
Inapproximability of the Shortest Vector Problem:

Toward a Deterministic Reduction

Daniele Micciancio∗

Abstract

We prove that the Shortest Vector Problem (SVP) on point lattices is NP-hard to approximate for
any constant factor under polynomial time randomized reductions with one-sided error that produce no
false positives. We also prove inapproximability for quasi-polynomial factors under the same kind of
reductions running in subexponential time. Previous hardness results for SVP either incurred two-sided
error, or only proved hardness for small constant approximation factors. Close similarities between our
reduction and recent results on the complexity of the analogous problem on linear codes, make our new
proof an attractive target for derandomization, paving the road to a possible NP-hardness proof for SVP
under deterministic polynomial time reductions.

1 Introduction

Lattices are regular arrangements of points in n-dimensional Euclidean space that arise in several areas of
computer science and mathematics. Two central problems in the computational study of lattices are the
Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP). Informally, SVP asks to find a
shortest nonzero vector in a lattice. CVP is the inhomogeneous counterpart of SVP, and asks to find a
lattice point closest to a given target. The approximate versions of these problems ask to find a lattice
point achieving a distance at most γ ≥ 1 times that of the shortest or closest lattice vector. Both SVP
and CVP are hard combinatorial problems, and the asymptotically fastest known deterministic algorithm to
solve them exactly runs in time Õ(4n) [22]. (See also [2] and follow-up work [24, 23, 26] for a different class
of randomized algorithms for SVP, which are theoretically slower than [22], but admit much faster heuristic
implementations [24, 23, 31].)

SVP is the most famous and widely studied problem of the two. It is also the problem for which proving
strong intractability results has been most challenging. The NP-hardness of SVP (in the Euclidean norm)
was conjectured by van Emde Boas in 1981 [29], but remained an outstanding open problem in computational
complexity for almost two decades. In 1998, Ajtai [1] gave a first answer to this problem, proving that solving
SVP exactly is NP-hard1 under randomized reductions. This should be contrasted with the inhomogeneous
problem, CVP, which has been known to be NP-hard (even under deterministic reductions) since the early
80s [29]. Moreover, CVP admits much simpler NP-hardness proofs than SVP [19], and it is known to be
NP-hard even in its approximate version (and, as before, under deterministic reductions) for factors as large
as n1/O(log logn) [9]. Proving the NP-hardness of SVP under deterministic reductions is still an open problem,
even for the exact version of SVP.

∗University of California, San Diego. Email: daniele@cs.ucsd.edu. This work was supported in part by NSF grant CNS-
1117936. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and
do not necessarily reflect the views of the National Science Foundation.

1All known hardness results hold not only for the SVP and CVP search problems as informally defined above, but also for
the decision/promise problems naturally associated to them. (See Definitions 1 and 2.) For simplicity in this introduction we
ignore the technical distinction between search and decision/promise problems, and state the known hardness results only for
search SVP and CVP.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 20 (2012)

Immediately following Ajtai’s breakthrough result, the complexity of SVP received renewed attention,
leading to several improvements, with the main goal of showing that the problem is hard even in its ap-
proximate version. In [1], Ajtai had already observed that hardness for the exact version implies weak
inapproximability results for approximation factors of the form 1 + 1/2n

c

that rapidly approach 1 as the
lattice dimension n grows. This was slightly improved by Cai and Nerurkar [6] to factors 1 + 1/nc, still
approaching 1 in the limit, though at a lower rate. The first significant inapproximability result for factors
bounded away from 1 was achieved by Micciancio [20], who proved NP-hardness for any constant factor
smaller than

√
2 (independent of the lattice dimension). A nice feature of Micciancio’s proof [20] is that it

has a very simple and intuitive high-level structure. Specifically, in [20] the NP-hardness of SVP is proved
by reduction from (a variant of) CVP, through what can be called a “homogenization process” [21]. The
idea is roughly the following: if the lattice vector v ∈ Λ is close to the target t, then t− v is a short vector
in the lattice generated by Λ and t. So, one can attempt to solve a CVP instance by means of an SVP
computation on an augmented lattice. This process, often used as a heuristics in cryptanalysis [17], does
not work in general. (See Section 2.) However, [20] showed that a natural geometric gadget (essentially
consisting of a lattice coset in Euclidean space with large minimum distance and many short vectors) can
be used to turn this simple idea into a valid reduction from CVP to SVP. The reduction of [20] still admits
a nice geometric interpretation (see Section 5 for details), and served as a starting point to obtain similar
results for the analogous Minimum Distance Problem (MDP) on linear codes.

The history of coding problems, MDP and its inhomogeneous counterpart the Nearest Codeword Problem
(NCP), mostly mirrors that of SVP and CVP. The NP-hardness of the inhomogeneous problem, NCP, was
already proved in the late 70s [5] for the exact version of the problem, and improved to NP-hardness of
approximation within any constant factor (or subpolynomial factors n1/O(log logn) under subexponential
time reductions2) in [3]. Just like for lattices, proving the NP-hardness of the homogeneous problem, MDP,
took much longer. Hardness for the exact version of MDP was proved by Vardy [30], around the same
time as Ajtai’s discovery for SVP [1]. However, while Ajtai’s reduction was randomized, Vardy [30] could
prove NP-hardness of MDP under deterministic reductions. Building on [20], Dumer, Micciancio and Sudan
[10] proved that MDP is NP-hard even to approximate, for any constant approximation factor. However,
[10] inherited from [20] the use of randomization for the construction of the embedding gadget required
by the reduction. Finally, in a surprising development, Cheng and Wan [7] showed that the probabilistic
construction of the embedding gadget employed in the reduction of [10] can be derandomized, leading to the
NP-hardness of approximating MDP within any constant factor under deterministic reductions. (The result
of Cheng and Wan [7] has also been recently simplified by Khot and Austrin [15].)

Going back to lattices, the strongest inapproximability results for SVP known to date are Khot’s proof [13]
that SVP is NP-hard to approximate within any constant factor O(1), and Haviv and Regev’s proof [11] that
SVP cannot be approximated within some factor n1/O(log logn) unless NP is in random subexponential time.3

However, just like Ajtai’s original proof [1], all subsequent inapproximability results for SVP [6, 20, 13, 11]
employed randomization, and little progress has been made in proving NP-hardness under deterministic
reductions, even for the exact version of SVP. In fact, the most recent and quantitatively strongest results
[13, 11] achieve larger inapproximability factors than [20] at the cost of introducing even more randomness:
while the randomized reduction of Micciancio [20] had one-sided error, the hardness proofs of Khot [13] and
Haviv and Regev [11] incurred two-sided error. More specifically, depending on the value of the randomness,
the probabilistic reduction of [13, 11] may produce both false negatives (i.e., map yes instances to no
instances) and false positives (i.e., map no instances to yes instances). By contrast, the probabilistic
reduction of [20] is guaranteed not to produce false positives regardless of the randomness used in the
reduction process.4 Moreover, beside introducing two-sided errors, the hardness proofs of [13, 11] depart

2The hardness of NCP under subexponential time reductions easily follows from [3] using a standard tensor product argument.
It may well be the case that, similarly to CVP [9], the hardness of NCP for subpolynomial approximation factors n1/O(log logn)

can be proved under deterministic polynomial time reductions. However, [9] only considers CVP, and makes no claim about
the hardness of NCP. Extending the methods of [9] to NCP is an interesting open problem.

3Inapproximability results under subexponential assumptions were already given by Khot in [13], but for smaller approxi-
mation factors than [11].

4Randomized reductions with this one-sided error property are called reverse unfaithful random (RUR) reductions [12]. For

2

from the homogenization framework of [20], and incorporate additional probabilistic techniques (namely, the
intersection of lattices with randomly chosen subspaces) that make the high-level structure of the reduction
more involved and harder to derandomize. In particular, the use of randomization in [13, 11] is not restricted
to the construction of a gadget with self-contained description as in [20], but permeates the entire reduction
process.

Our results We present a new, simpler proof that SVP is NP-hard to approximate within any constant
factor, which goes back to the geometrically appealing approach of [20], and avoids the introduction of
additional probabilistic techniques from [13, 11]. In particular, we prove

• the NP-hardness of SVP for any constant approximation factor as in [13], and

• the hardness of SVP for subpolynomial factors n1/O(log logn) under the assumption that NP is not in
subexponential time as in [13, 11],

thus matching the strongest known hardness results for SVP, but under probabilistic reductions with one-
sided error. We regard our results as a partial derandomization of the reductions [13, 11] with two-sided
error, and a step toward an NP-hardness proof for SVP under deterministic reductions. Randomness is used
within our proof exclusively for the construction of a geometric gadget with similar properties as the one
originally introduced by Micciancio in [20]. Beside the technical advantage of resulting in a reduction with
one-sided error, we believe this takes us closer to a possible NP-hardness proof for SVP under deterministic
reductions for the following reasons:

• In [20], Micciancio showed that a lattice gadget similar to the one used in this paper can be constructed
in deterministic polynomial time, under a certain (plausible but unproven) number theoretic conjecture
on the distribution of smooth numbers.5 While proving the number theoretic conjecture of [20] seems
difficult, the result in [20] suggests that randomness is not essential to prove NP-hardness results for
SVP.

• The probabilistic construction of a similar gadget for linear codes used in [10] to prove the NP-hardness
of MDP has been successfully derandomized [7]. This lets us hope that a derandomization of the lattice
gadget employed in this paper may be possible too.

• The lattice gadget presented in this paper is constructed using techniques from the theory of linear
codes, rather than the number theoretic methods of [20]. So, the techniques in [7, 15] for the deran-
domization of the coding gadget of [10] may help to derandomize the construction of the lattice gadget
described in this paper.

While proving the NP-hardness of (approximating) SVP under deterministic polynomial time reductions is a
goal yet to be reached, we believe that our results offer a viable approach to the resolution of this outstanding
open problem.

Techniques A standard method to prove hardness results within large approximation factors for lattice
and coding problems is to first prove hardness for some fixed small constant factor, and then amplify the
constant using some polynomial time (or quasi-polynomial time) transformation. For example, the tensor
product of linear codes is used in [10] to amplify the NP-hardness of approximating MDP to arbitrarily
large constant factors. This suggests to use the tensor product of lattices to prove the NP-hardness of SVP
within large constant factors, starting from the inapproximability result of [20] for factors below

√
2. In

fact, using the tensor product is a common theme in the sequence of papers [20, 13, 11] proving hardness

simplicity, in this paper, we avoid the use of this technical term, and refer to these reductions simply as probabilistic reductions
with one-sided error and no false positives. Probabilistic reductions with one-sided error and no false negatives (faithful random
reductions, using the terminology of [12]) also occur in the study of lattice problems [14], but they are not used in this paper.

5 Namely, [20] conjectured that for every ε > 0 there is a c ≥ 1 such that for all sufficiently large n the interval [n, n + nε]
contains a square-free smooth number, i.e., an integer whose prime factors are all distinct and bounded by logc n.

3

of approximation results for SVP. Unfortunately, while the minimum distance of a linear code gets squared
when one takes the tensor product of the code with itself, the same is not always true for the length of the
shortest vectors in a lattice. The length of a shortest vector in the tensor product of a lattice with itself
can be essentially the same as the length of shortest vectors in the original lattice (e.g., see [11, Lemma
2.4]), and this is why Micciancio [20] could not prove NP-hardness (under randomized reductions with one-
sided error) of SVP within larger constant factors. Subsequent work [13, 11] went around this obstacle in
various ways. Khot [13] introduced a nonstandard notion of “augmented tensor product”, and used it to
prove NP-hardness results for any constant approximation factor (and some subpolynomial factors under
subexponential reductions) starting from a new hardness result for small constants based on BCH codes.
Haviv and Regev [11] were able to prove that the lattices produced by the basic reduction of [13] behave
well6 with respect to the standard tensor product operation, leading to stronger hardness results under
superpolynomial time reductions.

We remark that the proofs in [13, 11] that the (augmented) tensor product does amplify the approximation
factor are specific to the basic lattices of [13]. In this paper we revisit the general problem of amplifying
the approximation factor for SVP by the standard tensor product operation, and prove that tensoring works
when applied to an appropriate variant of SVP. Specifically, we introduce a new method to measure the
length of the vectors in a lattice, which can be seen as a hybrid between the Euclidean length typically
used for lattices and the Hamming metric used for linear codes. Specifically, the measure associated to
an integer vector v is given by the product of the largest power of 2 (or some other fixed integer q) that
divides v times the square root of the number of nonzero coordinates in v. Using this measure, we define
a variant of SVP, and prove that it behaves well with respect to the tensor product. Then, we prove that
our SVP variant is NP-hard to approximate within some constant factor, under randomized reductions with
one-sided error. Tensoring immediately yields inapproximability results for SVP within larger factors, still
under randomized reductions with one-sided error. Moreover, our basic NP-hardness proof within small
approximation factors is very similar to those in [20, 10], so, as explained in the previous paragraphs, it
may be more easily derandomized. We remark that the standard tensor product operation amplifies the
approximation factor for any instance of the SVP variant defined in this paper, and not just for the output
of our basic reduction. So, the amplification method proposed here is fairly general, and any proof that the
SVP variant is NP-hard to approximate within some constant factor under deterministic reductions (not
necessarily obtained by derandomizing the specific reduction given in this paper) would immediately yield
similar deterministic NP-hardness results for arbitrarily large constants.

Similarly to recent SVP NP-hardness proofs [13, 11], our reductions use BCH codes, but only within the
construction of the homogenization gadget. As a historical note, the use of BCH codes in the context of
proving NP-hardness results for homogeneous lattice and coding problems was first suggested in [10]. More
specifically, [10] proves that codes beating the Gilbert-Varshamov bound can be used to build geometric
gadgets similar to the one of [20], and mentions Reed-Solomon, Algebraic-Geometry and BCH codes as
examples of codes beating this bound. BCH codes were later used by [13, 11] to prove the hardness of
SVP for any constant approximation factor and beyond, but in an ad-hoc manner, i.e., without explicitly
connecting them to the general framework of [20, 10]. Our work perhaps offers a more intuitive explanation
of why BCH codes are useful in proving inapproximability results for SVP.

Organization The rest of the paper is organized as follows. In Section 2 we give some background about
lattices, codes and the homogenization framework of [20]. In Section 3 we describe our basic techniques
used to amplify inapproximability results for SVP via tensoring. In Section 4 we give a construction of very
dense lattices with large minimum distance that behave well with respect to the tensor product operation.
In Section 5 we give our main NP-hardness proof for SVP under nonuniform reductions with one-sided error.
We chose to first present our result as a nonuniform reduction to make the reduction and analysis as simple
as possible and self-contained. However, the nonuniformity of the advice is not used in any essential way in
our proof, and in Section 6 we use combinatorial techniques from [1, 20] to replace the nonuniform advice

6Informally, a lattice Λ behaves well with respect to the tensor product if the minimum distance of the tensor product of Λ
with itself is essentially the square of the minimum distance of Λ. See Theorem 4 for a formal definition.

4

with a uniformly chosen random string, leading to NP-hardness results under randomized reductions with
one-sided error.

2 Background

In this section we give some standard background on computational complexity, lattices, and some combi-
natorial results used in this paper. The reader familiar with computational complexity, can safely skip most
of this section without much loss.

We use R, Z and 2A to denote the set of the real numbers, the set of the integers, and the power
set of an arbitrary set A. We use standard asymptotic notation and write f = O(g) or g = Ω(f) if
limn→∞ |f(n)/g(n)| <∞, and f = o(g) or g = ω(f) if limn→∞ |f(n)/g(n)| = 0. A function f is negligible if
f(n) = n−ω(1).

Computational Complexity As standard in the study of computational complexity, we formulate al-
gorithmic problems on lattices as decision (or, more precisely, promise) problems. A promise problem is a
pair of disjoint languages Πyes,Πno ⊆ {0, 1}∗. The elements of Πyes and Πno are called yes instances
and no instances, respectively. The computational problem associated to (Πyes,Πno) is, given a string
w ∈ Πyes∪Πno, determine if w ∈ Πyes or not. (If w /∈ Πyes∪Πno, then any answer is acceptable.) Deci-
sion problems correspond to the special case where Πyes∪Πno = {0, 1}∗, and the promise w ∈ Πyes∪Πno
is trivially satisfied. When studying lattices and other computational problems, we assume that common
mathematical objects like integers, matrices, vectors, pairs, etc. are represented as binary strings in some
standard way.

A reduction between two promise problems (Πyes,Πno) and (Σyes,Σno) is a function f : {0, 1}∗ →
{0, 1}∗ such that f(Πyes) ⊆ Σyes and f(Πno) ⊆ Σno. In this paper we also use randomized and nonuni-
form reductions, defined below. Both randomized and nonuniform reductions are specified by a function
f(x, y) that takes two inputs, a regular input x and an auxiliary input y. The auxiliary input y is called
advice in the case of nonuniform reductions, and randomness in the case of randomized reductions. The
complexity of the reduction is the time complexity of computing f , expressed as a function of the length of
the first input x alone. So, we say that f(x, y) is a polynomial time reduction if there is an algorithm that
on input x and y, outputs f(x, y) in time |x|O(1).

A function f(x, y) is a nonuniform reduction from (Πyes,Πno) to (Σyes,Σno) if for any input length
n, there is an advice string y such that f(Πyes ∩ {0, 1}n, y) ⊆ Σyes and f(Πno ∩ {0, 1}n, y) ⊆ Σno.
When studying reductions between concrete computational problems (e.g., lattice problems in this paper)
it is common to have the advice string depend not on the input length |x|, but on some other parameter of
interest associated to the size of the input, e.g., the lattice dimension. (See next paragraph for background
about lattices.) This is without loss of generality, as the lattice dimension is always at most |x|, and therefore
y can include a piece of advice for each dimension n ≤ |x| while incurring only a polynomial blow-up in the
size of the advice.

A function f(x, y) is a randomized reduction from (Πyes,Πno) to (Σyes,Σno) if Pry{f(x, y) ∈ Σyes} ≥
2/3 for all x ∈ Πyes, and Pry{f(x, y) ∈ Σno} ≥ 2/3 for all x ∈ Πno, where both probabilities are computed
over the uniformly random choice of y ∈ {0, 1}r(|x|) among the set of all binary strings of a given length
r(|x|). (One can always assume that the number r(|x|) of random bits used by the reduction is bounded
by the reduction running time t(|x|).) Randomized reductions between concrete computational problems
often assume that the randomness y is not just a uniformly random binary string, but it is the binary
representation of a structured object chosen according to some efficiently samplable (but not necessarily
uniform) distribution. Formally, the randomized reduction uses a uniformly random y ∈ {0, 1}r(|x|) as a seed
to run the efficient sampling algorithm that produces (or approximates up to negligible errors) the desired
distribution.

Notice that nonuniform and randomized reductions have two-sided error, i.e., depending on the value of
the advice or randomness y, they can produce both false positives (i.e., map x ∈ Πno to f(x, y) ∈ Σyes)

5

and false negatives (i.e., map x ∈ Πyes to f(x, y) ∈ Σno). In this paper we consider reductions with one-
sided error, that may produce false negatives, but are guaranteed not to produce false positives. Formally,
nonuniform reductions with one-sided error and no false positives satisfy f(Πno ∩ {0, 1}n, y) ⊆ Σno for
all advice strings y. Similarly, randomized reductions with one-sided error and no false positives satisfy
Pry{f(x, y) ∈ Σno} = 1 for all x ∈ Πno.

Lattices The n-dimensional Euclidean space is denoted Rn. A lattice in Rn is the set of all integer
combinations Λ = {

∑k
i=1 xibi:xi ∈ Z} of k linearly independent vectors b1, . . . ,bk in Rn (n ≥ k). The

set of vectors b1, . . . ,bk is called a lattice basis, and the integer k is the lattice rank or dimension. When
k = n, Λ is called a full rank or full dimensional lattice. A basis can be compactly represented by the matrix
B = [b1, . . . ,bk] ∈ Rn×k having the basis vectors as columns. The lattice generated by B is denoted L(B).
Notice that L(B) = {Bx: x ∈ Zk}, where Bx is the usual matrix-vector multiplication. The determinant
of a lattice L(B) is the volume of the parallelepiped spanned by the basis vectors B, and does not depend
on the choice of the basis B. When B is a square matrix, it equals the absolute matrix determinant
det(L(B)) = |det(B)|. More generally, for nonsquare bases, det(L(B)) =

√
det(BTB), where BT is the

matrix transpose of B.
Lattice problems can be defined with respect to any norm, but the Euclidean norm ‖x‖ =

√∑
i x

2
i is the

most common, and the one we focus on in this paper. We recall that the Euclidean norm is in a technical
sense the one for which lattice problems are algorithmically easiest, and hardness results for other norms can
be obtained via norm embedding [27]. The minimum distance λ(Λ) of a lattice Λ, is the smallest distance
between any two distinct lattice points and equals the length of the shortest nonzero lattice vectors:

λ(Λ) = min{‖x− y‖ : x 6= y ∈ Λ} = min{‖x‖ : x ∈ Λ,x 6= 0}.

For any vector x ∈ Rn and real r, let B(v, r) = {w ∈ Rn : ‖v −w‖ ≤ r} be the ball of radius r centered at
v. When the ball is centered around the origin v = 0, we simply write B(r).

When discussing computational issues related to lattices, it is customary to assume that the lattices are
represented by a basis matrix B and that the basis B has integer entries. This is without much loss of
generality as real lattices can be approximated by rational ones with arbitrarily high precision, and rational
lattices are easily mapped to integer ones simply by scaling them. In any case, as in this paper we are
concerned with (worst-case) hardness results, restricting the definitions to integer lattices only makes the
results stronger. We study the decisional (length/distance estimation) variants of SVP and CVP as defined
below.

Definition 1 The promise problem GapSVPγ (where γ ≥ 1 may be a function of the lattice dimension) is

defined as follows. Instances are pairs (B, d), where B ∈ Zn×k is a lattice basis and d is a positive number
such that

1. (B, d) is a yes instance if λ(L(B)) ≤ d, i.e., ‖Bx‖ ≤ d for some x ∈ Zk \ {0};

2. (B, d) is a no instance if λ(L(B)) > γ · d, i.e., ‖Bx‖ > γ · d for all x ∈ Zk \ {0}.

Definition 2 The promise problem GapCVPγ (where γ ≥ 1 may be a function of the lattice dimension) is

defined as follows. Instances are triples (B,y, d), where B ∈ Zn×k is a lattice basis, y ∈ Zn is a vector, and
d is a positive number such that

1. (B,y, d) is a yes instance if ‖y −Bx‖ ≤ d for some x ∈ Zk;

2. (B,y, d) is a no instance if ‖y −Bx‖ > γ · d for all x ∈ Zk.

We remark that any algorithm that (approximately) solves SVP in its standard formulation (i.e., given
a lattice, finds a nonzero lattice vector of length within a factor γ from the shortest) can immediately be
used to solve GapSVPγ . So, proving hardness results for GapSVPγ implies hardness of approximating the
standard SVP as well. The same observation applies to CVP and GapCVPγ . However we remark that
the converse is not known to be true: giving a reduction from approximate SVP to GapSVPγ (or from
approximate CVP to GapCVPγ) is an important open problem in the complexity of lattice problems.

6

Linear codes Some of our constructions rely on techniques from the study of linear codes. For any finite
field F, and finite-dimensional vector space Fn over F, a linear code of block length n and dimension k is
a k-dimensional linear subspace of Fn. As for lattices, linear codes are usually represented by a generator
matrix C ∈ Fn×k, which is a basis for the code C(C) = {Cx: x ∈ Fk} ⊆ Fn. The difference n − k is called
the co-dimension of the code. The Hamming weight of a vector v ∈ Fn is the number ‖v‖H of nonzero
coordinates of v. The minimum distance of a linear code C ⊆ Fn is the smallest Hamming weight of a
nonzero vector in the code min{‖v‖H : v ∈ C \ {0}}. In this paper, we are primarily interested in binary
linear codes, i.e., linear codes over the field F2 = {0, 1} with two elements. A binary linear code with block
length n, dimension k and minimum distance d is usually denoted C[n, k, d]2. In Section 4 we build a very
dense lattice starting from the family of extended primitive narrow sense binary BCH codes. For brevity,
we refer to these codes just as extended BCH codes. Extended BCH codes can be defined for any block
length m = 2κ that is a power of 2. The properties of these codes needed in this paper are summarized in
the following theorem. For completeness, we also include a brief sketch of the construction and analysis of
extended BCH codes, and refer the reader to [25, Chapter 1, Section 7] for details.

Theorem 1 For any 2-power m, and even integer h ≤ m, the extended BCH code EBCHm
h [m, k, d] has

minimum distance d ≥ h and co-dimension m− k ≤ (log2m) · (h/2− 1) + 1. Moreover, these codes satisfy
Fm2 = EBCHm

0 ⊇ EBCHm
2 ⊇ · · · ⊇ EBCHm

m. Generator matrices for these codes can be constructed in time
polynomial in m.

Proof Extended BCH codes of block length m = 2κ are obtained by appending a parity check bit to a BCH
code of block length n = m−1. BCH codes are polynomial codes, i.e., they can be described algebraically as
the set of all (coefficient vectors of) polynomials of degree less than n that are divisible by a given generating
polynomial g(X) ∈ F2[X]. The co-dimension of a polynomial code equals the degree n − k = deg(g) of the
generating polynomial. Let α be a generator of the multiplicative group of Fm, the finite field with m = 2κ

elements. A basic fact in the theory of polynomial codes (BCH bound, see [25, Chapter 1, Theorem 6.1]) is
that if g(αi) = 0 for t consecutive powers of α, then the polynomial code generated by g(X) has minimum
distance at least t+ 1.

For any even h ≤ m, the BCH code with designed minimum distance h − 1 ≤ m − 1 is the polynomial
code generated by the least common multiple gh(X) of the minimal polynomials p1(X), p3(X), . . . , ph−3(X)
of the first h/2− 1 odd powers α1, α3, . . . , αh−3 of the primitive element α. Notice that for any even power
α2j , gh(α2j) = (gh(αj))2 because squaring is a linear operation in the polynomial ring Fm[X] (as a vector
space over Fm). So, gh(αj) = 0 for all j = 1, . . . , h − 2, and the minimum distance of the BCH code is at
least h − 1. The extended BCH code EBCHm

h [m, k, d]2 is obtained by appending a parity check bit to the
code generated by gh(X). Since h−1 is odd, appending a parity check bit increases the (designed) minimum
distance of the code to d ≥ h. The block length and co-dimension also increase by 1, while the dimension of
the code remains the same. Since the degree of each minimal polynomial pj is at most κ, the degree of gh
is bounded by κ · (h/2 − 1), and the co-dimension of EBCHm

h [m, k, d] is at most m − k ≤ κ(h/2 − 1) + 1.
Notice that for any h ≤ h′, gh′ is a multiple of gh, and therefore EBCHm

h ⊇ EBCHm
h′ . �

Tensor products For any two matrices B(1) ∈ Rn1×k1 and B(2) ∈ Rn2×k2 , define the Kronecker product

B = B(1) ⊗ B(2) ∈ Rn1n2×k1k2 as the matrix with entries bi,j = b
(1)
i1,j1
· b(2)
i2,j2

where i = (i1 − 1) · n2 + i2
and j = (j1 − 1) · k2 + j2 for i1 = 1, . . . , n1, i2 = 1, . . . , n2, j1 = 1, . . . , k1 and j2 = 1, . . . , k2. Informally,

B(1) ⊗ B(2) is the block matrix obtained replacing each entry b
(1)
i1,j1

of B(1) with the matrix b
(1)
i1,j1
· B(2).

The tensor product of lattices L(B(1)) and L(B(2)) is the k1k2-dimensional lattice L(B(1) ⊗B(2)) in n1n2-
dimensional space generated by the Kronecker product of the two basis matrices. Identifying the set Rn1n2

of n1n2-dimensional vectors with the set Rn1×n2 of n1 × n2 matrices in the obvious way, the tensor product
of two lattices can be conveniently defined as the set of all matrices

L(B(1) ⊗B(2)) = {B(1)X(B(2))T | X ∈ Zk1×k2}.

7

The tensor product of two linear codes is defined similarly. As mentioned in the introduction, the tensor
product operation can be used to amplify hardness results for certain coding and lattice problems to large
approximation factors. For example, if C is a linear code with minimum distance d, then the product code
C ⊗ C has minimum distance d2. So, if the minimum distance of C is hard to approximate within a factor γ,
then the minimum distance of C ⊗ C is also hard to approximate within a factor γ2. Similar amplification
results are also possible for NCP and CVP. However, this method to amplify the approximation factor of a
problem does not work for GapSVP. It is easy to prove that for any two lattices λ(Λ1⊗Λ2) ≤ λ(Λ1) ·λ(Λ2),
and, in particular λ(Λ⊗ Λ) ≤ λ(Λ)2. However, in general λ(Λ⊗ Λ) can be much smaller than λ(Λ)2. (E.g.,
see [11, Lemma 2.4].) Lattices Λ1 for which λ(Λ1 ⊗ Λ2) = λ(Λ1) · λ(Λ2) for every lattice Λ2 are called
“E-type” lattices [16], and are somehow special.

We will prove the NP-hardness of GapSVP by reduction from the following NP-hard variant of CVP.

Definition 3 The promise problem TensorCVPγ (where γ ≥ 1 may be a function of the lattice dimension)
is defined as follows. Instances are triples (B,y, t) where B ∈ Zn×k is a lattice basis, y ∈ Zn is a vector,
and t is a positive number such that

• (B,y, t) is a yes instance if ‖y −Bx‖ ≤ t for some x ∈ {0, 1}k;

• (B,y, t) is a no instance if
√
‖y −Bx‖H > γt for all x ∈ Rk.

TensorCVP differs from CVP as follows. In the yes instances, the target is required to be close to a
binary combination of the basis vectors. In the no instances, the target is required to be far in Hamming
distance from the entire linear space spanned by the lattice. TensorCVP is a fairly standard NP-hard
variant of CVP, similar to those used in previous works on the computational complexity of lattice problems
[20, 13, 11]. We call this CVP variant TensorCVP because we will use it to prove the NP-hardness of a
variant of SVP (TensorSVP, see Definition 6) closely related to the use of the tensor product to amplify
the approximation factor. The NP-hardness of TensorCVP is proved by reduction from the exact set cover
problem. Remember that an instance of exact set cover consists of a collection of sets S1, . . . , Sn ⊆ {1, . . . , u}
and an integer t ≤ n. A cover C is a subcollection C ⊆ {1, . . . , n} such that

⋃
i∈C Si = {1, . . . , u}. A cover is

exact if the sets Si (i ∈ C) in the cover are pairwise disjoint, i.e., {Si}i∈C is a partition of {1, . . . , u}. When
reducing set cover problems to lattice problems it is convenient to represent the collection {S1, . . . , Sn} as
a matrix S = [s1, . . . , sn] ∈ {0, 1}u×n where the columns si are the indicator vectors of the sets Si. Using
matrix notation, a cover of size t is represented by a binary vector c ∈ {0, 1}n with t ones such that Sc ≥ 1,
where 1 is the all-ones vector and the inequality holds component-wise. The cover is exact if Sc = 1.

Definition 4 For any γ ≥ 1, an instance of the γ-approximate exact set cover problem is a pair (S, t) with
S ∈ {0, 1}u×n and t ∈ {1, . . . , n} such that

• (S, t) is a yes instance if there is an exact cover of size at most t, i.e., a binary vector c ∈ {0, 1}n
such that ‖c‖H ≤ t and Sc = 1;

• (S, t) is a no instance if all covers have size bigger than γt, i.e., all binary vectors c ∈ {0, 1}n such
that Sc ≥ 1 have Hamming weight ‖c‖H > γt.

The NP-hardness of TensorCVPγ easily follows from the following NP-hardness result for exact set cover
proved in [4].

Theorem 2 The exact set cover problem is NP-hard to approximate within any constant factor γ ≥ 1.

The NP-hardness of TensorCVPγ is already implicit in [3], and, with minor variations, it has been used
in many previous works on the complexity of GapSVP [20, 13, 11]. Here we give a slightly simpler proof than
the one originally given in [3] and commonly reported in the literature [13, 11], that avoids the introduction
of auxiliary variables and large constants.

Theorem 3 For any constant γ ≥ 1, TensorCVPγ is NP-hard.

8

Proof We use the fact that exact set cover is NP-hard for any constant approximation factor γ (Theorem 2),
and we reduce it to TensorCVP√γ . On input an exact set cover instance (S, t), the reduction produces a

TensorCVP√γ instance (B,y,
√
t) where B ∈ Zn×k is a basis for the lattice of all integer vectors v such that

Sv = 0, and y ∈ Zn is an arbitrary integer solution to Sy = 1. (Both B and y can be efficiently computed
using linear algebra. If no solution y exists, then (S, t) is necessarily a no instance, and the reduction can
output an arbitrary no instance of TensorCVP√γ .) We need to prove that the reduction is correct.

If (S, t) is a yes instance, then there is an exact cover of size t, i.e., a vector c ∈ {0, 1}n with at most t ones
such that Sc = 1. It follows that S(y − c) = 0, i.e., y − c is a lattice vector. Moreover this lattice vector is
within distance ‖y− (y−c)‖ = ‖c‖ ≤

√
t from y, proving that (B,y,

√
t) is a yes instance of TensorCVP√γ .

Now assume (S, t) is a no instance. Notice that for any v in the linear span of B, S(y − v) = Sy = 1. So,
the nonzero coordinates of y − v form a set cover. It follows that y − v must have more than γt nonzero
coordinates, i.e.,

√
‖y − v‖H >

√
γt. �

The homogenization framework We briefly recall the framework of [20] to prove hardness results for
GapSVP. Let (B,y) be a CVP instance. A common heuristic to find a lattice vector Bx closest to y is to
search for a short vector in the augmented lattice L([B,y]). However, this simple heuristic does not work
in general (even if one can solve SVP exactly), and it only yields a reduction from the Bounded Distance
Decoding (BDD) to the unique Shortest Vector Problem (uSVP), two restricted versions of CVP and SVP
[18]. For the general CVP and SVP, there are two different ways in which this approach may fail:

• A shortest nonzero vector in L([B,y]) may be of the form Bx + c ·y with |c| ≥ 2. This yields a lattice
vector Bx close to a multiple of the original target y.

• A shortest nonzero vector in L([B,y]) may be of the form Bx. This will be the case if the distance of
the target y from the lattice L(B) is bigger than λ(L(B)).

In the context of proving the NP-hardness of SVP, the first problem is easily solved by reducing from a
variant of CVP (like TensorCVP, see Definition 3) where either the target is close to the lattice, or all its
nonzero (integer) multiples are far from it. The second problem is more fundamental, and arises also in the
context of proving similar results for linear codes [10]. Building on techniques from [1], Micciancio [20] solved
this problem essentially by embedding B and y into a higher dimensional space to obtain a new lattice L(B′)
and target vector t′ such that

• if y is close to the lattice L(B), the embedded target y′ is still close to the lattice L(B′), and

• the embedding operation increases the minimum distance of the lattice L(B), so that the distance of
y′ from L(B′) is strictly smaller than λ(L(B′)).

This transformation ensures that the shortest vectors in L([B′,y′]) are not in L(B′), and therefore must
necessarily make use of the target vector y′. In [20], it is shown that such a transformation can be easily
carried out using a geometric gadget consisting of a lattice coset L(L) − s with large minimum distance
λ(L(L)) and many short vectors (L(L)− s)∩B(r). (Specifically, the length bound r on these vectors should
be strictly smaller than the minimum distance of L(L) by a constant factor.) Moreover, if L(L) is sufficiently
dense (i.e., if its determinant is not too big), then an appropriate coset is guaranteed to exist and can be
probabilistically found by choosing s as a random short vector.

In [20] a gadget of this type is constructed using techniques from elementary number theory, which are
less “combinatorial” than the coding theory tools used in the NP-hardness proof of [13], and arguably harder
to derandomize. In this paper we give an alternative and more refined construction of Micciancio’s geometric
gadget. Similarly to the proofs in [13, 11], we rely on tools from coding theory, namely the construction
of BCH codes (see Theorem 1) rather than number theoretic methods, and make extensive use of integer
vectors with all-even coordinates, an element already present in [13].

Beside its potential for easier derandomization, the new construction, which combines lattice and coding
elements, has the advantage of behaving well with respect to the tensor product of lattices.

9

Our nonuniform reduction from TensorCVP to GapSVP, similarly to previous work [1, 20], uses the
following combinatorial result commonly attributed to [28]. We report a proof here just to make the paper
self contained.

Lemma 1 (Sauer’s Lemma) Let M be a set of size m, and A ⊆ 2M be an arbitrary collection of subsets

of M . For any integer k ≥ 1 such that |A| >
∑k−1
i=0

(
m
i

)
, there exists a subset T ⊂ M of size |T | = k which

is shattered by A, i.e., the restriction A|T = {A ∩ T :A ∈ A} equals 2T .

Proof For any m and k, let [m, k] =
∑k
i=0

(
m
k

)
be the number of subsets of M = {1, . . . ,m} of size at most

k, so that the hypothesis in the theorem can be written as |A| > [m, k − 1]. We prove the theorem by
induction on m + k. When m = 0 (and, in particular, for the base case of the induction m + k = 1) the
lemma is vacuously true because |A| ≤ 1 ≤ [m, k− 1]. So, assume m ≥ 1, pick an element a ∈M and define
M ′ = M \ {a}, m′ = |M ′| = m− 1 and the following two collections of subsets of M ′:

A0 = {A ⊆M ′ : A ∈ A}

A1 = {A ⊆M ′ : A ∪ {a} ∈ A}.

If |A0 ∪ A1| > [m′, k − 1], then by inductive hypothesis there exists a set T ⊆M ′ ⊂M of size |T | = k such
that (A0 ∪ A1)|T = 2T . Since a 6∈ T , we have A|T = (A0 ∪ A1)|T = 2T and we are done.

So, assume |A0 ∪ A1| ≤ [m′, k − 1], and notice that

|A0 ∪ A1|+ |A0 ∩ A1| = |A0|+ |A1| = |A| > [m, k − 1] = [m′, k − 1] + [m′, k − 2].

Since |A0 ∪ A1| ≤ [m′, k − 1], it must be |A0 ∩ A1| > [m′, k − 2], and, by inductive hypothesis, there exists
a set T ′ ⊆ M ′ ⊂ M of size |T ′| = k − 1 such that (A0 ∩ A1)|T ′ = 2T

′
. We show that A|T = 2T where

T = T ′ ∪{a} is a set of size |T | = |T ′|+ 1 = k. The inclusion A|T ⊆ 2T is obvious. So, let’s prove 2T ⊆ A|T .
Notice that for any A ∈ 2T , the set A \ {a} belongs to both A0|T ′ and A1|T ′ . Therefore A \ {a} ∈ AT and
A ∪ {a} ∈ AT . Since A equals either A \ {a} or A ∪ {a}, we conclude that A ∈ AT . �

In the context of this paper, all we need is the following simple corollary to Sauer’s lemma, obtained
by interpreting the elements of A as (the indicator functions of) subsets of M = {1, . . . ,m}, and letting
T ∈ {0, 1}k×m be the projection matrix corresponding to the set of coordinates T ⊂M .

Corollary 1 Let m be a positive integer, and A ⊂ {0, 1}m an arbitrary set of m-dimensional binary vectors.

If |A| >
∑k−1
i=0

(
m
i

)
, then there exists a matrix T ∈ {0, 1}k×m such that {0, 1}k ⊆ {Tz: z ∈ A}.

3 Basic Techniques

Central to our construction and hardness results is a new method to measure the length of a vector which
is in a sense a hybrid between the Euclidean norm and the Hamming metric. The definition is parametrized
by an integer q which we will later set to q = 2.

Definition 5 For any integer vector x, let powq(x) be the largest power of q that divides x, and define

τq(x) = powq(x) ·
√
‖x‖H , where ‖x‖H the Hamming weight of x. For any integer lattice Λ,

τq(Λ) = min{τq(x): x ∈ Λ \ {0}}

is the minimum of τq over all nonzero lattice vectors.

Notice that τq is not a norm because it satisfies neither the linearity property ‖c · x‖ = c · ‖x‖, nor the
triangle inequality ‖x + y‖ ≤ ‖x‖+ ‖y‖ required of a norm. Still, the quantity τq(Λ) is useful to study SVP
because it gives a lower bound on the norm of integer vectors, and it behaves well with respect to the tensor
product of lattices, as shown below.

10

Lemma 2 For any integer vector x ∈ Zn, τq(x) ≤ ‖x‖.

Proof The vector x has ‖x‖H nonzero entries, and each of them is at least powq(x) in absolute value.

Therefore ‖x‖ ≥ powq(x) ·
√
‖x‖H = τq(x). �

Lemma 3 For any integer lattice Λ and (arbitrary) lattice Λ′,

τq(Λ) · λ(Λ′) ≤ λ(Λ⊗ Λ′) ≤ λ(Λ) · λ(Λ′).

Proof Let Λ = L(B) and Λ′ = L(B′). For the upper bound, simply observe that for any two lattice vectors
Bx and B′y, the product lattice Λ⊗ Λ′ contains a vector Bx(B′y)T of length ‖Bx‖ · ‖B′y‖. Choosing Bx
and B′y as shortest nonzero vectors in Λ and Λ′ yields a vector in Λ⊗Λ′ of length λ(Λ) · λ(Λ′). In order to
prove the lower bound we consider an arbitrary nonzero v = BX(B′)T in the tensor product lattice Λ⊗Λ′,
and show that ‖v‖ ≥ τq(Λ) · λ(Λ′). Let h be the number of nonzero rows in BX. Clearly, all columns

c ∈ BX have Hamming weight at most ‖c‖H ≤ h, and therefore τq(c) ≤ powq(c) ·
√
h. It follows that all

nonzero columns c satisfy powq(c) ≥ τq(c)/
√
h ≥ τq(Λ)/

√
h. In particular, the largest power qi that divides

the entire matrix BX satisfies qi ≥ τq(Λ)/
√
h. Notice that v = (BX) · (B′)T contains exactly h nonzero

rows (this is so because BX has h nonzero rows, and the columns of B′ are linearly independent), and each
of them is a nonzero vector in qiΛ′. Therefore, ‖v‖ ≥

√
hqiλ(Λ′) ≥ τq(Λ)λ(Λ′). �

We use the quantity τq(Λ) to define a variant of SVP that behaves well with respect to the tensor
product of lattices. Our variant of SVP is defined using the Euclidean norm for the yes instances, and our
new measure τq for the no instances.

Definition 6 The promise problem TensorSVPγ (where γ ≥ 1 may be a function of the lattice dimension)
is defined as follows. Instances are pairs (B, d) where B ∈ Zn×k is a lattice basis and d is a positive number
such that

• (B, d) is a yes instance if λ(L(B)) ≤ d;

• (B, d) is a no instance if τq(L(B)) > γd.

Notice that TensorSVPγ is a special case of the standard GapSVPγ problem because the defining condition
for yes instances is the same, and in the no instances τq(L(B)) is a lower bound on λ(L(B)). So, in order to
establish NP-hardness results for GapSVPγ it is enough to prove the NP-hardness of TensorSVPγ . Moreover,
TensorSVPγ behaves well with respect to the tensor product of lattices, as described in the next theorem.

Theorem 4 For any positive integer c, the map (B, d) 7→ (B⊗c, dc) is a reduction from TensorSVPγ to
GapSVPγc , where B⊗c denotes the iterated tensor product of c copies of B. The running time of the
reduction is polynomial in Sc where S = |(B, d)| is the size of the input.

Proof Let (B, d) be an instance of TensorSVPγ . If (B, d) is a yes instance, then λ(L(B)) ≤ d, and by
Lemma 3, λ(L(B⊗c)) ≤ dc. So, (B⊗c, dc) is a yes instance of GapSVPγc . Conversely, if (B, d) is a no
instance, then λ(L(B)) ≥ τq(L(B)) > γd, and by Lemma 3, λ(L(B⊗c)) > (γd)c. So, (B⊗c, dc) is a no
instance of GapSVPγc . �

Notice that for any constant c, the transformation in Theorem 4 runs in polynomial time. So, if
TensorSVPγ is NP-hard for some constant γ > 1, then GapSVPγ is NP-hard for any constant γ′ ≤ γc.
Similarly, using reductions that run in superpolynomial time, one obtains inapproximability results for even
larger factors. (See Corollary 2.)

Notice that all definitions and results presented in this section hold for any integer q. For simplicity, in
the rest of the paper, we fix q = 2, as this is enough to prove the hardness of GapSVP.

11

4 A dense lattice construction

Similarly to [20], our NP-hardness proof is based on the construction of a very dense lattice L(L) with
large minimum distance. However, since we want to prove the NP-hardness of TensorSVP (rather than just
GapSVP as in [20]), we need a lattice L(L) such that not only λ(L(L)), but also τ2(L(L)) is large. Our
lattice is obtained combining together a carefully chosen sequence of linear codes described in the following
lemma.

Lemma 4 There is an efficient algorithm that on input two powers of 2, m and h ≤
√
m, outputs a sequence

of generator matrices Ci ∈ Fm×ki2 (i = 0, . . . , log2 h) for binary linear codes Ci[m, ki, di]2 = C(Ci) of common
block length m, minimum distance di ≥ 4i and co-dimension m− ki ≤ (log2m) · (4i/2− 1) + 1 (for i ≥ 1),
such that Fm2 = C0 ⊇ C1 ⊇ · · · ⊇ Clog2 h. The running time of the algorithm is polynomial in m.

Proof For i = 0, . . . , ` = log2 h, let Ci be a generator matrix for the extended BCH code EBCHm
4i of block

length m and designed distance 4i ≤ di. By Theorem 1 the generator matrices can be constructed in time
polynomial in m, they have co-dimension m − ki ≤ (log2m) · (4i/2 − 1) + 1 for i ≥ 1, and the codes they
generate form a chain Fm2 = C0 ⊇ C1 ⊇ · · · ⊇ C`. �

These codes are combined into a lattice L(L) using a method which is essentially “construction D” from
[8, Chapter 8], the only difference being that here we use a scaled copy of the lattice so that L is an integer
matrix, and we express the bound in terms of τ2(L(L)) rather than λ(L(B)).

Theorem 5 There is an efficient algorithm that on input two powers of 2, m and h ≤
√
m, outputs an

m-dimensional full-rank integer lattice basis L ∈ Zm×m such that τ2(L(L)) ≥ h and det(L(L)) < m
2
3h

2

. The
running time of the algorithm is polynomial in m.

Proof We need to give an efficient construction that on input two powers of 2, m = 2κ and h = 2`

with ` ≤ κ/2, produces an m-dimensional full rank integer lattice basis L such that τ2(L(L)) ≥ h and

det(L(L)) < m
2
3h

2

.
Run the algorithm of Lemma 4 on input m and h to obtain the generator matrices C0,C1, · · · ,C` for

the sequence of binary linear codes Ci[m, ki, di]2. We recall that these are codes of common block length m,
minimum distance di ≥ 4i, and co-dimension m− ki ≤ κ(4i/2− 1) + 1 for i ≥ 1, and C0[m,m, 1]2 = Zm2 . We
combine these codes into a lattice using “construction D” from [8, Chapter 8, Theorem 13]. More specifically,
we define the m-dimensional integer lattice L(L) generated by the columns of 2`−iCi for all i = 0, . . . , `,
where where each Ci ∈ F2

m×ki is interpreted as an integer matrix in {0, 1}m×ki by identifying the elements
of F2 = {0, 1} with the integers {0, 1} ⊂ Z. Of course, the vectors in 2`C0, 2

`−1C1, . . . ,C` are not linearly
independent, but a basis for the lattice they generate can be easily obtained as follows. Using the inclusions
C0 ⊇ · · · ⊇ C`, we may assume that each generating matrix Ci equals the last ki columns of C0. In other
words, C0 = [K0, . . . ,K`], and each generating matrix Ci = [Ki,Ci+1] is obtained extending the generating
matrix of the next code in the sequence Ci+1 with k′i = ki − ki+1 more columns Ki. (For convenience, we
also define k`+1 = 0 and k′` = k` − k`+1 = k`.) By properly choosing the order of the rows and performing
elementary column operations (see below for details), we may further assume that each Ki has the form

Ki =

 K′i
Ti

O

where K′i ∈ F2

(m−ki)×k′i , Ti is a k′i×k′i nonsingular upper-triangular7 matrix, and O is the ki+1×k′i all-zero
matrix. In more detail, this can be achieved using a simple variant of the Gaussian elimination process as
follows:

1. Let ci,j be the entries of the matrix C0, and select an index i such that ci,m = 1.

7While not needed here, one could also turn each Ti into the identity matrix Ti = Ik′i
by Gaussian elimination.

12

2. Swap rows i and m so that cm,m = 1.

3. Subtract the column m from all columns j < m with cm,j = 1, so that cm,j = 0.

4. Proceed inductively on the (m− 1)× (m− 1) upper left submatrix of C0.

This results in a nonsingular upper-triangular matrix C0 which is equivalent to the original C0.
Define the m×m integer matrix

L = [2`K0, 2
`−1K1, . . . ,K`]

where, as before, each Ki ∈ F2
m×k′i is interpreted as an integer matrix in {0, 1}m×k′i .

The columns of L are a subset of 2`C0, 2
`−1C1, . . . ,C`. Moreover, all vectors in 2`C0, 2

`−1C1, . . . ,C`

can be obtained by multiplying the columns of L by appropriate powers of 2. Therefore L(L) is precisely
the lattice generated by 2`C0, 2

`−1C1, . . . ,C`.
Consider an arbitrary nonzero lattice vector v =

∑
i(2

`−i ·Ki)xi =
∑
i Kiyi, where yi = 2`−ixi. We

want to prove that τ2(v) ≥ h. Let 2P = pow2(y0, . . . ,yk) be the largest power of 2 that divides all yi’s.
Clearly, 2P also divides v. If P ≥ `, then we immediately get τ2(v) ≥ pow2(v) ≥ 2` = h. So, assume P < `
and let p = min{i: yi 6= 0,pow2(yi) = 2P } be the smallest index such that yp is divisible precisely by 2P .
Notice that P ≥ `− p because 2P = pow2(yp) = pow2(2`−pxp) ≥ 2`−p. By definition of p and P , all yi/2

P

are integer vectors, and yp/2
P 6= 0 = yi/2

P (mod 2) for all i < p. So,

‖v‖H = ‖v/2P ‖H ≥ ‖(v/2P) mod 2‖H =

∥∥∥∥∥∥
∑
i≥p

Ki(yi/2
P) mod 2

∥∥∥∥∥∥
H

≥ dp ≥ 4p

where we have used the fact that
∑
i≥p Ki(yi/2

P) mod 2 is a nonzero codeword in Cp. It follows that

τ2(v) = pow2(v)
√
‖v‖H ≥ 2P ·

√
4p ≥ 2`−p · 2p = 2`.

This proves that τ2(L(L)) ≥ 2` = h.
In order to bound the determinant of the lattice, we notice that, by our choice of Ki, the matrix C0

is upper triangular. It follows that L is also a triangular matrix with k′i diagonal entries equal to 2`−i for
i = 0, . . . , `. So, the determinant satisfies

log2 det(L(L)) =
∑̀
i=0

(`− i)k′i =
∑̀
i=1

(m− ki). (1)

Finally, using the bound on the co-dimension m− ki ≤ κ · (4i/2− 1) + 1 from Lemma 4 we get

∑̀
i=1

(m− ki) ≤
∑̀
i=1

(
κ · 4i

2
− (κ− 1)

)
= κ

2

3
(4` − 1)− (κ− 1)` <

2κh2

3
.

(In fact, using the assumption ` ≤ κ/2 < (2/3)κ, one can slightly strengthen the upper bound to κ
(

2
3h

2 − `
)
.)

Substituting this bound into the expression for the determinant gives det(L(L)) < 22κh2/3 = m
2
3h

2

. �

We conclude this section with some remarks about the lattice L(L) constructed in Theorem 5. To start
with, we observe that Theorem 5 can be applied using a single (BCH) code C1 ⊆ Fn2 . This is reminiscent of
the use of BCH codes found in [13, 11], and corresponds to “Construction A” of [8]. However, using only a
single code (i.e., ` = log2 h = 1) results in lattices with very small τ2(L(L)) ≥ h = 2, which are not directly
useful to prove the NP-hardness of SVP. Of course, one can always increase τ2(L(L)) by multiplying the
lattice by a power of 2. For example, the orthogonal lattice hZm satisfies τ2(hZm) = h and det(hZm) = hm,
but it is not very interesting. Our lattice construction achieves the same τ2(L(L)) ≥ h, but, by (1), it has

13

much smaller determinant det(L(L)) = hm/2
∑`
i=1 ki , where k1, . . . , k` are the dimensions of the codes Ci

from Lemma 4.
A systematic way to compare different lattices obtained from this or other constructions is to evaluate

their Hermite factor γ(Λ) = (λ(Λ)/ det(Λ)1/m)2. This factor is closely related to the packing density of
the lattice vol(B(λ(Λ)/2))/ det(Λ) = vol(B(1)) · (

√
γ(Λ)/2)m, i.e., the largest fraction of space occupied by

disjoint equal spheres centered around all lattice points. The trivial fact that the packing density cannot
be higher than 1 yields Minkowski’s upper bound on Hermite’s factor γ(Λ) ≤ O(m). Notice that Hermite’s
factor γ(Λ) is invariant under scaling of the lattice. So one can consider arbitrary values of h in Theorem 5,
and then scale the lattice to increase τ2(L(L)) ≤ λ(L(L)) as desired, without affecting the Hermite factor of

the lattice. Using det(L(L)) = hm/2
∑`
i=1 ki and λ(L(L)) ≥ τ2(L(L)) ≥ h, gives Hermite factor γ(L(L)) ≥

4
∑`
i=1 ki/m. The integer lattice Zm (corresponding to ` = 0) achieves Hermite factor γ ≥ 1. Using a single

BCH code C1 ⊆ Fm2 (corresponding to ` = 1) as in [13, 11] gives only marginally higher Hermite factor
γ ≥ 4k1/m ≥ 41+o(1). By contrast, choosing h = O(

√
m/ logm) in Theorem 5 so to maximize Hermite’s

factor yields an almost optimal γ ≥ (h/mO(h2/m))2 = O(h2) = O(m/ logm), within a logarithmic factor
from Minkowski’s upper bound γ ≤ O(m).

Our lattice should also be compared to the “Schnorr-Adleman” prime number lattice, already used in
[1, 20, 21] to prove NP-hardness results for SVP. In [21, Chapter 5] it is shown that this lattice (parametrized
by a real α > 0 and a sequence of relatively prime integers a1, . . . , am) has minimum distance λ ≥ 2 lnα
(see [21, Lemma 5.3]) and determinant det(Λ) =

√
(1 + α2

∑
k ln ak)

∏
k ln ak (see [21, Proposition 5.9]).

Hermite’s factor is maximized by setting a1, . . . , am to the first m prime numbers and α ≈ em/2, which
yields γ(Λ) = O(m/ logm), just like for the lattice given in Theorem 5. For other examples of explicit
lattice constructions achieving similar or even higher density see [8, Chapter 1, Section 1.5]. The novelty in
Theorem 5 is that it provides not only a lattice with large minimum distance (and Hermite factor), but also
large τ2(Λ).

5 The main reduction

In this section we prove that TensorSVP is NP-hard to approximate within some constant factor under
nonuniform polynomial time reductions with one-sided error. In Section 6 we show how the nonuniform
advice required by our proof can be computed in probabilistic polynomial time. We present our main result
as a nonuniform reduction first in order to make the presentation as simple as possible. We remark that
the nonuniform reduction presented in this section is just as good a starting point for derandomization as
the probabilistic reduction presented in the next section. A randomized uniform reduction is presented in
Section 6 mostly to reassure the reader that here we are not using the nonuniformity of the advice in any
essential way.

For any 1 < λ <
√

3/2, the reduction uses a gadget (L, s,T, r) consisting of a lattice basis L ∈ Zm×l, a
vector s ∈ Zm, a linear transformation T ∈ Zk×m, and a bound r such that

1 ≤ r ≤
√
m (2)

τ2(L(L)) ≥ λ · r (3)

T((L(L)− s) ∩ B(r)) ⊇ {0, 1}k. (4)

Informally, the lattice has large τ2, and still one of its cosets contains 2k short vectors which are mapped by
the linear transformation T to the set of all binary vectors in dimension k.

The gadget is obtained using Theorem 5 to efficiently build a very dense lattice L(L) satisfying (3). Since
this lattice has small determinant, there must be a coset (L(L)− s) containing many short binary vectors of
norm bounded by r. Provided the number of such short binary vectors is large enough, by Corollary 1 there
is a matrix T ∈ {0, 1}k×m such that the image of the short vectors under T includes all binary strings in
{0, 1}k, i.e., (4) is satisfied. Both s and T are part of the nonuniform advice used by the reduction.

14

Theorem 6 For any 1 ≤ γ < λ <
√

3/2 and γ̃ = γ
√

1 + 4/((λ/γ)2 − 1) there is a nonuniform polynomial
time reduction with one-sided error and no false positives from TensorCVPγ̃ to TensorSVPγ .

Proof Let (B,y, t) be a TensorCVPγ̃ instance with B ∈ Zn×k and y ∈ Zn. We recall that membership in any
lattice L(B) can be efficiently determined by linear algebra. If the target is a lattice vector y ∈ L(B), then
(B,y, t) is certainly a yes instance, and the reduction can output an arbitrary yes instance of TensorSVPγ .
So, assume without loss of generality that y /∈ L(B). Assume also that 1 ≤ t <

√
n. Again, this is without

loss of generality because if t ≥
√
n, then (B,y, t) is not a no instance, and it can be mapped to an arbitrary

yes instance of TensorSVPγ . Similarly, if t < 1 then (B,y, t) is not a yes instance, and it can be mapped
to an arbitrary no instance of TensorSVPγ .

We will give a nonuniform polynomial time construction of a gadget (L, s,T, r) satisfying properties (2),
(3) and (4), where (s,T) is the nonuniform advice. Notice that (2) and (3) do not depend on the advice
(s,T), and so they are always satisfied. Only (4) relies on the advice (s,T) being properly chosen. Given,
(L, s,T, r), we proceed as follows. We begin by scaling the input (B,y, t) and the gadget (L, s,T, r) so that
ε/2 ≤ t/r < ε, where ε =

√
(λ/γ)2 − 1 ∈ (0, 1/

√
2). Specifically, if t/r < ε/2, then we replace (B,y, t)

with (1c2 ⊗ B,1c2 ⊗ y, c · t) where c = bεr/(2t)c. Similarly, if t/r ≥ ε, then we replace (L, s,T, r) with
(1c2 ⊗ L,1c2 ⊗ s, e1 ⊗ T, c · r), where e1 = [1, 0, . . . , 0] is the first c2-dimensional standard unit row vector
and c = b2t/(εr)c. Notice that in either case c ≤ O(max(r/t, t/r)) ≤ O(max(

√
m,
√
n)) is polynomially

bounded, and therefore the scaling transformation runs in polynomial time. It is also easy to verify that
the transformation results in an equivalent TensorCVPγ̃ instance (B,y, t) and gadget (L, s,T, r) such that
ε/2 ≤ t/r < ε.

The output of the reduction is (V, d) where d =
√
t2 + r2 and

V =

[
BTL BTs + y

L s

]
.

Notice that V ∈ Z(n+m)×(l+1) is a basis, i.e., its columns are linearly independent. To see this, notice that
L itself is a basis (making the first l columns of V linearly independent). So, the only way that V could
possibly fail to be a basis is for the last column to be a linear combination of the first l, i.e., s = Lz and
BTs + y = BTLz = BTs for some z ∈ Rl. But this implies y = 0 ∈ L(B), which we assumed not to be the
case.

We show that the reduction is correct. First, assume (B,y, t) is a no instance of TensorCVPγ̃ , i.e.,
‖y−Bx‖H > (γ̃t)2 for all x ∈ Rk, and let the advice (s,T) be arbitrary. Consider any nonzero lattice vector

v = V

[
z
w

]
=

[
BT(Lz + ws) + wy

Lz + ws

]
.

On the one hand, if w 6= 0, then the vector v satisfies

τ2(v)2 ≥ ‖v‖H
≥ ‖BT(Lz + ws) + wy‖H
= ‖y −B(−T(Lz/w + s))‖H
> (γ̃t)2 = γ2(t2 + (2t/ε)2) ≥ γ2d2,

where the last inequality is equivalent to the condition ε/2 ≤ t/r. On the other hand, if w = 0 then z 6= 0
and

v =

[
BT(Lz)

Lz

]
is divisible by pow2(Lz). Moreover, ‖v‖H ≥ ‖Lz‖H , and therefore

τ2(v)2 ≥ pow2(Lz)2 · ‖Lz‖H = τ2(Lz)2 ≥ τ2(L(L))2 ≥ λ2r2 > γ2 · d2,

where we have used (3), and the last inequality is equivalent to the condition t/r < ε. This proves that
τ2(L(B)) > γd, i.e., (B, d) is a no instance of TensorSVPγ .

15

Now let (s,T) be an advice such that (4) holds true, and assume (B,y, t) is a yes instance of TensorCVPγ̃ ,
i.e., there is an x ∈ {0, 1}k such that ‖y − Bx‖ ≤ t. By (4), there is an integer vector z ∈ Zl such that
T(Lz− s) = x and ‖Lz− s‖ ≤ r. So, the lattice vector

v = V

[
z
−1

]
=

[
BT(Lz− s)− y

Lz− s

]
=

[
Bx− y
Lz− s

]
has squared norm ‖v‖2 = ‖Bx− y‖2 + ‖Lz− s‖2 ≤ t2 + r2 = d2. This proves that (B, d) is a yes instance
of TensorSVPγ .

In order to complete the proof we need to construct a gadget (L, s,T, r) as required by the reduction. We
recall that the construction takes as input only the lattice dimension k, and run in time polynomial in k. Let
h = ω(

√
k) be a sufficiently large (still, polynomially bounded h = kO(1)) power of 2, and set m = hc for some

integer constant c > (1
2 −

1
3λ

2)−1 > 2. Define r =
√
b(h/λ)2c ≤ h/λ, and run the algorithm of Theorem 5

on input m and h to obtain a basis L ∈ Zm×m such that τ2(L(L)) ≥ h ≥ λr and det(L(L)) < m
2
3h

2

.
Clearly, (3) is always satisfied by construction. Also (2) holds true because r ≤ h/λ < h <

√
m and

r ≥
√
bh2/(3/2)c > 1.

We need to show that there exists an advice (s,T) such that (4) also holds true. Let A be the set of all
vectors in {0, 1}m of norm r. Notice that r2 is an integer, and A equals the set of all binary vectors with
precisely r2 ones. In particular, the size of A is

|A| =
(
m

r2

)
≥
(m
r2

)r2
>
(m
h2

)r2
= m(1− 2

c)r
2

. (5)

We claim that there exists an s ∈ Zm such that |A ∩ (L(L) − s)| ≥ mk >
∑k−1
i=0

(
m
i

)
. It will follow from

Corollary 1 that there is a matrix T ∈ {0, 1}k×m such that T((L(L)− s)∩A) ⊇ {0, 1}k, i.e., (4) holds true.
It remains to show that |A∩(L(L)−s)| ≥ mk for some s ∈ Zm. Notice that L(L) has precisely det(L(L))

cosets of the form L(L) − s with s ∈ Zm. It follows by an averaging argument that there is some s ∈ Zm
such that

|A ∩ (L(L)− s)| ≥ |A|
det(L(L))

> m(1− 2
c)r

2−(2
3)h2

> m(1−2/c

λ2
− 2

3)h2−(1− 2
c).

We need the exponent in this last expression to be at least k. But the coefficient of h2 in the exponent is
a strictly positive constant because c > (1

2 −
1
3λ

2)−1. Therefore the exponent is at least Ω(h2) − O(1) =
ω(k)−O(1) = ω(k) ≥ k for all sufficiently large k. �

It easily follows that GapSVPγ is NP-hard to approximate within any constant approximation factor
under polynomial time nonuniform reductions with one-sided error. Larger inapproximability factors can
also be obtained under superpolynomial time reductions.

Corollary 2 GapSVPγ is NP-hard for any constant factor γ under polynomial time nonuniform reduc-
tions with one-sided error and no false positives. Moreover, for every ε > 0 there is a δ > 0 such that
GapSVPγ is NP-hard for γ(n) = nδ/ log logn under nonuniform reductions with no false positives, running in

subexponential time 2O(nε).

Proof By Theorem 3, TensorCVPγ̃ is NP-hard (under deterministic polynomial time reductions) for any
constant factor γ̃. If follows from Theorem 6 that TensorSVPγ0 is NP-hard for some constant γ0 > 1 under
nonuniform reductions. Finally, for any constant γ, applying Theorem 4 with c = dlog γ/ log γ0e, we get that
GapSVPγ is NP-hard under the same kind of reductions. (Notice that for any constant γ, c is a constant
and the reduction in Theorem 4 runs in polynomial time.)

In general, the reduction runs in time polynomial in N = nc, and produces GapSVPγ instances in
dimension N that are hard to approximate within a factor γ = γc0. For any ε > 0 let δ = ε · log γ0 and set
c = nε/ log n, so that N = nc = 2n

ε

and the reduction runs in subexponential time NO(1) = 2O(nε). The
resulting inapproximability factor is γ(N) = γc0 = Nδ/ log logN . �

16

6 A probabilistic reduction

The reduction presented in Section 5 uses the nonuniform advice only for the construction of a gadget
(L, s,T, r) satisfying properties (2), (3) and (4). In the proof of Theorem 6, we gave a (uniform, deterministic)
polynomial time construction of L and r satisfying (2) and (3), and then we proved that there exist s and
T such that (4) holds true as well. This leads to a nonuniform reduction using (s,T) as advice. In this
section we show that nonuniformity is not essential, and an advice (s,T) with the desired property can be
efficiently found in probabilistic polynomial time. The idea is simple, and follows the same path as previous
work [1, 20, 10]. First we find a coset L(L) − s containing many short vectors. Since the lattice L(L) has
small determinant, the average number of short vectors in a random coset L(L) − s is large, and choosing
s at random will give with high probability a coset containing many short vectors. After finding a coset
L(L)− s that contains many short vectors, we use the following combinatorial theorem from [20], which can
be interpreted as a constructive (probabilistic) variant of Sauer’s lemma. We remark that a weaker form of
the following theorem had already been proved and used by Ajtai [1].

Theorem 7 (Theorem 5.9 of [20]) Let Z ⊆ {0, 1}m be a set of vectors, each of which containing exactly

u ones. For any k and ε > 0, if |Z| ≥ u!m
4
√
uk
ε , and T ∈ {0, 1}k×m is chosen by setting each entry to

1 independently at random with probability p = 1
4uk , then the probability that all binary vectors {0, 1}k are

contained in T(Z) = {Tz : z ∈ Z} is at least 1− 6ε.

We use Theorem 7 to prove the following probabilistic variant of Theorem 6.

Theorem 8 For any γ < λ <
√

3/2 and γ̃ = γ
√

1 + 4/((λ/γ)2 − 1) there is a probabilistic polynomial time
reduction with one-sided error and no false positives from TensorCVPγ̃ to TensorSVPγ .

Proof All that is needed to turn the nonuniform reduction of Theorem 6 into a randomized one is a prob-
abilistic polynomial time construction of a gadget (L, s,T, r), where L ∈ Zm×m, s ∈ Zm, T ∈ Zk×m and
r ∈ R satisfy (2), (3) and (4). Moreover, for the reduction to have one-sided error with no false positives,
properties (2) and (3) should hold for any value of the randomness. The lattice basis L and bound r are
defined as in the proof of Theorem 6, but for larger values of h = ω(k), c > 2(1

2 −
1
3λ

2)−1 and m = hc.

Specifically, r =
√
b(h/λ)2c ≤ h/λ, and L ∈ Zm×m is a matrix (obtained invoking Theorem 5 on input m

and h) such that τ2(L(L)) ≥ h ≥ λr and det(L(L)) < m
2
3h

2

. As in the proof of Theorem 6, properties (2)
and (3) are always satisfied by construction. Here we give a probabilistic polynomial time construction of s
and T satisfying (4) with probability arbitrarily close to 1.

The construction is simple. The vector s is chosen by first picking a ∈ A uniformly at random among
all binary vectors A of norm r, and then setting s = −a. The matrix T is chosen at random as specified
in Theorem 7 with u = r2. For any ε > 0, if the set Z = A ∩ (L(L) + a) = A ∩ (L(L) − s) has size at
least |Z| ≥ u!m4rk/ε, then by Theorem 7 property (4) is satisfied, except with probability at most 6ε, over
the choice of T. It remains to show that |Z| ≥ u!m4rk/ε with high probability, over the choice of a ∈ A.
This bound is based on the simple observation (also used in previous work [1, 20, 10, 13]) that for any finite
function f :A→ B, the size of a random preimage satisfies Pra∈A{|f−1(f(a))| ≤ ε|A|/|B|} ≤ ε, when a ∈ A
is chosen uniformly at random. In our setting A = A, a = a ∈ A ⊂ Zm, B = Zm/L(L) and f(a) = a
(mod L(L)). Notice that Z = A ∩ (L(L) + a) = f−1(f(a)). Therefore, by the above observation,

Pr
a

[|Z| ≤ u!m4rk/ε] ≤ |B|
|A|
· u!m4rk/ε =

det(L(L))

|A|
· u!m4rk/ε.

Using (5), det(L(L)) < m
2
3h

2

and the bound u! < uu < h2u = m2r2/c, we get

det(L(L))

|A|
· u!m4rk/ε < m

2
3h

2−(1− 4
c)r

2+ 4rk
ε = m(2

3−(1− 4
c)

1
λ2

)h2+o(h2).

Since c > 2/(1
2 −

1
3λ

2), the coefficient of h2 in the last expression is a strictly negative constant, and the

probability that Pra[|Z| ≤ u!m4rk/ε] is at most m−Ω(h2)+o(h2) = m−Ω(h2) < ε. �

17

As in the previous section, the inapproximability factor can be amplified using the tensor product. The
proof is virtually identical to that of Corollary 2.

Corollary 3 GapSVPγ is NP-hard for any constant factor γ under probabilistic polynomial time reductions
with one-sided error and no false positives. Moreover, for every ε > 0 there is a δ > 0 such that GapSVPγ
is NP-hard for γ(n) = nδ/ log logn under randomized reductions with one-sided error and no false positives
running in subexponential time 2O(nε).

7 Conclusion

We proved the hardness of approximating the Shortest Vector Problem for approximation factors matching
the best currently known results [13, 11], but under probabilistic reductions with one-sided error. In particu-
lar, our reductions make more restricted use of randomness than [13, 11] and may be easier to derandomize.
Randomness in our reductions is used only to produce a lattice coset L(L) − s with large minimum (τ2)
distance and still containing a large number of short vectors, which map via an integer linear transformation
T onto the set of all binary vectors {0, 1}k. We gave a deterministic polynomial time construction of the
lattice L(L), and randomness is used only for the selection of s and T. In fact, the matrix T is chosen at
random mostly as a byproduct of the fact that the selection of s is probabilistic: intuitively, no matrix T is
good for every s, so if s is chosen at random, then T must be chosen at random as well. We believe that all
that is needed in order to derandomize our proof is an explicit description of a vector s such that L(L)− s
contains many short vectors. With such a vector s (and a proof that s is good), finding a matrix T that
maps all short vectors in L(L)− s to {0, 1}k is likely to be easy.

8 Acknowledgments

The author thanks Oded Regev and the anonymous referees of the Theory of Computing journal for their
many and useful comments and corrections to an earlier draft of this paper.

References

[1] M. Ajtai. The shortest vector problem in l2 is NP-hard for randomized reductions (extended abstract).
In Proceedings of STOC, pages 10–19. ACM, May 1998.

[2] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In
Proceedings of STOC, pages 266–275. ACM, July 2001.

[3] S. Arora, L. Babai, J. Stern, and E. Z. Sweedyk. The hardness of approximate optima in lattices, codes,
and systems of linear equations. Journal of Computer and System Sciences, 54(2):317–331, Apr. 1997.
Preliminary version in FOCS ’93.

[4] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable proofs and
applications to approximations. In Proceedings of STOC, pages 294–304. ACM, May 1993.

[5] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of certain coding
problems. IEEE Transactions on Information Theory, 24(3):384–386, 1978.

[6] J.-Y. Cai and A. P. Nerurkar. Approximating the SVP to within a factor (1 + 1/dimε) is NP-hard
under randomized reductions. Journal of Computer and System Sciences, 59(2):221–239, Oct. 1999.
Preliminary version in CCC ’98.

[7] Q. Cheng and D. Wan. A deterministic reduction for the gap minimum distance problem: [extended
abstract]. In M. Mitzenmacher, editor, STOC, pages 33–38. ACM, 2009.

18

[8] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups. Springer Verlag, 3rd edition,
1998.

[9] I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating CVP to within almost-polynomial factors is
NP-hard. Combinatorica, 23(2):205–243, 2003. Preliminary version in FOCS ’98.

[10] I. Dumer, D. Micciancio, and M. Sudan. Hardness of approximating the minimum distance of a linear
code. IEEE Transactions on Information Theory, 49(1):22–37, Jan. 2003. Preliminary version in FOCS
1999.

[11] I. Haviv and O. Regev. Tensor-based hardness of the shortest vector problem to within almost polyno-
mial factors. In Proceedings of STOC, pages 469–477. ACM, June 2007.

[12] D. S. Johnson. Handbook of Theoretical Computer Science, volume A (Algorithms and Complexity),
chapter 2, A catalog of complexity classes, pages 67–161. Elsevier, 1990.

[13] S. Khot. Hardness of approximating the shortest vector problem in lattices. Journal of the ACM,
52(5):789–808, Sept. 2005. Preliminary version in FOCS ’04.

[14] S. Khot. Hardness of approximating the shortest vector problem in high Lp norms. J. of Computer
Systems Sciences, 72(2):206–219, 2006. Preliminary version in FOCS 2003.

[15] S. Khot and P. Austrin. A simple deterministic reduction for the gap minimum distance of code problem.
In Proceedings of ICALP, pages 474–485, 2011.

[16] Y. Kitaoka. Tensor products of positive definite quadratic forms. Proc. Japan Acad., 52(9):498–500,
1976.

[17] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. Journal of the ACM,
32(1):229–246, Jan. 1985.

[18] V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors, and the
minimum distance problem. In Proceedings of Crypto, volume 5677 of LNCS, pages 577–594. Springer,
Aug. 2009.

[19] D. Micciancio. The hardness of the closest vector problem with preprocessing. IEEE Transactions on
Information Theory, 47(3):1212–1215, Mar. 2001.

[20] D. Micciancio. The shortest vector problem is NP-hard to approximate to within some constant. SIAM
Journal on Computing, 30(6):2008–2035, Mar. 2001. Preliminary version in FOCS ’98.

[21] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic perspective, vol-
ume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic
Publishers, Boston, Massachusetts, Mar. 2002.

[22] D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for most lattice
problems based on Voronoi cell computations. In Proceedings of STOC, pages 351–358, 2010.

[23] D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector problem. In
Proceedings of SODA, pages 1468–1480. ACM/SIAM, Jan. 2010.

[24] P. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are practical. J. of Mathe-
matical Cryptology, 2(2):181–207, July 2008.

[25] V. Pless and W. Huffman, editors. Handbook of Coding Theory. North-Holland, 1998.

[26] X. Pujol and D. Stehlé. Solving the shortest lattice vector problem in time 22.465n. Report 2009/605,
IACR ePrint archive, Dec. 2009.

19

[27] O. Regev and R. Rosen. Lattice problems and norm embeddings. In Proceedings of STOC, pages
447–456. ACM, June 2006.

[28] N. Sauer. On the density of families of sets. J. Combinatorial Theory, 1972.

[29] P. van Emde Boas. Another NP-complete problem and the complexity of computing short vectors in
a lattice. Technical Report 81-04, Mathematische Instituut, University of Amsterdam, 1981. Available
on-line at URL http://turing.wins.uva.nl/~peter/.

[30] A. Vardy. The intractability of computing the minimum distance of a code. IEEE Trans. on Information
Theory, 43(6):1757–1766, 1997.

[31] X. Wang, M. Liu, C. Tian, and J. Bi. Improved Nguyen-Vidick heuristic sieve algorithm for shortest
vector problem. In Proceedings of ASIACCS, pages 1–9. ACM, 2011.

20

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

