This paper is organized as follows. In Section 2 we study testers. In Subsection 2.1 we give the definition
of tester and the classes of polynomials that will be studied here. In Subsection 2.2 we use elementary
algebra to give some basic properties of testers. In Subsection 2.3 we use algebraic function fields to get
the first non-trivial tester that reduces Fqt to Fq for polynomials of degree d ≤ q− 1. In Subsection 2.4
we give testers that reduce some subspace S ⊂ Fqt to Fq. Those testers will have small size. In
Subsection 2.5 we study testers that reduce Fqt to Fq for a subclass of polynomials of degree d with
no restriction on d. In Subsection 2.6 we define symmetric and reducible testers. Those will be used
to construct testers in polynomial time. In Subsection 2.7 we give lower bounds for the size of testers.
Those bounds will show that our testers are almost asymptotically optimal.

In Section 3 we show that there is a polynomial time algorithm that constructs almost optimal testers
that reduce Fqt to Fq. The way we prove that is as follows. In Subsection 3.3 we show how to reduce the
dimension of the field t to O(log log t), and then in Subsection 3.4 we show how to exhaustively search for
a symmetric tester for the smaller field in polynomial time. In Appendix B we discuss another possible
approach for building testers of smaller size. In Subsection 3.5 we give a polynomial time construction
for testers from a subspace S ⊂ Fqt to Fq. Those have size smaller than the above testers and can be
used to get better constructions for some problems. In Subsection 3.6 we show how to construct a tester
for a subclass of polynomial of degree d with no restriction on d. Then in Subsection 3.7 we show how
to construct a tester from Fqt to Fqt′ for any t′ ≤ t.
In Section 4 we show how to apply tester to d-restriction problems. We study perfect hash in Sub-
section 4.1, universal sets in Subsection 4.2, cover-free families in Subsection 4.3 and seperating hash
family in Subsection 4.4.

13

In Section 5 we show how to apply tester to black box PIT. In Subsections 5.1–5.2 we define the
polynomial classes we study and summarize the main results of this section. In Subsection 5.3 we give
some preliminary results. In Subsection 5.4 we show how to reduce a black box PIT set over a large field
to a black box PIT set over a smaller field. In Subsection 5.5 we prove new lower and upper bounds for
the size of black box PIT sets for several polynomial classes. Then in Subsections 5.6–5.9 we give the
polynomial time constructions for the classes. In Subsection 5.10 we consider other black box PIT sets
of classes of circuits known from the literature and apply the reduction to them.

In Section 6 we show how to apply tester to polynomial restriction problems. In Subsection 6.1 we give
a lower bound for this problem and in Subsection 6.2 we give a nonconstructive upper bound. Then in
Subsection 6.3 we give the polynomial time construction. We then finish the paper in Section 7 where
we discuss the results and future work.

2 Testers

In this section we define testers and construct explicit testers that will be used in the sequel.

2.1 Definition of Tester

Definition 1. Let F be a field and A and B be two commutative F-algebras. Let M⊆ F[x1, x2, . . . , xn]
be a class of multivariate polynomials. Let S ⊆ A and R ⊆ B be sub-linear spaces over F and L =
{`1, . . . , `ν} be a set of maps Sn → Rn. We denote by fL the map Sn → Bν where for a ∈ Sn,
(fL)(a) = (f(`1(a)), . . . , f(`ν(a))). We say that L is an (M, S,R)-tester if for every a ∈ Sn and
f ∈M we have (Here 0 = 0ν is the zero vector of length ν)

(fL)(a) = 0 =⇒ f(a) = 0.

The integer ν = |L| is called the size of the tester. The minimal size of an (M, S,R)-tester is denoted
by ν◦R(M, S). If no L exists then we write ν◦R(M, S) =∞. When S and R are known from the context
we then just say tester for M.

We will also allow L = {`1, . . . , `ν} to be a set of maps S → R. In that case `i : Sn → Rn is defined
as `i(a) = (`i(a1), . . . , `i(an)) where a = (a1, . . . , an) ∈ Sn. In such case we call the tester symmetric
tester.

We say that the tester is componentwise tester if `i(a) = (`i,1(a1), . . . , `i,n(an)) for some `i,j : S → R.
All the testers that will be considered in this paper are componentwise testers. A componentwise tester
is called reducible if `i,j(1A) = 1B where 1A and 1B are the identities of the algebras A and B respectively.

Let y = (y1, . . . ,yd) and yi = (yi,1, . . . , yi,n) be indeterminates over F for i = 1, . . . , d. A multilinear
polynomial in F[y] is called (n, d)-multilinear polynomial if each monomial of f contains exactly one

14

variable from each yi, i = 1, . . . , d. Let DML(F, n, d) be the class of all (n, d)-multilinear polynomials
in F[y]. Notice that DML(F, n, 2) is the class of all bilinear forms yT1 Ay2 where A ∈ Fn×n. We
denote νR(d, S) = ν◦R(DML(F, n, d), S). Let P(F, n, d) be the class of all multivariate polynomials in
F[x1, · · · , xn] of degree d and HP(F, n, d) be the class of all homogeneous polynomials of degree d. We
denote νPR (d, S) = ν◦R(P(F, n, d), S) and νHPR (d, S) = ν◦R(HP(F, n, d), S). Then

νR(d, S) ≤ νHPR (d, S) ≤ νPR (d, S). (1)

Note that we omit the parameter n in the definition of ν. We can do that since the bounds we find in
this paper are independent of n. When F is not clear from the context then we write: νR((d,F), S),
νPR ((d,F), S) and νHPR ((d,F), S).

In the following subsections we will study bounds for νFq , ν
P
Fq and νHPFq where Fq is the finite field with

q elements.

2.2 Preliminary Results for Testers

In this subsection we prove some elementary results on testers.

The following three Lemmas immediately follows from the definition of tester

Lemma 2. Let A and B be commutative F-algebras and C ⊆ S ⊆ A and R ⊂ B be subspaces over F. Let
M⊆ F[x1, . . . , xn]. If L is a (M, S,R)-tester then L is a (M, C,R)-tester. In particular, ν◦R(M, C) ≤
ν◦R(M, S).

Lemma 3. Let A and B be commutative F-algebras and S ⊆ A and R ⊆ B be subspaces over F.
Let M ⊂ N ⊆ F[x1, . . . , xn]. If L is a (N , S,R)-tester then L is a (M, S,R)-tester. In particular,
ν◦R(M, S) ≤ ν◦R(N , S).

Lemma 4. Let A,B, C be commutative F-algebras and M ⊆ F[x1, . . . , xn]. Let S1 ⊆ A, S2 ⊆ B
and S3 ⊆ C be subspaces over F. If L1 is a (M, S1, S2)-tester and L2 is a (M, S2, S3)-tester then
L2 ◦ L1 = {`2(`1) | `1 ∈ L1, `2 ∈ L2} is (M, S1, S3)-tester. In particular,

ν◦S3
(M, S1) ≤ ν◦S3

(M, S2) · ν◦S2
(M, S1).

In particular we have

Corollary 5. Let K be an extension field of F, A be a K-algebra and S ⊆ A be a sublinear space. Let
M⊆ F[x1, . . . , xn]. Then

ν◦F(M, S) ≤ ν◦F(M,K) · ν◦K(M, S).

In particular, for any integers t and m we have

ν◦Fq(M,Fqtm) ≤ ν◦Fq(M,Fqt) · ν◦Fqt (M,Fqtm)

15

and
νPFq(d,Fqtm) ≤ νPFq(d,Fqt) · ν

P
Fqt

(d,Fqtm).

We must note here that νPFqt
(d,Fqtm) may be understood as ν◦Fqt

(P(Fq, n, d),Fqtm) = νPFqt
((d,Fq),Fqtm),

which is what we meant in Corollary 5, or as ν◦Fqt
(P(Fqt , n, d),Fqtm) = νPFqt

((d,Fqt),Fqtm). The inequality

is true for both since, by Lemma 3

ν◦Fqt (P(Fq, n, d),Fqtm) ≤ ν◦Fqt (P(Fqt , n, d),Fqtm).

We now prove

Lemma 6. Let

M⊆ F[x]F[y] :=

{
s∑
i=1

hi(x)gi(y)

∣∣∣∣ hi ∈ F[x], gi ∈ F[y], s ∈ N

}

be a class of multivariate polynomials where x = (x1, . . . , xn) and y = (y1, . . . , ym) are indeterminates.
Let A be a commutative F-algebra, S ⊆ A sublinear space,

Mx =

{
s∑
i=1

λihi(x)

∣∣∣∣ s∑
i=1

hi(x)gi(y) ∈M,λ ∈ Fs, s ∈ N

}

and

My =

{
s∑
i=1

λigi(y)

∣∣∣∣ s∑
i=1

hi(x)gi(y) ∈M,λ ∈ Fs, s ∈ N

}
.

If Lx is an (Mx, S,F)-tester and Ly is an (My, S,F)-tester then Lx×Ly is a (M, S,F)-tester. That is,

ν◦F(M, S) ≤ ν◦F(Mx, S) · ν◦F(My, S).

In particular, for any d1 and d2

νF(d1 + d2, S) ≤ νF(d1, S) · νF(d2, S).

Proof. Suppose f(x,y) =
∑s

i=1 hi(x)gi(y) ∈ M, (a, b) ∈ Sn+m and (f(Lx × Ly))(a, b) = 0. Then
for every `x ∈ Lx and `y ∈ Ly we have f(`x(a), `y(b)) = 0. Since f(`x(a),y) ∈ My and Ly is an
(My, S,F)-tester we have: for every `x ∈ Lx, f(`x(a), b) = 0. Let ` be any linear transformation in A∗.
Then for every `x ∈ Lx

s∑
i=1

hi(`x(a))`(gi(b)) = `(f(`x(a), b)) = 0.

16

Since
∑s

i=1 hi(x)`(gi(b)) ∈ Mx and Lx is an (Mx, S,F)-tester we have:
∑s

i=1 hi(a)`(gi(b)) = 0 for
every linear transformation ` ∈ A∗. Now let {ω1, . . . , ωr} ⊂ A be a basis for Span F{g1(b), . . . , gs(b)}
and let `ωi , i = 1, 2, . . . , r be linear transformations in A∗ such that gi(b) =

∑r
j=1 `ωj (gi(b))ωj . Then

f(a, b) =
s∑
i=1

hi(a)gi(b)

=
s∑
i=1

hi(a)
r∑
j=1

`ωj (gi(b))ωj

=

r∑
j=1

ωj

s∑
i=1

hi(a)`ωj (gi(b)) = 0.

We now prove two lemmas for νPFq and νHPFq . Let Fq[X]w be the linear space of polynomials in Fq[X] of
degree at most w.

Lemma 7. We have

1. If q ≥ d(t− 1) then
νHPFq (d,Fqt) ≤ νHPFq (d,Fq[X]t−1) ≤ d(t− 1) + 1.

2. If q ≥ d(t− 1) + 1 then

νPFq(d,Fqt) ≤ ν
P
Fq(d,Fq[X]t−1) ≤ d(t− 1) + 1.

Proof. Let Fqt = Fq[α]/(g(α)) for some irreducible polynomial g(α) ∈ Fq[α] of degree t. Every element
in Fqt can be represented as ω0 + ω1α + · · · + ωt−1α

t−1 where ωi ∈ Fq for i = 0, 1, . . . , t − 1. We first
define the map `(ω0 + ω1α+ · · ·+ ωt−1α

t−1) = ω0 + ω1X + · · ·+ ωt−1X
t−1 where X is indeterminates

over Fq. Obviously, for any f ∈ Fq[x1, · · · , xn] and β = (β1, . . . , βn) ∈ Fnqt , if f(`(β1), . . . , `(βn)) = 0
then f(β1, . . . , βn) = 0. This gives a (Fq[x1, · · · , xn],Fqt ,Fq[X]t−1)-tester of size 1.

For every f ∈ P(Fq, n, d) and z1, . . . , zn ∈ Fq[X]t−1 we have f(z1, . . . , zn) ∈ Fq[X]d(t−1). Therefore, if
q ≥ d(t−1)+1, we can choose F ⊆ Fq of size d(t−1)+1 and if f(z1, . . . , zn)|X=β = 0 for all β ∈ F then
f(z1, . . . , zn) = 0. Therefore, L = {`β | β ∈ F} where `β : Fq[X]t−1 → Fq is defined as `β(z(X)) = z(β)
is a (P(Fq, n, d),Fq[X]t−1,Fq)-tester of size d(t− 1) + 1.

Combining both testers, by Lemma 3 and 4, we get a (P(Fq, n, d),Fqt ,Fq)-tester of size d(t − 1) + 1.
Therefore, for q ≥ d(t− 1) + 1,

νHPFq (d,Fqt) ≤ νPFq(d,Fqt) ≤ ν
P
Fq(d,Fq[X]t−1) ≤ d(t− 1) + 1.

17

This proves 1 and 2 for q ≥ d(t− 1) + 1.

For 1, when q = d(t − 1), consider f ∈ HP(Fq, n, d) and z1, . . . , zn ∈ Fq[X]t−1. Let F = Fq ∪ {∞}
and define for z ∈ Fq[X]t−1, `β(z) = z(β) if β ∈ Fq and `∞(z) to be the coefficient of Xt−1 in z.
Let L = {`β | β ∈ Fq ∪ {∞}}. It is easy to see that the coefficient of Xd(t−1) in f(z1, . . . , zn) is
f(`∞(z1), . . . , `∞(zn)). Now if f(`∞(z1), . . . , `∞(zn)) = 0 then f(z1, . . . , zn) is of degree d(t− 1)− 1 and
then if we also have f(`β(z1), . . . , `β(zn)) = f(z1, . . . , zn)|X=β = 0 for all β ∈ Fq then f(z1, . . . , zn) ≡ 0.
Therefore L = {`β | β ∈ F} is a (HP(Fq, n, d),Fq[X]t−1,Fq)-tester of size d(t− 1) + 1.

The next result in this subsection shows how to reduce testers for degree d polynomials in Fqt to
testers in Fqlog(dt)/ log q . This will be used to construct testers that are almost (within poly(d)) optimal
in polynomial time.

For any positive integer k, let Nq(k) denotes the number of monic irreducible polynomial of degree k
over Fq [47]. We first prove the following

Lemma 8. For any finite field Fq and any integers r and t such that qr−1 ≥ dt− d+ 1, we have

νPFq(d,Fqt) ≤
(
dt− d+ 1

r
+ 1

)
· νPFq (d,Fqr) .

Proof. By Lemma 7 and Lemma 4 we have

νPFq(d,Fqt) ≤ ν
P
Fq(d,Fq[X]t−1) ≤ νPFqr ((d,Fq),Fq[X]t−1) · νPFq(d,Fqr). (2)

Now it is enough to prove the following lemma.

Lemma 9. For any finite field Fq and any integers r and t such that qr−1 ≥ dt− d+ 1, we have

νPFqr ((d,Fq),Fq[X]t−1) ≤ dt− d+ 1

r
+ 1. (3)

Proof. It is known that qr−1 < rNq(r) ≤ qr, [47]. Let R′ be the set of all monic irreducible polynomials
of degree r. Since

deg

∏
p∈R′

p

 = rNq(r) > qr−1 ≥ dt− d+ 1,

we can choose R ⊆ R′ such that

dt− d+ 1 ≤ deg

∏
p∈R

p

 < dt− d+ 1 + r.

18

Let f ∈ P(Fq, n, d), z1, . . . , zn ∈ Fq[X]t−1 and g(X) = f(z1, . . . , zn) ∈ Fq[X]dt−d. Now g ≡ 0 if and only
if g mod (

∏
p∈R p) ≡ 0 if and only if g mod p ≡ 0 for all p ∈ R. Now since g ∈ Fq[X] then g mod p ≡ 0

if and only if g(β) = f(z1(β), . . . , zn(β)) = 0 for one root β ∈ Fqr of p. See Theorem 3.33 (ii) in [47].

Therefore,

νPFqr ((d,Fq),Fq[X]t−1) ≤ |R| ≤ dt− d+ 1 + r

r
.

We note that a slightly better bound can be proved if R′ is the set of all the irreducible polynomials of
degree at most r. Now notice that when t1 = t and ti+1 = dlog(dti)/ log qe+1 then qti+1−1 ≥ dti−d+1,
and by Lemma 8 we have

νPFq(d,Fqti) ≤
(
dti − d+ 1

ti+1
+ 1

)
· νPFq

(
d,Fqti+1

)
≤ (d+ 1)

ti
ti+1
· νPFq

(
d,Fqti+1

)
.

Therefore, if q ≥ d+ 1 and using Lemma 7 for the last step of the above recurrence, we get

νPFq(d,Fqt) ≤ d
log∗ t+O(1) · t

where log∗ t is the minimum integer i in which ti ≤ 4 (or any other constant). In the next subsection
we prove that for q ≥ d+ 1

νPFq(d,Fqt) ≤ d
O(1) · t.

When r divides t then a better bound is proved in the following

Lemma 10. For any finite field Fq, any integers r and t such that r|t and qr ≥ d(t/r− 1) + 1, we have

νPFq(d,Fqt) ≤
(
dt

r
− d+ 1

)
· νPFq (d,Fqr) .

Proof. By Corollary 5 we have

νPFq(d,Fqt) ≤ ν
P
Fq(d,Fqr) · ν

P
Fqr ((d,Fq),F(qr)t/r).

Now by Lemma 7 and 3, if qr ≥ d(t/r − 1) + 1 we have

νPFqr ((d,Fq),F(qr)t/r) ≤ ν
P
Fqr (d,F(qr)t/r) ≤

dt

r
− d+ 1.

19

2.3 Testers for Large Fields

In this subsection we use algebraic function fields to construct explicit testers for large fields. We prove

Theorem 11. For any q ≥ d+ 1 and any t we have

νPFq(d,Fqt) ≤ poly(d) · t.

In particular, the bound is also true for νFq(d,Fqt) and νHPFq (d,Fqt).

We will in fact prove the bound νPFq(d,Fqt) = O(d4)·t. For better bounds when q is large see Corollary 17.

For notations used in this subsection we refer the reader to Appendix A. See also Subsections 1.1− 1.4
in [67]. In this subsection we prove Theorem 11 and then in Subsection 3.4 we show how to construct
such tester in polynomial time.

We first prove few lemmas using the technique used in [8], Lemma 2.2. (Here we use ` for linear maps
and l for the dimension of divisors.)

Lemma 12. Let F/Fq be a function field, P1, . . . , Ps be distinct places of F/Fq of degree 1 and D =
P1 +P2 + · · ·+Ps. Let G be a divisor of F/Fq such that (supp D)∩(supp G) = Ø. Let L = {`P1 , . . . , `Ps}
where `Pi : L (G)→ Fq ∪ {∞} is defined as `Pi(x) = x(Pi). Then

1. If s > ddeg(G) then any L′ ⊆ L where |L′| = ddeg(G) + 1 is a symmetric and reducible
(P(Fq, n, d),L (G),Fq)-tester.

2. If s > ddeg(G) then there is L̄ ⊆ L of size l(dG) ≤ ddeg(G) + 1 such that L̄ is a symmetric and
reducible (P(Fq, n, d),L (G),Fq)-tester.

3. If s > d deg(G) ≥ 2g − 1 then there is L̄ ⊆ L of size l(dG) = ddeg(G) − g + 1 such that L̄ is a
symmetric and reducible (P(Fq, n, d),L (G),Fq)-tester. In particular,

νPFq(d,L (G)) ≤ l(dG) = ddeg(G)− g + 1.

Proof. Let M = P(Fq, n, d) and M(L (G)n) = {f(x) | f ∈ M,x ∈ L (G)n}. We first show that `Pi
is well defined, i.e., `Pi : L (G) → Fq. Let z ∈ L (G). Then for every i, vPi(z) ≥ −vPi(G) = 0 and
therefore by 6 and 7 in Proposition 89, `Pi(z) = z(Pi) 6= ∞. Also, since Pi is of degree 1 we have
`Pi(z) = z(Pi) ∈ Fq.

In the same way the linear function `Pi : L (dG) → Fq is well defined. By Proposition 88, for x =
(x1, . . . , xn) ∈ L (G)n we have f(`Pi(x1), . . . , `Pi(xn)) = `Pi(f(x)) and by Proposition 91, f(x) ∈

20

M(L (G)n) ⊆ L (dG). Now if f(`Pi(x1), . . . , `Pi(xn)) = 0 for every Pi ∈ L′ then `Pi(f(x)) = 0 for every
Pi ∈ L′ and therefore f(x) ∈ Ker(`Pi) for every Pi ∈ L′. Therefore, it is enough to show that

L (dG)
⋂ ⋂

Pi∈L′
Ker(`Pi)

 = {0}.

If z ∈ L (dG) ∩Ker(`Pi) for all Pi ∈ L′ then `Pi(z) = z(Pi) = 0 and by 7 in Proposition 89, vPi(z) ≥ 1.
Then, since (supp D) ∩ (supp G) = Ø we have z ∈ L (dG−D′) where

D′ =
∑
Pi∈L′

Pi.

This implies that

L (dG) ∩
⋂
Pi∈L′

Ker(`Pi) ⊆ L (dG−D′).

Now since deg(dG−D′) = d degG−|L′| = −1 < 0, by 3 in Proposition 90, we have L (dG−D′) = {0}.
Therefore L′ is a symmetric and reducible (P(Fq, n, d),L (G),Fq)-tester.

Obviously, the tester L is symmetric. Since by Proposition 88, `Pi(1) = 1(Pi) = 1, the tester is also
reducible. This completes the proof of 1.

Now consider the linear map

T : L (dG) → Fsq
f 7→ (f(P1), f(P2), . . . , f(Ps)).

In 1 we actually have proved that kerT = {0}. Therefore, there are w = dim L (dG) places Pi1 , . . . , Piw
such that the map

T ′ : L (dG) → Fwq
f 7→ (f(Pi1), f(Pi2), . . . , f(Piw))

is an isomorphism. This completes the proof of 2.

Now by Proposition 92, we have w = dim L (dG) = l(dG) = deg(dG)− g + 1 = ddeg(G)− g + 1. This
proves 3.

Lemma 13. Let F/Fq be a function field. Let G be a divisor of F/Fq and Q be a prime divisor of
degree degQ = t = l(G) such that vQ(G) = 0. If l(G−Q) = 0 then the map

E : L (G) → FQ = Fqt
f 7→ f(Q)

21

is isomorphism of vector spaces over Fq and L = {E−1} is a symmetric and reducible (Fq[x],Fqt ,L (G))-
tester where x = (x1, . . . , xm). In particular,

ν◦L (G)(Fq[x],Fqt) = 1.

Proof. We first show that the map E is an isomorphism of linear spaces. Let f ∈ L (G). Then
vQ(f) ≥ −vQ(G) = 0 and therefore by Proposition 89, f(Q) 6=∞ and the map is well defined. Since Q
is prime divisor of degree t we have dim L (G) = l(G) = t = [FQ : Fq] = dimFQ. Therefore, FQ = Fqt .

Now we show that KerE = {0}. Let f ∈ L (G). If f ∈ KerE then f(Q) = 0 and therefore vQ(f) > 0.
Since vQ(G) = 0 and l(G − Q) = 0 we have f ∈ L (G − Q) = {0}. Therefore E is an isomorphism of
vector spaces.

Now suppose h ∈ Fq[x] and let E = (E,E, . . . , E) and E−1 = (E−1, E−1, . . . , E−1). Let a ∈ Fmqt . If

(hL)(a) = 0 then 0 = ((hL)(a))(Q) = h(E−1(a))(Q) = h(E(E−1(a))) = h(a).

Since E(1) = 1(Q) = 1 we have E−1(1) = 1 and the tester is reducible.

Ballet in [8] shows that there is a devisor G and a prime devisor Q that satisfy the conditions in
Lemma 13. We state the result in the following

Lemma 14. Let F/Fq be algebraic function field of genus g that contains at least g+1 places of degree 1.
Let Q be a prime divisor of degree t. There is a divisor G that satisfies the following

1. vQ(G) = 0

2. vP (G) = 0 for any prime divisor P of degree 1.

3. l(G) = degQ = t.

4. deg(G) = t+ g − 1.

5. l(G−Q) = 0.

Proof. The proof follows immediately from Lemma 2.1 and 2.2 in [8].

We now use the above three lemmas to prove

Lemma 15. Let F/Fq be a function field of genus g and t ≥ 3 + 2 logq(2g+ 1). If F has d(t+ g−1) + 1
places of degree 1 then

νPFq(d,Fqt) ≤ dt+ (d− 1)(g − 1).

22

Proof. First, by Corollary 5.2.10 (c) in [67], if 2g + 1 ≤ q(t−1)/2(q1/2 − 1) then there is a prime divisor
of degree t. Since t ≥ 3 + 2 logq(2g + 1) the inequality holds and there is at least one prime divisor
of degree t. Let Q be such divisor. Let P1, . . . , Ps, s = d(t + g − 1) + 1, be distinct places of F/Fq of
degree 1 and D = P1 + P2 + · · · + Ps. In Lemma 14 we proved that there is a divisor G of F/Fq such
that (supp D) ∩ (supp G) = Ø, degQ = t = l(G), vQ(G) = 0, degG = t+ g − 1 and l(G−Q) = 0.

By Lemmas 13, 12 and Lemma 4 we have

νPFq(d,Fqt) ≤ ν
P
Fq(d,L (G)) · νPL (G)(d,Fqt) ≤ ddegG− g + 1 = dt+ (d− 1)(g − 1).

We are now ready to give the explicit construction.

A tower of function fields over Fq is a sequence F = (F (0), F (1), F (2), · · ·) of function fields F (i)/Fq with
F (0) ⊆ F (1) ⊆ F (2) ⊆ · · · where each extension F (k+1)/F (k) is finite and separable

There are many explicit towers known from the literature. We will use the following W1 tower defined
in [36]. See also [37] Chapter 1.

Lemma 16. Let x1 be indeterminate over Fq2 and F (1) = Fq2(x1). For k ≥ 1 let F (k) = F (k−1)(xk)
where

xqk + xk =
xqk−1

xq−1
k−1 + 1

.

Let gk be the genus of F (k)/Fq2 and Nk the number of places in F (k)/Fq2 of degree 1. Then

gk =

{
qk − 2qk/2 + 1 if k = 0 mod 2

qk − q(k+1)/2 − q(k−1)/2 + 1 if k = 1 mod 2
(4)

and

Nk =

{
(q2 − q)qk−1 + 2q if k ≥ 3, q = 0 mod 2
(q2 − q)qk−1 + 2q2 if k ≥ 3, q = 1 mod 2

(5)

We are now ready to prove Theorem 11.

Proof. We first prove the result for q ≥ 2(d + 1). Let r be an integer such that qr+1 < 2dt ≤ qr+2.
Consider the function field F (r+1)/Fq2 defined in Lemma 16. By Lemma 16, F (r+1) is of genus g ≤ qr+1

and has N ≥ qr+2 − qr+1 places of degree 1. By Lemma 15, since

N ≥ qr+2 − qr+1 =
qr+2

2
+

(
qr+2

2
− qr+1

)
≥ dt+ dqr+1

≥ d(t+ g − 1) + 1

23

we have

νPFq2
(d,Fq2t) ≤ dt+ (d− 1)(g − 1) ≤ d(t+ qr+1) ≤ d(2d+ 1)t. (6)

Now by Lemma 2 and 7 and Corollary 5 we have

νPFq(d,Fqt) ≤ ν
P
Fq(d,Fq2t) ≤ ν

P
Fq(d,Fq2) · νPFq2 (d,Fq2t) = d(d+ 1)(2d+ 1)t.

This proves the result for q ≥ 2(d+ 1).

Notice that thus far we have proved that: for any t and any q ≥ 2(d + 1) we have νPFq(d,Fqt) ≤
d(d+ 1)(2d+ 1)t. In particular, for any t and any q2 ≥ 2(d+ 1) we have

νPFq2
(d,Fq2t) ≤ d(d+ 1)(2d+ 1)t. (7)

Now for q ≥ d+ 1 we have q2 ≥ 2(d+ 1) and with (7) we have

νPFq(d,Fqt) ≤ ν
P
Fq(d,Fq2t) ≤ ν

P
Fq(d,Fq2) · νPFq2 (d,Fq2t) = d(d+ 1)2(2d+ 1)t. (8)

This proves the result.

Recall that νFq(d,Fqt) ≤ νHPFq (d,Fqt) ≤ νPFq(d,Fqt). Therefore all the above bounds and the bounds in

the following Corollary are also true for νHPFq (d,Fqt) and νFq(d,Fqt). We now prove

Corollary 17. Let c > 1 be any constant. We have

1. For perfect square q where q ≥ c(d + 1)2 there is an infinite sequence of integers t such that
νPFq(d,Fqt) = O(dt).

2. For perfect square q where q ≥ c(d+ 1)2 and any integer t we have νPFq(d,Fqt) = O(d2t).

3. For any q ≥ c(d+ 1) there is an infinite sequence of integers t such that νPFq(d,Fqt) = O(d2t).

4. For any q ≥ c(d+ 1) and any integers t we have νPFq(d,Fqt) = O(d3t).

5. For any q ≥ d+ 1 there is an infinite sequence of integers t such that νPFq(d,Fqt) = O(d3t).

6. For any q ≥ d+ 1 and any integers t we have νPFq(d,Fqt) = O(d4t).

7. For any q ≥ d and any integers t we have νHPFq (d,Fqt) = O(d4t).

8. For any q < d+ 1 and any integers t > 1 we have νPFq(d,Fqt) =∞.

24

9. For any q < d and any integers t > 1 we have νHPFq (d,Fqt) =∞.

Proof. Let q ≥ c(d + 1) for some c > 1 and r be an integer such that qr+1 < (c/(c − 1))dt ≤ qr+2.
Consider the function field F (r+1)/Fq2 as in the proof of Theorem 11. Then F (r+1)/Fq2 is of genus
g ≤ qr+1 and has N ≥ qr+2 − qr+1 places of degree 1. Since

N ≥ qr+2 − qr+1 ≥ qr+2 −
(q
c
− d
)
qr+1 ≥ c− 1

c
qr+2 + dqr+1 ≥ d(t+ qr+1) ≥ d(t+ g − 1) + 1,

by Lemma 15,

νPFq2
(d,Fq2t) ≤ d(t+ qr+1) ≤

(
c

c− 1
d+ 1

)
dt. (9)

Therefore, for a perfect square q ≥ c(d+ 1)2 we have
√
q ≥
√
c(d+ 1). Then (9) implies

νPFq(d,Fqt) ≤
(√

c√
c− 1

d+ 1

)
dt. (10)

This proves 2.

If t = b(c− 1)qr+2/(cd)c then qr+1 < (c/(c− 1))dt ≤ qr+2 and therefore

νPFq2
(d,Fq2t) ≤ d(t+ qr+1)

≤ d

(
t+

d

q

c(t+ 1)

(c− 1)

)
≤ d

(
t+

(t+ 1)

(c− 1)

)
≤ 2c

c− 1
dt. (11)

Therefore, for a perfect square q ≥ c(d + 1)2 we have
√
q ≥

√
c(d + 1). Then for t = b(

√
c −

1)q(r+2)/2/(
√
cd)c, (11) implies

νPFq(d,Fqt) ≤
2
√
c√

c− 1
dt. (12)

This proves 1.

Now, for q ≥ c(d+ 1), by Lemma 2, Lemma 7, Corollary 5 and (9), we have

νPFq(d,Fqt) ≤ ν
P
Fq(d,Fq2t) ≤ ν

P
Fq(d,Fq2) · νPFq2 (d,Fq2t) ≤

(
c

c− 1
d+ 1

)
d(d+ 1)t. (13)

For t = b(c− 1)qr+2/(cd)c, by (11),

νPFq(d,Fqt) ≤ ν
P
Fq(d,Fq2) · νPFq2 (d,Fq2t) ≤

2c

c− 1
d(d+ 1)t. (14)

25

This proves 3 and 4.

Now by (13) and (14) if q ≥ d+ 1 then q2 = (d+ 1)2 ≥ 2(d+ 1) and therefore,

νPFq2
(d,F(q2)t) ≤ (2d+ 1)d(d+ 1)t

and for t = b(q2)r+2/(2d)c,
νPFq2

(d,F(q2)t) ≤ 4d(d+ 1)t.

Therefore

νPFq(d,Fqt) ≤ ν
P
Fq(d,Fq2t) ≤ ν

P
Fq(d,Fq2) · νPFq2 (d,Fq2t) ≤ d(d+ 1)2(2d+ 1)t,

and for t = b(q2)r+2/(2d)c,

νPFq(d,Fqt) ≤ ν
P
Fq(d,Fq2t) ≤ ν

P
Fq(d,Fq2) · νPFq2 (d,Fq2t) ≤ 4d(d+ 1)2t.

This proves 5 and 6.

Now by Corollary 5, Lemma 7 and 4, for q ≥ d,

νHPFq (d,Fqt) ≤ νHPFq (d,Fq2) · νHPFq2
(d,F(q2)t) ≤ O(d4)t.

This proves 7.

8 and 9 are proved in Lemma 28.

We note here that there are other results that can be obtained with other conditions on d and q that
are not included in the above lemma. For example, when q is perfect square and q ≥ (d + 2)2 then
νPFq(d,Fqt) ≤ O(d3t). This follows if we choose c = (d+ 2)/(d+ 1) in the above proof.

In Subsection 3.4 we show that a tester with the bound in Theorem 11 can be constructed in polynomial
time. In Subsection 2.7 we show that the size of the above tester is almost optimal.

Before we leave this subsection we state the following open problems

Open Problems 1. Let c > 1 be any constant. Prove

1. For perfect square q where q ≥ c(d+ 1)2 and any integer t we have νPFq(d,Fqt) = O(dt).

This will implies

2. For any q ≥ c(d+ 1) and any integers t we have νPFq(d,Fqt) = O(d2t) and

3. For any q ≥ d+ 1 and any integers t we have νPFq(d,Fqt) = O(d3t).

Is the following true?

4. There is a constant C > 1 such that for every q ≥ C(d+ 1) and infinite sequence of integers t we
have νPFq(d,Fqt) = O(dt).

26

2.4 Testers for Subspaces of Large Fields

In this subsection we study (M, S,Fq)-testers when S ⊂ Fqt is a linear subspace over Fq. In the
next section we show that such testers can be easily constructed in polynomial time and, for many
applications, are almost as good as the testers in the previous subsection.

We start with the following

Lemma 18. Let F/Fq be a function field of genus g. Let G be a divisor of F/Fq and Q be a prime
divisor of degree degQ = t = degG+ 1 such that vQ(G) = 0. Then the map

E : L (G) → FQ = Fqt
f 7→ f(Q)

is one-to-one linear map and there is a symmetric and reducible (Fq[x], S,L (G))-tester of size 1 where
S = E(L (G)) and x = (x1, . . . , xm).

In particular, S ⊆ Fqt is a linear subspace over Fq, |S| = ql(G) ≥ qt−g and

ν◦L (G)(Fq[x], S) = 1.

Proof. We first show that the map E is a one-to-one linear map. Let f ∈ L (G). Then vQ(f) ≥
−vQ(G) = 0 and therefore f(Q) 6= ∞ and the map is well defined. The fact that it is a linear map
follows from Proposition 88.

Now we show that KerE = {0}. Let f ∈ L (G). Then (f) ≥ −G. If f ∈ KerE then f(Q) = 0 and
therefore vQ(f) > 0. Since vQ(G) = 0 we have f ∈ L (G − Q). Since deg(G − Q) = −1 by 3 in
Proposition 90, L (G−Q) = {0} and therefore f = 0. Therefore E is a one-to-one linear map and the
map ES : L (G)→ S defined as ES(f) = E(f) is an isomorphism of linear spaces over Fq.

Now suppose h ∈ Fq[x] and let ES = (ES , ES , . . . , ES) and E−1
S = (E−1

S , E−1
S , . . . , E−1

S). Consider
the tester L = {E−1

S }. Let a ∈ Sm. If (hL)(a) = 0 then 0 = ((hL)(a))(Q) = h(E−1
S (a))(Q) =

h(ES(E−1
S (a))) = h(a).

Since ES(1) = 1(Q) = 1 we have E−1
S (1) = 1 and the tester is reducible.

Since ES is isomorphism we have |S| = |L (G)| = ql(G) and by the Riemann-Roch Theorem, Proposi-
tion 92, we have l(G) ≥ degG+ 1− g = t− g.

We now prove

Lemma 19. Let F/Fq be a function field of genus g and let t, g > 4. If F has d(t + g − 1) + 2 places
of degree 1 then there is a sublinear space S ⊆ Fqt+g of size qt such that νPFq(d, S) ≤ d(t+ g − 1) + 1.

27

Proof. First, by Corollary 5.2.10 (c) in [67], if 2g+ 1 ≤ q(t+g−1)/2(q1/2− 1) then there is a prime divisor
of degree t+ g. Since t, g > 4 the inequality holds and there is at least one prime divisor of degree t+ g.
Let Q be a prime divisor of degree t+ g.

Let P1, . . . , Ps, P∞, s = d(t+g−1)+1, be distinct places of F/Fq of degree 1 and D = P1 +P2 + · · ·+Ps
and let G = (t + g − 1)P∞. By Lemma 18 there is a subspace S ⊆ Fqt+g of size |S| = qt such that
νPL (G)(d, S) = 1.

By 1 in Lemma 12 and Lemma 4 we have

νPFq(d, S) ≤ νPFq(d,L (G)) · νPL (G)(d, S) ≤ ddegG+ 1 = d(t+ g − 1) + 1.

Note that in the above lemma we could have used 2 in Lemma 12 and get νPFq(d, S) ≤ dt+(d−1)(g−1).
This will not effect the asymptotic bounds we get in this paper. Also, we will see in the next subsection
that the construction of such tester is easier using this bound.

Now we prove a result similar to Corollary 17

Corollary 20. Let c > 1 be any constant. For every t there is a sublinear space St ⊆ FqT over Fq for
some T = O(dt) of size |St| = qt such that:

1. For perfect square q where q ≥ c(d+ 1)2 and any integer t we have νPFq(d, St) = O(d2t).

2. For any q ≥ c(d+ 1) and any integers t we have νPFq(d, St) = O(d3t).

3. For any q ≥ d+ 1 and any integers t we have νPFq(d, St) = O(d4t).

Let c > 1 be any constant. For every t there is a sublinear space St ⊆ FqT over Fq for some T = O(t)
of size |St| = qt such that:

4. For perfect square q where q ≥ c(d + 1)2 there is an infinite sequence of integers t such that
νPFq(d, St) = O(dt).

5. For any q ≥ c(d+ 1) there is an infinite sequence of integers t such that νPFq(d, St) = O(d2t).

6. For any q ≥ d+ 1 there is an infinite sequence of integers t such that νPFq(d, St) = O(d3t).

Proof. The proof is very similar to that of Corollary 17. Let q ≥ c(d + 1) and r be an integer such
that qr+1 < (c/(c− 1))dt ≤ qr+2. Consider the function field F (r+1)/Fq2 as in the proof of Theorem 11.

Then F (r+1)/Fq2 is of genus g ≤ qr+1 and has N ≥ qr+2 − qr+1 places of degree 1. Since

N ≥ qr+2 − qr+1 ≥ qr+2 −
(q
c
− d
)
qr+1 ≥ c− 1

c
qr+2 + dqr+1 ≥ d(t+ qr+1) ≥ d(t+ g − 1) + 2

28

we have N ≥ d(t + g − 1) + 2 and by Lemma 19, there is a sublinear space S ⊆ F(q2)t+g of size (q2)t

such that

νPFq2
(d, S) ≤ d(t+ qr+1) ≤

(
c

c− 1
d+ 1

)
dt. (15)

Also T = t+ g ≤ t+ qr+1 = O(dt). This proves 1.

When t = b(c− 1)qr+2/(cd)c then

νPFq2
(d, S) ≤ d(t+ qr+1)

≤ d

(
t+

d

q

c(t+ 1)

(c− 1)

)
≤ d

(
t+

(t+ 1)

(c− 1)

)
≤ 2c

c− 1
dt.

In this case T = t+ g ≤ t+ qr+1 = O(t). This proves 4.

Now for the same S ⊆ F(q2)t+g = Fq2t+2g as above, by Lemma 7 and Corollary 5 we have

νPFq(d, S) ≤ νPFq(d,Fq2) · νPFq2 (d, S) =

(
c

c− 1
d+ 1

)
d(d+ 1)t. (16)

and for t = b(c− 1)qr+2/(cd)c,

νPFq(d, S) ≤ 2c

c− 1
d(d+ 1)t. (17)

Since T = 2t+ 2g ≤ 2t+ 2qr+1 = O(dt) in the former and = O(t) in the latter, this proves 2 and 5.

Now for q ≥ d + 1 we have q2 = (d + 1)2 ≥ 2(d + 1) and therefore by (16) and (17), there is S′ ⊆
F(q2)(2t+2g) = Fq(4t+4g) of size |S′| = qt such that

νPFq(d, S
′) ≤ νPFq(d,Fq2) · νPFq2 (d, S′) = d(d+ 1)2(2d+ 1)t,

and for t = bqr+2/(2d)c,
νPFq(d, S

′) ≤ 4d(d+ 1)2.

Since T = 4t+ 4g ≤ 4t+ 4qr+1 = O(dt) in the former and = O(t) in the latter, this proves 3 and 6.

We note here that Corollary 20 is subsumed by Corollary 17 but as we will show in the sequel, its
construction requires less time complexity.

29

2.5 Testers for Small Fields

In this subsection we use some elementary algebra and Theorem 11 to construct testers for small fields.
We prove

Theorem 21. For any q < d+ 1 and t we have

νFq(d,Fqt) ≤ poly(d) · 2cqd · t

where

cq =
∞∑
i=0

log(q2i + 1)

q2i
= O

(
log q

q

)
.

In particular we have following values of cq

q cq

2 1.659945821

3 1.116191294

4 0.867464571

5 0.719921672

7 0.548433289

Proof. By Lemma 2, Corollary 5, Lemma 6 and 7 and (1) we have

1. νFq(d,Fqt1) ≤ νFq(d,Fqt1t2).

2. νFq(d,Fqt1t2) ≤ νFq(d,Fqt1) · νF
qt1

(d,Fqt1t2).

3. νFq(d1 + d2,Fqt) ≤ νFq(d1,Fqt) · νFq(d2,Fqt).

4. νFq(q,Fq2) ≤ q + 1.

30

Let r be such that q2r−1
< d+ 1 ≤ q2r . Then

νFq(d,Fqt) ≤ νFq(d,Fqt·2r) By (1)

≤

(
r−1∏
i=0

νF
q2
i (d,Fq2i+1)

)
νF

q2
r (d,F(q2r)t) By (2)

≤

(
r−1∏
i=0

νF
q2
i (q

2i ,F
q2i+1)dd/q

2ie

)
νF

q2
r (d,F(q2r)t) By (3)

≤

(
r−1∏
i=0

(
q2i + 1

)dd/q2ie)
νF

q2
r (d,F(q2r)t) By (4)

≤

((
r−1∏
i=0

(
q2i + 1

))
2cqd

)
poly(d) · t By Theorem 11

≤ poly(d) · 2cqd · t.

We note here that the poly(d) part in the proof is at most O(d6). We now show how to reduce it to
O(d5). Take r such that q2r−1

< 2(d+ 1) ≤ q2r . Then

r−1∏
i=0

(q2i + 1) =
q2r − 1

q − 1
≤ 4(d+ 1)2

and by Corollary 17 for q2r ≥ 2(d+ 1)

νF
q2
r (d,F(q2r)t) = O(d3)t.

Therefore

νFq(d,Fqt) ≤

((
r−1∏
i=0

(
q2i + 1

))
2cqd

)
νF

q2
r (d,F(q2r)t) ≤ O(d5)2cqd · t.

In Subsection 3.6 we show that a tester with such size can be constructed in time 2cqd · poly(t). In
Subsection 2.7 we give the lower bound νFq(d,Fqt) = 2Ω(d/q)t for the above tester. This shows that the
size of the above tester is almost optimal. We now list some open problems

Open Problems 2.

1. For q = 2 the upper bound for νF2(d,F2t) is 21.6599d · t and the lower bound is 2d · t (see Theorem
27). Find better bounds.

31

2. A computer program may exhaustively searches for a better upper bound for νF2(d,F22) for small
d. This will lead to a better upper bound for νF2(d,F2t) for any d. For example, νF2(4,F22) ≤
νF2(2,F22)2 = 9. If we can prove νF2(4,F22) ≤ 8 then νF2(d,F22) ≤ 8dd/4e and then we get the
upper bound νF2(d,F2t) ≤ 21.6174d · t.

2.6 Symmetric and Reducible Testers

In this subsection we give a classification of symmetric and reducible tester. This classification will first
help us understand the algebraic structure of symmetric and reducible tester. Then it will show that the
problem of deciding, given a set of maps L, whether L is a symmetric and reducible (P(Fq, n, d),Fqt ,Fq)-
tester is in NP. This will be used in the next subsection to construct a symmetric and reducible
(P(Fq, n, d),Fqt ,Fq)-tester of almost (within d2) optimal size in polynomial time.

2.6.1 Definition

We recall the definition of symmetric and reducible tester

Definition 22. Let F be a field and A and B be two commutative F-algebras. LetM⊆ F[x1, x2, . . . , xn]
be a class of multivariate polynomials. Let S ⊆ A and R ⊆ B be sub-linear spaces over F and L =
{`1, . . . , `ν} be a set of maps S → R. Let `i : Sn → Rn where for a ∈ Sn,

`i(a) = (`i(a1), `i(a2), . . . , `i(an)).

We denote by fL the map Sn → Bν where for a ∈ Sn, (fL)(a) = (f(`1(a)), . . . , f(`ν(a))). We say that
L is an symmetric (M, S,R)-tester if for every a ∈ Sn and f ∈M we have

(fL)(a) = 0ν =⇒ f(a) = 0.

We say that L is reducible if for all i, `i(1B) = 1A where 1A and 1B are the identities of the algebras A
and B respectively.

For q ≥ d+1 we define τ(d, q, t) the constant for which a (P(Fq, n, d),Fqt ,Fq)-tester of size O(dτ(d,q,t) · t)
exists. Define τ∗(d, q, t) the constant for which a symmetric and reducible (P(Fq, n, d),Fqt ,Fq)-tester of

size O(dτ
∗(d,q,t) · t) exists. Obviously

τ(d, q, t) ≤ τ∗(d, q, t).

Since the testers in Lemma 12 and Lemma 13 are symmetric and reducible and Corollary 5 is also
true for symmetric and reducible testers, the testers constructed in Theorem 11 and Corollary 17 are
symmetric and reducible. Therefore

τ∗(d, q, t) ≤ 4 (18)

for any q ≥ d+ 1 and any t and

32

Corollary 23. We have

1. For perfect square q where q ≥ c(d+1)2 there is infinite sequence of integers t such that τ∗(d, q, t) ≤
1.

2. For perfect square q where q ≥ c(d+ 1)2 and any integer t we have τ∗(d, q, t) ≤ 2.

3. For any q ≥ c(d+ 1) there is an infinite sequence of integers t such that τ∗(d, q, t) ≤ 2.

4. For any q ≥ c(d+ 1) and any integers t we have τ∗(d, q, t) ≤ 3.

5. For any q ≥ d+ 1 there is an infinite sequence of integers t such that τ∗(d, q, t) ≤ 3.

6. For any q ≥ d+ 1 and any integers t we have τ∗(d, q, t) ≤ 4.

2.6.2 Classification

In this subsection we give a classification of symmetric and reducible tester

We now prove

Lemma 24. We have: L = {`1, . . . , `ν} is a symmetric (HP(Fq, n, d),Fqt ,Fq)-tester for all n if and
only if there are β1, . . . , βν ∈ Fqt such that for every a1, a2, . . . , ad ∈ Fqt

a1a2 · · · ad =

ν∑
i=1

βi`i(a1)`i(a2) · · · `i(ad).

Proof. (⇒) Suppose L is a symmetric (HP(Fq, n, d),Fqt ,Fq)-tester. For a = (a1, a2, . . . , ad) ∈ Fdqt define
λi(a) = `i(a1)`i(a2) · · · `i(ad) and Λ(a) = (λ1(a), . . . , λν(a)). Let

G = {Λ(a) | a ∈ Fdqt}.

Define the binary relation φ ⊂ G× Fqt

φ := {(Λ(a), a1a2 · · · ad) | a ∈ Fdqt}.

Let a, b ∈ Fdqt . Since f := x1x2 · · ·xd − xd+1xd+2 · · ·x2d ∈ HP(Fq, n, d) we have: f(`i(a1), . . . , `i(ad),
`i(b1), . . . , `i(bd)) = 0 for all i implies f(a1, . . . , ad, b1, . . . , bd) = 0. Thus, if Λ(a) = Λ(b) then a1 · · · ad =
b1 · · · bd and therefore the relation φ is a function φ : G→ Fqt and φ(Λ(a)) = a1a2 · · · ad.
Now, let a1, . . . ,ar, b ∈ Fdqt and suppose Λ(b) = γ1Λ(a1) + · · ·+ γrΛ(ar) for some γ1, . . . , γr ∈ Fq. Let

g = x1 · · ·xd − γ1xd+1 · · ·x2d − · · · − γrxrd+1 · · ·x(r+1)d ∈ HP(Fq, n, d).

33

Then
(gL)(b,a1, . . . ,ar) = Λ(b)− γ1Λ(a1)− · · · − γrΛ(ar) = 0ν

and therefore g(b,a1, . . . ,ar) = φ(Λ(b))− γ1φ(Λ(a1))− · · · − γrφ(Λ(ar)) = 0 and

φ(Λ(b)) = γ1φ(Λ(a1)) + · · ·+ γrφ(Λ(ar)).

Therefore φ is linear function restricted on G and there is a natural unique extension of φ to a linear
function φ̂ : Span G→ Fqt where φ̂|G = φ. This implies the result.

(⇐) Suppose there are β1, . . . , βν ∈ Fqt such that for every a1, a2, . . . , ad ∈ Fqt

a1a2 · · · ad =

ν∑
i=1

βi`i(a1)`i(a2) · · · `i(ad).

Then for every

f =
∑
i∈I

cixi1 · · ·xid ∈ HP(Fq, n, d)

where I ⊆ [n]d and every (b1, . . . , bn) ∈ Fnqt , we have

f(b1, . . . , bn) =
∑
i∈I

cibi1 · · · bid

=
∑
i∈I

ci

ν∑
j=1

βj`j(bi1)`j(bi2) · · · `j(bid)

=
ν∑
j=1

βj
∑
i∈I

ci`j(bi1)`j(bi2) · · · `j(bid)

=
ν∑
j=1

βjf(`j(b1), . . . , `j(bn)).

Therefore, if f(`j(b1), . . . , `j(bn)) = 0 for all j = 1, 2, . . . , ν then f(b1, . . . , bn) = 0.

We now prove

Lemma 25. We have: L = {`1, . . . , `ν} is a symmetric and reducible (P(Fq, n, d),Fqt ,Fq)-tester for all
n if and only if there are β1, . . . , βν ∈ Fqt such that for every a1, a2, . . . , ad ∈ Fqt

a1a2 · · · ad =
ν∑
i=1

βi`i(a1)`i(a2) · · · `i(ad) (19)

and `i(1) = 1 for all i.

34

Proof. (⇒) If L is a symmetric (P(Fq, n, d),Fqt ,Fq)-tester then it is symmetric (HP(Fq, n, d),Fqt ,Fq)-
tester and by Lemma 24 the result follows.

(⇐) For any d′ < d we have

a1a2 · · · ad′ = a1a2 · · · ad′ · 1
d−d′· · · 1

=

ν∑
i=1

βi`i(a1)`i(a2) · · · `i(ad′))`i(1)
d−d′· · · `i(1)

=

ν∑
i=1

βi`i(a1)`i(a2) · · · `i(ad′)

Then as in the proof of Lemma 24 we get that for every f ∈ P(Fq, n, d)

f(b1, . . . , bn) =
ν∑
j=1

βjf(`j(b1), . . . , `j(bn))

and therefore L = {`1, . . . , `ν} is a symmetric and reducible (P(Fq, n, d),Fqt ,Fq)-tester.

In the following lemma we show that when the tester is symmetric then we may assume without loss of
generality that all `i are linear functions from the dual vector space F∗qt .

Lemma 26. If L = {`1, . . . , `ν} is a symmetric (and reducible) (P(Fq, n, d),Fqt ,Fq)-tester for all n

then there is a symmetric (and reducible) (P(Fq, n, d),Fqt ,Fq)-tester L̃ = {˜̀1, . . . , ˜̀
ν} with the same size

where each ˜̀
i, i = 1, . . . , ν is a linear function in F∗qt.

Proof. Since L = {`1, . . . , `ν} is a symmetric (and reducible) (P(Fq, n, d),Fqt ,Fq)-tester for all n, by
Lemma 24 (and Lemma 25) there are β1, . . . , βν ∈ Fqt such that for every a1, a2, . . . , ad ∈ Fqt

a1a2 · · · ad =

ν∑
i=1

βi`i(a1)`i(a2) · · · `i(ad) (20)

(and `i(1) = 1 for all i). Let W = {ω1, . . . , ωt} be a basis for Fqt over Fq where ω1 = 1. Define the linear

functions ˜̀
i where ˜̀

i(ωj) = `i(ωj) for all i = 1, 2, . . . , ν and j = 1, 2, . . . , t, and for every element a =
λ1ω1 + · · ·+λtωt ∈ Fqt where λk ∈ Fq, k = 1, 2, . . . , t we have ˜̀

i(a) = λ1
˜̀
i(ω1)+ · · ·+λt ˜̀i(ωt). Obviously

˜̀
i ∈ F∗qt . We now claim that L̃ = {˜̀1, . . . , ˜̀

ν} is a symmetric (and reducible) (P(Fq, n, d),Fqt ,Fq)-tester.

35

Let ai = λi,1ω1 + · · ·+ λi,tωt for i = 1, 2, . . . , d. Then

a1a2 · · · ad =
d∏
i=1

 t∑
j=1

λi,jωj

 =
∑
k∈[t]d

[(
d∏
i=1

λi,ki

)(
d∏
i=1

ωki

)]

=
∑
k∈[t]d

[(
d∏
i=1

λi,ki

)(
ν∑

m=1

βm`m(ωk1)`m(ωk2) · · · `m(ωkd)

)]

=
∑
k∈[t]d

[(
d∏
i=1

λi,ki

)(
ν∑

m=1

βm ˜̀
m(ωk1)˜̀

m(ωk2) · · · ˜̀m(ωkd)

)]

=

ν∑
m=1

βm ∑
k∈[t]d

[(
d∏
i=1

λi,ki

)(
˜̀
m(ωk1)˜̀

m(ωk2) · · · ˜̀m(ωkd)
)]

=

ν∑
m=1

βm d∏
i=1

 t∑
j=1

λi,j ˜̀m(ωj)

=

ν∑
m=1

βm d∏
i=1

˜̀
m

 t∑
j=1

λi,jωj

=

ν∑
m=1

βm ˜̀
m(a1)˜̀

m(a2) · · · ˜̀m(ad).

Therefore, by Lemma 24, L̃ = {˜̀1, . . . , ˜̀
ν} is a symmetric (P(Fq, n, d),Fqt ,Fq)-tester.

Now if the tester is reducible then since ω1 = 1 we have ˜̀
i(ω1) = `i(ω1) = 1. By Lemma 25, L̃ is

reducible.

Testers of the form (19) are called symmetric linear builders [14]. For d = 2, symmetric builders and
their connection to tensor rank are studied in [72]. We will further study builders in [14] and their
connection to d-dimensional tensor rank and give other results.

We now list some open problems

Open Problems 3.

1. Give a classification of non-symmetric testers.

2. Since symmetric testers are equivalent to (symmetric) rank of d-dimensional tensors, many of the
results in the theory of bilinear complexity (which is the non-symmetric case when d = 2) in [16]

36

and in the literature are also true for symmetric testers for any d. We wonder if those results
may lead to other applications.

2.7 Lower Bounds

In this subsection we give some lower bounds for the size of testers.

In Theorem 21 we have proved that for any q < d+ 1 and t we have

νFq(d,Fqt) ≤
(

1 +
ln(q + 1)

q
+O

(
log q

q2

))d
· t = 2

O
(

log q
q

)
d · t.

We now give the following lower bound

Theorem 27. For any q, d and t we have

νFq(d,Fqt) ≥
(

1 +
1

q − 1
− 1

(q − 1)qt−1

)d−1

· t = 2
Ω
(

1
q

)
d · t.

Proof. Consider the class of functions

M =

d−1∏
i=1

t∑
j=1

λi,jyi,j

 (yd,k1 − yd,k2)

∣∣∣∣ (λi,j)j ∈ P t(Fq) for all i = 1, . . . , d− 1, 1 ≤ k1 < k2 ≤ qt
 ,

where P t(Fq) is the t-dimensional projective space over Fq. For λ = (λ1,λ2 . . . ,λd−1) ∈ P t(Fq)d−1 we

will denote fλ =
∏d−1
i=1 (

∑t
j=1 λi,jyi,j). Let M′ = {(yd,k1 − yd,k2) | 1 ≤ k1 < k2 ≤ qt}.

Obviously,M⊆ DML(Fq, n, d). Let L = {`1, . . . , `ν} be a (DML(Fq, n, d),Fqt ,Fq)-tester with minimal
size ν = νFq(d,Fqt). Then it is a tester forM. Let α be a primitive root in Fqt and consider the assign-

ments zi = (α0, α1, . . ., αt−1, 0, . . . , 0) ∈ Fq
t

qt for all i = 1, 2, . . . , d−1 and zd = (0, α0, α1, . . . , αq
t−2) ∈ Fq

t

qt

and z = (z1, . . . ,zd). Let c(i) = `i(z) ∈ (Fq
t

q)d for i = 1, . . . , ν and C = {c(i) | i = 1, 2, . . . , ν}. Since
f(z) 6= 0 for all f ∈ M and L is a tester for M, for every f ∈ M there is c ∈ C such that f(c) 6= 0.
That is, C is a hitting set for M.

Notice that if for some c ∈ C we have (ci,1, ci,2, . . . , ci,t) = 0 for some i = 1, 2, . . . , d − 1 then f(c) =
0 for all f ∈ M and then C\{c} is a hitting set for M. Therefore we may assume w.l.o.g that
(ci,1, ci,2, . . . , ci,t) 6= 0 for all c ∈ C and i = 1, 2, . . . , d− 1.

Now for every λ ∈ P t(Fq)d−1 consider the set Cλ = {c ∈ C | fλ(c) 6= 0}. It is easy to see that Cλ is
a tester for M′. Then for every 1 ≤ k1 < k2 ≤ qt there is c ∈ Cλ such that cd,k1 6= cd,k2 . Therefore
|Cλ| ≥ log qt/ log q = t. Now it is easy to see that since (ci,1, ci,2, . . . , ci,t) 6= 0 for all c ∈ C and

37

i = 1, 2, . . . , d− 1, every c ∈ C appears in exactly(
qt − 1

q − 1
− qt−1 − 1

q − 1

)d−1

=

(
qt − qt−1

q − 1

)d−1

of the Cλs. Therefore

νFq(d,Fqt) = ν = |C| ≥
∑
λ |Cλ|(

qt−qt−1

q−1

)d−1

≥ |P t(Fq)d−1| · t(
qt−qt−1

q−1

)d−1
=

(
qt−1
q−1

)d−1
· t(

qt−qt−1

q−1

)d−1

=

(
1 +

1

q − 1
− 1

(q − 1)qt−1

)d−1

t.

For νP and νHP , we first prove that there is no tester for P(Fq, n, d) when q ≤ d and no tester for
HP(Fq, n, d) when q ≤ d− 1.

Lemma 28. For q ≤ d we have νPFq(d,Fqt) =∞ and for q ≤ d− 1 we have νHPFq (d,Fqt) =∞.

Proof. Let Fq = {α1, . . . , αq} and consider the polynomial f(x) = (x − α1)(x − α2) · · · (x − αq). Let
β ∈ Fqt such that f(β) 6= 0. Since f(`(β)) = 0 for all ` : Fqt → Fq the first result follows.

For the second result we take f(x1, x2) = x2(x1 − α1x2)(x1 − α2x2) · · · (x1 − αqx2).

In Corollary 17 we have shown that for q ≥ d + 1 we have νPFq(d,Fqt) = O(dτ(d,q,t)t) where for any
constant c > 1

τ(d, q, t) =

1 if q perfect square , q ≥ c(d+ 1)2, I.S. t
2 if q perfect square , q ≥ c(d+ 1)2

2 if q ≥ c(d+ 1), I.S. t
3 if q ≥ c(d+ 1)
3 if q ≥ d+ 1, I.S. t
4 if q ≥ d+ 1

where I.S. stands for “infinite sequence of”. In the following Theorem we give the lower bound τ(d, q, t) ≥
1, which is tight for perfect square q, q ≥ c(d+ 1)2 and infinite sequence of t.

Theorem 29. For any q ≥ d+ 1 and t we have

38

νPFq(d,Fqt) ≥ ν
HP
Fq (d,Fqt) ≥ dt− d+ 1.

In particular, τ(d, q, t) ≥ 1.

Proof. Consider the set

M =

{
d∏

k=1

(xj − xik)

∣∣∣∣ 1 ≤ i1 < i2 < · · · < id ≤ qt, 1 ≤ j ≤ qt, j 6∈ {i1, i2, . . . , id}

}
.

Obviously, M ⊆ HP(Fq, n, d). Let L = {`1, . . . , `ν} be a (HP(Fq, n, d),Fqt ,Fq)-tester with minimal
size ν = νHPFq (d,Fqt). By Lemma 3, L is a (M,Fqt ,Fq)-tester. Let α be a primitive root in Fqt

and consider the assignment z = (0, α0, α1, . . . , αq
t−2) ∈ Fq

t

qt . Let ci = `i(z) for i = 1, . . . , ν and

C = {ci | i = 1, 2, . . . , ν}. Since f(z) 6= 0 for all f ∈M and L is a tester forM, for every f ∈M there
is c ∈ C such that f(c) 6= 0. That is, for every 1 ≤ j ≤ qt and every 1 ≤ i1 < i2 < · · · < id ≤ qt such
that j 6∈ {i1, i2, . . . , id} there is c ∈ C such that cj 6∈ {ci1 , . . . , cid}. Such set is called (ν; qt, q, {1, d})-
separating hash family [75, 76]. See Subsection 4.4 in this paper. In [22], Bazrafshan and van Trang
proved that

qt ≤ dqd
ν
de.

See also [17]. Therefore ⌈ν
d

⌉
≥ t− log d

log q
.

If q ≥ d+ 1 then dν/de ≥ t and ν ≥ dt− d+ 1.

Our last result in this subsection gives a lower bound for the size of symmetric tester. We note that this
result is subsumed by Theorem 29 but uses different algebraic technique that is used in [16]. We prove

Theorem 30. If L = {`1, . . . , `ν} is a symmetric (P(Fq, n, d),Fqt ,Fq)-tester for all n then

ν ≥ dt− d+ 1.

In particular, τ∗(d, q, t) ≥ 1.

Proof. We prove the result by induction on d. The case d = 1 is trivial. Suppose the lower bound
is true for d − 1. By Lemma 24 and Lemma 26 there is a symmetric (P(Fq, n, d),Fqt ,Fq)-tester L̃ =

{˜̀1, . . . , ˜̀
ν} ⊆ F∗qt and βi ∈ Fqt , i = 1, . . . , ν such that for every a1, a2, . . . , ad ∈ Fqt ,

a1a2 · · · ad =
ν∑
i=1

βi ˜̀i(a1)˜̀
i(a2) · · · ˜̀i(ad).

39

Define the linear function L : Fqt → Ft−1
q where L(a) = (˜̀

1(a), . . . , ˜̀
t−1(a)). Since by the rank-nullity

theorem dim kerL ≥ 1, there is a non-zero element b ∈ Fqt\{0} such that L(b) = 0. Thus ˜̀
i(b) = 0 for

i = 1, . . . , t− 1. Now for all a1, . . . , ad−1 ∈ Fqt ,

a1a2 · · · ad−1 = (a1a2 · · · ad−1b)b
−1

=

(
ν∑
i=1

βi ˜̀i(a1)˜̀
i(a2) · · · ˜̀i(ad−1)˜̀

i(b)

)
b−1

=
ν∑
i=t

γi ˜̀i(a1)˜̀
i(a2) · · · ˜̀i(ad−1)

where γi = βi ˜̀i(b)b
−1 for i = t, t + 1, . . . , ν. Therefore L = {`t, . . . , `ν} is a symmetric (P(Fq, n, d −

1),Fqt ,Fq)-tester. By the induction hypothesis we have ν− (t− 1) ≥ (d− 1)t− (d− 1) + 1 and therefore
ν ≥ dt− d+ 1.

We end this subsection with some open problems

Open Problems 4.

1. For q < d+1, close the gap between the lower bound 2
Ω
(

1
q

)
d · t in Theorem 27 and the upper bound

2
O
(

log q
q

)
d · t in Theorem 21.

2. For q ≥ d + 1 the lower bounds in Theorem 29 and Theorem 30 matches the upper bounds in
Corollary 17 within at most a factor of O(1) to O(d3). It is interesting to close those gaps.

3 Constructing Testers in Polynomial Time

In this subsection we show that testers of almost optimal size can be constructed in polynomial time.

3.1 Time Complexity of Constructing Irreducible Polynomials and Fqt

In some applications the construction of irreducible polynomials of degree n over Fq and the construction
of the field Fqt is also needed and their complexity must be included in the overall time complexity of
the problem.

To construct the field Fqt one should construct an irreducible polynomial f(x) of degree t in Fq[x] and
then use the representation Fqt = Fq[x]/(f(x)). For a comprehensive survey on this problem see [64]
Chapter 3. See also [4, 29, 61]. We give here the results that will be used in this paper.

40

Lemma 31. Let Fq be a field of characteristic p. There is an algorithm that constructs an irreducible
polynomial of degree t with T arithmetic operations in the field Fq where T is as described in the following
table.

Type Field Assumption Time = T Poly

Probabilistic Any − O
(
t2 log2+ε t+ t log q log1+ε t

)
= poly(t, log q)

Deterministic Any − O
(
p1/2+εt3+ε + (log q)2+εt4+ε

)
= poly(p, t, log q)

Deterministic Any ERH O(log2 q + t4+ε log q) = poly(t, log q)

Deterministic F2 − O(t3+ε) = poly(t)

Here ERH stands for the Extended Riemann Hypothesis and ε is any small constant.

In some of the applications it is enough to construct an extension field of dimension close to t. The
following lemma is proved in [58]

Lemma 32. There is a deterministic algorithm that constructs an irreducible polynomial of degree d
where t ≤ d ≤ t log q with poly(t, log q) arithmetic operations in the field Fq.

One constraint that follows from using finite fields as an alphabet is that the size of the alphabet must
be a power of prime. Shparlinski showed in [63] that

Lemma 33. for any q large enough one can construct a finite field FQ with Q = q + o(q) elements in
deterministic time poly(log q).

In Lemma 8 one should construct many irreducible polynomials of certain degree. We now prove

Lemma 34. There is a deterministic algorithm that runs in time m·poly(t, p, log q) (and m·poly(t, log q)
assuming ERH) and construct m distinct irreducible polynomials of degree t in Fq[x].

Proof. By Lemma 31, Fqt can be constructed in polynomial time. It is known that a normal basis

{α, αq, αq2 , . . . , αqt−1} in Fqt can be constructed in poly(t, log q) time [54]. For any λ = (λ1, λ2, . . . , λt) ∈
Ftq,

βλ = λ1α+ λ2α
q + λ3α

q + · · ·+ λt−1α
qt−1

is a root of an irreducible polynomial of degree t if and only if βλ, β
q
λ, β

q2

λ , . . . , β
qt−1

λ are distinct. It is
easy to see that this is true if and only if the vectors

λ0 := λ, λ1 := (λt, λ1, . . . , λt−1), λ2 := (λt−1, λt, λ1, . . . , λt−2), · · · ,λt−1 := (λ2, λ3, . . . , λt, λ1)

are distinct. Such λ is called a vector of period t.

If we have a vector λ of period t then βλ is a root of irreducible polynomial fβλ(x) of degree t and

fβλ(x) ≡ (x − βλ)(x − βqλ) · · · (x − βq
t−1

λ). Notice that fβλ(x) can be computed in polynomials time

41

poly(log q, t). Therefore, it remains to construct m vectors of period t that generates m distinct irre-
ducible polynomial.

Now choose any total order < on Fq and consider the lexicographic order in Ftq with respect to <
and consider the sequence of all the elements of Ftq with this order. It is easy to see that for any
two consecutive elements λ1,λ2 ∈ Ftq in this sequence there is at least one λi, i ∈ {1, 2} of period
t. Also, each irreducible polynomial fβλ of degree t can be constructed by exactly t elements (i.e.,
λ0,λ1, . . . ,λt−1) in the sequence. This implies that the first 2tm elements in this sequence generate at
least m distinct irreducible polynomials.

Throughout this paper, when we say polynomial time or write poly(t, p, log q) we mean poly(t, p, log q)
without any assumption and poly(t, log q) assuming ERH.

3.2 Preliminary Results

In this subsection we give some preliminary results

For q ≥ d+1 we define τpoly(d, q, t) the constant for which a (P(Fq, n, d),Fqt ,Fq)-tester of sizeO(dτpoly(d,q,t)·
t) can be constructed in deterministic polynomial time. Since some of the applications in this pa-
per require testers for fields of logarithmic dimension we also define τpoly(d, q, t, r) the constant for
which a (P(Fq, n, d),Fqr ,Fq)-tester of size O(dτpoly(d,q,t,r) · r) can be constructed in deterministic time
poly(t, p, log q).

In Lemma 7 we have shown that when q ≥ d(t − 1) + 1, then a (P(Fq, n, d),Fqt ,Fq)-tester can be
constructed in time complexity that is equal to the time complexity of constructing the field Fqt .
Therefore, such tester can be constructed in polynomial time poly(t, p, log q). Hence, we may assume
that

d+ 1 ≤ q ≤ d(t− 1).

Notice that in this case, poly(t, p, log q) = poly(d, q, t) = poly(t).

The results in the following lemma follow immediately from Lemma 7, Corollary 5 and the proof of
Corollary 17

Lemma 35. We have

1. For q ≥ d(t− 1) + 1 we have τpoly(d, q, t) = 1.

2. For q ≥ d+ 1 we have τpoly(d, q, t) ≤ τpoly(d, q2, t) + 1.

3. For any c > 1, q ≥ c(d + 1)2, q perfect square, any integer r and t = b(
√
c − 1)q(r+2)/2/

√
cdc we

have τ∗(d, q, t) = 1.

42

We now prove the following lemma. The construction in this lemma is computationally expensive in its
own right, but with the parameters we will be using it, it will take time polynomial in the parameters
of the main problem.

Lemma 36. A (P(Fq, n, d),Fqt ,Fq)-tester of size O(dτ t) can be constructed in poly(qd
τ t2) time where

τ = τ∗(d, q, t).

Proof. By Corollary 23 there is a symmetric and reducible (P(Fq, n, d),Fqt ,Fq)-tester of size O(dτ t).
By Lemma 25 we have L = {`1, . . . , `ν} is a symmetric and reducible (P(Fq, n, d),Fqt ,Fq)-tester if and
only if `i(1) = 1 for all i and there are βi ∈ Fqt such that for every a ∈ Fdqt we have

a1a2 · · · ad =

ν∑
i=1

βi`i(a1)`i(a2) · · · `i(ad). (21)

Then by Lemma 26 we may assume without loss of generality that `i ∈ F∗qt and `i(1) = 1 for all
i = 1, 2, . . . , ν.

Now to construct a symmetric and reducible tester we can exhaustively search for one. That is, we can
try all possible βi ∈ Fqt and `i ∈ F∗qt where `i(1) = 1, i = 1, 2, . . . , ν and check if (21) is true for all

a ∈ Fdqt . The number of all possible testers of size ν is at most(
|Fqt |
ν

)
·
(
|F∗qt |
ν

)
=

(
qt

ν

)2

≤ q2νt.

Checking each tester takes |Fdqt | = qdt substitutions in (21). Therefore, for τ = τ∗(d, q, t), with at most

qO(dτ t2)qdt = qO(dτ t2) arithmetic operations in the field Fqt one can find a symmetric and reducible
(P(Fq, n, d),Fqt ,Fq)-tester. This implies the result.

In particular we have

Lemma 37. For every q ≥ d+ 1 and τ = τ∗(d, q, r) if

r ≤

√
log t

dτ log q

then τpoly(d, q, t, r) ≤ τ∗(d, q, r).

3.3 Reductions of the Problem

In this subsection we show that a (P(Fq, n, d),Fqt ,Fq)-tester can be reduced in deterministic polynomial
time to a (P(Fq, n, d),Fqt′ ,Fq)-tester where t′ is logarithmic in t. This reduction blows up the size of
the tester by at most a factor of d.

43

Our main technique for constructing testers in polynomial time is to reduce the dimension t of the field
in the tester to a small dimension r = o(t) (Lemma 8) and then construct the tester for dimension r in
time polynomial in t. Formally,

Lemma 38. For any t ≤ t′ and any r = O(logq t
′)

r ≥
⌈

log(dt)

log q

⌉
+ 1

(or qr−1 ≥ dt− d+ 1) we have

τpoly(d, q, t
′, t) ≤ τpoly

(
d, q, t′, r

)
+ 1.

Proof. We use Lemma 8. Since r ≥ dlog(dt)/log qe + 1 we have qr−1 ≥ dt − d + 1. To use the
construction in Lemma 8 we need to find O(dt/r) polynomials of degree r. Since r = O(logq t

′) we have
|Fqr | = poly(t′). Therefore the field Fqr can be constructed in poly(t′) time and a primitive root of the
field and therefore O(dt/r) irreducible polynomials of degree r over Fq can be constructed in poly(t′)
time.

If there is a deterministic poly(t′, p, log q) time construction algorithm for a (P(Fq, n, d),Fqr ,Fq)-tester
of size O(dcr) then the construction in Lemma 8 is deterministic poly(t′, p, log q) time construction for
(P(Fq, n, d),Fqt ,Fq)-tester of size(

dt− d+ 1

r
+ 1

)
·O(dcr) ≤ O(dc+1t).

This implies the result.

3.4 Testers for q ≥ d+ 1 in Polynomial Time

In this subsection we prove that for every t, d and q ≥ d+ 1 a (P(Fq, n, d),Fqt ,Fq)-tester of size O(d5 · t)
can be constructed in deterministic polynomial time.

We first prove

Lemma 39. For every t, constant c > 1, perfect square q ≥ c(d+ 1)2 and d ≥ 3 a (P(Fq, n, d),Fqt ,Fq)-
tester of size O(d3t) can be constructed in deterministic polynomial time.

Proof. By 1 in Lemma 35, for t ≤ d + 2 we have q ≥ d(t − 1) + 1 and therefore τpoly(d, q, t) = 1. By
Lemma 38, for d+ 3 ≤ t ≤ qd+1/d we have

τpoly(d, q, t) ≤ τpoly(d, q, t, d+ 2) + 1 ≤ 2.

44

Then again by Lemma 38, for qd+1/d ≤ t ≤ qdqd and r0 = bqd+1/dc − 1 we have

τpoly(d, q, t) ≤ τpoly(d, q, t, r0) + 1 ≤ 3.

Therefore, we may assume that

t ≥ t0 := qdq
d
.

Let

r1 =

⌈
log dt

log q

⌉
+ 1. (22)

By Lemma 38, we have

τpoly(d, q, t) ≤ τpoly(d, q, t, r1) + 1. (23)

Let r be an integer such that

(
√
c− 1)q(r+2)/2

√
cd

≤

√
log t

d log q
<

(
√
c− 1)q(r+3)/2

√
cd

(24)

and

r2 :=

⌊
(
√
c− 1)q(r+2)/2

√
cd

⌋
. (25)

By 3 in Lemma 35,

τ∗(d, q, r2) = 1. (26)

In Claim 1 below we prove that qr2−1 ≥ dr1 − d+ 1. By Lemma 38, since qr2−1 ≥ dr1 − d+ 1 we have

τpoly(d, q, t, r1) ≤ τpoly(d, q, t, r2) + 1. (27)

Finally, by Lemma 37, (24), (25) and (26) we have

τpoly(d, q, t, r2) ≤ τ∗(d, q, r2) = 1.

This with (27) and (23) gives the result.

It remains to prove

Claim 1. We have qr2−1 ≥ dr1 − d+ 1.

45

Proof. Since t ≥ t0 ≥ qdq
d

we have r1 ≥ logq t ≥ dqd. By (22) we have r1 ≤ logq t + 3 and therefore
t ≥ qr1−3. By (24) and (25) we have

r2 ≥ (c− 1)q(r+2)/2

cd
− 1 ≥ 1

q1/2

(c− 1)q(r+3)/2

cd
− 1

≥

√
log t

qd log q
− 1 ≥

√
r1 − 3

qd
− 1.

Therefore

qr2−1 ≥ q
√
r1−3
qd
−2

and it is enough to prove that for r1 ≥ dqd,

q

√
r1−3
qd
−2 ≥ dr1.

This is true since d ≥ 3 and q ≥ (d+ 1)2.

We now prove

Theorem 40. For every n, t, d and q ≥ d + 1, a (P(Fq, n, d),Fqt ,Fq)-tester of size O(d5t) can be
constructed in polynomial time.

Proof. If q ≥ d + 1 then q4 ≥ 2(d + 1)2. Therefore by Lemma 39, τpoly(d, q
4, t) ≤ 3. Now by 2 in

Lemma 35 we have
τpoly(d, q, t) ≤ τpoly(d, q2, t) + 1 ≤ τpoly(d, q4, t) + 2 ≤ 5.

By Corollary 23 and the proof of Theorem 40 we also get

Corollary 41. Let c > 1 be a constant and r = poly(d, log t). We have the following upper bounds for3

τpoly(d, q, t, r) and τpoly(d, q, t)

3Here and elsewhere we will add to the table other columns so that the reader can compare the result with the upper
and lower bounds.

46

Upper B. Upper B. Upper B. Lower B.
q t τ∗(d, q, t) τpoly(d, q, t, r) τpoly(d, q, t) τ(d, q, t)

q ≥ c(d+ 1)2, q P.S. I.S. 1 2 3 1

q ≥ c(d+ 1)2 q P.S. all 2 2 3 1

q ≥ c(d+ 1) I.S. 2 3 4 1

q ≥ c(d+ 1) all 3 3 4 1

q ≥ d+ 1 I.S. 3 4 5 1

q ≥ d+ 1 all 4 4 5 1

where I.S. stands for “for infinite sequence of integers t” and P.S. for “perfect square”.

3.5 Testers for Subspaces of Fields in Polynomial Time

In this subsection we discuss the explicit construction in Subsection 2.4 of testers for subspaces of fields
and what is needed in order to get a polynomial time construction. We then show that testers for
subspaces of extension fields of logarithmic dimension can be constructed in polynomial time. Those
testers will have better size than the testers in the previous subsection and will close the gaps in the
table in Corollary 41 for τpoly(d, q, t, r) when r = O(log t/ log q).

Our goal is to construct the tester in Corollary 20 and Lemma 19 in polynomial time. For the construc-
tion in Corollary 20 and Lemma 19, we need to construct the (P(Fq, n, d),L (G),Fq)-tester defined in
Lemma 12 and the (Fq[x], S,L (G))-tester defined in Lemma 18. To construct those testers we need

1. To find all the places of degree 1 in F (r+1)/Fq for the tower W1 defined in Lemma 16, [36, 37],
where qr+1 < (c/(c − 1))dt ≤ qr+2. By Lemma 16, the number of such places is less than
qr+2 = O(dqt) = poly(t).

2. To find a prime divisor Q of F (r+1)/Fq of degree t+ g. By Lemma 16, g ≤ qr+1 = O(dt).

3. To find a basis for L ((t+ g − 1)P∞) for some devisor P∞ of degree 1.

Notice that

r = Θ

(
log t

log q

)
.

For 1 and 3, it is known from [65] and [69] that all the places of degree 1, a place P∞ and the basis for
L ((t+ g − 1)P∞) can be found in time poly(t+ g) = poly(t).

For 2, we need to construct a prime divisor of degree t+ g. If Q is a prime divisor of degree s over Fq,
then there exist conjugate prime divisors Q1, Q2, . . . , Qs of degree 1 over Fqs such that Q =

∑s
i=1Qi.

Therefore we need to find a divisor Qi of degree one in F (r)Fqs with s different conjugates. We do not

47

know whether this can be done in deterministic polynomial time when s = t+ g and r = O(log t/ log q).
We will call this problem PRIME(s, r).

We now prove

Lemma 42. The problem PRIME(s, r) can be solved in time poly(qs+r).

In particular, PRIME(O(log t/ log q), O(log t/ log q)) can be solved in polynomial time

Proof. To solve PRIME(s, r) we can compute all the prime divisors of degree 1 in F (r)Fqs and its
orbits under the Frobenius automorphism of Fqs/Fq. Each orbit of length s corresponds to a prime
divisor of degree s. To find a prime divisor of degree 1 in F (r)Fqs we solve the system of equation

xqk + xk = xqk−1/(x
q−1
k−1 + 1) for k = 1, 2, . . . , r and all x0 ∈ Fqs . For a fixed xk−1 the system xqk + xk =

xqk−1/(x
q−1
k−1 + 1) has at most q solutions for xk. To find the solutions we exhaustively search for them.

This takes |Fqs | = qs substitutions. Therefore, to find all solutions we need at most q2s+r substitutions
and therefore time poly(qs+r).

Obviously, when s+r = ω(log t/ log q), the above is not polynomial time construction. Therefore, as we
did in the last subsection we need to reduce the dimension of the problem to log t/ log q and then use
Lemma 42. Unfortunately, it is not clear here how to reduce the dimension. Our reduction in Lemma 8
does not seems to be working in this case.

If the dimension of the extension field is r = O(log t/ log q) then we need to solve PRIME(s, r) for
s = O(log(log t/ log q)/ log q) and r = O(log t/ log q)+g where g is as in the proof of Corollary 20. If g =
O(log t/ log q) then by Lemma 42, PRIME(s, r) (and therefore item 2) can be solved in deterministic
polynomial time. For the cases 4-6 in Corollary 20, r+g = O(log t/ log q). See the proof of Corollary 20.
This implies

Corollary 43. Let c > 1 be a constant and r = O(log t/ log q). There is a polynomial time algorithm
that constructs a subspace S ⊆ FqR of size |S| = qr where R ≤ O(r) and a (P(Fq, n, d), S,Fq)-tester of
size O(dτr) where τ is as indicated in the following table (the forth column in the table)

Upper B. Upper B. Lower B.
q t τ∗(d, q, t) τ τ(d, q, t)

q ≥ c(d+ 1)2, q P.S. I.S. 1 1 1

q ≥ c(d+ 1) I.S. 2 2 1

q ≥ d+ 1 I.S. 3 3 1

where I.S. stands for “for infinite sequence of integers t” and P.S. for “perfect square”.

Notice that τpoly(d, q, t, r) in Corollary 41 with τ in Corollary 43 give bounds that meet the bounds for
τ∗(d, q, t) when the dimension is O(log t/ log q).

48

3.6 Testers for q < d+ 1 in Polynomial Time

In this subsection we study (DML(Fq, n, d),Fqt ,Fq)-testers when q < d + 1. The following result
follows immediately from Lemma 31 and the testers constructed in Lemmas 2, 4, 6, 7, Theorem 21 and
Theorem 40.

Theorem 44. For any q < d + 1 and t a (DML(Fq, n, d),Fqt ,Fq)-tester of size O(d7 · 2cqd · t) can be
constructed in time 2cqd · poly(t) where

cq =
∞∑
i=0

log(q2i + 1)

q2i
= O

(
log q

q

)
.

We denote by σ(q) (respectively, σpoly(q)) the constant for which a (DML(Fq, n, d),Fqt ,Fq)-tester L of

size 2σ(q)·d+o(d) · t exists (respectively, and can be constructed in 2σ(q)·d · poly(t) time). By Theorem 21
and Theorem 27 we have

O

(
log q

q

)
=
∞∑
i=0

log(q2i + 1)

q2i
= cq ≥ σpoly(q) ≥ σ(q) ≥ log

(
1 +

1

q − 1

)
= Ω

(
1

q

)
.

In particular we have following bounds for σpoly(q)

q cq Upper B. Lower B.

2 1.659945821 1

3 1.116191294 0.584962501

4 0.867464571 0.415037499

5 0.719921672 0.321928095

7 0.548433289 0.222392421

We now give some open problems

Open Problems 5.

1. We have shown that a (P(Fq, n, d),Fqt ,Fq)-tester of size O(d5t) can be constructed in polynomial
time. It is easy to see that a tester of size O(d4t) can be constructed in quasi-polynomial time.
Find a better construction.

2. See Appendix B. Prove Conjecture 1.

3. Is BASIS(s, r) solvable in deterministic polynomial time?

49

3.7 Tester from any Field to any Field

In this subsection we study (P(Fq, n, d),Fqt ,Fqt′)-testers when qt
′ ≥ d+ 1. Those testers will be used to

reduce the dimension of the extension field used in the black box interpolation and identity testing to
a smaller dimension. Such tester can be constructed using the fact that Fqt can be embedded into the
field F(qt′)t

∼= F(qt)t′ and then the (P(Fq, n, d),F(qt′)t ,Fqt′)-tester constructed in the previous subsections

is also a (P(Fq, n, d),Fqt ,Fqt′)-tester. This tester is optimal within a factor of t′. Our goal in this
subsection is to find such tester that is optimal within a factor of poly(d).

One approach is to first construct a (P(Fq, n, d),Fqt ,FqT)-tester such that T > dt and t′|T . Then
construct a (P(Fq, n, d),FqT ,Fqt′)-tester and combine both testers. Another approach, that is used
here, is to first construct a (P(Fq, n, d),Fqt ,FqT)-tester where t′|T and T = O(log(dt)/ log q). Then
construct a (P(Fq, n, d),FqT ,Fqt′)-tester and combine both testers.

We prove

Lemma 45. Let t′ ≥ 1 be an integer such that qt
′ ≥ d+ 1. We have

1. If t′ ≥ dlog(dt)/ log qe + 1 then νPF
qt
′ ((d,Fq),Fqt) ≤ (d + 1)t/t′ and a tester with such size can be

constructed in polynomial time.

2. If t′ ≥ dlog(d log(dt)/ log q)/ log qe ≥ 2 then νPF
qt
′ ((d,Fq),Fqt) ≤ d(d+1)t/t′ and a tester with such

size can be constructed in polynomial time.

3. For any t′ we have νPF
qt
′ ((d,Fq),Fqt) ≤ O(d5t/t′) and a tester with such size can be constructed in

polynomial time.

Proof. We first prove 1. As in the proof of Lemma 7, we have

νPF
qt
′ ((d,Fq),Fqt) ≤ ν

P
F
qt
′ ((d,Fq),Fq[X]t−1)

and by Lemma 9 since qt
′−1 ≥ dt− d+ 1, we have

νPF
qt
′ ((d,Fq),Fq[X]t−1) ≤ dt− d+ 1

t′
+ 1 ≤ (d+ 1)

t

t′
.

This proves 1.

We now prove 2. Let T = dlog(dt)/ log qe+ c where c ≥ 1 is an integer such that t′|T . Obviously c ≤ t′.
By (2) we have

νPF
qt
′ ((d,Fq),Fqt) ≤ ν

P
F
qT

((d,Fq),Fq[X]t−1) · νPF
qt
′ ((d,Fq),FqT). (28)

50

By 1, we have νPF
qT

((d,Fq),Fq[X]t−1) ≤ (d+ 1)t/T and since qt
′ ≥ d(T/t′ − 1), by Lemma 7,

νPF
qt
′ ((d,Fq),FqT) = νPF

qt
′ ((d,Fq),F(qt′)T/t′) ≤ ν

P
F
qt
′ (d,F(qt′)T/t′) ≤ d(T/t′).

This with (28) implies 2.

To prove 3, we use 1, (28) and Corollary 41. Since T < poly(d, log t), we get

νPF
qt
′ ((d,Fq),Fqt) ≤ νPF

qT
((d,Fq),Fq[X]t−1) · νPF

qt
′ ((d,Fq),FqT)

≤ νPF
qT

((d,Fq),Fq[X]t−1) · νPF
qt
′ (d,F(qt′)T/t′)

≤ (d+ 1)
t

T
·O
(
d4T

t′

)
= O

(
d5 t

t′

)
.

4 Applications of Tester for d-Restriction Problems

In this section we give some applications of testers for d-restriction problems. A d-restriction problem
[53, 5] is a problem of the following form:

Given an alphabet Σ of size |Σ| = q, an integer n and a classM of nonzero functions fi : Σd → {0, 1},
i = 1, 2, . . . , t.

Find a small set A ⊆ Σn such that: For every 1 ≤ i1 < i2 < · · · < id ≤ n and f ∈ M there is a ∈ A
such that f(ai1 , . . . , aid) 6= 0.

We give applications of testers for the following four d-restriction problems: Perfect hash, universal set,
cover-free family and separating hash family.

Note. For all the applications in this paper we will give deterministic polynomial time constructions,
but in some cases some explicit constructions are also given. We remind the reader that when say an
“explicit construction” we mean a construction using elementary algebra and algebraic function fields
in which each step of the construction is indicated. But it is not clear whether the construction is
polynomial time construction. For a construction that has exponential size, when we say that such
construction can be constructed in “polynomial time” we mean in time s · poly(n) where s is the size of
the construction.

4.1 Perfect Hash

In this subsection we show that testers can be used for constructing almost optimal perfect hashing in
polynomial time.

51

Let H be a family of functions h : [n]→ [q]. We say that H is an (n, q)-family of perfect hash functions
if for all subset S ⊆ [n] of size |S| = q there is an h ∈ H such that the restriction of h to S, h|S , is onto,
i.e., h|S(S) = [q]. In [53] Naor et. al. gave a deterministic construction of an (n, q)-family of perfect
hash functions of size s = eqqO(log q) log n that can be constructed in time s · poly(n).

For d ≤ q we say that H is an (n, q, d)-perfect hashing [5] (or (n, d, q)-splitter [53]) if for all subsets
S ⊆ [n] of size |S| = d there is a hash function h ∈ H such that h|S is injective (one-to-one) on S, i.e.,
|h|S(S)| = d. Thus (n, q)-family of perfect hash functions is (n, q, q)-perfect hashing.

In [53, 5] it was shown that there are (n, d2, d)-perfect hashing of size O(d4 log d log n) that can be
constructed in poly(n, d) time. Wang and Xing [81] used algebraic function fields and gave an explicit
(n, d4, d)-perfect hashing of size O((d2/ log d) log n) for infinite sequence of integers n. Their construction
is similar to the construction of (P(Fq, n, d),L (G),Fq)-tester. For any q the only known polynomial
time construction is of size O(d2 log d log n), [53, 5]. Blackburn and Wild [23] gave an explicit optimal
construction when q is very large compared to d and log n.

Let N(n, d, q) be the size of the smallest (n, q, d)-perfect hashing. Obviously, the problem of finding
a small (n, q, d)-perfect hashing is a d-restriction problem where M = {f}, f : Σd → {0, 1} and
f(x1, x2, . . . , xd) = 1 if and only if |{x1, . . . , xd}| = d. We will be interested in the case where d = o(n).
We now use union bound to give a nonconstructive upper bound

Lemma 46. Let q ≥ d(d− 1)/2 + 1. Then

N(n, q, d) ≤
log
(
n
d

)
log
(

1
1−g(q,d)

) ≤ d log n

log 2q
d(d−1)

(29)

where g(q, d) = (q − 1)(q − 2) · · · (q − d+ 1)/qd.

In particular, when q = Θ(d2) then N(n, q, d) = O(d log n) and when q ≥ d2+ε for some constant ε > 0
then

N(n, q, d) ≤ d log n

log q
.

Proof. The bound (29) follows from union bound and the fact that

g(q, d) =

(
1− 1

q

)(
1− 2

q

)
· · ·
(

1− d− 1

q

)
≥ 1− d(d− 1)

2q
.

When q ≥ d2+ε for some constant ε we have N(n, q, d) = O(d log n/ log q) and when q = O(d) and
q > 2d then N(n, q, d) = O(d log n). When d(d− 1)/2 + 1 ≤ q ≤ 2d we have

− ln g(q, d) = −
d−1∑
i=1

ln

(
1− i

q

)
=

d−1∑
i=1

∞∑
j=1

ij

jqj
≥ d(d− 1)

2q
+O(d3/q2) ≥ 1

4
,

52

and therefore g(q, d) < 0.78 and N(n, q, d) = O(d log n).

By [50] (see also [32, 41, 42]) we have the following lower bound

Lemma 47. Let q ≥ d(d− 1)/2 + 1. Then

N(n, q, d) ≥ g(n, d− 1) log(n− d+ 2)

g(q, d− 1) log(q − d+ 2)
= Ω

(
log n

log q

)
. (30)

We now prove

Lemma 48. Let q > d(d− 1)/2 be a power of prime. Let t be an integer such that qt ≥ n. Let S ⊆ FqT
be a sublinear space for some T ≥ t where |S| = qt. There is an explicit (n, q, d)-perfect hashing of size

νHPFq

(
d(d− 1)

2
, S

)
.

In particular, There is an explicit (n, q, d)-perfect hashing of size

νHPFq

(
d(d− 1)

2
,Fqt

)
.

In particular, for a constant c > 1, the following (n, q, d)-perfect hashing can be constructed in polynomial
time

poly time Union Lower
n q Size = Bound Bound

I.S. q ≥ c
4d

4 d2 logn
log q d logn

log q
logn
log q

all q ≥ c
4d

4 d4 logn
log q d logn

log q
logn
log q

I.S. q ≥ c
2d

2 d4 logn
log d d logn

log(2q/(d(d−1)))
logn
log q

all q ≥ c
2d

2 d6 logn
log d d logn

log(2q/(d(d−1)))
logn
log q

I.S. q ≥ d(d+1)
2 + 1 d6 logn

log d d log n logn
log q

all q ≥ d(d+1)
2 + 1 d8 logn

log d d log n logn
log q

Proof. Consider the set of functions

F = {∆{i1,...,id}(x1, . . . , xn) | 1 ≤ i1 < · · · < id ≤ n}

in Fq[x1, x2, . . . , xn] where

∆{i1,...,id}(x1, . . . , xn) =
∏

1≤k<j≤d
(xik − xij).

53

Consider n distinct elements α1, α2, . . . , αn ∈ S and let α = (α1, α2, . . . , αn). Since g(α) 6= 0 for every
g ∈ F , and since F ⊂ HP(Fq, n, d(d−1)/2), using testers, there is a set B ⊆ Fnq of size νHPFq (d(d−1)/2, S)

such that for every g ∈ F there is b ∈ B where g(b) 6= 0. This gives an (n, q, d)-perfect hashing.

Now, the results in the table follows from Corollaries 41 and 43.

When q > d(d + 1)/2 is not a power of prime number then we can take the nearest prime q′ < q and
construct an (n, q′, d)-perfect hashing that is also (n, q, d)-perfect hashing. It is known that the nearest
prime q′ ≥ q − Θ(q.525), [19], and therefore the result in the above table is also true for any integer
q ≥ d(d+ 1)/2 +O(d1.05).

4.2 (n, d)-Universal Set

An (n, d)-universal set over an alphabet Σ is a set F ⊆ Σn such that for every 1 ≤ i1 < i2 < · · · < id ≤ n
and every (σ1, . . . , σd) ∈ Σd there is a ∈ F such that aij = σj for all j = 1, . . . , d.

Let |Σ| = q. Let U(n, d, q) be the size of the smallest (n, d)-universal set over the alphabet Σ. Obviously,
finding a small (n, d)-universal set is a d-restriction problem.

The union bound shows that there is an (n, d)-universal set over an alphabet Σ of size

U(n, d, q) ≤ dqd
(

ln
n

d
+ ln q

)
= O

(
dqd log n

)
.

We first give a better bound when q is a power of prime

Lemma 49. Let q > 2 be a power of prime. We have

U(n, d, q) = O

(
d
qd

log q
log n

)
.

Proof. Randomly uniformly choose dr vectors y
(j)
1 , . . . ,y

(j)
d ∈ Fnq , j = 1, . . . , r and take

F =

r⋃
j=1

Span {y(j)
1 , · · · ,y(j)

d },

where Span is the linear span over Fq. The set F is (n, d)-universal set over an alphabet Fq if for every

1 ≤ i1 < i2 < · · · < id ≤ n there is j ≤ r such that the matrix Yr = [y
(j)
`,ik

]`,k is singular. The probability
that Yr is singular is(

1− 1

qn

)(
1− 1

qn−1

)
· · ·
(

1− 1

q

)
≥ 1−

d∑
i=1

1

qi
≥ 1− 1

q − 1
.

Now we use union bound to get the result.

54

For q = 2, a lower bound of Ω(2d log n) was proved in [44]. For completeness we prove the following
lower bound using the techniques used in [44] and [66]

Lemma 50. We have

U(n, d, q) = Ω

(
qd−1

log q
log n

)
.

Proof. We first show that t := U(n, 2, q) = Ω(q log n/ log q). Let R = {r(1), . . . , r(t)} be an (n, 2)-
universal set over Zq. It is easy to see that for any vector v ∈ Znq the set R + v is (n, 2)-universal set.
For each entry 1 ≤ i ≤ n we choose vi such that

|{r ∈ R | ri + vi = 0}| ≤ |R|
q

=
t

q
.

Consider S = R + v = {s(1), . . . , s(t)} where s(i) = r(i) + v. Then the set W = {(s(1)
j , . . . , s

(t)
j) | j =

1, . . . , n} contains vectors in Ztq where each vector in W contains at most t/q entries that are zero. For

s ∈ W let Z(s) be the set of indices of the entries that are zero in s. There are no s(1), s(2) ∈ S that
satisfy Z(s(1)) ⊂ Z(s(2)) because otherwise the set S is not (n, 2)-universal set. Therefore,

n = |W | ≤
(
t

t/q

)
≤ (eq)t/q.

Therefore, U(n, 2, q) = t = Ω(q log n/ log q).

Now let S be an (n, d)-universal set over Zq. Consider

Sc1,c2,...,cd−2
= {(vd−1, vd, . . . , vn) | v ∈ S, vi = ci for all i = 1, 2, . . . , d− 2}.

Obviously, each Sc, c ∈ Zd−2
q is (n− d+ 2, 2)-universal set over Zq. Therefore

U(n, d, q) ≥ qd−2U(n− d+ 2, 2, q) = Ω

(
qd−1

log q
log n

)
.

The best known polynomial time (i.e., poly(qd, n)) construction for this problem gives a universal set
of size dO(log d/ log q)qd log n for q < d and O(d5(log d)2qd log n), for q > d [53, 2]. Here we will show the
following

Lemma 51. For any q, d and an integer r such that qr ≥ n > qr−1 there is an explicit (n, d)-universal
set over Σ = Fq of size

qd · νFq(d,Fqr).

In particular, for any constant c > 1, the following (n, d)-universal sets over Σ = Fq can be constructed
in polynomial time (third column) and explicitly (forth column).

55

Poly Time Explicite
n q Size= Size=

I.S. q ≥ c(d+ 1)2, q P.S. d2qd logn
log q dqd logn

log q

all q ≥ c(d+ 1)2, q P.S. d2qd logn
log q d2qd logn

log q

I.S. q ≥ c(d+ 1) d3qd logn
log d d2qd logn

log d

all q ≥ c(d+ 1) d3qd logn
log d d3qd logn

log d

I.S. q ≥ d+ 1 d4qd logn
log d d3qd logn

log d

all q ≥ d+ 1 d4qd logn
log d d4qd logn

log d

all q ≤ d+ 1 d7q(1+cq/ log q)d log n d5q(1+cq/ log q)d log n

all q = 2 d722.66d log n d522.66d log n

Proof. Consider the Reed Solomon [qr, qr − d, d + 1] code C over Fqr where qr ≥ n > qr−1. Consider
the d × n matrix HC that is the first n columns of the parity check matrix of C. Consider the set of
(n, d)-multilinear polynomials DI(y) = det([yj,ik]j,k) where j, k = 1, . . . , d, I = {i1, . . . , id}, 1 ≤ i1 <
i2 < · · · < id ≤ n, y = (y1, . . . ,yd)

T and yi = (yi,1, . . . , yi,n). Here for notational convenience we regard
y as a d× n matrix of indeterminates. Since every d columns of HC are linearly independent we have
DI(HC) 6= 0 for all I.

Let L = {`1, . . . , `ν}, `i : Fd×nqr → Fd×nq , be a (DML(F, n, d),Fqr ,Fq)-tester where ν = νFq(d,Fqr).
Consider Gi = `i(HC) ∈ Fd×nq , i = 1, 2, . . . , ν. By the definition of tester, since for all I, DI(HC) 6= 0 we
have: for every I there is j such that DI(Gj) 6= 0. That is, for every d distinct indices I = {i1, . . . , id}
there is a matrix Gj such that the columns i1, . . . , id in Gj are linearly independent.

Now consider the set F = ∪iSpanFqGi where SpanFqGi is the linear space spanned by the rows of Gi.

It is obvious that F is (n, d)-universal set over Fq of size qd · νFq(d,Fqr).
The results in the first 6 rows of the table follow from the fact that νFq(d,Fqr) ≤ νPFq(d,Fqr), Corollary 17
and Corollary 41. The results in the last two rows of the table follows from Theorem 21 and Theorem 44.

For q ≥ c(d+ 1)2, perfect square q and infinite sequence of integers n we get an explicit construction of
size O(dqd log n/ log q), and for all n, a polynomial time construction of size O(d2qd log n/ log q). Notice
that the bound in the explicit construction exceeds the union bound and meets the upper bound in
Lemma 49. For constant d all the above bounds meet the bounds in Lemma 49. For q = 2 (and small q)

the bound 2d+O(log2 d) log n in [53] exceeds our bound d522.66d log n. The advantage of our construction
is in that each bit in the construction can be constructed in poly(d, log n) time where the construction
in [53] needs ω(poly(d)) · poly(log n) time. This is studied in more details in [12].

56

4.3 Cover-Free Families

Let X be a set with N elements and let B be a set of subsets (blocks) of X. We say that (X,B) is
(w, r)-cover-free family ((w, r)-CFF), [43], if for any w blocks B1, . . . , Bw ∈ B and any other r blocks
A1, . . . , Ar ∈ B, we have

w⋂
i=1

Bi 6⊆
r⋃
j=1

Aj .

Let N((w, r), n) denotes the minimum number of points in any (w, r)-CFF having n blocks. When
w = 1, the problem is called group testing. The problem of group testing which was first presented
during World War II was presented as follows [26, 51]: Among n soldiers, at most r carry a fatal virus.
We would like to blood test the soldiers to detect the infected ones. Testing each one separately will
give n tests. To minimize the number of tests we can mix the blood of several soldiers and test the
mixture. If the test comes negative then none of the tested soldiers are infected. If the test comes out
positive, we know that at least one of them is infected. The problem is to come up with a small number
of group test.

This problem is equivalent to (1, r)-CFF and is equivalent to finding a small set F ⊆ {0, 1}n such that
for every 1 ≤ i1 < i2 < · · · < id ≤ n and every 1 ≤ j ≤ d there is a ∈ F such that aik = 0 for all k 6= j
and aij = 1.

Group testing has the following lower bound [27, 28, 31]

N((1, r), n) ≥ Ω

(
r2

log r
log n

)
. (31)

It is known that a group testing of size O(r2 log n) can be constructed in polynomial time [26, 55, 40].

The problem (w, r)-cover-free family is equivalent to the following problem: An (w, r)-cover-free family
is a set F ⊆ {0, 1}n such that for every 1 ≤ i1 < i2 < · · · < id ≤ n where d = w+ r and every J ⊂ [d] of
size |J | = w there is a ∈ F such that aik = 0 for all k 6∈ J and aij = 1 for all j ∈ J . Then N((w, r), n)
is the minimum size of such F .

There are several lower bounds for N((w, r), n). We give the one in [78]

N((w, r), n) ≥ Ω

(
d
(
d
w

)
log
(
d
w

) log n

)
.

We first use union bound to show the following

Lemma 52. For d = w + r = o(n) we have

N((w, r), n) ≤ O
(√

wrd ·
(
d

w

)
log n

)
.

57

Proof. We choose a random vector a ∈ {0, 1}n where Pr[ai = 1] = w/d for all i = 1, . . . , n. For distinct
i1, . . . , id ∈ [n], let Ai1,...,id be the event that (ai1 , ai2 , · · · , aid) is of weight w. Then, by Stirling’s
formula, we have

Pr[Ai1,...,id] =

(
d

w

)(w
d

)w (
1− w

d

)d−w
= O

(√
d

wr

)
.

Now using union bound the result follows.

It follows from [79], that for infinite sequence of integers n, a (w, r)-cover free family of size

M = O
(

(wr)log∗ n log n
)

can be constructed in polynomial time. For constant d, the (n, d)-universal set over Σ = {0, 1} con-

structed in [52] of size M = O(23d log n) (and in [53] of size M = 2d+O(log2 d) log n) is (w, r)-cover free
family for any w and r of size O(log n). See also [48].

We now prove

Lemma 53. Let t be such that qt ≥ n and q ≥ wr+ 1. Let S ⊆ FqT be a sublinear space for some T ≥ t
where |S| = qt. Then

N((w, r), n) ≤ N((w, r), q) · νHPFq (wr, S).

In particular, there is an explicit (w, r)-CFF of size(
q

w

)
· νHPFq (wr, S).

In particular, for any constant c > 1, the following (w, r)-CFF can be constructed in polynomial time
in their sizes

Poly time Union Lower
n w Size= Bound Bound

I.S O(1) rw+2

log r log n rw+1 log n rw+1

log r log n

all O(1) rw+3

log r log n rw+1 log n rw+1

log r log n

I.S. o(r) w2(ce)wrw+2

log r log n rw+1

(w/e)w−1/2 log n rw+1

(w/e)w+1 log r
log n

all o(r) w3(ce)wrw+3

log r log n rw+1

(w/e)w−1/2 log n rw+1

(w/e)w+1 log r
log n

Proof. Consider the set of non-zero functions

M = {∆i | i ∈ [n]d, i1, i2, . . . , id are distinct}

58

where
∆i(x1, . . . , xn) =

∏
1≤k≤w and w<j≤d

(xik − xij).

Consider n distinct elements α1, α2, . . . , αn ∈ S and let α = (α1, α2, . . . , αn). Since g(α) 6= 0 for every
g ∈M, and sinceM⊂ HP(Fq, n, wr), using testers, there is a set B ⊆ Fnq of size νHPFq (wr, S) such that

for every g ∈M there is b ∈ B where g(b) 6= 0.

Let F ⊆ {0, 1}q be a (w, r)-CFF with |X| = q elements of size N((w, r), q). Regard each f ∈ F as a
function f : Fq → {0, 1}. It is easy to see that

{(f(b1), f(b2), . . . , f(bn)) | b ∈ B, f ∈ F} ⊆ {0, 1}n

is (w, r)-CFF of size |F| · |B| = N((w, r), q) · νHPFq (wr, S).

Now for every subset R ⊆ Fq define the function χR : Fq → {0, 1} where for β ∈ Fq we have χR(β) = 1 if
β ∈ R and χR(β) = 0 otherwise. Then {χR | R ⊆ Fq, |R| = w} ⊆ {0, 1}Fq is a (w, r)-CFF with |Fq| = q
elements of size

(
q
w

)
. Therefore

C = {(χR(b1), χR(b2), . . . , χR(bn)) | b ∈ B,R ⊆ Fq, |R| = w}

is (w, r)-CFF of size

|C| ≤
(
q

w

)
νHPFq (wr, S).

Now for the results in the table consider a constant c > 1 and let q be a power of prime such that
q = cwr+ o(wr). This is possible by [19]. Let t = dlog n/ log qe and let S ⊆ FqT where T = O(t) be the
linear space defined in Corollary 20. By Corollaries 20, 43 and the above result, for infinite sequence
of integers n, there is a (w, r)-CFF of size(

q

w

)
· νHPFq (wr, S) ≤

(qe
w

)w
(wr)2t = O

(
(cer)w(wr)2 log n

log r

)
= O

(
w2(ce)wrw+2

log r
log n

)
that can be constructed in polynomial time. By Corollary 41 there is a (w, r)-CFF of size(

q

w

)
· νHPFq (wr,Fqt) ≤

(qe
w

)w
(wr)3t = O

(
w3(ce)wrw+3

log r
log n

)
that can be constructed in polynomial time.

In Corollary 17 we have showed that for any constant c > 1 and q ≥ c(d + 1), for infinite sequence of
integers t we have νPFq(d,Fqt) = O(d2t). One of the open problems in this paper is whether this bound

59

can be improved to O(dt). By the proof of Lemma 53, if for some constant c > 1 and any q = c(d+ 1)
we have νPFq(d,Fqt) = O(dt) then for w = O(1)

N((w, r), n) = O

(
rw+1

log r
log n

)
.

This bound matches the lower bound and therefore closes the gap between the union bound and the
lower bound.

In particular, we will have

N((1, r), n) = Θ

(
r2

log r
log n

)
for the group testing problem. We state this in the following

Lemma 54. If for some constant c > 1 and q = c(d+ 1) we have νPFq(d,Fqt) = O(dt) then

N((1, r), n) = Θ

(
r2

log r
log n

)
.

4.4 Separating Hash Family

Let X and Σ be sets of cardinalities n and q, respectively. We call a set F of functions f : X → Σ an
(M ;n, q, {d1, d2, . . . , dr}) separating hash family (SHF), [75, 76], if |F| = M and for all pairwise disjoint
subsets C1, C2, . . . , Cr ⊆ X with |Ci| = di for i = 1, 2, . . . , r, there is at least one function f ∈ F such
that f(C1), f(C2), . . . , f(Cr) are pairwise disjoint subsets. The goal is to find (M ;n, q, {d1, d2, . . . , dr})
SHF with small M . The minimal M is denoted by M(n, q, {d1, d2, . . . , dr}).
In [22], Bazrafshan and Trund proved that for

D1 =
r∑
i=1

di,

M(n, q, {d1, d2, . . . , dr}) > (D1 − 1)
log n− log(D1 − 1)− log q

log q
= Ω

(
D1

log n

log q

)
. (32)

In [79], Stinson et. al. proved that an (M ;n, q, {d1, d2}) separating hash families of size

M = O((d1d2)log∗ n log n)

can be constructed in polynomial time for infinite sequence of integers n and q > d1d2. The same proof
gives a polynomial time construction for any separating hash family of size

M = O(Dlog∗ n
2 log n)

60

where
D2 =

∑
1≤i1<i2≤r

di1di2

when q > D2.

In [48], Liu and Shen provide an explicit constructions of (M ;n, q, {d1, d2}) separating hash families
using algebraic curves over finite fields. They show that for infinite sequence of integers n there is an
explicit (M ;n, q, {d1, d2}) separating hash families of size O(log n) for fixed d1 and d2. This also follows
from [52], an (n, d1 + d2)-universal set over two symbols alphabet is a separating hash families of size
O(log n) for fixed d1 and d2. Their construction is similar to the construction of the tester defined
in Lemma 12. The following lemma gives a polynomial time construction of an (M ;n, q, {d1, d2})
separating hash families of size M = ((d1d2)4 log n/ log q) for any q ≥ d1d2(1 + o(1)) and any n.

Lemma 55. Let q > D2. Let t be an integer such that qt ≥ n. Let S ⊆ FqT be a sublinear space for
some T ≥ t where |S| = qt. There is an explicit (M ;n, q, {d1, d2, . . . , dr}) separating hash family of size

M = νHPFq (D2, S) .

For q′ ≤ D2 we have

M(n, q′, {d1, d2, . . . , dr}) ≤M(q, q′, {d1, d2, . . . , dr}) · νHPFq (D2, S) .

In particular, for any constant c > 1 and q > D2, the following (M ;n, q, {d1, d2, . . . , dr}) separating
hash family can be constructed in polynomial time

poly time Union Lower
n q Size = Bound Bound [17]

I.S. q ≥ c(D2 + 1)2, q P.S. D2
logn
log q D1

logn
log q D1

logn
log q

all q ≥ c(D2 + 1)2, q P.S. D2
2

logn
log q D1

logn
log q D1

logn
log q

I.S. q ≥ c(D2 + 1) D2
2

logn
log d D1

logn
log(q/D2)) D1

logn
log q

all q ≥ c(D2 + 1) D3
2

logn
log d D1

logn
log(q/D2) D1

logn
log q

I.S. q ≥ D2 + 1 D3
2

logn
log q D1 log n D1

logn
log q

all q ≥ D2 + 1 D4
2

logn
log q D1 log n D1

logn
log q

and an (M ;n, r, {d1, d2, . . . , dr}) separating hash family of size(
cD2

d1 d2 ··· dr
)
D3

2

logD2
log n,

can be constructed in polynomial time.

61

Proof. Consider the set of functions

F = {∆(C1,...,Cr)(x1, . . . , xn) | C1, . . . , Cd are pairwise disjoint, |Ci| = di}

in Fq[x1, x2, . . . , xn] where

∆(C1,...,Cr) =
∏

1≤k<j≤r

∏
i1∈Ck,i2∈Cj

(xi1 − xi2).

The proof then proceeds as the proof of Lemma 48.

Open Problems 6.

1. Can one somehow combines the constructions we have here with the techniques used in [53] to get
polynomial time constructions for small size alphabet? If we allow quasi-polynomial time for the
constructions then we can use Theorem 1 in [53] to get almost optimal size constructions.

2. Find polynomial time constructions of almost optimal size for (w, r)-CFF with alphabet of size
less than wr and for (M ;n, q, {d1, d2, . . . , dr}) SHF with q < D2.

5 Application of Tester for Black Box PIT Sets over Small Field

In this section we show how to reduce a black box PIT set over large field to a black box PIT set over
small field. We then apply this to different subsets of multivariate polynomials.

The black box Polynomial Identity Testing (PIT) problem is the following: Given an arithmetic circuit
C that either identical to the zero function or from a class of circuits C over a field F, with input variables
x1, x2, . . . , xn and given a substitution oracle that for an input a ∈ Fn returns f(a). Determine whether
C computes the identically zero polynomial. We say that S ⊂ Fn is a black box PIT set or a hitting set
for C if for every f ∈ C there is a ∈ S such that f(a) 6= 0.

When the field is finite Fq many simple classes of circuits, such as circuits that computes monomials,
requires black box PIT sets of exponential size. Therefore, many papers in the literature allow the
substitution oracle to receive assignment a from some extension field Fqt of Fq. One problem with that
approach is that some functions, such as xq1−x1, are identically zero over Fq but not over any extension
field Fqt of Fq. Therefore, when using an extension field, they assume that each output node in the
circuit computes a function of variable degree less than q. That is, the degree of each variable in the
function is less than q. In that case, C is identically zero over Fq if and only if it is identically zero over
Fqt for any t. We say that S ⊂ Fnqt is a black box PIT set over Fqt or a hitting set over Fqt for C if for
every f ∈ C there is a ∈ S such that f(a) 6= 0. Our goal will be to minimize the size of the black box
PIT set and the dimension of the extension field.

We first start with some definitions

62

5.1 Sets of Multivariate Polynomials

For a multivariate polynomial f the total degree (or just degree) of f is the maximum over the sums of
the exponents of each multivariate monomial in f and the variable degree of f is the maximum over the
degree of each variable in f .

In this section we will study the following classes of multivariate polynomials

1. P(Fq, n) is the class of all multivariate polynomials in Fq[x1, . . . , xn] of variable degree at most
q − 1.

2. P(Fq, n, (d, r)) is the class of all multivariate polynomials in P(Fq, n) of degree at most d and
variable degree at most r.

3. P(Fq, n, d) = P(Fq, n, (d, q − 1)) is the class of all multivariate polynomials in P(Fq, n) of degree
at most d.

4. P(Fq, n, s) is the class of all multivariate polynomials in P(Fq, n) with at most s monomials. This
class is called in the literature “sparse multivariate polynomials”.

5. P(Fq, n, (d, r), s) is the class of all multivariate polynomials in P(Fq, n) of degree at most d and
variable degree at most r with at most s monomials.

In the same way we define the classes P(Fq, n, r), P(Fq, n, d, s) and P(Fq, n, r, s). Notice that when we
write P(Fq, n, 1) it is not clear whether r = 1, d = 1 or s = 1. To avoid confusion we will use “=” in the
definition of the class to indicate which parameter is meant. For example, P(Fq, n, r = 1) is the class of
multilinear polynomials where P(Fq, n, s = 1) is the class of monomials and P(Fq, n, d = 1) is the class
of linear functions.

5.2 Main Results

We will study black box PIT sets for the above classes over Fqt . To the best of our knowledge all
the algorithms in the literature that construct black box PIT sets for the above classes are either
randomized, deterministic for some fixed extension field Fqt or obtains non-optimal results in both the
extension field dimension and the size of the black box PIT set [34, 24, 80, 39, 45, 9]. See more details
in the next subsections. In this paper all the results we obtain are within poly(n) of the optimal black
box PIT set size and the dimension of the extension field is optimal.

The following table summarizes some of our main results.

63

Class Extension Lower Upper Explicit Poly Time
Field Fqt Bound Bound Construction Construction

P(Fq, n) t ≥ logq n+ 2 qn

t
(log(qn))·qn

t
n·qn
t

n·qn
t

P(Fq, n, r) t ≥ logq n+ 2 (r+1)n

t
(log(rn))·(r+1)n

t
n·(r+1)n

t
n·(r+1)n

t

P(Fq, n, (d, r)) t ≥ logq(d+ 1) R(n,d,r)
t

(log d)·R(n,d,r)
t

dnd+1

t
dnd+1

t

P(Fq, n, s) t ≥ logq n+ 2 n·s
t

(logn)n·s
t

q5n6·s
t

n7q29(log2 q)·s
t

P(Fq, n, r, s) t ≥ logq n+ 2 n log(r+1)
log q · st

n(logn) log(r+1)
log q · st

n6r5 log(r+1)
log q · st

n7r5q24(log2 r)·s
t

P(Fq, n, (d, r), s) t ≥ logq(d+ 1) d logn
log q ·

s
t

d(log d) logn
log q · st

d6 logn
log q ·

s
t

q24d7(log2 n)·s
t

Notice that our polynomial time constructions (column 6 in the above table) are optimal in the largest
parameters (qn, (r+1)n, nd and s in the last three rows of the table). For sparse polynomials P(Fq, n, s),
P(Fq, n, r, s) and P(Fq, n, (d, r), s), all the results in the literature give black box PIT sets of size that
are at least quadratic in the size s. Also, the tight tradeoff with the field dimension (·/t) in each row of
the table was not known before. The bound on the dimension of the field extension in the second column
is logq(degree) + 1 and is known to be the best possible dimension (even for randomized algorithms)
if one uses Schwartz-Zippel Lemma. Therefore, our constructions are tight in the dimension of the
field extension. For the class P(Fq, n, (d, r), s) (the last row of the table), the best known result in the
literature [45, 9] used field extension of dimension that depends on the number of the variables n. Our
result uses field extension of dimension logq(d+ 1) that is independent of the number of variables. Also
notice, that when q ≥ d+ 1 no extension field is needed. This will be further studied in [12] to give new
Pseudorandom generators over small fields.

See other results in the following subsections.

5.3 Preliminary Results

Before we move to the constructions we give some preliminary results that will be needed in this section

5.3.1 A Primitive Root in the Field

In this subsection we give some results from the literature about deterministic algorithms for finding a
primitive root (called also primitive element) and an element of large multiplicative order in the field.
See more results in [64].

In [62] it is shown that

Lemma 56. In any field Fq a primitive root can be found in deterministic time O(q1/4+ε) for any
constant ε > 0.

64

In some applications one can also use an element of large order in finite field instead of a primitive root.
Von zur Gathen and Shparlinski in [35] showed

Lemma 57. There is a deterministic algorithm that for every integer n, gives N = n+ o(n) and finds
an element in FqN of multiplicative order

2(10n1/2/q12)−25

in time poly(n).

In [68], Shoup proved (see also [64], Theorem 2.6)

Lemma 58. There is a deterministic algorithm that for every integer n, gives N = n+ o(n) and finds
a primitive root in FpN in time

pO(n/ log logn).

5.3.2 Sidon Sequences

In this subsection we define the Sidon Sequence and prove some results that will be used in the sequel

A sequence of non-negative integers a1, a2, · · · , an is called Sidon Bd sequence if the sums ai1 + · · ·+ aid
for all i ∈ [n]d are distinct up to rearrangements of the summands. The sequence is called Sidon B≤d
sequence if the sums ai1 + · · · + air for all i ∈ [n]d and r ≤ d are distinct up to rearrangements of the
summands. We will study Sidom B≤d sequences when d = o(n). It is easy to see that maxj aj ≥ nd−o(d).
See more results in [11] and references within.

Several explicit constructions of Sidon Bd sequences were given in the literature [11]. Bose [10] con-
structed B2 Sidon sequences by using finite affine geometry. His construction was extended in [15] to
the following Sidon Bd sequences. Let q be a prime power and θ a primitive root of Fqd . Define

Bd(q, θ) = {a ∈ [qd − 1] | θa − θ ∈ Fq}.

Then Bd(q, θ) is a Sidon Bd sequence. The construction of this sequence requires discrete log and
therefore it is not clear whether it can be done in polynomial time.

We prove

Lemma 59. A Sidon B≤d sequence a1, a2, · · · , an with

max
j
aj ≤ (n+O(n0.525))d+1

can be constructed in deterministic O(nd/2+1.5) time.

65

Proof. Consider the smallest prime number p that is greater than n. By [19], p ≤ n+O(n0.525). Consider
B′ = Bd+1(p, θ) for some primitive root θ ∈ Fpd+1 . By Lemma 56, a primitive root for Fpd+1 can be

found in deterministic O(p(d+1)/4+ε) = O(n(d+1)/4+ε) time for any ε. To find all a ∈ [pd+1 − 1] such
that θa − θ ∈ Fp we can use Daniel Shanks baby-step giant-step algorithm for discrete log that runs in
time p(d+1)/2+1 = O(nd/2+1.5). Therefore, the complexity of constructing the Sidon Bd+1 sequence is
O(nd/2+1.5).

Since |B′| = p > n we can choose B = {a1, a2, . . . , an} ⊂ B′ that contains n elements. Since aj ∈
[pd+1 − 1] we have aj ≤ pd+1 ≤ (n+O(n0.525))d+1.

We now show that this sequence is Sidon B≤d sequence. One way to show this is to show that given a
where a = ai1 + · · ·+ aid′ for some d′ ≤ d, one can uniquely determines d′ and ai1 , · · · , aid′ .
Given a = ai1 + · · ·+ aid′ . Let αi = θai − θ ∈ Fp for i = 1, 2, . . . , d′ ≤ d. Consider

θa = θai1+···+aid′ = (θ + αi1) · · · (θ + αid′) = θd
′
+Ad′−1θ

d′−1 + · · ·+A0

for Ai ∈ Fp, i = 0, 1, . . . , d′ − 1. This uniquely determines d′ and Ai for i = 0, 1, . . . , d′ − 1. Since

xd
′
+Ad′−1x

d′−1 + · · ·+A0 = (x+ αi1) · · · (x+ αid′),

by factoring xd
′
+Ad′−1x

d′−1 + · · ·+A0 over Fq we get αij , j = 1, . . . , d′ which uniquely determine aij ,
j = 1, . . . , d′.

For B≤d Sidon sequence that can be constructed in polynomial time we prove

Lemma 60. A Sidon B≤d sequence a1, a2, · · · , an with

max
j
aj < (2dn)2d

can be constructed in time poly(n).

Proof. Consider the smallest prime number p that is greater than n. By [19], p ≤ n + O(n0.525) ≤ 2n.
Consider the Reed-Solomon code [n, n−2d, 2d+1] over K = Fp with the code locators α0, α1, . . . , αn−1,
for some primitive root α ∈ Fp. Let

H =

1 1 · · · 1
α0 α1 · · · αn−1

(α0)2 (α1)2 · · · (αn−1)2

...
...

...
...

(α0)2d−1 (α1)2d−1 · · · (αn−1)2d−1

 .

66

Define a function ρ : Fp → Z as follows. For β̄ ∈ Fp we have ρ(β̄) = β ∈ Z where β̄ ≡ β mod p and
0 ≤ β ≤ p − 1. Consider the (2d) × n matrix ρ(H) = [ρ(Hi,j)]i,j . Since every 2d columns in H are
linearly independent over Fp, every 2d columns in ρ(H) are linearly independent over R.

Let
(a1, · · · , an) = (1, (p− 1)d+ 1, ((p− 1)d+ 1)2, · · · , ((p− 1)d+ 1)2d−1) · ρ(H).

Now, our claim is that the sequence a1, a2, · · · , an is Sidon B≤d sequence with maxj aj ≤ (2dn)2d.

First, since the entries of ρ(H) are in {0, 1, . . . , p− 1} ⊂ Z, we have

aj ≤ (p− 1) + ((p− 1)d+ 1)(p− 1) + · · ·+ ((p− 1)d+ 1)2d−1(p− 1) ≤ (2dn)2d.

Now given an integer m that is equal to a sum of d′ ≤ d elements ai1 + · · ·+ aid′ . Let {e1, . . . , en} ⊂ Zn
be the standard basis and define b = ei1 + · · ·+ eid′ . Then

m = (a1, . . . , an)bT = (1, (p− 1)d+ 1, ((p− 1)d+ 1)2, · · · , ((p− 1)d+ 1)2d−1) · (ρ(H)bT).

Since the entries of ρ(H)bT are non-negative and less than or equal to (p− 1)d writing

m = m0 +m1((p− 1)d+ 1) + · · ·+m2d−1((p− 1)d+ 1)2d−1

in base (p− 1)d+ 1 gives
(m0, . . . ,m2d−1) = ρ(H)bT .

Since every 2d columns in ρ(H) are linearly independent over R and b contains at most d nonzero entries
ρ(H)bT uniquely determines b . This uniquely determines d′ and ai1 , . . . , aid′ .

5.3.3 The Operator φd

In this subsection we introduce a new notion that will be used in the sequel.

Let F be any field. Consider a multivariate polynomial f ∈ F[x1, . . . , xn] of degree d. Let y =
(y1, . . . ,yd) where yi = (yi,1, . . . , yi,n) are new indeterminates for i = 1, . . . , d. Define the operator
φd : F[x]→ F[y]

φdf =
∑
J⊆[d]

(−1)d−|J |f

(∑
i∈J

yi

)
, (33)

where
∑

i∈∅ yi = 0. We now show

Lemma 61. We have

1. For a monomial M of degree less than d we have φdM = 0

67

2. For a monomial Mi = xi1 · · ·xid of degree d we have φdMi = PermYMi where Perm is the perma-
nent of matrices and

YMi(y) =

y1,i1 y1,i2 · · · y1,id

y2,i1 y2,i2 · · · y2,id
...

...
...

...
yd,i1 yd,i2 · · · yd,id

 .

3. For any monomial M of degree at most d we have φdM = 0 if and only if M is of degree less than
d or one of the variables in M has degree that is greater than or equal to the characteristic of the
field p.

Proof. Let M = xi1xi2 · · ·xir . If r < d then

φdM =
∑
J⊆[d]

(−1)d−|J |
r∏

k=1

∑
j∈J

yj,ik =
∑
j∈[d]r

λjyj1,i1 · · · yjr,ir

for some λj ∈ F. For every j ∈ [d]r the coefficient λj of yj1,i1 · · · yjr,ir in φdM is a multiple of (when
i1, . . . , ik are distinct then it is exactly)

∑
{j1,j2,...,jr}⊂J⊆[d]

(−1)d−|J | =
d∑
i=t

(−1)d−i
(
d− t
i− t

)
=

d−t∑
i=0

(−1)d−t−i
(
d− t
i

)
= (1− 1)d−t = 0,

where t = |{j1, j2, . . . , jr}| ≤ r. This implies 1.

For r = d, by Ryser’s formula [57], result 2 follows.

We now prove 3. If M = xdt1 · · ·x
dt
t where d1 + · · ·+ dt = d then, by 2, each monomial in φdM appears

(and therefore its coefficient is equal to) d1!d2! · · · dt! times. Therefore φdM is zero if and only if there
is i such that di ≥ p. Combining this with 1 the result follows.

Suppose

f(x) =
∑
i∈I

λixi1 · · ·xid + g(x)

where x = (x1, . . . , xn), g(x) is a multivariate polynomial of degree less than d, i = (i1, i2, . . . , id),
1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n, λi 6= 0 and I ⊂ [n]d. Since φd is linear we have

(φdf)(y1, . . . ,yd) =
∑
i∈I

λiPerm (YMi(y1, . . . ,yd)) . (34)

68

5.4 The Reduction from Large Field to Small Field

In this subsection we show how to reduce a black box PIT set over an extension field Fqt to a black box
PIT set over Fqt′ where t′ < t.

We prove

Lemma 62. If M ⊆ F[x1, . . . , xn] and there is a black box PIT set T ⊂ Sn for M over a subspace
S ⊆ A for an F-algebra A then there is a black box PIT set R ⊂ Fn for M of size |R| = |T | · ν◦F(M, S).

In particular,

1. If M⊆ DML(Fq, n, d) and there is a black box PIT set over an extension field Fqt for M of size
w then there is a black box PIT set for M over Fq of size w · νFq(d,Fqt).

2. If M ⊆ P(Fq, n, d), q ≥ d + 1 and there is a black box PIT set for M over an extended field Fqt
of size w then there is a black box PIT set for M over Fq of size w · νPFq(d,Fqt).

3. If M⊆ P(Fq, n, d), qt
′ ≥ d+ 1 and there is a black box PIT set for M over an extended field Fqt

of size w then there is a black box PIT set for M over Fqt′ of size w · νPF
qt
′ ((d,Fq),Fqt).

Proof. The results follow immediately from the definition of testers.

By Corollary 41, Theorem 44 and Lemma 45 we have

Lemma 63. We have

1. LetM⊆ DML(Fq, n, d). Let S be a black box PIT set forM over an extended field Fqt of size w.
There is an algorithm that runs in time w · 2cqd · poly(t) and constructs a black box PIT set for
M over Fq of size O(d7 · 2cqd · tw).

2. Let M⊆ P(Fq, n, d) and q ≥ d+ 1. Let S be a black box PIT set for M over an extended field Fqt
of size w. There is an algorithm that runs in time w · poly(d, t) and constructs a black box PIT
set for M over Fq of size O(dτpoly(d,q,t) · tw) = O(d5 · tw).

3. Let M ⊆ P(Fq, n, d) and qt
′ ≥ d+ 1. Let S be a black box PIT set for M over an extended field

Fqt of size w. There is an algorithm that runs in time w · poly(d, t) and constructs a black box
PIT set for M over Fqt′ of size O(d5 · wt/t′).

We now prove

Lemma 64. If M⊆ P(Fq, n, d, r = p− 1)\P(Fq, n, d− 1, r = p− 1) where p is the characteristic of the
field, q ≤ d and there is a black box PIT set for φdM = {φdf | f ∈ M} over an extension field Fqt of
size w then there is a black box PIT set for M over Fq of size 2dw · νFq(d,Fqt).

69

In particular, let S be a black box PIT set for φdM over an extended field Fqt of size w. There is an

algorithm that runs in time w · 2(1+cq)d · poly(t) and constructs a black box PIT set for M over Fq of
size O(d72(1+cq)d · tw).

Proof. Let S ⊆ (Fnqt)
d be a black box PIT set for φdM of size w. Let f ∈ P(Fq, n, d, r = p − 1) be of

degree d and f 6≡ 0. By Lemma 61, φdf 6≡ 0. Since φdM ⊂ DML(Fq, n, d) and S is a black box PIT
set for φdM over Fqt , by Lemma 62, there is a black box PIT set R ⊆ (Fnq)d for φdM over Fq of size
|S| ·νFq(d,Fqt). Therefore, for every f ∈M there is a = (a1, . . . ,ad) ∈ R such that (φdf)(a) 6= 0. Now,
by (33), there is J ⊆ [d] such that f(

∑
j∈J aj) 6= 0. Therefore∑
j∈J

aj

∣∣∣∣ J ⊂ [d],a ∈ R

 ,

is a black box PIT set for M over Fq of size 2dw · νFq(d,Fqt).
The other result follows from Theorem 44.

5.5 Lower and Upper Bounds

In this subsection we give lower and upper bounds for the size of black box PIT sets for classes of
polynomials. We first give folklore results that are used in many papers. The folklore lower bound is
information theoretic and the upper bound uses Schwartz-Zipple Lemma with the union bound. Then
we give a new bound that improves Schwartz-Zipple Lemma and use it with the union bound to get
better upper bounds.

5.5.1 Folklore Lower and Upper Bounds

In this subsection we give some folklore lower and upper bounds for the size of a black box PIT set.

The following is a folklore result. We prove it for completeness.

Lemma 65. Let M ⊆ Fq[x1, x2, . . . , xn] be a class of multivariate polynomials over Fq. Let M′ ⊆ M
such that M′ −M′ = {g − g′ | g 6= g′ and g, g′ ∈ M′} ⊆ M. Then any black box PIT S ⊆ Fnqt for M
is of size

|S| ≥ log |M′|
t log q

.

Proof. Let S = {a1, . . . ,aw} be a black box PIT set forM, and therefore forM′. LetM′ = {g1, . . . , gv}.
Consider the elements g(i) = (gi(a1), . . . , gi(aw)) ∈ Fwqt for i = 1, . . . , v. If |Fwqt | < v, then there is i 6= j

such that g(i) = g(j). Then 0 6= f = gi − gj ∈ M satisfies f(ai) = 0 for all i = 1, 2, . . . , w and we get a
contradiction. Therefore, we must have |Fqt ||S| = |Fwqt | ≥ v = |M′|. This implies the result.

70

Another folklore result follows from Schwartz-Zippel Lemma, [60, 82, 49], and the union bound

Lemma 66. Let M ⊆ Fq[x1, x2, . . . , xn] be any class of multivariate polynomials over Fq of degree d.
For t such that qt ≥ d + 1 and any constant c > 0 there exists a black box PIT set S ⊆ Fnqt for M of
size

|S| ≤ log |M|
t log q − log d

=

log |M|
t log q if qt ≥ d1+c

log |M| if qt ≥ (1 + c)d
d log |M| if qt ≥ d+ 1

.

Proof. By Schwartz-Zippel Lemma, for any qt ≥ d+ 1 and f ∈M

Pra∈U(Fn
qt

)[f(a) 6= 0] ≥ 1− d

qt

where U(Fnqt) is the uniform distribution over Fnqt . Now the result follows from union bound.

In particular, we have the following upper and lower bounds4

Lemma 67. For any positive constant c the following are bounds for the size of black box PIT set for
M over Fqt

4Here we assume that s = o(maximal possible size in the class). For example for P(Fq, n, s), s = o(qn).

71

Lower Upper
M |Fqt | ≥ Bound = Ω() Bound = O()

P(Fq, n) ((q − 1)n)1+c qn/t qn/t

P(Fq, n) (1 + c)(q − 1)n qn/t log(qn) · qn/t
P(Fq, n) (q − 1)n+ 1 qn/t (qn log(qn)) · qn/t
P(Fq, n, r) (rn)1+c (r + 1)n/t (r + 1)n/t

P(Fq, n, r) (1 + c)rn (r + 1)n/t (log rn) · (r + 1)n/t

P(Fq, n, r) rn+ 1 (r + 1)n/t (rn(log rn)) · (r + 1)n/t

P(Fq, n, (d, r)) d1+c R(n, d, r)/t R(n, d, r)/t

P(Fq, n, (d, r)) (1 + c)d R(n, d, r)/t log d ·R(n, d, r)/t

P(Fq, n, (d, r)) d+ 1 R(n, d, r)/t (d log d) ·R(n, d, r)/t

P(Fq, n, s) ((q − 1)n)1+c n · st n · st
P(Fq, n, s) (1 + c)(q − 1)n n · st (log n)n · st
P(Fq, n, s) (q − 1)n+ 1 n · st (log n)qn2 · st
P(Fq, n, r, s) (rn)1+c n log(r+1)

log q · st
n log(r+1)

log q · st
P(Fq, n, r, s) (1 + c)rn n log(r+1)

log q · st
n(log(rn)) log(r+1)

log q · st
P(Fq, n, r, s) rn+ 1 n log(r+1)

log q · st
n2r(log(rn)) log (r+1)

log q · st
P(Fq, n, (d, r), s) d1+c d logn

log q ·
s
t

d logn
log q ·

s
t

P(Fq, n, (d, r), s) (1 + c)d d logn
log q ·

s
t

d(log d) logn
log q · st

P(Fq, n, (d, r), s) d+ 1 d logn
log q ·

s
t

d2(log d) logn
log q · st

where R(n, d, r) is the number of monomials in Fq[x1, . . . , xn] of degree at most d and variable degree
at most r.

Proof. We first use Lemma 65 to prove the lower bounds. For M = P(Fq, n) or M = P(Fq, n, r) we
take M′ =M. For M = P(Fq, n, s) we take M′ = P(Fq, n, bs/2c) and for M = P(Fq, n, r, s) we take
M′ = P(Fq, n, r, bs/2c).
Consider the classM = P(Fq, n, (d, r), s). LetM′ be the class of multilinear polynomials in P(Fq, n, (d, 1),
bs/2c) that contain no monomials of degree less than d. ThenM′−M′ ⊆M. Therefore any black box
set for M must be of size at least

log |M′|
log |Fqt |

= Ω

(
ds log n

t log q

)
. (35)

For M = P(Fq, n, (d, r)) we take the class of polynomials M′ ⊆ P(Fq, n, (d, r)) that contain no mono-
mials of degree less than d. We have M′ −M′ ⊆ M and therefore any black box PIT set for M is of
size

log |M′|
log |Fqt |

≥ R(n, d, r)

t
.

72

For the upper bounds we use Lemma 66.

Notice that to use Schwartz-Zippel Lemma the size of the field |Fqt | = qt must be at least d+ 1 where
d is an upper bound on the degree of the polynomials in the class M. In the next subsection we give
a new result that improves Schwartz-Zippel Lemma. This result will first, improve the above upper
bound when qt ≥ d + 1, and second, improve the minimum size of the field to the variable degree r
(rather than the total degree d+ 1).

5.5.2 New Non-Constructive Upper Bounds

In this subsection we first give a new non-constructive upper bound for the size of a black box PIT set
for P(Fq, n, r, s) over Fqt . Although our analysis also gives new randomized algorithms for black box
PIT even over Fq2 , we will defer those results to our future works [12, 13, 14]. We then give a new
non-constructive upper bound for the size of a black box PIT set for P(Fq, n, (d, r)).

For f ∈ P(Fq, n, r, s), by Schwartz-Zippel Lemma, [60, 82, 49],

Prx∈U(Sn)[f(x) 6= 0] ≥ 1− rn

|S|

where S ⊆ Fqt and U(Sn) is the uniform distribution over Sn.

The following Lemma improves this bound

Lemma 68. Let f ∈ P(Fq, n, r, s) be any non-zero polynomial. Then

Pra∈U(Sn)[f(a) 6= 0] ≥
(

1− r

|S|

)min(n,blog sc)
≥ 1− rmin(n, log s)

|S|

where S ⊆ Fqt\{0} and U(Sn) is the uniform distribution over Sn.

In particular, for any non-zero polynomial f ∈ P(Fq, n, s) we have

Pra∈U(Sn)[f(a) 6= 0] ≥
(

1− q − 1

|S|

)min(n,blog sc)

Proof. We prove the result for any f ∈ P(Fqt , n, r, s). The proof will be by induction on n. For n = 0,
f is a non-zero constant polynomial and s = 1 and the above probability is 1. For n = 1, if s = 1 then
f(x1) = λxd1 for some λ 6= 0 and r ≥ d ≥ 0 and therefore Pra∈U(S)[f(a) 6= 0] = 1. If s > 1 then since
f(x1) is of degree at most r, it has at most r roots in Fqt\{0} and

Pra∈U(S)[f(a) 6= 0] ≥
(

1− r

|S|

)
.

73

Suppose the lemma is true for n − 1 and consider f ∈ P(Fqt , n, r, s). We write f in the form f =
p1(xn)M1 + · · ·+ ps′(xn)Ms′ where p1, . . . , ps′ ∈ Fqt [xn] and M1, . . . ,Ms′ ∈ Fqt [x1, . . . , xn−1] are s′ ≤ s
distinct monomials. Now we have two cases: If for some i ≤ s′, pi(xn) contains one monomial then for
any an ∈ Fqt\{0}, f ′ := f(x1, . . . , xn−1, an) 6≡ 0. This is because pi(an) 6= 0 and then f ′ must contain
the monomial Mi. In this case, by the induction hypothesis,

Pra∈U(Sn)[f(a) 6= 0] =
∑
an∈S

1

|S|
Pra′∈U(Sn−1)[f(a′, an) 6= 0]

≥
(

1− r

|S|

)min(n−1,blog s′c)

≥
(

1− r

|S|

)min(n,blog sc)
.

The other case is when every polynomial pi(xn) contains at least two monomials. In that case s′ ≤ bs/2c
and for any an ∈ Fqt the polynomial f(x1, . . . , xn−1, an) is of size at most bs/2c. Since deg(p1) ≤ r, for
T = {β ∈ S|p1(β) = 0} we have |T | ≤ r and by the induction hypothesis

Pra∈U(Sn)[f(a) 6= 0] =
∑

an∈S\T

1

|S|
Pra′∈U(Sn−1)[f(a′, an) 6= 0]

≥
(

1− r

|S|

)(
1− r

|S|

)min(n−1,blog s′c)

=

(
1− r

|S|

)min(n,blog sc)
.

For f ∈ P(Fq, n, (d, r)), Schwartz-Zippel Lemma gives

Prx∈U(S)[f(x) 6= 0] ≥ 1− d

|S|
.

Now we prove the following better bound

Lemma 69. Let f ∈ P(Fq, n, (d, r)), r ≥ 1 be any non-zero polynomial. Then

Prx∈U(Sn)[f(x) 6= 0] ≥
(

1− r

|S|

)d/r
where S ⊆ Fqt and U(Sn) is the uniform distribution over Sn.

74

Proof. We prove the lemma for f ∈ P(Fqt , n, (d, r)), r ≥ 1 by induction on n. For n = 0 the polynomial f
is nonzero constant and Pr[f 6= 0] = 1. If n = 1 then the polynomial f is in one variable x1. Then it has
at most r roots, d = r and the probability that f(x) 6= 0 for x ∈ U(S) is at least (|S|−r)/|S| = 1−r/|S|.
Suppose the result is true for all integers less than or equal to n− 1. We now prove it for n. Let A be
the set of all the elements α in S such that f |xn=α is identically zero. Since f ∈ Fqt [x1, x2, . . . , xn−1][xn]
is of degree r in xn we have t := |A| ≤ r. Also

f(x) =

(∏
α∈A

(xn − α)

)
g(x)

where g(x) ∈ Fqt [x1, x2, . . . , xn] is of degree d − t. For β 6∈ A let rβ and dβ ≤ d − t be the variable

degree and total degree of g|xn=β, respectively. Since φ(x) = (1 − x)1/x is a monotonically decreasing
function in [0, 1], 0 ≤ rβ ≤ r ≤ q − 1 and t ≤ r ≤ q − 1 we have(

1−
rβ
|S|

)1/rβ

≥
(

1− r

|S|

)1/r

and 1− t

|S|
≥
(

1− r

|S|

)t/r
and therefore by the induction hypothesis we have

Prx∈U(Sn)[f(x) 6= 0] = Pr[xn 6∈ A] ·Prx∈U(Sn) [f(x) 6= 0 | xn 6∈ A]

=

(
1− t

|S|

)∑
β 6∈A

1

|S| − t
Prx∈U(Sn)[f |xn=β(x) 6= 0]

=

(
1− t

|S|

)∑
β 6∈A

1

|S| − t
Prx∈U(Sn)[g|xn=β(x) 6= 0]

≥
(

1− t

|S|

)∑
β 6∈A

1

|S| − t

(
1−

rβ
|S|

)dβ/rβ
≥

(
1− t

|S|

)∑
β 6∈A

1

|S| − t

(
1−

rβ
|S|

)(d−t)/rβ

≥
(

1− t

|S|

)∑
β 6∈A

1

|S| − t

(
1− r

|S|

)(d−t)/r

≥
(

1− r

|S|

)t/r
·
(

1− r

|S|

)(d−t)/r
=

(
1− r

|S|

)d/r
.

This completes the proof.

Now by Lemma 68, Lemma 69 and since d/r ≤ n we have

75

Lemma 70. Let f ∈ P(Fq, n, (d, r), s) be any non-zero polynomial. Then

Prx∈U(Sn)[f(x) 6= 0] ≥
(

1− r

|S|

)min(d/r,blog sc)

where S ⊆ Fqt\{0} and U(Sn) is the uniform distribution over Sn.

Using the union bound with Lemma 70 we get

Lemma 71. For M⊆ P(Fq, n, (d, r), s), if

|M|

(
1−

(
1− r

qt − 1

)min(d/r,blog sc)
)m

< 1

then there is a black box PIT set for M over Fqt of size m.

In particular, m = O(M) where

M =

(
qt−1
qt−1−r

)min(d/r,log s)
log |M| if qt−1

r = O(1), dr = ω(1)

log |M| if qt−1
r = O(1), dr = O(1)

e
min(d,r log s)

qt−1 log |M| if qt−1
r = ω(1), qt−1

min(d,r log s) = o(1)

log |M| if qt−1
r = ω(1), qt−1

min(d,r log s) = O(1)
log |M|

t log q−log min(d,r log s) if qt−1
r = ω(1), qt−1

min(d,r log s) = ω(1)

where the O, o and ω are with respect to the parameters s and d.

The above bound improves the upper bounds in Lemma 67 when qt is close to the degree of f . In
particular we have

Lemma 72. For any positive constant c there is a black box PIT set forM over Fqt of size O(m) where
m is as given in the following table

Lower Upper Bound New Upper
M |Fqt | ≥ Bound Lemma 67 Bound m

P(Fq, n) cqn qn/t (qn log(qn)) · qn/t (log(qn)) · qn/t
P(Fq, n, r) crn (r + 1)n/t (rn log(rn)) · (r + 1)n/t (log(rn)) · (r + 1)n/t

P(Fq, n, (d, r)) cd R(n, d, r)/t (d log d) ·R(n, d, r)/t (log d) ·R(n, d, r)/t

P(Fq, n, s) cqn n · st qn2 log n · st n log n · st
P(Fq, n, r, s) crn n log(r+1)

log q · st
n2r(logn) log (r+1)

log q · st
n(logn) log (r+1)

log q · st
P(Fq, n, (d, r), s) cd d logn

log q ·
s
t

d2(log d)(logn)
log q · st

d(log d) logn
log q · st

76

In the next Lemma we show that using our new bounds one can also get an efficient black box PIT set
size even if the field extension is 2. This also gives new randomized algorithms over small extension
fields that will be discussed in future works [12, 13, 14].

Lemma 73. There is a black box PIT set for M over Fq2 of size O(m) where m is as given in the
following table

M m Lower Bound

P(Fq, n) (log q)(q + 1)n qn

P(Fq, n, r) (log q)
(
r + 1 + r2

q2
+O

(
r
q2

))n
(r + 1)n

P(Fq, n, r = 1) (log q)
(

2 + 2
q2−2

)n
2n

P(F2, n, s) n · s1.585 n · s

P(Fq, n, s) n · s1+log
(
q+1
q

)
n · s

n · s1+log((q2−1)/(q2−2))

P(Fq, n, r = 1, s) = n · s1+O(1/q2) n·s
log q

n · s1+log((q2−1)/(q2−1−r))

P(Fq, n, r, s) = n · s1+O(r/q2) n log(r+1)·s
log q

d(log n)s1+log((q2−1)/(q2−1−r))

P(Fq, n, (d, r), s) = d(log n) · s1+O(r/q2) d(logn)·s
log q

5.6 Constructive Upper Bound for P(Fq, n) and P(Fq, n, r)

In this subsection we give polynomial time constructions of a black box PIT sets for P(Fq, n) and
P(Fq, n, r) of size that asymptotically match the lower bounds in Lemma 67. We give two constructions.
The first is a very simple construction that uses combinatorial Nullstellensatz [1] and is asymptotically
tight for small fields and the other one uses testers and is asymptotically tight for large fields. Notice
that since P(Fq, n) = P(Fq, n, r = q − 1), it is enough to study the class P(Fq, n, r).

The first construction uses the following combinatorial Nullstellensatz

Lemma 74. ([1]) Let F be a field and f be a multivariate polynomial in F[x1, . . . , xn] of total degree d.
Let xr11 x

r2
2 · · ·xrnn be a monomial in f of degree d. If S1, · · · , Sn are subsets of F with |Si| = ri + 1, there

is s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that f(s1, . . . , sn) 6= 0.

This immediately gives the following construction

Lemma 75. Let Fq be any field. Let S ⊆ Fqt be a set of size r+ 1. Then Sn is a black box PIT set for
P(Fq, n, r) of size (r + 1)n.

77

We now use testers to prove the following

Lemma 76. For any q there is a black box PIT set for P(Fq, n, r) over Fqt of size at most

2n
(r + 1)n

t

that can be constructed in (r + 1)npoly(t, n) time.

In particular, there is a black box PIT set for P(Fq, n) over Fqt of size at most

2n
qn

t

that can be constructed in qnpoly(t, n) time.

Proof. If t ≤ 2n then the black box PIT set in Lemma 75 is of size (r+ 1)n ≤ 2n · (r + 1)n/t. Therefore
we may assume that t > 2n.

Consider the linear space Fq[x]T−1 where T = (r+ 1)n−1 + 1. Since for two distinct monomials M1 and
M2 with variable degree r we have

M1(x1, x(r+1), x(r+1)2 , x(r+1)n−1
) 6≡M2(x1, x(r+1), x(r+1)2 , x(r+1)n−1

)

for f ∈ P(Fq, n, r) we have f 6≡ 0 if and only if h(x) := f(x1, x(r+1), x(r+1)2 , x(r+1)n−1
) 6≡ 0. This

gives a black box PIT set for P(Fq, n, r) over Fq[x]T−1 of size 1.

By Lemma 62, since f ∈ P(Fq, n, d = rn) and qt ≥ q2n+1 ≥ rn + 1 there is a black box PIT set for
P(Fq, n, r) over Fqt of size

νPFqt ((rn,Fq),Fq[x]T−1) .

By Lemma 9, since
qt−1 ≥ q2n ≥ rnT − rn+ 1

we have

νPFqt ((rn,Fq),Fq[x]T) ≤ (rn+ 1)
T − 1

t
=
rn+ 1

r + 1

(r + 1)n

t
≤ 2n

(r + 1)n

t
.

5.7 Constructive Upper Bound for P(Fq, n, d) and P(Fq, n, (d, r))

In this subsection we give a black box PIT set for the class P(Fq, n, (d, r)) for every d, r and q. We
give two constructions. The first is a very simple construction that uses combinatorial Nullstellensatz
lemma and the second one uses testers. For small d, the size of the black box PIT set asymptotically
matches the lower bound in Lemma 65.

78

By Lemma 67 and 72 we have that for qt ≥ d + 1, a minimum size black box PIT set S over Fqt for
P(Fq, n, (d, r)) satisfies

R(n, d, r)

t
≤ |S| ≤ (log d)

R(n, d, r)

t

where R(n, d, r) is the number of monomials in Fq[x1, . . . , xn] of degree at most d and variable degree
at most r. The function R(n, d, r) satisfies the following bounds

d∑
i=0

(
n

i

)
= R(n, d, 1) ≤ R(n, d, r) ≤ R(n, d, d) =

(
n+ d

d

)
.

The combinatorial Nullstellensatz lemma gives the following construction

Lemma 77. Let S = {σ0, σ1, . . . , σr} ⊆ F where |S| = r + 1. The set

S = {(σi1 , . . . , σin) | 0 ≤ i0 ≤ d, ij ≤ r for j = 1, . . . , n, and i0 + i1 + i2 + · · ·+ in = d}

is a black box PIT set for P(F, n, (d, r)) of size

|S| = R(n, d, r).

Proof. Let f ∈ P(F, n, (d, r)) and let xr11 x
r2
2 · · ·xrnn be a monomial in f of degree d′ = deg(f). Consider

Sj = {σ0, . . . , σrj} ⊆ S for j = 1, . . . , n. By Lemma 74 there is σi1 ∈ S1, σi2 ∈ S2, . . . , σin ∈ Sn so that
f(σi1 , . . . , σin) 6= 0. Since σij ∈ Sj we have ij ≤ rj ≤ r. Also i1 + · · · + in ≤ r1 + · · · + rn = d′ and for
i0 = d− (i1 + · · ·+ in) we have i0 + i1 + · · ·+ in = d and therefore (σi1 , . . . , σin) ∈ S.

Our second construction uses testers. We prove

Lemma 78. For any qt ≥ d+ 1 there is a black box PIT set for P(Fq, n, d) over Fqt of size

d((1 + o(1))n)d+1

t

that can be constructed in time nd+2 · poly(t, d).

Proof. If t ≤ dn then by Lemma 78 we get the result. Therefore, we may assume that t > dn. Let
f ∈ P(Fq, n, d) where qt ≥ d+ 1. Then

f(x) =
∑
i∈I

λi · xi1 · · ·xid

where x = (x0, x1, . . . , xn), x0 = 1, I ⊆ {(i1, i2, . . . , id) | 0 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n} and λi ∈ Fq. Note
here that we are using x0 to create monomials of degree less than d.

79

Consider the Sidon B≤d sequence a1, a2, · · · , an in Lemma 59 where maxj aj ≤ N − 1 = (n+ o(n))d+1.
In Lemma 59 we have shown that this sequence can be constructed in time nd/2+1.5. Consider the
assignment x′ = (xa0 , xa1 , xa2 , . . . , xad) where a0 = 0 and x is a new indeterminate. Then

f(x′) =
∑
i∈I

λi · xai1+ai2+···+aid .

Notice that ni := ai1 + ai2 + · · ·+ aid , i ∈ I are distinct. Therefore, f(x′) 6= 0. That is, S = {x′} is a
black box PIT set over Fq[x]N−1 of size 1. By Lemma 63 and 9 there is a black box PIT set over Fqt of
size

νPFqt ((d,Fq),Fq[x]N−1) ≤ dN − d+ 1

t
+ 1 ≤ d((1 + o(1))n)d+1

t
.

5.8 Constructive Upper Bounds for P(Fq, n, s) and P(Fq, n, r, s)

In this subsection we construct black box PIT sets for P(Fq, n, s) and P(Fq, n, r, s).

In [24], Clausen et. al. showed that any black box PIT set for P(Fq, n, s) over Fq has size at least
Ω((n/ log s)log s). Then they gave a black box PIT set of size sO(log log q)(n/ log s)log s [80]. They also
show that there is a black box PIT set for P(Fq, n, s) over Fqt where t ≥ n of size s+ 1. Constructing
the latter set requires constructing an element of the field with multiplicative order at least qn. In [34],
Grigoriev gave a black box PIT set for P(Fq, n, s) over Fqt , where t ≥ 2 logq(ns) + 4, of size O(qn2s3).
It follows from [45] that there is a black box PIT set for P(Fq, n, s) over Fqt where t ≥ 12 logq n+O(1)
of size (qns)c for some constant c ≥ 2. All the above results give black box PIT sets for P(Fq, n, s) of
size that are at least quadratic in s. In this subsection we give a black box PIT set for this class over
Fqt , where t ≥ dlogq ne+ 2, of size that is linear in s/t in deterministic time poly(n) · s.
We prove the following.

Lemma 79. We have

1. There is an explicit black box PIT set for P(Fq, n, r, s) over Fqt of size

O
(
rn2 log(r+1)

log q · st
)

if t ≥ 2 logq n+ 2

O
(
r2n3 log(r+1)

log q · st
)

if t ≥ logq n+O(logq logq n)

O
(
r5n6 log(r+1)

log q · st
)

if t ≥ logq n+ 2.

In particular, of size poly(n) · s/t for t ≥ logq n+ 2.

80

2. There is a black box PIT set for P(Fq, n, r, s) over Fqt of size

O
(
q24rn3 log2 r · st

)
if t ≥ 2 logq n+ 2

O
(
q24r2n4 log2 r · st

)
if t ≥ logq n+O(logq logq n)

O
(
q24r5n7 log2 r · st

)
if t ≥ logq n+ 2

that can be constructed in deterministic time s · poly(n). In particular, of size poly(n) · s/t, for
t ≥ logq n+ 2, that can be constructed in deterministic time s · poly(n).

Proof. Let f ∈ P(Fq, n, r, s). As in the proof of Lemma 76, since the variable degree of f is at most r,
f is not equivalent to 0 if and only if

g(x) := f
(
x1, x(r+1), x(r+1)2 , . . . , x(r+1)n−1

)
is not equivalent to 0. Also, g(x) is of degree at most (r + 1)n − 1 and contains at most s monomials.
Let

T =

⌈
n log(r + 1)

log q

⌉
.

Let α be an element of multiplicative order at least (r+1)n in FqT . Then one of the values g(α0), g(α1), . . . ,
g(αs−1) is not zero. Therefore there exists an explicit black box PIT set for P(Fq, n, r, s) over FqT of
size s. By Lemma 62 and Lemma 45, if qt ≥ rn + 1, then there is an explicit black box PIT set for
P(Fq, n, r, s) over Fqt of size

s · νPFqt ((rn,Fq),FqT) =

O
(
rn2s log(r+1)

t log q

)
if t ≥ 2 logq n+ 2

O
(
r2n3s log(r+1)

t log q

)
if t ≥ logq n+O(logq logq n)

O
(
r5n6s log(r+1)

t log q

)
if t ≥ logq n+ 2.

We now prove 2. By Lemma 57, for

M =
1

100
q24(n log(r + 1) + 25)2 = O(q24(log r)2n2)

an element α in FqN for some M ≤ N ≤M + o(M) of multiplicative order (r + 1)n can be constructed
in time poly(n). If f(x) is not identically zero then g is not identically zero and then one of the values
g(α0), g(α1), . . . , g(αs−1) is not zero. Therefore there is a black box PIT set for P(Fq, n, s) over FqN of
size s that can be constructed in time s · poly(n).

By Lemma 62 and Lemma 45, if qt ≥ rn+1, then there is an explicit black box PIT set for P(Fq, n, r, s)
over Fqt of size

s · νPFqt ((rn,Fq),FqM) =

O
(
q24rn3s log2 r

t

)
if t ≥ 2 logq n+ 2

O
(
q24r2n4s log2 r

t

)
if t ≥ logq n+O(logq logq n)

O
(
q24r5n7s log2 r

t

)
if t ≥ logq n+ 2

81

that can be constructed in time s · poly(n).

Using testers with the result in [34], one can get a black box PIT set over Fqt where t ≥ dlogq ne+ 2 of

size Õ(qn2s3), which is better than the above size for small s. Since, in this paper, we are seeking black
box PIT sets of size that is linear in s (see the note in Section 6) we will not state this result here. For
small s, better black box PIT set size and smaller field extension are achieved in [12].

5.9 Constructive Upper Bound for P(Fq, n, d, s) and P(Fq, n, (d, r), s)

In this subsection we construct black box PIT sets for P(Fq, n, d, s) for every q, s and d.

Klivans and Spielman, [45], gave a black box PIT set for P(Fq, n, d, s) over Fqt , where t ≥ 6 log n+6 log d,
of size (ns)c for some constant c ≥ 2 that can be constructed in polynomial time poly(n, s). Then
Bogdanov [9] gave a black box PIT set for P(Fq, n, d, s) over Fqt , where t ≥ 18 log d + 18 log log n, of
size (s log n)c for some constant c ≥ 2 that can be constructed in polynomial time poly(n, s). In this
subsection we give a black box PIT set for P(Fq, n, d, s) over Fqt , where t ≥ dlog(d + 1)/ log qe, of size
poly(d, log n) ·s/t in time s ·poly(n). In particular, when q ≥ d+1 then t = 1 and therefore no extension
of the field is needed.

We prove

Lemma 80. We have

1. There is an explicit black box PIT set for P(Fq, n, d, s) over Fqt, where t ≥ dlogq(d+ 1)e, of size

O
(
d2 logn

log q ·
s
t

)
if t ≥ 2 logq d+ logq logq n+ 2

O
(
d3 logn

log q ·
s
t

)
if t ≥ logq d+ logq logq logq n+ 2

O
(
d6 logn

log q ·
s
t

)
if t ≥

⌈
logq(d+ 1)

⌉
.

2. There is a black box PIT set for P(Fq, n, d, s) over Fqt, where t ≥ dlogq(d+ 1)e, of size

O
(
q24d3 log2 n · st

)
if t ≥ 2 logq d+ logq logq n+ 2

O
(
q24d4 log2 n · st

)
if t ≥ logq d+ logq logq logq n+ 2

O
(
q24d7 log2 n · st

)
if t ≥

⌈
logq(d+ 1)

⌉
that can be constructed in deterministic time s · poly(n).

3. In particular, when q ≥ d + 1 then there is a black box PIT set for P(Fq, n, d, s) over Fq of size
poly(q, log n) · s that can be constructed in deterministic time s · poly(n).

82

Proof. Let f ∈ P(Fq, n, d, s) and t be integer such that qt ≥ d+ 1. Then

f(x) =
∑
i∈I

λi · xi1 · · ·xid

where x = (x0, x1, . . . , xn), x0 = 1, I ⊆ {(i1, i2, . . . , id) | 0 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n}, |I| ≤ s and
λi ∈ Fq. Note here that we are using x0 to create monomials of degree less than d.

Consider the Sidon B≤d sequence a1, a2, · · · , an in Lemma 59 where maxj aj ≤ N−1 = ((1+o(1))n)d+1.
Consider the field FqT where qT ≥ dN and let α be a primitive root of this field. Consider the assignment
x′ = (xa0 , xa1 , xa2 , . . . , xad) where a0 = 0 and x is a new indeterminate. Then

h(x) := f(x′) =
∑
i∈I

λi · xai1+ai2+···+aid .

Notice that ni := ai1 +ai2 + · · ·+aid , i ∈ I are distinct and ni < dN and therefore if f is not identically
zero then h(x) is a nonzero polynomial of degree at most dN − 1 with at most s monomials. Therefore,
one of h(α0), h(α1), . . . , h(αs−1) is not zero. That is, S = {x′(α0),x′(α1), . . . ,x′(αs−1)} is a black
box PIT set for P(Fq, n, d, s) over FqT of size s. By 3 in Lemma 62 there is a black box PIT set for

P(Fq, n, d, s) over Fqt of size s · νPFqt (d,FqT) and by Lemma 45, result 1 follows.

To prove 2 we consider the Sidon B≤d sequence a1, a2, · · · , an in Lemma 60 where maxj aj ≤ N =
(2dn)2d that can be constructed in poly(n) time. By Lemma 57, for

M =
1

100
q24(3d log(dn) + 25)2 = O(q24d2(log n)2)

an element β in FqK for some M ≤ K ≤M+o(M) of multiplicative order at least dN can be constructed
in time poly(n). As above S = {x′(β0),x′(β1), . . . ,x′(βs−1)} is a black box PIT set for P(Fq, n, d, s)
over FqK of size s. Now the result follows from 3 in Lemma 62 and Lemma 45.

5.10 Field Reduction of Other Circuit Classes

In this subsection we apply the reduction in Lemma 62 for the black box PIT sets in [70, 73, 74, 6] and
get a black box PIT sets over smaller fields. The results are indicated in the following table

Circuit Field Size of New Field New Size Ref.
Class size ≥ PIT set size ≥ of PIT set

ΣΠΣ(k, d, n) dnk2 poly(n) · dk d+ 1 poly(n) · dk+5 [70]

ΣrPkROF kn3 (kn)O(r+logn) kn+ 1 (kn)O(r+logn) [73]

ML ΣΠΣΠ(k) n2 nO(k3) n+ 1 nO(k3) [74]

Rk ML n2 nk
O(k)+O(k logn) n+ 1 nk

O(k)+O(k logn) [6]

83

The classes in the table are: ΣΠΣ(k, d, n) is the class of depth-3 circuits with n variables, degree d
and top fanin k. PkROF is the class of read once formulas (ROF, each variable appears at most once
in the formula) with n variables in which we are allowed to replace each variable xi with a univariate
polynomial Ti(xi) of degree at most k. ΣrPkROF is the sum of r PkROF formulas. Multilinear (ML)
ΣΠΣΠ(k) is the class of depth 4 circuits with n variables in which the fan-in of the top Σ gate is a
constant k and each multiplication gate computes a multilinear polynomial. Rk ML is the class of
multilinear formulas with n variables where each variable appears at most k times in the formula.

The table shows the reduction to a smaller field. For example, in the first row in the table, in [70],
Saxena and Seshadhri gave a black box PIT set for ΣΠΣ(k, d, n) over fields of size at least dnk2. We
apply our reduction to give a black box PIT set for ΣΠΣ(k, d, n) over fields of size at least d+ 1. Notice
that our field size is independent of n and when the field Fq satisfies q ≥ d + 1, no extension field is
needed.

6 Application of Tester for Polynomial Restriction Problems

A restriction problem is a problem of the following form:

Given an alphabet Σ of size |Σ| = q, an integer n and a class M of nonzero functions f : Σn → {0, 1}.
Find a small set S ⊆ Σn such that: For any f ∈M there is a ∈ S such that f(a) 6= 0.

We will study restriction problems when M is a class of multivariate polynomials over Fq.

We remind the reader that the total degree (or just degree) of a multivariate polynomial is the maximum
over the sums of the exponents of each multivariate monomial and the variable degree is the maximum
over the degree of each variable. We denote by P(Fq, n, ((d, r), s)) the class of all multivariate polynomial
over Fq of degree exactly d and variable degree at most r ≤ q − 1 that contains at most s monomials
of degree d and any number of monomials of degree less than d. We denote P(Fq, n, ((d, q − 1), s)) by
P(Fq, n, (d, s)). Obviously, P(Fq, n, d, s) ⊆ P(Fq, n, (d, s)) and P(Fq, n, (d, r), s) ⊆ P(Fq, n, ((d, r), s)).
Notice that, for example, f = (x1 +1)(x2 +1) · · · (xd+1) is in P(Fq, n, (d, 1), 2d) and P(Fq, n, ((d, 1), 1))
but not in P(Fq, n, (d, 1), s) for any s < 2d.

In this section we consider the following s-sparse (d, r)-degree polynomial problem over Fq: Given
the class P(Fq, n, ((d, r), s)). Find a small set S ⊂ Fnq such that for every f ∈ P(Fq, n, ((d, r), s)) there
is a ∈ S such that f(a) 6= 0.

This problem can be regarded as black box PIT set over Fq problem, hitting set problem or polynomial
restriction problem. We will call S a hitting set for P(Fq, n, ((d, r), s)).

Note: Throughout this section we will assume

d, r, q = o(n). (36)

Our technique can also handle other cases that will also be considered here. Although our results are

84

true for any s, we will assume that s� n and therefore we will concentrate on constructions that gives
hitting sets of size that is linear in s. In [12] other constructions of hitting sets that have size quadratic
in s are also studied.

6.1 Lower Bound for P(Fq, n, ((d, r), s))

In this subsection we give a lower bound for the size of any hitting set for P(Fq, n, ((d, r), s)).

We prove

Lemma 81. For any n, d, r, s and `, where ` ≤ nc1 and s ≤ nc2(1−c1)` for some constants c1, c2 < 1,
any hitting set S for P(Fq, n, ((d, r), s)) is of size

|S| = Ω

((
q

q − r

)b(d−`)/rc `s log n

log q

)
.

In particular, for s = poly(n) there is infinite sequence of integers d such that

|S| = Ω

(
πdq,r ·

s log n

log q

)
(37)

where

πq,r =

(
q

q − r

)1/r

and for s = poly(n) and q = 2
|S| = Ω(2d · s log n).

Proof. Let S = {a1, . . . ,at} ⊆ Fnq be a hitting set for P(Fq, n, ((d, r), s)). Let w = b(d − `)/rc. Pick
random uniform sets A1, A2, . . . , Aw ⊂ Fq each of size r. For a fixed b ∈ S we have

Pr [b1 6∈ A1, . . . , bw 6∈ Aw] =

(
q − r
q

)w
.

Therefore there exist w sets A1, . . . , Aw ∈ Fq each of size r such that at most t((q−r)/q)w elements b ∈ S
satisfy bi 6∈ Ai for all i = 1, . . . , w. Let B′ ⊆ S be those elements and B = {(bw+1, . . . , bn) | b ∈ B′}.
Then

|B| ≤ |B′| ≤
(
q − r
q

)w
t. (38)

Note that the polynomial

p(x) =

w∏
i=1

∏
α∈Ai

(xi − α)

85

is zero on all the elements of S\B′.
Let M′ ⊂ P(Fq, n − w − 1, ((`, r), bs/2c)) be a set of all polynomials over Fq of degree ` and variable
degree at most r over the n − w − 1 variables (xw+2, . . . , xn) of size at most bs/2c that contain no
monomials of degree less than `. By the proof of Lemma 65, if |Fq||B| < |M′| then there are two distinct
functions f, g ∈ M′ such that f − g is equal to zero on all the elements in B. Then, the multivariate
polynomial

p(x) · xd−`−wrw+1 · (f(xw+2, . . . , xn)− g(xw+2, . . . , xn)) ∈ P(Fq, n, ((d, r), s))

is non-zero polynomial of degree d and variable degree r and has at most s monomials of degree d and
is equal to 0 on all the elements of S. Therefore we must have |Fq||B| ≥ |M′|.
Now, by (38), we get

t ≥
(

q

q − r

)w
|B| ≥

(
q

q − r

)w log |M′|
log q

= Ω

((
q

q − r

)b(d−`)/rc `s log n

log q

)
.

We note here that a better bound can be obtained in (37) if we choose ` = r/ log(q/(q − r)) and
d mod r = `. We avoid this since it will give a cumbersome analysis.

We note here that in (37) the constant πq,r satisfies

1 +
1

q − 1
≤ πq,r =

(
q

q − r

)1/r

≤ q1/(q−1) = 1 +
ln q

q − 1
+O

(
log2 q

q2

)
≤ 2.

6.2 Nonconstructive Upper Bound for P(Fq, n, (d, s))

In this subsection we give a non-constructive upper bound for the size of hitting sets for P(Fq, n, ((d, r), s)).

We first prove the following

Lemma 82. For any non-zero function f ∈ P(Fq, n, (d, r)), r ≥ 1 we have

Prx∈U(Fnq)[f(x) 6= 0] ≥ π−dq,r

where

πq,r =

(
q

q − r

)1/r

and U(Fnq) is the uniform distribution over Fnq .

86

Proof. The result follows from Lemma 69.

The union bound with Lemma 82 gives

Lemma 83. We have

1. There is a hitting set for P(Fq, n, (d, r), s) of size

log |P(Fq, n, (d, r), s)|

log
(

1
1−π−dq,r

)
for q ≤ d and of size

log |P(Fq, n, (d, r), s)|
log(q/d)

for q ≥ d+ 1.

2. In particular, for any d ≤ nc1 and s ≤ n(1−c1)c2d, for some constant c1, c2 < 1, there is a hitting
set for P(Fq, n, (d, r), s) of size

O
(
dπdq,rs log n

)
for q ≤ d and of size

O

(
ds log n

log(q/d)

)
=

O(d2s log n) q = d+ c
O(ds log n) q = c(d+ 1)

O
(

d
log(q/d)s log n

)
q = ω(d)

O
(

d
log qs log n

)
q ≥ d1+c

for q ≥ d+ 1 and any constant c > 0.

3. In particular, there is a hitting set for P(F2, n, d, s) of size O(d2ds log n).

Since f ∈ P(Fq, n, ((d, r), s)) can contain any number of monomials of degree less than d, the size of the

class P(Fq, n, ((d, r), s)) is at least q(n/d)d−1
and therefore the union bound will not give a good bound.

In what follows we use a new technique that gives better bounds

Lemma 84. We have

1. Let d ≤ nc1 and s ≤ n(1−c1)c2d for some constants c1, c2 < 1. If r ≤ p − 1, where p is the
characteristic of the field, and q ≤ d then there is a hitting set for P(Fq, n, ((d, r), s)) of size

O
(
d (2 · πq,1)d s log n

)
= O

(
d

(
2 +

2

q − 1

)d
s log n

)
.

87

2. In particular, there is a hitting set for P(F2, n, (d, s)) of size O(d22ds log n).

3. If q ≥ d+ 1 then for any constant c ≥ 0, there is a hitting set for P(Fq, n, ((d, r), s)) of size

O

(
d2s log n

log(q/d)

)
=

O(d3s log n) q = d+ c
O(d2s log n) q = c(d+ 1)

O
(

d2

log(q/d)s log n
)

q = ω(d)

O
(

d2

log qs log n
)

q ≥ d1+c.

Proof. We first prove 1 and 2. Consider φdM = {φdf | f ∈ P(Fq, n, (d, s))} ⊆ P(Fq, dn, (d, r = 1)).
First of all, by Lemma 61, for every f ∈ P(Fq, n, ((d, r), s)), r ≤ p − 1, f 6≡ 0 if and only if φdf 6≡ 0.
Second of all, φdf depends only on the monomials of degree d in f and therefore

|φdM| ≤ qs
((n+d−1

d

)
s

)
.

Now by Lemma 82 and the union bound there is a hitting set Y ⊆ (Fnq)d for φdM of size

log |φdM|

log

(
1

1−π−dq,1

) = O
(
dπdq,1s log n

)
.

Now if for some y = (y1,y2, . . . ,yd) ∈ Y and f ∈ P(Fq, n, (d, s)) we have (φdf)(y) 6= 0 then by (33)
f(
∑

j∈J yj) 6= 0 for some J ⊆ [d]. Therefore,

Y ′ =

∑
j∈J

yj

∣∣∣∣ J ⊆ [d],y ∈ Y

is a hitting set for P(Fq, n, ((d, r), s)) of size

O
(
d2dπdq,1s log n

)
.

Now we prove 3. By Lemma 83 there is a hitting setX ⊆ Fnq for P(Fq, n, d, s) of sizeO((ds log n)/ log(q/d)).
Now choose d+1 distinct elements B = {β1, . . . , βd+1} ⊆ Fq. This is possible since q ≥ d+1. Then define
the set S = {βjx′ | j = 1, . . . , d+ 1,x′ ∈ X}. We now show that S is a hitting set for P(Fq, n, (d, s)).

Let f(x) ∈ P(Fq, n, (d, s)) and define g(x, y) = f(yx1, yx2, . . . , yxn) where y is a new indeterminate.
Then g(x, y) = gd(x)yd + gd−1(x)yd−1 + · · ·+ g0(x) and gd(x) ∈ P(Fq, n, d, s). Therefore, g(x′, y) 6≡ 0
for some x′ ∈ X. Since g(x′, y) is a polynomial of degree at most d in y we have g(x′, βj) 6= 0 for some

88

j = 1, . . . , d + 1. Therefore f(βjx
′) = g(x′, βj) 6= 0 for some x′ ∈ X and βj ∈ B. Thus, S is a hitting

set for P(Fq, n, (d, s)). Now

|S| = |X||B| = O

(
d2s log n

log(q/d)

)
.

6.3 Constructive Upper Bound for P(Fq, n, (d, s))

In this subsection we give explicit and polynomial time constructions of hitting sets for P(Fq, n, ((d, r), s)).

Our first result is for q ≥ d+ 1. We prove

Lemma 85. Let q ≥ d+ 1 and M = P(Fq, n, (d, s)).

1. There is an explicit hitting set for M of size

O

(
dτ+1s

log n

log q

)
=

O
(
d2s logn

log q

)
if q perfect square , q ≥ c(d+ 1)2, I.S. n

O
(
d3s logn

log q

)
if q perfect square , q ≥ c(d+ 1)2

O
(
d3s logn

log q

)
if q ≥ c(d+ 1), I.S. n

O
(
d4s logn

log q

)
if q ≥ c(d+ 1)

O
(
d4s logn

log q

)
if q ≥ d+ 1, I.S. n

O
(
d5s logn

log q

)
if q ≥ d+ 1

where c > 1 is any constant.

2. For a constant d there is a hitting set for M of size

O

(
s

log n

log q

)
that can be constructed in polynomial time poly(n).

3. For d = O(log log log n) and a prime q there is a hitting set for M of size

O

(
dτ+1s

log n

log q

)
that can be constructed in time s · poly(n).

89

4. For any d there is a hitting set for M of size

O
(
q24d7s · log2 n

)
that can be constructed in time s · poly(n).

Proof. Let f ∈ P(Fq, n, (d, s)). Consider the Sidon B≥d sequence in Lemma 60, a1, a2, · · · , an where
max aj ≤ N := (2dn)2d that can be constructed in polynomial time. Consider the assignment x′ =
(xa1y, . . . , xany) where x and y are new indeterminates. Then g(x, y) := f(x′) ∈ Fq[x, y] can be
represented as g(x, y) = gd(x)yd + gd−1(x)yd−1 + · · · + g0(x). Since f ∈ P(Fq, n, (d, s)), gd(x) is a
nonzero polynomial of degree at most dN with at most s monomials. Consider the field Fqt such that
qt−1 < dN ≤ qt and α a primitive root of Fqt . Since gd contains at most s monomials of degree less
than dN , one of the values gd(α

0), . . . , gd(α
s−1) is not equal to 0. Since g(x, y) is of degree d in y, we

have g(αi, αj) 6= 0 for some i = 0, . . . , s− 1 and j = 0, . . . , d. This gives a hitting set for P(Fq, n, (d, s))
over Fqt of size (d + 1)s. Now using a (P(Fq, n, d),Fqt ,Fq)-tester and by Corollary 17 we get a hitting
set for P(Fq, n, (d, s)) of size

(d+ 1)s · νPFq(d,Fqt) = O

(
dτ(d,q,t)+1s

log n

log q

)
.

This proves 1.

The bottleneck in the above algorithm is finding a primitive root in Fqt where qt ≥ dN . By Lemma 56,
this can be done in polynomial time when d is constant. This implies 2.

For d = O(log log log n) we use Lemma 58. If q is prime then by Lemma 58 a primitive root in FqT
where T = t+ o(t) can be found in time

qO(t/ log log t) = qO(d logn/(log q log log logn)) = poly(n).

This with Corollaries 41 and 43 implies 3.

One can also use, instead of a primitive root, an element in Fqt of multiplicative order at least dN . By
Lemma 57 for m = O(q24d2 log2 n) there is a polynomial time algorithm that constructs an element in
FqM of order at least dN where M ≤ m+ o(m). This, with Corollary 41, gives a hitting set of size

(d+ 1)s · νPFq(d,Fqm) = O
(
q24d7s · log2 n

)
.

This implies 4.

Notice that, for any constant c > 1 and perfect square q ≥ c(d + 1)2, our explicit construction meets
the non-constructive bound in Lemma 84.

We now study the problem for q ≤ d. We will first study the case where q = 2 and then consider other
fields. We prove

90

Lemma 86. Let M = P(F2, n, (d, s)). Then

1. There is an explicit hitting set for M of size O(22.66ds log n).

2. For a constant d there is a hitting set forM of size O(s log n) that can be constructed in polynomial
time poly(n).

3. For d = O(log log log n), there is a hitting set forM of size O(22.66ds log n) that can be constructed
in time s · poly(n).

4. There is a hitting set forM of size O(22.66ds log2 n) that can be constructed in time 22.66ds·poly(n).

Proof. The idea of the proof is the following: First we change the multivariate polynomials in M to
(n, d)-multilinear polynomials in φdM. Then we use Sidon sequence to find a hitting set for φdM over
F2r where r = O(d log n). Then we use a tester to change the hitting set over F2r to a hitting set
over F2. Then we use the hitting set for φdM to get a hitting set for M.

Let M = P(F2, n, (d, s)). Consider f ∈M and suppose

f(x) =
∑
i∈I

λixi1 · · ·xid + g(x)

where x = (x1, . . . , xn), g(x) is a multivariate polynomial of degree less than d, i = (i1, i2, . . . , id),
1 ≤ i1 < i2 < · · · < id ≤ n, λi = 1, I ⊂ [n]d and |I| ≤ s. Let Mi = xi1 · · ·xid . Let y = (y1, . . . ,yd)
where yi = (yi,1, . . . , yi,n) are new indeterminates for i = 1, . . . , d. Recall the operator φd : F2[x]→ F2[y]
in (33). Since the field is of characteristic 2 and since φd is linear we have

(φdf)(y1, . . . ,yd) =
∑
i∈I

λiPerm (YMi(y1, . . . ,yd)) =
∑
i∈I

λi det (YMi(y1, . . . ,yd)) . (39)

Notice that φdf is (n, d)-multilinear polynomial. Let z = (z1, . . . , zn) be new indeterminates. Then

(φdf)(z ? y1, . . . ,z ? yd) =
∑
i∈I

λizi1 · · · zid det(YMi(y1, . . . ,yd)),

where z ? yi = (z1yi,1, . . . , znyi,n).

Let K = F2r where r = d4d log(2dn)e and let α be a primitive root in K. We substitute y′ = (y′1, . . . ,y
′
d)

in y where y′i,j = αij and get

(φdf)(z ? y′1, . . . ,z ? y
′
d) =

∑
i∈I

λizi1 · · · zid det
(
[αikj]k,j

)
=
∑
i∈I

Λizi1 · · · zid ,

91

where, by Vandermonde, Λi = λi det([αikj]k,j) 6= 0 for all i ∈ I. Let a1, a2, . . . , an be the Sidon
B≤d sequence that is defined in Lemma 60 where maxj aj ≤ (2dn)2d. We now substitute z = z′ :=
(wa1 , . . . , wan) for a new indeterminate w and get

t(w) := (φdf)(z′ ? y′1, . . . ,z
′ ? y′d) =

∑
i∈I

Λiw
ai1+···+aid .

Since t(w) is a polynomial in one variable w of size at most s and degree at most d(2dn)2d < |K|, one
of the values t(1), t(α), . . . , t(αs−1) is not zero.

This gives a hitting set for φdM over K of size s. By the definition of testers there is a hitting set for
φdM over F2 of size s · νF2(d,F2r). Since each substitution in φdf can be simulated by 2d substitutions
in f and by Theorem 21, there is a hitting set for M over F2 of size

2ds · νF2(d,F2r) = 2d+c2dd5sr ≤ d62d+c2ds log n = O(22.66ds log n).

This proves 1.

In Lemma 59 we show that a Sidon B≤d sequence a1, a2, · · · , ad with N := maxj aj ≤ (1 + o(1))dnd

can be constructed in deterministic O(nd/2+1) time. We can use this in the above proof. Then we can
choose K = F2r where 2r ≥ dN > 2r−1 and, by Lemma 56, a primitive root in K can be found in time
(dN)1/4 = O(nd/2+1). This gives a construction of size O(22.66ds log n) that can be constructed in time
nd/2+1. For constant d, we get 2.

By Lemma 58, for some constant c, there is M = 2d log(2dn) + o(2d log(2dn)) such that a primitive
root in F2M can be found in time

T = 2
c

2d log(2dn)
log log(2d log(2dn)) .

When d = O(log log log n) we have T = poly(n). This implies 3.

For the above construction one can also use an element of large multiplicative order in finite field instead
of a primitive root. By Lemma 57, for m = O(d2 log2(dn))) one can find an element in F2M for some
m ≤M ≤ m+o(m) of multiplicative order at least (2dn)2d in polynomial time. This gives a polynomial
time construction of a hitting set of size O(22.66ds log2 n).

When applying the above to any other field we encounter two bottlenecks. The first is that in (39),
Perm (YMi(y1, . . . ,yd)) = det (YMi(y1, . . . ,yd)) is true only for multilinear polynomials over fields of
characteristic 2. Using permanent instead of determinant for fields of characteristic not equal to 2 will
add a factor of d! to the size of the construction. The second bottleneck is that the operator in (33)
gives a factor of 2d to the size of the construction and this, for large field Fq, gives a large gap from the
lower bound (q/(q − 1))ds log n = 2Ω(d/q)s log n. We therefore get

Lemma 87. Let q ≤ d, r ≤ p− 1 and M = P(Fq, n, ((d, r), s)). Then

92

1. There is an explicit hitting set for M of size O(2(1+cq)dd!s log n).

2. If q = 2` then there is an explicit hitting set for M of size O(2(1+cq)ds log n).

3. If d is constant then there is a hitting set for M of size O(s log n) that can be constructed in
polynomial time poly(n).

4. There is a hitting set forM of size O(2(1+cq)dsd! log2 n) that can be constructed in time 2(1+cq)dd!s·
poly(n).

5. If q = 2` then there is a hitting set for M of size O(2(1+cq)ds log2 n) that can be constructed in
time 2(1+cq)ds · poly(n).

The table in Figure 1 summarizes the results for M = P(Fq, n, ((d, r), s)) where r ≤ p − 1. See also
Open Problems 7.2 and 7.3.

q, d Lower Upper Explicit Poly Time

q = 2 2ds log n 22ds log n 22.66ds log n 22.66ds log2 n

q = 2` ≤ d πdq,rs
logn
log q d2dπdq,1s log n 2(1+cq)ds log n 2(1+cq)ds log2 n

q ≤ d πdq,rs
logn
log q d2dπdq,1s log n 2(1+cq)dd!s log n 2(1+cq)dd!s log2 n

q ≤ d = O(1) s log n s log n s log n s log n

q ≥ d+ 1 ds logn
log q d2s logn

log(q/d) dτ+1s logn
log q q24d7s · log2 n

q ≥ d+ 1 = O(1) s logn
log q s logn

log(q/d) s logn
log q s logn

log q

Figure 1: Bounds for the size of black box PIT set for P(Fq, n, ((d, r), s)).

1 +
1

q − 1
= πq,1 ≤ πq,r :=

(
q

q − r

)1/r

≤ πq,q−1 = q1/(q−1) = 1 +
ln q

q − 1
+O

(
log2 q

q2

)
≤ 2.

Open Problems 7.

1. Find a polynomial time algorithm that for every integer n, constructs a B≤d Sidon sequence
a1, a2, · · · , an with maxj aj ≤ nd.

2. Close the gaps between the lower bounds and upper bounds in the table in Figure 1. Recently,
we have developed in [13] a new technique that uses what we will call “general permanent” and
“semi-symmetric testers” that narrow those gaps.

3. In Lemma 85, for large q, one can use Blas̈er et. al. technique, [18], to get a hitting set of size
poly(s, d, log n) in time poly(s, d, n). The size in those constructions are not linear in the size s.
This will be studied in [12].

93

7 Conclusion and Future Work

In this paper we have developed a new notion called tester and new techniques for using it for different
applications. It is a useful technique because it gave many almost optimal constructions that could
not be achieved using the previously known techniques. We believe that testers will further help in
derandomizing many algorithms especially those that uses algebraic approach. Recently, this research
has evolved in different directions. We will discuss some of them that will be studied in more details
in [12, 13, 14].

Pseudorandom Generator. In this paper we studied testers that reduce hitting sets over an F-algebra
A to hitting sets over F. In [12] we define (1−ε)-tester where f(a) 6= 0 implies Pr`∈L[f(`(a)) 6= 0] ≥ 1−ε.
Then the size of the minimal (1 − ε)-tester νFq(M,Fqt , 1 − ε) is studied. Using (1 − ε)-testers we give
new high density hitting sets and Pseudorandom Generators [9] over small fields.

Randomized Algorithms with Small Number of Random Bits. Hitting sets of high density can
reduce the number of random bits in randomized algorithms. We give one example.

To minimize the number of random bits in the randomized black box PIT algorithms for M, one can
consider an extension field K ⊃ F such that Prx∈Kn [f(x) 6= 0] ≥ 1 − ε for all f ∈ M and then use
(M,K,F)-tester L to change the point x to a set of points Sx = {`(x) | ` ∈ L} in Fn. Then for a
random uniform x ∈ Kn the set Sx ⊆ Fn is a hitting set for f with probability at least 1 − ε. If each
element in K can be represented with k bits then this algorithm uses kn random bits and gives a hitting
set with probability at least 1− ε.
An interesting example is the following: LetM = P(F2, n, d = c log n) for constant c. Any deterministic
black box PIT set forM is of size at least nΩ(logn). The (folklore) randomize black box PIT algorithm for
M uses nc+1 log(1/ε) random bits, runs in time nc+1 log(1/ε) and with probability at least 1− ε gives a
hitting point. Using a (M,F2k ,F2)-tester where k = log(c(log n)/ε), we get a randomized black box PIT
algorithm for M that uses O(n(log n) log((log n)/ε)) random bits, runs in time n2.66c+1 log((log n)/ε)
and with probability at least 1− ε gives a hitting point. In [12] we show how to use dense hitting sets
in order to reduce the number of random bits to poly(log n).

Non-Adaptive Learning and Interpolation of Multivariate Polynomial: Testers also give the
first adaptive deterministic algorithm for learning the class C = P(F2, n, d, s) in time poly(2d, n, s) from
membership queries (returns the value of the function in an assignment a). In particular the algorithm
runs in time poly(n, s) for d = O(log n). Previous algorithms for this class was either randomized [20] or
uses equivalence queries [71] (returns a counterexample to any hypothesis h suggested by the learner).
To the best of our knowledge this is the first deterministic polynomial time learning algorithm for this
class.

Notice that, by 4 in Lemma 86, there is a hitting set S for P(F2, n, d, s) of size 22.66ds log2 n that can be
constructed in time poly(2d, s). Now using the polynomial time algorithms in [20, 71] the result follows.
In what follows we describe a simple learning algorithm.

94

The algorithm goes like this. By the definition of hitting set we have f ≡ 0 if and only if f(a) = 0 for all
a ∈ S. Therefore a hitting set is also a test set that tests if the function f ∈ C is identically zero. We set
variables in f to zero as long as the function is not identically zero. When no more variables can be set
to zero then the product of those variables not set to zero is a monomial M in f . If all variables are set to
zero then the monomial is 1. Assuming, at iteration t, we have found the monomials M1,M2, . . . ,Mt−1

in f . To find a new monomial we recursively run the above on f +M1 +M2 + · · ·+Mt−1. This gives
an adaptive deterministic polynomial time algorithm for P(F2, n, d, s).

We can extend the above learning algorithm to an algorithm that learns the monomials of degree d
in M = P(F2, n, (d, s)) in time poly(2d, n, s). The algorithm goes like this. We simulate membership
queries to φdf using membership queries to f using (33). Each membership query to φdf can be
simulated using 2d membership queries to f . By the proof of Lemma 86, there is a hitting set for φdM
of size 2c2ds log2 n that can be constructed in time s · poly(n, 2d). We use this hitting set to test if
φdf ≡ 0. Notice that φdf ≡ 0 if and only if f is of degree less than d. We now run the above algorithm
(for the class P(F2, n, d, s)) with this test. It is easy to see that at each iteration a monomial of degree
d is found.

The above algorithms can also be extended to any field with the complexities described in Table 1.

This solves the open problem of deterministic adaptive learning boolean O(log n)-multivariate polyno-
mial (i.e., C = P(F2, n,O(log n), s)) from membership queries in polynomial time. This result was only
true for decision trees of depth O(log n) [20]. An interesting open problem is to find a deterministic
polynomial time non-adaptive algorithm for this problem and other interpolation problems. In [14] we
define “Builder” which builds f(a) from f(`(a)), ` ∈ L. We also study the connection of builders to
the tensor rank of multidimensional matrices and give a non-adaptive learning algorithm for the above
problem.

Hitting Set of Small degree Polynomial over any Field: In Lemma 87 we encountered two
bottlenecks. The first is that in (39), Perm (YMi(y1, . . . ,yd)) = det (YMi(y1, . . . ,yd)) is true only
for multilinear polynomials over fields of characteristic 2. This adds a factor of d! to the size of the
construction. The second bottleneck is that the operator in (33) gives a factor of 2d to the size of the
construction and this, for large field Fq, gives a large gap from the lower bound (q/(q − 1))ds log n =
2Ω(d/q)s log n.

In [13] we develop a generalization of Ryser’s formula and define a new notion called “general permanent”
and use what we will call “semi-symmetric testers” to get tighter bounds.

Locally Explicit and Randomly Uniformly Explicit: All the constructions we have in this paper
are deterministic polynomial time constructions. It can also be shown that all the constructions in this
paper are polynomial time locally explicit, (i.e., every bit in the construction can be obtained in poly-
logarithmic time in its size) and polynomial time randomly uniformly explicit (i.e., a random uniform
row in the construction can be constructed in polynomial time in the size of the row with dlog T e random
bits where T is the size of the construction). This is studied in more details in [12].

95

Acknowledgement. I am grateful to Ronny Roth, Joachim von zur Gathen, Igor Shparlinski, Kenneth
Shum and Ilya Volkovich for the number of interesting conversations.

References

[1] N. Alon. Combinatorial Nullstellensatz. Combinatorics, Probability and Computing, 8(1-2), pp. 7–
29. (1999).

[2] N. Alon, J. Bruck, J. Naor, M. Naor, R. M. Roth. Construction of asymptotically good low-rate
error-correcting codes through pseudo-random graphs. IEEE Transactions on Information Theory,
38(2), pp. 509–516. (1992).

[3] M. Agrawal, N. Kayal, N. Saxena. PRIMES is in P, Annals of Mathematics, 160(2), pp. 781–793.
(2004).

[4] L. M. Adleman, H. W. Lenstra. Finding irreducible polynomial over finite field. In Proc. 18th
Annual ACM Symposium on Theory of Computing, (STOC 86), pp. 350–355. (1986).

[5] N. Alon, D. Moshkovitz, S. Safra. Algorithmic construction of sets for k-restrictions. ACM Trans-
actions on Algorithms, 2(2), pp. 153–177. (2006).

[6] M. Anderson, D. van Melkebeek, I. Volkovich. Derandomizing polynomial identity testing for multi-
linear constant-read formulae. IEEE Conference on Computational Complexity 2011, pp. 273–282.
(2011).

[7] N. Alon, J. H. Spencer. The probabilistic method, Wiley, Third Edition, (2008).

[8] S. Ballet. Curves with many points and multiplication complexity in any extension of Fq. Finite
Fields and Their Applications, 5(4) , pp. 364–377. (1999).

[9] A. Bogdanov. Pseudorandom generators for low degree polynomials. Proceedings of the 37th ACM
Symposium on Theory of Computing, (STOC 2005), pp. 21–30. (2005).

[10] R. C. Bose. An affine analogue of Singer’s theorem. Journal of the Indian Mathematical Society, 6,
pp. 1–15. (1942).

[11] K. O’Bryant. A complete annotated bibliography of work related to Sidon sequences. The Electric
Journal of Combinatorics, (2004).

[12] N. H. Bshouty. (1− ε)-Testers and their applications. In Preperation.

96

[13] N. H. Bshouty. Testers via general permanent and combinatorial nullstellensatz. In Preperation.

[14] N. H. Bshouty. Builders and their Applications. In Preperation.

[15] R. C. Bose, S. Chowla. Theorems in additive theory of numbers. Comment. Math. Helv., 37,
pp. 141–147. (1962/1963).

[16] P. Buergisser, M. Clausen, A. Shokrollahi. Algebraic complexity theory. Grundlehren der mathe-
matischen Wissenschaften. Springer Verlag, Heidelberg. (1996).

[17] S. R. Blackburn, T. Etzion, D. R. Stinson, G. M. Zaverucha. A bound on the size of separating
hash families. Journal of Combinatorial Theory, Series A, 115(7), pp. 1246–1256. (2008).

[18] M. Blas̈er, M. Hardt, R. J. Lipton, N. K. Vishnoi. Deterministically testing sparse polynomial
identities of unbounded degree. Inf. Process. Lett., 109(3), pp. 187–192. (2009).

[19] R. C. Baker, G. Harman, J. Pintz. The difference between consecutive primes. II. Proceedings of
the London Mathematical Society, 83(3), pp. 532-562. (2001).

[20] N. H. Bshouty, Y. Mansour. Simple learning algorithms for decision trees and multivariate poly-
nomials. Proceedings of the 36th Annual Symposium on Foundations of Computer Science, (FOCS
95), pp. 304–311. (1995).

[21] D. Le Brigand, J. J. Risler. Algorithme de Brill-Noether et codes de Goppa, Bull. Soc. math.
France, 116, pp. 231–253. (1988).

[22] M. Bazrafshan, T. van Trung. Bounds for separating hash families. Journal of Combinatorial The-
ory, Series A, 118(3), pp. 1129–1135. (2011).

[23] S. R. Blackburn, P. R. Wild. Optimal linear perfect hash families. Journal of Combinatorial Theory,
Series A, 83(2), pp. 233–250. (1998).

[24] M. Clausen, A. Dress, J. Grabmeier, M. Karpinski. On Zero-testing and interpolation of k-sparse
multivariate polynomials over finite fields. Theoretical Computer Science, 84(2), pp. 151–164. (1991).

[25] M. Deuring. Lectures on the theory of algebraic functions of one variable. Lecture Notes in Math-
ematics. Springer-Verlag, 314. (1973).

[26] D. Z. Du, F. K. Hwang. Combinatorial group testing and its applications. Volume 12 of Series on
Applied Mathematics. World Scientific, New York, second edition, (2000).

[27] A. G. Dýachkov and V. V. Rykov. Bounds on the length of disjunctive codes. Problemy Peredachi
Inf, 18(3), pp. 7–13. (1982).

[28] A. G. Dýachkov, V. V. Rykov, A. M. Rashad. Superimposed distance codes. Problems Control
Inform. Theory/Problemy Upravlen. Teor. Inform., 18(4), pp. 237–250. (1989).

97

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.153.5672

[29] S. A. Evdokimov. Factoring a solvable polynomial over finite fields and generalized Riemann hy-
pothesis. Zapiski Nauchn Semin. Leningr. Otdel Matem. Inst. Acad. Sci., USSR 176, pp. 104–117,
(1989).

[30] W. Fulton. Algebraic curves: An introduction to algebraic geometry. W. A. Benjamin, Inc., New-
York, Amesterdam. (1969).

[31] Z. Füredi. On r-cover-free families. Journal of Combinatorial Theory, Series A, 73(1), pp. 172–173.
(1996).

[32] M. L. Fredman, J. Komlós. On the size of seperating systems and families of perfect hash function,
SIAM J. Algebraic and Discrete Methods, 5(1), pp. 61–68. (1984).

[33] J. von zur Gathen, J. Gerhard. Modern computer algebra. 2nd edition. University of Bonn, Ger-
many. Cambridge University Press. (2003).

[34] D. Y. Grigoriev, M. Karpinski, M. F. Singer. Fast parralel algorithms for sparse multivariate
polynomial interpolation over finite fields. SIAM J. Comput., 19(6), pp. 1059–1063. (1990).

[35] J. von zur Gathen and I. Shparlinski. Orders of Gauss periods in finite fields. Applicable Algebra
in Engineering, Communication and Computing, 9(1), pp. 15–24. (1998).

[36] A. Garcia, H. Stichtenoth. On the asymptotic behaviour of some towers of function fields over finite
fields. Journal of Number Theory, 61(2), pp. 248–273. (1996).

[37] A. Garcia, H. Stichtenoth. Topics in geometry, coding theory and cryptography. Algebra and ap-
plications. Springer. (2007).

[38] F. Hess. Computing Riemann-Roch spaces in algebraic function fields and related topics. J. of
Symbolic Computation, 33(4), pp. 425–445. (2002).

[39] M. A. Huang, A. J. Rao. Interpolation of sparse multivariate polynomials over large finite fields
with applications. J. of Algorithms, 33(2), pp. 204–228. (1999).

[40] P. Indyk, H. Q. Ngo, A. Rudra. Efficiently decodable non-adaptive group testing. In the 21st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 10), pp. 1126–1142. (2010).

[41] J. Körner. Fredman-Komlós bounds and information theory, SIAM J. Algebraic and Discrete Meth-
ods, 7(4), pp. 560–570. (1986).

[42] J. Körner, K. Marton. New bounds for perfect hashing via information theory. Europ. J. of Com-
binatorics, 9(6), pp. 523–530. (1988).

[43] W. H. Kautz, R. C. Singleton, Nonrandom binary superimposed codes, IEEE Trans. Inform.
Theory, 10(4), pp. 363-377. (1964).

98

[44] D. J. Kleitman, J. Spencer. Families of k-independent sets. Discrete Mathematics, 6(3), pp. 255–
262. (1972).

[45] A. Klivans, D. A. Spielman. Randomness efficient identity testing of multivariate polynomials. In
Proceedings on 33rd Annual ACM Symposium on Theory of Computing, (STOC 2001), pp. 216–223.
(2001).

[46] K. S. Laursen. The computational complexity of effective construction of geometric Goppa codes.
Proceedings of IEEE International Symposium on Information Theory, p. 380. (1997).

[47] R. Lidl, H. Niederreiter. Finite Fields. Encyclopedia of mathematics and its applications. Addison-
Wesley Publishing Company. (1984).

[48] L. Liu, H. Shen. Explicit constructions of separating hash families from algebraic curves over finite
fields. Designs, Codes and Cryptography, 41(2), pp. 221-233. (2006).

[49] D. Moshkovitz. An alternative proof of the Schwartz-Zippel lemma. Electronic Colloquium on
Computational Complexity, Report No. 96. (2010).

[50] A. Nilli. Perfect hashing and probability. Combinatorics, Probability and Computing, 3(3), pp. 407–
409. (1994).

[51] H. Q. Ngo, D. Z. Du. A survey on combinatorial group testing algorithms with applications to
DNA library screening. Theoretical Computer Science, 55, pp. 171-182. (2000).

[52] J. Naor, M. Naor. Small-bias probability spaces: efficient constructions and applications. SIAM J.
Comput., 22(4), pp. 838–856. (1993).

[53] M. Naor, L. J. Schulman, A. Srinivasan. Splitters and near-optimal derandomization, Proc. of the
36th IEEE Symp. on Foundations of Computer Science, (FOCS 95), pp. 182–191. (1995).

[54] A. Poli. A deterministic construction of normal bases with complexity O(n3 +n log n log log n log q).
J. Symb. Comp., 19, pp. 305–319. (1995).

[55] E. Porat, A. Rothschild. Explicit non-adaptive combinatorial group testing schemes. IEEE Trans-
actions on Information Theory, 57(12), pp. 7982–7989. (2011).

[56] R. M. Roth. Introduction to coding theory. Cambridge University Press, Cambridge, UK. (2006).

[57] H. J. Ryser. Combinatorial mathematics, the carus mathematical monographs No. 14, The Math-
ematical Association of America. (1963).

[58] C. Saha. A note on irreducible polynomials and identity testing. Manuscript. (2008).

[59] N. Saxena. Progress on polynomial identity testing. Electronic Colloquium on Computational Com-
plexity. Report No. 101. (2009).

99

[60] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of
the ACM, 27(4), pp. 701-717. (1980).

[61] V. Shoup. New algorithms for finding irreducible polynomial over finite field. Mathematics of Com-
putation, 54(189), pp. 435–447. (1990).

[62] I. Shparlinski. On finding primitive roots in finite fields. Theoretical Computer Science, 157(2),
pp. 273–275. (1996).

[63] I. Shparlinski. Finding irreducible and primitive polynomials. Applicable Algebra in Engineering
Communication and Computing, 4(4), pp. 263–268. (1993).

[64] I. Shparlinski. Finite fields: theory and computation. Mathematics and Its Applications, Vol. 477.
(1999).

[65] K. W. Shum. A low-complexity algorithm for the construction of algebraic-geometric codes better
than the Gilbert-Varshamov bound. A Dissertation. University of Souuthern California. (2000).

[66] G. Seroussi, N. H. Bshouty. Vector sets for exhaustive testing of logic circuits. IEEE transaction
on information theory, 34(3), pp. 513–522. (1988).

[67] H. Stichtenoth. Algebraic function fields and codes. Second Edition, Vol. 254, Springer. (2008).

[68] V. Shoup. Finding irreducible and primitive polynomials. Appl. Algebra in Engin., Commun. and
Computing, 4, pp. 263–268. (1993).

[69] K. W. Shum, I. Aleshnikov, P. V. Kumar, H. Stichtenoth, V.Deolalikar. A low-complexity algorithm
for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound. IEEE
Transactions on Information Theory, 47(6), pp. 2225–2241. (2001).

[70] N. Saxena, C. Seshadhri. Blackbox identity testing for bounded top fanin depth-3 circuits: the field
doesn’t matter. Electronic Colloquium on Computational Complexity, Report No. 46. (2011).

[71] R. E. Schapire, L. Sellie. Learning sparse multivariate polynomials over a field with queries and
counterexamples. J. Comput. Syst. Sci., 52(2), pp. 201–213. (1996).

[72] G. Seroussi, A. Lempel. On symmetric algorithms for bilinear forms over finite fields. J. Algorithms,
5(3), pp. 327–344. (1984).

[73] A. Shpilka, I. Volkovich. Improved polynomial identity testing for read-once formulas. Proceedings
of the 12th International Workshop and 13th International Workshop on Approximation, Random-
ization, and Combinatorial Optimization, (APPROX-RANDOM 09), pp. 700–713. (2009).

[74] S. Saraf, I. Volkovich. Black-box identity testing of depth-4 multilinear circuits. Electronic Collo-
quium on Computational Complexity, Report No. 46. (2011).

100

[75] D.R. Stinson, T. van Trung, R. Wei. Secure frameproof codes, key distribution patterns, group
testing algorithms and related structures, J. Stat. Planning and Inference, 86(2), pp. 595-617.
(2000).

[76] D.R. Stinson, R. Wei, K. Chen. On generalised separating hash families. Journal of Combinatorial
Theory, Series A, 115(1), pp. 105–120. (2008).

[77] D. R. Stinson, R. Wei, L. Zhu. New constructions for perfect hash families and related structures
using combinatorial designs and codes. Journal of Combinatorial Designs, 8(3), pp. 189-200. (2000).

[78] D. R. Stinson, R. Wei, L. Zhu. Some new bounds for cover-free families, Journal of Combinatorial
Theory, Series A, 90(1), pp. 224-234. (2000).

[79] D. R. Stinson, R. Wei, L. Zhu. New constructions for perfect hash families and related structures
using combintorial designs and codes, J. Combin. Designs., 8(3), pp. 189-200. (2000).

[80] K. Werther. The complexity of sparse polynomial interpolation over finite fields. Applicable Algebra
in Engineering, Communication and Computing, 5(2), pp. 91–103. (1994).

[81] H. Wang and C. P. Xing. Explicit Constructions of perfect hash families from algebraic curves over
finite fields. J. of Combinatorial Theory, Series A, 93(1), pp. 112–124. (2001).

[82] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International
Symposiumon on Symbolic and Algebraic Computation, 72, pp. 216-226. (1979).

101

8 Appendices

8.1 Appendix A. Algebraic Function Fields

In this appendix we give some notations and basic results from the theory of algebraic function fields
in order to be able to follow the proofs in the paper.

An algebraic function field F/Fq of one variable is an extension field F ⊃ Fq such that F is a finite
algebraic extension of Fq(x) for some element x ∈ F which is transcendental over Fq.

A valuation ring O is a ring Fq ⊂ O ⊂ F that is not Fq and not F such that for every z ∈ F we have
that z ∈ O or z−1 ∈ O. The ring O is a local ring (see [67], Proposition 1.1.5). Let O× be the group
of units of O. Then PO = O\O×, the set of non-units in O, is a unique maximal ideal of O and is a
principle ideal, that is, PO = tO for some t ∈ PO (see [67], Proposition 1.1.5 and Theorem 1.1.6). Also,
the element t is unique up to unit element multiplication, that is, if PO = t′O then t = t′u for some
u ∈ O× (follows from Theorem 1.1.13 in [67]). Such t is called prime element of P .

A place P of a function field is the maximal ideal of some valuation ring O. Given a place P . We have
F\O = P−1 = {a−1 | a ∈ P} and O = F\P−1 ([67], page 4). Therefore a place P uniquely determines
the valuation ring O. We denote by OP the valuation ring corresponds to the place P . We denote by
PF the set of all places of F/Fq.

Since P is a maximal ideal of OP , the residue class ring FP = OP /P is a field. For x ∈ OP we define
x(P) ∈ OP /P to be the residue class of x modulo P . For x ∈ F\OP we define x(P) = ∞. The map
x 7→ x(P) is called the residue class map. It is easy to verify that this map satisfies the following.

Proposition 88. We have

1. If a(P) + b(P) is defined then (a+ b)(P) = a(P) + b(P).

2. If a(P)b(P) is defined then (ab)(P) = a(P)b(P).

3. 0(P) = 0 and 1(P) = 1.

Here α + ∞ = ∞ + α = ∞ for every α ∈ FP and ∞ + ∞ is not defined. Also for α ∈ FP \{0},
α · ∞ = ∞ · α = ∞ · ∞ = ∞ and ∞ · 0 is not defined. It follows from the above definition that for
α 6= 0,∞ we have α/∞ = 0 and α/0 =∞. Notice also that

P = {z ∈ F | z(P) = 0} and OP = {z | z(P) ∈ Fq}.

102

The degree of a place P is degP = [FP : Fp] and is always finite (see [67], Proposition 1.1.15).

To a place P ∈ PF we associate a function vP : F → Z ∪ {∞} (or ordP) as follows: Choose a prime
element t of P . Then every 0 6= z ∈ F has a unique representation z = tnu with some u ∈ O×P and
n ∈ Z (see [67], Theorem 1.1.6). Then define vP (z) = n. Also define vP (0) = ∞. It can be shown
that vP (z) depends only on P , not on the choice of t (see [67], Theorem 1.1.6). The value vP (z) (or
ordP (z)) is called the valuation (or the order) of z.

The place P is called a zero of x if vP (x) > 0 and a pole of x if vP (x) < 0.

The following are some properties of valuation (see [67], pages 4–6)

Proposition 89. For a, b ∈ F we have

1. vP (a) =∞ if and only if a = 0.

2. vP (ab) = vP (a) + vP (b)

3. vP (a+ b) ≥ min(vP (a), vP (b))

4. vP (a) = 0 for all a ∈ F×q .

5. vP (x) < 0 if and only if x ∈ F\RP if and only if x(P) =∞.

6. vP (x) = 0 if and only if x ∈ R×P if and only if x(P) 6∈ {0,∞}

7. vP (x) > 0 if and only if x ∈ P if and only if x(P) = 0.

8. The prime elements are t ∈ R such that vP (t) = 1.

The additive free abelian group which generated by PF is denoted by Div(F) and is called the divisor
group of F/Fq. Each divisor is a formal sum

D =
∑
P∈PF

nPP

where nP ∈ Z and all except a finite number of which are not zero. A divisor D = P with P ∈ PF is
called a prime divisor. The support of D is

supp D = {P ∈ PF | nP 6= 0}.

The principle divisor (x) (or div(x)) of x ∈ F is

(x) =
∑
P∈PF

vP (x)P.

103

We will also use vP for divisors and denote vP (D) = nP . A divisor D is called integral divisor or positive
if for every place P ∈ PF we have vP (D) ≥ 0. Every divisor D can be written as D = D+ −D− where
D+ and D− are positive divisors and

D+ =
∑

vP (D)>0

vP (x)P, D− =
∑

vP (D)<0

(−vP (x))P.

For the principle divisor (x) we define: (x)0 = (x)+ and call it the zero divisor of x, and (x)∞ = (x)−
and call it the pole divisor of x. Then (x) = (x)0 − (x)∞.

The degree of the divisor D is defined as

degD =
∑
P∈PF

vP (D) · degP.

All principle divisors have degree 0 (see [67], Theorem 1.4.11).

The set of principle divisors Princ(F) = {(x) | 0 6= x ∈ F} is called the group of principle divisors
of F/Fq. The factor group Cl(F) = Div(F)/Princ(F) is called the divisor class group of F/Fq. For a
divisor D ∈ Div(F) we denote by [D] the divisor class of D in Cl(F). For two divisors D1 and D2 we
write D1 ∼ D2 if [D1] = [D2].

For two divisors D1 and D2 we write D1 ≤ D2 if vP (D1) ≤ vP (D2) for every P ∈ PF .

For a divisor D ∈ Div(F) define the Riemann-Roch space associated to D by

L (D) = {x ∈ F | (x) ≥ −D} ∪ {0}. (40)

Here are some properties (see [67], Lemmas 1.4.6 and 1.4.7)

Proposition 90. Let D,D1, D2 ∈ Div(F) and P ∈ PF . We have

1. z ∈ L (D) if and only if for every place P we have vP (z) ≥ −vP (D).

2. L (D) is a linear space over Fq.

3. If degD < 0 then L (D) = {0} and l(D) = 0

4. If D1 ≤ D2 then L (D1) ⊆ L (D2).

5. If P 6∈ supp D, z ∈ L (D) and vP (z) > 0 then z ∈ L (D − P).

We define the dimension of the divisor D as l(D) = dim L (D).

We now prove

104

Proposition 91. Let D ∈ Div(F). For f ∈ P(Fq, n, d) and z = (z1, . . . , zn) ∈ L (D)n we have
f(z) ∈ L (dD).

Proof. Let M = xi1 · · ·xid′ be a monomial in f where d′ ≤ d. Since by Proposition 89, for every place
P we have

vP (zi1 · · · zid′) =
d′∑
j=1

vP (zij) ≥ −
d′∑
j=1

vP (D) = −vP (d′D) ≥ −vP (dD),

M(z) ∈ L (dD). Since this is true for every monomial M in f and since L (dD) is a linear space we
have f(z) ∈ L (dD).

The genus g or g(F) of F/Fq is defined by

g(F) = max{deg D − l(D) + 1 | D ∈ Div(F)}.

Therefore for every divisor D we have l(D) ≥ deg D + 1 − g. A divisor D is called non-special if
l(D) = deg D + 1 − g. A divisor W is called canonical if degW = 2g − 2 and l(W) ≥ g. One of the
most important theorem in the theory algebraic function field is the following (see [67], Theorem 1.5.15
and Theorem 1.5.17)

Proposition 92. (Riemann-Roch Theorem) Let W be a canonical divisor and A be any divisor.
Then

1. l(A) = degA+ 1− g + l(W −A).

2. If degA ≥ 2g − 1 then A is non-special and l(A) = degA+ 1− g.

8.2 Appendix B. Toward Testers for q ≥ d+ 1 with Better Size

In this appendix we show that if there is a polynomial time algorithm that finds for a given divisor U a
basis for L (U) then a tester with a better size than in Corollary 41 can be constructed in polynomial
time.

To find a basis for L (U) one can use the Brill-Noether Theorem [21] or Hess algorithm [38]. We were
unable to find the time complexity of those algorithms. Laursen in [46] shows that the Brill-Noether
algorithm runs in polynomial number of “steps” but it is not clear that each step can be performed in
polynomial time.

Before we give the main result, we recall the definition of the W1 tower. Let x1 be indeterminate over
Fq2 and F (1) = Fq2(x1). For k ≥ 1 let F (k) = F (k−1)(xk) where

xqk + xk =
xqk−1

xq−1
k−1 + 1

.

105

We will denote by BASIS(s, r) the problem of finding a basis of L (U) for a divisors U where deg(U−)+
deg(U+) ≤ s in F (r). We don’t know whether this problem can be solved in polynomial time even when
s = O(log t/ log q). So here we can only state the following claim as a conjecture

Conjecture 1. The BASIS(O(d log t/ log q), O(log(log t/ log q)/ log q)) problem can be solved in poly-
nomial time.

In this appendix we prove the following

Corollary 93. Let c > 2 be constant and r = O(log t/ log q). If Conjecture 1 is true then we get the
following upper bounds for τpoly(d, q, t) and τpoly(d, q, t, r) (columns 4 and 5 in the table)

Upper B. Upper B. Upper B. Lower B.
q t τ∗(d, q, t) τpoly(d, q, t, r) τpoly(d, q, t) τ(d, q, t)

q ≥ c2(d+ 1)2, q P.S. I.S. 1 1 2 1

q ≥ c2(d+ 1)2, q P.S. all 2 2 3 1

q ≥ c(d+ 1) I.S. 2 2 3 1

q ≥ c(d+ 1) all 3 3 4 1

q ≥ d+ 1 I.S. 3 3 4 1

q ≥ d+ 1 all 4 4 5 1

where I.S. stands for “for infinite sequence of integers t” and P.S. for “perfect square”.

Note. In some cases we can replace BASIS(O(d log t/ log q), O(log(log t/ log q)/ log q)) in Conjecture 1
to BASIS(O(log t/ log q), O(log(log t/ log q)/ log q)), but we will not discuss this here.

We now give a detailed sketch of the proof. First, as in the proof of Lemma 39, we may assume that
t ≥ qd.
The idea of the proof is to first use Lemma 38 to reduce the dimension t of the problem to t′ =
O(log t/ log q) and then use a construction similar to the construction in Theorem 11 for dimension t′.

By Lemma 38, we have

τpoly(d, q, t) = τpoly(d, q, t, t)

≤ τpoly

(
d, q, t,

⌈
log(dt)

log q

⌉
+ 1

)
+ 1

Our goal now will be to give a construction similar to the construction in Theorem 11 for

t′ =

⌈
log(dt)

log q

⌉
+ 1.

106

Notice that for the construction in Theorem 11, we need to construct the (P(Fq, n, d),L (G),Fq)-tester
defined in Lemma 12 and the (Fq[x],Fqt′ ,L (G))-tester defined in Lemma 13. To construct those testers
we need

1. To find all the places of degree 1 in F (r)/Fq2 for the tower W1, [36, 37], where r = O(log t′/ log q).

2. Find a prime divisor Q of F (r)/Fq2 of degree t′.

3. Find a divisor G of degree t′ + g − 1 = O(dt′) that satisfies the conditions in Lemma 14.

4. Find a basis for L (G).

For 1, it is known from [65] and [69] that all the places of degree 1 in this function field can be found
in time poly(d, t). For 2, by Lemma 42, a prime divisor of degree t′ can be constructed in polynomial
time. Item 4 follows from Conjecture 1. For 3, it is not clear whether this can be done in polynomial
time. Instead, we use a different result that gives a slightly weaker tester.

We first prove

Lemma 94. Let F/Fq be algebraic function field of genus g that contains at least 2g places P1, P2, . . . , P2g

of degree 1. Let t ≥ g be an integer. Let Q and R be a prime divisors of degree t and t− 1, respectively.
There are 1 ≤ i1 < i2 < · · · < ig ≤ 2g such that

G = R+ Pi1 + · · ·+ Pig

satisfies

1. vQ(G) = 0

2. vP (G) = 0 for any prime divisor P 6∈ {Pi1 , . . . , Pig} of degree 1.

3. l(G) = degQ = t.

4. deg(G) = t+ g − 1.

5. l(G−Q) = 0.

Proof. 1. 2. and 4. are obvious for any 1 ≤ i1 < i2 < · · · < ig ≤ 2g. Also since degG = t−1+g ≥ 2g−1
by Proposition 92, l(G) = degG+ 1− g = t. This implies 3. It remains to prove 5.

The proof is by induction. Since deg(R − Q) = −1, by 3 in Proposition 90, we have l(R − Q) = 0.
Suppose for some k < g there are 0 ≤ i1 < i2 < i3 < · · · < ik ≤ 2g where Rk = R + Pi1 + · · · + Pik
satisfies l(Rk − Q) = 0. Suppose without loss of generality i1 = 2g, i2 = 2g − 1, . . . , ik = 2g − k + 1.
Since 2g − k + 1 ≥ g + 2 we have i1, . . . , ik ∈ {g + 2, g + 3, . . . , 2g}.

107

Consider the divisors Rk+P1−Q, . . . , Rk+Pg+1−Q. Suppose l(Rk+Pi−Q) 6= 0 for all i = 1, 2, . . . , g+1.
Then there is zi ∈ L (Rk + Pi −Q)\L (Rk −Q) for all i = 1, 2, . . . , g + 1. Therefore, by the definition
of the Riemann-Roch space (40), it follows that vPi(zi) = −1 and for all j ∈ [g + 1], j 6= i we have
vPj (zi) ≥ 0.

We now show that z1, . . . , zg+1 are linearly independent over Fq. Suppose there are λi ∈ Fq, i =
1, . . . , g + 1 such that λ1z1 + · · · + λg+1zg+1 = 0. Let ti ∈ F be such that vPi(ti) = 1. The existence
of such element follows from the strong approximation theorem, Theorem 1.6.5 in [67]. Then by 2
in Proposition 89, vPi(tizi) = 0 and vPi(tizj) ≥ 1 for all j 6= i. Then by 7 in Proposition 89 and
Proposition 88, 0 = (λ1tiz1 + · · · + λg+1tizg+1)(Pi) = λi · (tizi)(Pi). Since by 6 in Proposition 89,
(tizi)(Pi) 6= 0 we get λi = 0.

Now let D = Rk − Q + (g − k)P1 + P2 + P3 + · · · + Pg + Pg+1. Then degD = 2g − 1. Since D ≥
Rk + Pi − Q, i = 1, . . . , g + 1 we have L (Rk + Pi − Q) ⊆ L (D). Therefore z1, . . . , zg+1 ∈ L (D).
Since z1, . . . , zg+1 are linearly independent over Fq we have l(D) ≥ g + 1. On the other hand since
degD = 2g − 1 by 2 in Proposition 92, we have l(D) = g. This gives a contradiction. Therefore there
exists Pik+1

∈ {P1, P2, . . . , Pg+1} such that for Rk+1 = Rk + Pik+1
we have l(Rk+1 −Q) = 0.

Notice now that to construct G we need to compute L (Rk+Pi−Q) where deg(Rk)+deg(Pi)+deg(Q) =
O(dt′) and find a prime divisor of degree t′ − 1. By Conjecture 1 and Lemma 42 such divisor can be
constructed in polynomial time.

The problem with the divisor G in Lemma 94 is that it uses (and therefore it burns) g places of degree 1
that cannot be used in the tester. See Lemma 12.

Now the proof proceed exactly the same as the proof of Corollary 17 where the only change is that only
N − g ≥ qr+2 − 2qr+1 places can be used instead of N ≥ qr+2 − qr+1.

108

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

