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Abstract

The central goal of data stream algorithms is to process massive streams of data usingsublinear
storage space. Motivated by work in the database community on outsourcing database and data stream
processing, we ask whether the space usage of such algorithms can be further reduced by enlisting a more
powerful “helper” who canannotatethe stream as it is read. We do not wish to blindly trust the helper,
so we require that the algorithm be convinced of having computed a correct answer. We show upper
bounds that achieve a non-trivial tradeoff between the amount of annotation used and the space required
to verify it. We also prove lower bounds on such tradeoffs, often nearly matching the upper bounds, via
notions related to Merlin-Arthur communication complexity. Our results cover the classic data stream
problems of selection, frequency moments, and fundamentalgraph problems such as triangle-freeness
and connectivity. Our work is also part of a growing trend — including recent studies of multi-pass
streaming, read/write streams and randomly ordered streams — of asking more complexity-theoretic
questions about data stream processing. It is a recognitionthat, in addition to practical relevance, the
data stream model raises many interesting theoretical questions in its own right.
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1 Introduction

The data stream model has become a popular abstraction when designing algorithms that process network
traffic and massive data sets [4,32]. The computational restrictions that define this model are severe: algo-
rithms must use a relatively small amount of working memory and process the input in whatever order it
arrives. This captures constraints in high-throughput data processing settings. For example, network moni-
toring often requires (near) real-time response to anomalies and hence traffic must be processed as it arrives,
rather than being stored and processed offline. For massive data sets stored in external memory, being able to
process the data in any order avoids the I/O bottlenecks that may arise with algorithms that assume random
access. Unfortunately, while some problems admit efficient streaming algorithms, many others provably
require a lot of working memory or multiple passes over the data, which typicallyis not feasible.

This paper considers the potential for off-loading stream computation to a more powerful “helper” so
that single pass, small-space stream computation is possible even for such “hard” functions. The additional
power of the helper can arise in a variety of situations, e.g., multiple processing units, special purpose
hardware, or a third party who provides a commercial stream processingservice. This last case has recently
garnered attention in the context of outsourcing database processing [38, 41, 46]. A key issue is that we
do not want to blindly trust the helper: hardware faults or outright deception by a third-party would lead
to incorrect results. So our protocols must have sufficient information contained in the help to allow the
“verifier” to be convinced that they have obtained the correct answer.We think of this help as annotations
augmenting the original stream. Our goal is to design protocols so that the verifier finds the correct answer
with an honest helper, and is likely not fooled by a dishonest helper. Theprimary metrics are the amount of
annotation provided by the helper and the amount of working space used by the verifier.

Our approach is naturally related to Interactive Proofs and Merlin-Arthur communication protocols [1,
5,36] but differs in two important regards. Firstly, the verifier must process both the original data and the
advice provided by the helper under the usual restrictions of the data stream model. Secondly, we focus on
annotations that can be providedonline, i.e., annotation that only depends on data that has arrived before the
annotation is written. Note that in Merlin-Arthur communication, it is assumed that the helper is omniscient
and that the advice he provides can take into account data held by any of the players. In the stream model,
this would correspond toprescience, where the annotation in the stream at any particular position may
depend on data that is yet to arrive. In contrast, we are primarily interested in designing algorithms with
online annotation; this corresponds to a helper who sees the data concurrently with the verifier.

1.1 Our Contributions

Our first contribution is to formally define the relevant models: traditional andonline Merlin-Arthur com-
munication, and streaming models with either prescient or online annotations. Wethen investigate the com-
plexity of a range of problems in these models, including selection, frequency moments, and graph prob-
lems such as triangle-counting and connectivity. Estimating frequency momentsin particular has become a
canonical problem when exploring variants of the data stream model suchas random order streams [11] and
read/write streams [7].

We now give an overview of our results. We use the shorthand “(h,v)-scheme” for anO(v)-space
streaming algorithm that usesO(h) bits of annotation; a scheme could be either prescient or online. In
general, our streams have lengthm, and consist of tokens from the universe[n] := {1,2, . . . ,n}; to simplify
the statement of bounds, we assume thanm andn are polynomially related, and in particular that logm=
Θ(logn). In the case of graph streams, we consider tokens from the universe[n]× [n]. We useZ+ to denote
the set of non-negative integers.

1



Selection. The problem of finding the median ofmvalues in the range[n] highlights the difference between
prescient and online annotation. For arbitrary positive integersh andv, with hv≥m, we present an online
(hlogn,vlogn)-scheme. Furthermore, we show that this trade-off is optimal up to polylogarithmic factors.
In contrast, a trivialO(logn)-space algorithm can verifyO(logn) bits of prescient annotation, implying a
prescient(logn, logn)-scheme.

Frequency Moments and Frequent Items. We next consider properties of{ fi}i∈[n] where fi is the fre-
quency of the token “i” in the stream. For arbitrary integersh and v, with hv≥ n, we present an on-
line (φ−1hlogn,vlogn)-scheme that computes the set of tokens whose frequency exceedsφm. Also, for
any 0< ε < φ/2, we give an online(ε−1 log2n, logn)-scheme that computes a set of tokens that includes
{i : fi ≥ φm} and is disjoint from{i : fi ≤ (φ−ε)m}. This algorithm relies on a powerful way that annotation
can be used in conjunction with sketch-based algorithms.

We present an online(k2hlogn,kvlogn)-scheme that computes thekth frequency momentFk := ∑i f k
i

exactly, wherek is a positive integer. This trade-off is optimal up to polylogarithmic factors even if the algo-
rithm is allowed to use prescient annotation. To prove this, we present the first Merlin-Arthur communication
bounds for multi-party set-disjointness. Additionally, we generalize the scheme for Fk to any frequency-
based function, i.e., a function of the form∑i∈[n]g( fi) for someg : Z+ → Z+. Assumingm= O(n), we

obtain a prescient(n2/3 logn,n2/3 logn)-scheme and an online(n3/4 logn,n3/4 logn)-scheme for this impor-
tant class of functions, as well as improved schemes for functions basedon low frequencies and for skewed
data streams.

Graph Problems. For graphs defined by streams ofm edges onn vertices, we show that onlyO(logn)
space is needed by the verifier to determine whether a graph is connected,is triangle-free, or is bipartite,
with online annotation proportional to the input size in each case. We show that our algorithms are optimal
in many cases.

For anyh andv, with hv≥ n3, we also present an online(hlogn,vlogn)-scheme for counting triangles
in the graph. Additionally, for anyh andv, with hv≥ n2, we present online(hlogn,vlogn)-schemes for
determining whether a graph is connected or bipartite. Finally, for anyh andv, with hv≥ n2, we present on-
line (hlogn,vlogn)-schemes for solving bipartite perfect matching. This latter scheme achievesessentially
optimal tradeoffs between annotation length and space usage for the verifier.

1.2 Related Work

When multiple passes over the input are allowed, it is natural to consider annotations that can be written
to the “input tape” by the stream algorithm and which are then available to the algorithm in subsequent
passes [3, 15, 23, 24]. The read/write stream model, which provides both multiple passes and multiple
working tapes, can be viewed as a natural extension of the multi-pass annotation model [7,8,31]. However,
such annotations are of no use if only a single pass over the input is allowed.

Few examples of prior work have explicitly considered annotations that areprovided by an (untrusted)
third party. Gertner et al. [29] showed that the set of languages recognized by a verifier with logarithmic
space, given annotation polynomial in the input size, is exactly NP. In contrast, our focus is on the case where
the annotation is (sub)linear in the input size and can be provided online; thedistinction between prescient
and online annotation was not relevant in their results because with polynomial annotation, the entire input
could be repeated. Feigenbaum et al. [27] observe that a logarithmic space verifier can check a linear
space annotation for the disjointness problem. In communication complexity, the role of non-deterministic
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advice has been studied more extensively: see, e.g., [5, 37]. The work of Aaronson and Wigderson [1]
and Klauck [36] are particularly relevant: they resolve the MA complexity of two-party set disjointness.
We extend some of their techniques to our streaming model. Goldwasser et al. [30] consider the question
of which computations can be verified relatively efficiently while permitting multiple rounds of interaction
between the parties.

There has also been more applied work which implicitly defines annotation schemes. Tucker et al. [45]
consideredstream punctuations, which, in our terminology, are simple prescient annotations, indicating
facts such as that there are no more tuples relevant to timestampt in the remainder of the stream. Yi et
al. [46], in their work on stream outsourcing, study the problem of verifying thata claimed “grouping”
corresponds to the input data. They solve exact and approximate versions of the problem by using a linear
amount of annotation. Lastly, the work of Li et al. [38] on proof infused streamsanswers various selection
and aggregation queries over sliding windows with logarithmic space and linear annotation. However, a
critical difference is that Li et al. require that the helper and verifier agree on a one-way hash function,
for which it is assumed the helper cannot find collisions. Our results are in astronger model without this
assumption.

Subsequent Work. The line of work described in this paper was begun when the first three authors pre-
sented a preliminary version of some of these results at ICALP 2009 [12]. Work subsequent to that paper
has further studied the protocols for graph computations in this model [17]. In particular, it is observed that
given any deterministic RAM algorithm with running timeR, there exists an online((m+R) logn, logn)-
scheme that simulates the algorithm in the annotation model. This implies alternate proofs for the existence
of online(mlogn, logn)-schemes for bipartite perfect matchings, bipartiteness, and connectivity.

Other subsequent works have built upon the conference version of the present work. Cormode, Thaler
and Yi [21] have extended the model considered in this paper to allow for multiple roundsof interaction
between helper and verifier, and provided protocols achieving exponentially smaller space and commu-
nication costs than those possible in our annotation model. Most recently, Cormode, Mitzenmacher and
Thaler [19] have performed an empirical evaluation of many techniques in the literature on interactive
proofs, and demonstrated genuine scalability of several of the protocolsput forth in the present work as
well as protocols from [17] and [21].

2 Models and Preliminaries

In this section, we first recall the definition of Merlin-Arthur communication and then present an online
variant which restricts the advice given by Merlin. We then present the formal definitions of the annotated
data stream models and state some basic lemmas.

2.1 Communication Models

Let f : X1× ·· ·×Xt → {0,1} be a function, where eachXi is a finite set. This naturally gives at-player
number-in-hand communication problem, where Playeri holds an inputxi ∈ Xi and the players wish to
output f (x1, . . . ,xt) correctly, with high probability.

MA Communication. We first consider a variant of this communication model. A Merlin-Arthur protocol
(henceforth, “MA protocol”) forf is one that involves the usualt players, plus a “super-player,” called Mer-
lin, who knows the entire inputx= (x1, . . . ,xt). The protocol works as follows: first Merlin deterministically
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writes a help messageh on the blackboard, and then Players 1 throught run a randomized protocolP, using
a public random stringR, eventually outputting a bit out(P;x,R,h). To clarify, R is not known to Merlin at
the time he writesh. An MA protocol isδ -error if there exists a functionh : X1× . . .×Xt → {0,1}∗, such
that:

1. If f (x) = 1 then PrR[out(P;x,R,h(x)) = 0]≤ δ .

2. If f (x) = 0 then∀h′ ∈ {0,1}∗ : PrR[out(P;x,R,h′) = 1]≤ δ .

We define err(P) to be the minimumδ such that the above conditions are satisfied. We also define the
help costhcost(P) to be the maximum length ofh(x), over allx, and theverification costvcost(P) to be the
maximum number of bits communicated by Players 1 throught over allx andR. To avoid boundary cases,
we insist that both of these costs are at least 1 for any protocol, i.e., we consider traditional protocols where
no explicit help is provided to have hcost= 1, rather than 0. We define theδ -error MA-complexity of f
as MAδ ( f ) = min{vcost(P)+hcost(P) : P is an MA protocol forf with err(P)≤ δ} . Further, we define
MA( f ) = MA1/3( f ).

Online MA Communication. We also consider a variant of the above model, specific toone-way proto-
cols(i.e., protocols where the players speak once each, in increasing order), where Merlin constructst help
messagesh1, . . . ,ht so that theith message is a function of only the firsti inputs. The messagehi is revealed
privately to theith player. To make this precise we need to amend the definition ofδ -error: An online MA
protocol isδ -error if there exists a family of functionshi : X1× . . .×Xi →{0,1}∗, such that:

1. If f (x) = 1 then PrR[out(P;x,R,h1(x1),h2(x1,x2), . . . ,ht(x1, . . . ,xt)) = 0]≤ δ .

2. If f (x) = 0 then∀h′ = (h′1,h
′
2, . . . ,h

′
t) ∈ ({0,1}∗)t : PrR[out(P;x,R,h′) = 1]≤ δ .

We define the help cost, hcost(P), to be the maximum of∑i∈[t] |hi(x1, . . . ,xi)|, over all x. We define
err(P), and vcost(P) as for MA. Define MA→δ ( f ) =min{hcost(P)+vcost(P) :P is an online MA protocol
for f with err(P)≤ δ} and write MA→( f ) = MA→1/3( f ).

2.2 Data Stream Models

We now define our annotated data stream models. Recall that a (usual) datastream algorithm computes a
function f of an input sequencex ∈ Um, whereU is some universe, such as{0,1} or [n]: the algorithm uses
a limited amount of working memory and has access to a random string. The function f may or may not be
Boolean: for non-Booleanf we often consider a notion of approximation: we sayf is computed correctly
if the answer returned is in some pre-defined setC( f (x)), e.g.,{a : |a− f (x)| ≤ ε | f (x)|}.

An annotated data stream algorithm, or ascheme, is a pairA = (h,B), consisting of a (deterministic)
help functionh and a data stream algorithmB. We think of h as decomposed into(h1, . . . ,hm), where
hi : Um→ {0,1}∗; the functionhi determines the annotation supplied toB after theith tokenxi . That is,h
acts onx to create anannotated streamxh defined as follows:

xh := (x1,h1(x),x2,h2(x), . . . ,xm,hm(x)) .

Note that this is a stream overU ∪{0,1}, of lengthm+∑i |hi(x)|. The algorithmB, which usesw bits of
working memory and has oracle access to a random stringR, then processes this annotated stream, eventually
giving an output out(B;xh,R).
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Prescient Schemes. The schemeA= (h,B) is said to be aδ -error prescient scheme for the functionf if
the following conditions hold:

1. For allx ∈ Um, we have PrR[out(B;xh,R) 6∈C( f (x))]≤ δ .

2. For allx ∈ Um, h′ = (h′1,h
′
2, . . . ,h

′
m) ∈ ({0,1}∗)m, we have PrR[out(B;xh

′
,R) 6∈C( f (x))∪{⊥}]≤ δ .

Two things are worth noting. First, this definition allows the annotationhi(x) to depend on the entire
streamx, thus modelling prescience. Second, it allows (but does not force) the protocol to output⊥ if the
annotation does not agree withh.

We define err(A) to be the minimumδ such that the above conditions are satisfied. We define the
help costhcost(A) := maxx ∑i |hi(x)|, and theverification costvcost(A) = w. We say thatA is a prescient
(h,v)-scheme if hcost(A) = O(h), vcost(A) = O(v) and err(A)≤ 1

3.

Online Schemes. The schemeA= (h,B) is said to be aδ -error online scheme forf if, in addition to the
conditions in the previous definition, the functionhi depends only on(x1, . . . ,xi). We define hcost and vcost
as above, and say thatA is anonline(h,v)-schemeif hcost(A) = O(h), vcost(A) = O(v), and err(A)≤ 1

3.
In order to simplify the statements of bounds, we assume throughout that universe size and stream length

are polynomially related, and thus logm= Θ(logn). In a few cases, we use the stronger assumption that
m= O(n); in these cases, we state this assumption explicitly.

2.3 Background Preliminaries

In multiple places we make use of basic fingerprinting techniques which enablea verifier to test whether
two large streams represent the same object, using small space. LetFq denote the finite field withq elements
(whenever it exists). LetA= 〈a1, . . . ,am〉 denote a data stream, with eachai ∈ [n]. ThenA implicitly defines
a frequency distributionf(A) := ( f1, . . . , fn), wheref j = |{i ∈ [m] : ai = j}| is the frequency of the token “j”
in A. We can then fingerprint this vector by computing the following quantity.

Definition 1 (Basic Fingerprint). Let f = ( f1, . . . , fn) ∈ Z
n
+ be a vector, letq be a prime, and letr ∈ Fq. The

quantity BFq(r, f) := ∏n
j=1(r− j) f j , computed overFq, is called abasic fingerprintof f.

To compute basic fingerprints, we chooseq based on ana priori boundmon‖f‖1. The following lemma
collects the key properties of these fingerprints.

Lemma 2.1. Let q≥m be a prime, and choose r uniformly at random fromFq. Given an input stream A of
length m, the fingerprintBFq(r, f(A)) can be computed using O(logq) storage. Supposef′ ∈ Z

n
+ is a vector

with f′ 6= f(A) and‖f′‖1≤m. Then the “collision probability”Prr∈RFq[BFq(r, f′) = BFq(r, f(A))]≤m/q.

Proof. To compute the fingerprint in streaming fashion, express BFq(r, f(A)) = ∏m
i=1(r−ai). The bound on

the collision probability follows from the fact that for anyf ∈ Z
n
+, the polynomial BFq(X, f) ∈ Fq[X] has

degree at most‖f‖1.

Further, on several occasions, we use the standard technique of linear sketching. We define aninteger
linear sketchbroadly as any summaryv ∈ Z

s which can be computed asv = Sf(A), whereS∈ Z
s×n is

a “sketch matrix” with integral entries ands≪ n. Such sketches include instantiations of the Johnson-
Lindenstrauss transform [33], Count-Sketch [14], and Count-Min [20]. Each stream tokenj incrementsv
by Sej , whereej ∈Zn is the vector that is 1 in locationj and 0 elsewhere. Typically,Shas a compact implicit
representation.
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In particular, the Count-Sketch [14] defines abasic sketchof lengthw via two pairwise independent hash
functionsbℓ : [n]→ [w], andcℓ : [n]→ {−1,+1}. The sketch vectorv is defined byvℓ, j = ∑i:bℓ(i)= j ficℓ(i).

A basic estimate of the frequency of itemi is f̂i,ℓ = cℓ(i)vℓ,bℓ(i). This satisfies| f̂i,ℓ− fi |= O((F2(A)/w)1/2)
with constant probability. To reduce the error probability, one takes the median of the basic estimates from
d basic sketches with independent pairs of hash functions:f̂i = median1≤ℓ≤d f̂i,ℓ. Count-Min is essentially
Count-Sketch withcℓ(i) := 1 for all ℓ. It promises| f̂i,ℓ− fi | = O(F1(A)/w) [20]. Here,F1(A) andF2(A)
denote the first and second frequency moments ofA, respectively.

3 Warm-Up: Index, Selection, and Frequent Items

3.1 Index and Selection

In this section, we present an online scheme for theSELECTIONproblem: Given desired rankρ ∈ [m], output
an itemak from the streamA= 〈a1, . . . ,am〉 ∈ [n]m, such that|{i : ai < ak}|< ρ and|{i : ai > ak}| ≤m−ρ.
An easyprescient(logn, logn)-scheme is for the helper to give an answers that is claimed to beak, as
annotation at the start of the stream. The verifier need only count how manyitems in the stream are (a)
smaller thans and (b) greater thans. The verifier then outputss if the rank ofs satisfies the necessary
conditions, and outputs⊥ otherwise.

However, our goal is to present (almost) matching upper and lower bounds when onlyonlineannotation
is allowed. To do this, we first consider the online MA complexity of the communication problem of
INDEX: Alice holds a stringx ∈ {0,1}N, Bob holds an integeri ∈ [N], and the goal is for Bob to output
INDEX(x, i) := xi . The lower bound forSELECTIONwill follow from the lower bound forINDEX and a key
idea for theSELECTIONupper bound is taken from the communication protocol forINDEX seen in the proof
of the following theorem.

Theorem 3.1(Online MA complexity ofINDEX). Let h and v be integers such that hv≥ N. There is an
online MA protocolP for INDEX, withhcost(P)≤ h andvcost(P) =O(vlogh). Futhermore, any online MA
protocolQ for INDEX must havehcost(Q)vcost(Q) = Ω(N). Thus, in particular,MA→(INDEX) = Θ̃(

√
N).

Proof. For the lower bound, we use a online MA protocolQ to build a randomized one-wayINDEX protocol
Q′. Let h= hcost(Q). Let B(n, p) denote the binomial distribution with parametersn and p, and letk be
the smallest integer such thatX ∼B(k, 1

3)⇒ Pr[X > k/2]≤ 2−h/3. A standard tail estimate givesk= Θ(h).
Let a(x,R) denote the message that Alice sends inQ when her random string isR, and letb(a, i,h) be the
bit Bob outputs upon receiving messagea from Alice andh from Merlin. In the protocolQ′, Alice chooses
k independent random stringsR1, . . . ,Rk and sends Boba(x,R1), . . . ,a(x,Rk). Bob then outputs 1 iff there
exists ah-bit stringh such thatMAJORITY (b(a(x,R1), i,h), . . . ,b(a(x,Rk), i,h)) = 1. LetC be the number
of bits communicated in this protocol. Clearly,C≤ k ·vcost(Q) = O(hcost(Q)vcost(Q)). We claim thatQ′
is a 1

3-error protocol forINDEX whence, by a standard lower bound (see, e.g., Ablayev [2]), C= Ω(N).
To prove the claim, consider the case whenxi = 1. By the correctness ofQ there exists a suitable help

messageh from Merlin that causes Pr[b(a(x,R), i,h) = 0]≤ 1
3. Thus, by construction and our choice ofk, the

probability that Bob outputs 0 inQ′ is at most 2−h/3. Now supposexi = 0. Then,everypossible message
h from Merlin satisfies Pr[b(a(x,R), i,h) = 1] ≤ 1

3. Arguing as before, and using a union bound over all 2h

possible messagesh, we see that Bob outputs 1 with probability at most 2h ·2−h/3= 1
3.

The upper bound follows as a special case of the two-party set-disjointness protocol in [1, Theorem. 7.4]
since the protocol there is actually online. We give a more direct protocol which establishes intuition for our
SELECTIONresult. Write Alice’s input stringx asx= y(1) · · ·y(v), where eachy( j) is a string of at mosth bits,
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and fix a primeq with 3h< q< 6h. Let y(k) be the substring that contains the desired bitxi . Merlin sends
Bob a stringz of length at mosth, claiming that it equalsy(k). Alice picks a randomr ∈ Fq and sends Bob
r and the strings BFq(r,y(1)), . . . ,BFq(r,y(v)), thus communicatingO(vlogq) = O(vlogh) bits. Bob checks
if BFq(r,z) = BFq(r,y(k)), outputting 0 if not. If the check passes, Bob assumes thatz= y(k), and outputsxi

from z under this assumption. By Lemma2.1, the error probability is at mosth/q< 1/3.

It is worth making the following two remarks on the above proof.

1. The above lower bound argument in fact shows that an online MA protocol P for anarbitrary two-
party communication problemf satisfies hcost(P)vcost(P) = Ω(R→( f )), where R→( f ) is the one-
way, randomized communication complexity off . Thus, MA→( f ) = Ω(

√

R→( f )).

2. The upper bound forINDEX presented above works more or less unchanged when Alice’s string is in
ΣN, for an arbitrary finite alphabetΣ. In view of Lemma2.1, one simply needs to choose the prime
q such that 3|Σ|h < q < 6|Σ|h to bound the error probability below 1/3. This leads to a protocol
P with hcost(P) ≤ hlog|Σ| and vcost(P) = O(v(log|Σ|+ logh)). Henceforth, we shall refer to this
generalized protocol simply as “theINDEX protocol” — the alphabetΣ will usually be clear from the
context.

Theorem 3.2. For all h,v such that hv≥ n, there is an online(hlogm,vlogm)-scheme forSELECTION.
Furthermore, any online(h,v)-scheme forSELECTIONmust have hv= Ω(m).

Proof. Conceptually, the verifier builds a vectorr = (r1, . . . , rn) ∈ Z
n
+ whererk = |{ j ∈ [m] : a j < k}|. This

is done by inducing a new streamA′ from the input streamA: each tokena j in A causes virtual tokens
a j +1,a j +2, . . . ,n to be inserted intoA′. Thenr = f(A′); note that‖r‖1 = O(m2). We apply theINDEX

protocol to this vector, withq= Θ(m2) to retrieve the ranks of elements surrounding the claimed median.
This information is sufficient to check thats has the claimed rank.

For the lower bound, we use a standard reduction from theINDEX problem. TakeN = m. Given the
stringx∈ {0,1}m, Alice transforms it into the stream over[2m] whose jth token isa j = 2 j − x j , for each
j. Given the indexi ∈ [m], Bob transforms it into a stream consisting ofi copies of 2m andm− i copies of
1. Consequently, the median of the combined length-(2m) stream is 2i−xi , from which the value ofxi can
be recovered. To complete the proof, observe that any online scheme to compute this median would imply
an online MA protocol forINDEX with the same cost; and that all players can perform this reduction online
without extra space or annotation.

Notice that in the above scheme the information computed by the verifier is independent ofρ, the rank
of the desired element. Therefore these algorithms work even whenρ is revealed at the end of the stream.

3.2 A First Result for Frequent Items

The φ -heavy hitters (also known as the frequent items) are those items whose frequency of occurrence in
the data stream exceeds aφ fraction of the total count. This problem has a long history in the data streams
literature. In the traditional data stream model exact computation of heavy hitters requires linear space [40].
As a result, many algorithms have been developed which recover approximate heavy hitters from a data
stream [14,20].

In order to identify the heavy hitters, a prescient helper can list the set ofclaimed frequent items, along
with their frequencies, for the verifier to check against the stream. But wemust also ensure that the helper
is not able to omit any items whose frequencies exceed the threshold.
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Theorem 3.3. For all h,v such that hv≥ n, there is an online(hφ−1 log2n,vlogn)-scheme and a prescient
(φ−1 log2n,φ−1 log2n)-scheme for demonstrating theφ -heavy hitters.

Proof. Given the thresholdT = φm, the set of heavy hitters is{ j : f j > T}. We impose a binary treeT
over the data, whose leaves are the elements of the universe[n], and partition the(2n−1) nodes ofT into v
groups G1, . . . ,Gv, with each|Gi | ≤ 2h. For each nodew of T , let p(w) denote the parent ofw, and letL(w)
denote the set of leaves of the subtree ofT rooted atw. We definef̂ (w) = ∑i∈L(w) fi .

The f̂ -values for the nodes in each groupGi form a vector with entries in{0,1, . . . ,m}. As the verifier
processes the stream it maintains anO(logn)-bit basic fingerprint of each such vector; this is easy to do
since each token arrival simply causes a linear update to each vector. Once the end of the stream is reached,
the helper can then convince the verifier of anyf̂ (w) value using theINDEX protocol: he simply supplies
the vector for the groupGi that containsw, using at most 2hlog(m+1) = O(hlogn) bits of annotation. In
particular, he can identify all the heavy hitters. But he must also convince the verifier that no heavy hitters
have been omitted.

To this end, we consider awitness set, W, of nodes ofT which together cover the universe. The setW,
given thresholdT, consists of all leavesℓ with f̂ (ℓ)>T, plus all nodesu such thatf̂ (u)≤T but f̂ (p(u))>T.
Each node of the latter type is witness to the fact that no leavesj ∈ L(u) can havef j > T. The setsL(u) for
suchu together with{ j : f j > T} cover all of[n]. Further, because of the lower bound onf̂ (p(u)), there can
be at most 2φ−1 such nodesu at any level ofT , as the sum of̂f (w) over all nodesw at the parent level is
exactlym. Hence|W|= O(φ−1 logn).

The prover presents the verifier with each nodeu in W, in increasing order of minL(u), together with a
convincing proof of the value of̂f (u). The verifier, besides checking the proofs using the stored fingerprints,
checks that the setsL(u) do cover all of[n] (outputting⊥ if they do not) and outputs thoseu that are leaves
of T with f̂ (u) > T. In total, hcost= O(|W| ·hlogn) = O(hφ−1 log2n) and vcost= O(vlogn). Note that
the stated vcost does not explicitly account for the verifier storing theO(φ−1 logn) claimed heavy hitters, as
in some settings (e.g., Theorem4.5, later in this paper) this is not required.

In the prescient case, the helper providesW upfront, which requiresO(|W| logn) = O(φ−1 log2n) bits
of annotation. The verifier stores it, and then computes allf̂ -values for nodes inW, checking that these
satisfy the requirements on a witness set. In this case, the stated vcost doesaccount for the verifier storing
theO(φ−1 logn) claimed heavy hitters.

In Section6, we return to this problem, and present more involved protocols with a lower cost, and
consider approximate variations. Specifically, Theorem6.1 shows how the size of the witness setW can
be reduced, and Theorem6.2 shows how the exact frequency vector can be replaced with a more compact
sketched vector.

4 Frequency Moments and Generalizations

In this section we continue the study of properties of the frequency distribution f(A) = ( f1, . . . , fn) of a given
streamA. In particular, we study the computation of frequency moments, which has a long history in the
data streams literature, like the frequent items problem discussed earlier.

Definition 2. Thekth frequency moment of the streamA is defined asFk = Fk(A) := ∑ j∈[n] f k
j = ‖f(A)‖kk.

Slightly abusing notation, we also defineFk(v) := ‖v‖kk for a vectorv.

It is well known that in the traditional data stream model, exact computation ofFk (k 6= 1) requiresΩ(n)
space. Even constant factor approximation requiresΩ(n1−2/k) space fork≥ 2 [13].
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4.1 Schemes for Frequency Moments

We now show a family of algorithms that exhibit an optimal verification/annotation tradeoff for the exact
computation ofFk. Our algorithm is inspired by the “algebrization” results of Aaronson and Wigderson [1]
but the key idea can be traced back to classic interactive proof protocolsof Lund et al. [39] and Shamir [43].

Theorem 4.1. Suppose h and v are positive integers with hv≥ n. Then, for integers k≥ 1, there exists an
online(k2hlogm,kvlogm)-scheme for computing Fk exactly.

Proof. Let A be the input stream. We map then-vector f(A) into anh× v matrix ( f (x,y))x∈[h],y∈[v], using
any canonical bijection between[n] and [h]× [v]. Pick a primeq≥ max{mk,3kh}; sincem≥ n, this can
be done while ensuring that logq = O(k logm). We shall work in the fieldFq, which is safe becauseq
exceeds the maximum possible value ofFk(A). Let f̃ (X,Y) ∈ Fq[X,Y] be the unique polynomial satisfying
degX( f̃ ) = h−1, degY( f̃ ) = v−1 and f̃ (x,y) = f (x,y) for all (x,y) ∈ [h]× [v]. The verifier picks a random
r ∈ Fq. As the stream is read, the verifier maintains a sketch consisting of thev quantitiesf̃ (r,1), . . . , f̃ (r,v).
Clearly, this sketch fits inO(vlogq) bits of storage.

At the end of the stream, the helper provides a polynomials′(X) ∈ Fq[X] that is claimed to be equal to

s(X) := ∑
y∈[v]

f̃ (X,y)k , (1)

which has degree at mostk(h− 1), thus usingO(khlogq) bits of annotation. The verifier evaluatess′(r)
from the supplied annotation and computess(r) = ∑y∈[v] f̃ (r,y)k from his sketch, checks thats′(r) = s(r)
and outputs⊥ if not. If the check passes, the verifier outputs∑x∈[h] s

′(x) as the final answer. Clearly, this
answer is correct if the annotation was honest. Further, the verifier is fooled only if s′ 6= s, buts′(r) = s(r);
the probability of this is at mostk(h−1)/q≤ 1

3, by choice ofq.
It remains to show that the sketch can be computed incrementally inO(vlogq) space. To maintain each

f̃ (r,y) for y ∈ [v], note that upon reading a new tokeni ∈ [n] that maps to(a,b) ∈ [h]× [v], the necessary
update is of the form̃f (r,y)← f̃ (r,y)+ pa,b(r,y), wherepa,b is the Lagrange polynomial

pa,b(X,Y) := ∏
i∈[h]\{a}

(X− i)(a− i)−1 · ∏
j∈[v]\{b}

(Y− j)(b− j)−1 .

Sincepa,b(r,y) = 0 for anyy ∈ [v] \ {b}, the verifier need only update the single valuef̃ (r,b), by adding
pa,b(r,b), upon reading this token. Using a table ofO(v) appropriate precomputed values, this update can be
computed quickly. Forh= v=

√
n, this takes a constant number of arithmetic operations per update without

affecting the asymptotic space cost.

Numerous problems such as computing Hamming distances and inner products,and approximatingF2

andF∞, can be solved usingFk as a primitive or using related techniques. We proceed to outline the relevant
schemes and the results they provide.

Approximate F2. We can approximateF2 up to a(1+ ε) factor from an integer linear sketch of size
O(1/ε2) (see Section2.3 for a discussion of sketches). In particular, if CSw(A) denotes a length-w Count-
Sketch vector of the streamA built using 4-wise independent hash functions, thenF2(CSw(A)) estimates
F2(A) with relative errorε = w−1/2 with constant probability [44]. Thus, if the verifier and helper have
access to a source of public randomness to define the hash functions used by the sketch (or we extend the
model to allow the verifier to send the description of the randomly chosen hashfunctions to the helper at
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the start of the protocol), the aboveF2 scheme yields an online(ε−2α logm,ε2α−2 logm)-scheme for any
α ∈ [0,1]. This follows from the combination of the algebrization approach with the observation that the
verifier can track linear updates to their sketch efficiently.

Approximate F∞. Recall thatF∞ =maxj∈[n] f j and note thatF t
∞≤Ft ≤ nFt

∞. Hence, ift = logn/ log(1+ε),
then (Ft)

1/t is at most a factor 1+ ε from F∞. This yields an online((1
ε logn)2hlogm, (1

ε logn)vlogm)-
scheme for approximatingF∞ for anyh,v such thathv≥ n. We make use of this scheme in Section4.4.

Inner Product and Hamming Distance. Consider a stream consisting of a stringx ∈ {0,1}N followed
by a stringy ∈ {0,1}N. Exact computation ofF2 implies online schemes for certain functions ofx andy.
For example, the inner productx · y is (F2(x+ y)−F2(x)−F2(y))/2 and the Hamming distance between
x andy is |{i : xi = 1}|+ |{i : yi = 1}|−2x · y. Hence we get an online(Nα logN,N1−α logN)-scheme for
each of these functions, for everyα ∈ [0,1]. Alternately, the approach in the proof of Theorem4.1 can be
used to more directly generate schemes for these problems with the same bounds. For example, in the case
of inner product, the verifier maintains̃f (r,1) . . . f̃ (r,v) andg̃(r,1) . . . g̃(r,v), where f̃ andg̃ are polynomial
extensions ofx andy, as above. The verifier then checks that these are consistent with a helper-supplied
polynomials′(X), which is claimed to be∑y∈[v] f̃ (X,y)g̃(X,y), by evaluation atX = r. The analysis follows
the same lines as above.

4.2 Lower Bounds on Frequency Moments

We now present lower bounds on the tradeoffs possible for the exact and approximate computation of the
nontrivial frequency momentsFk. The first part of the theorem below shows that the tradeoff given by
Theorem4.1 is nearly tight.

Theorem 4.2. Suppose k≥ 0 and k 6= 1. LetA be an(h,v)-scheme (online or prescient) for computing Fk.

(1) If A computes Fk exactly, then it requires hv= Ω(n).

(2) If A approximates Fk up to a constant factor, then it requires hv= Ω(n1−5/k).

Proof. Both results follow from lower bounds on the MA complexity ofDISJn,t : {0,1}nt → {0,1}, the t-
party set disjointness problem, which is defined as follows. The input is at×n Boolean matrix, with Player
i holding theith row, for i ∈ [t]. We call an inputx = (xi j )i∈[t], j∈[n] valid if every column ofx has weight
either 0 or 1 ort, and at most one column has weightt. The desired output is

DISJn,t(x) := ¬∨n
j=1∧t

i=1xi j ,

i.e., 1 iff the subsets of[n] represented by the rows ofx are disjoint. Note thatDISJn,t is naturally related to
frequency moments: for any valid inputx, Fk(S)≥ tk if DISJn,t(x) = 0 andFk(S)≤ n if DISJn,t(x) = 1 where
S is the multiset{ j : xi j = 1}. Thus, reductions fromDISJn,2 andDISJn,O(n1/k) establish the first and second
parts of the theorem, respectively, in a straightforward manner.

To complete the proof, we need a lower bound forDISJn,t itself. This is given in the next theorem, which
generalizes a result by Klauck [36] and also resolves a question of Feigenbaum et al. [27].

Theorem 4.3. LetP be anε-error MA protocol forDISJn,t , whereε ≤ 1/3. Thenhcost(P) ·vcost(P) =
Ω(n/t4). In particular,MA(DISJn,t) = Ω(

√
n/t2).
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Proof. A rectangle is defined as a subset of inputs of the formX1×·· ·×Xt , where eachXi ⊆ {0,1}n is a
subset of the set of all possible inputs for Playeri. A basic fact about deterministic communication protocols
is that the inverse image of any transcript of such a protocol must be a rectangle; this is usually called the
rectangle property. Let A = DISJ−1

n,t (1) andB = DISJ−1
n,t (0). The following lemma was proved by Alon,

Matias and Szegedy [4], generalizing a result due to Razborov [42].

Lemma 4.4(Lemma 3.4 of [4]). There exists a distributionµ over valid inputs such that

(1) µ(A) = µ(B) = 1/2, and

(2) every rectangle T satisfiesµ(T ∩B)≥ (2e)−1µ(T ∩A)− t2−n/2t4
.

Returning to our theorem, assumet =ω(n1/4) since otherwise the bound is trivial. Puth= hcost(P) and
v= vcost(P). An inputx∈A is said to becoveredby a messageh from Merlin if PrR[out(P;x,R,h)= 0]≤ ε.
By correctness, every such input must be covered, so there exists a help messageh∗ that covers every input
in a setG⊆A, with µ(G)≥ 2−hµ(A) = 2−h−1. Fix Merlin’s message inP to h∗ and amplify the correctness
of the resulting randomized Merlin-free protocol by repeating itO(h) times and taking the majority of the
outputs. This gives us a randomized protocolP ′ for DISJn,t with communication costc=O(hv) whose error,
on every input inG∪B, is at most 2−2h.

Let µ ′ denote the distributionµ conditioned onG∪B. Note that, by condition (1) of Lemma4.4,

∀x ∈ {0,1}nt : eitherµ ′(x) = 0 or µ(x)≤ µ ′(x)≤ 2µ(x) . (2)

By fixing the random coins ofP ′ we can obtain a deterministic protocolQ, for DISJn,t , that communicates
c bits and satisfies errµ ′(Q) ≤ 2−2h. By the rectangle property, there exist disjoint rectanglesT1,T2, . . . ,T2c

such that out(Q;x) = 1 iff x ∈⋃2c

i=1Ti . Therefore

2c

∑
i=1

µ ′(Ti ∩B) ≤ 2−2h , and (3)

µ ′
(

A\
2c
⋃

i=1

Ti

)

≤ 2−2h . (4)

By (2), we haveµ ′(A) = µ ′(G)≥ µ(G)≥ 2−h−1. Using (2), and a rearrangement of (4):

2c

∑
i=1

µ(Ti ∩A) ≥ 1
2

2c

∑
i=1

µ ′(Ti ∩A) ≥ 1
2

(

µ ′(A)−2−2h
)

≥ 2−h−3 .

Supposec≤ n/5t4 andn is large enough. Applying condition (2) of Lemma4.4to each term in the leftmost
sum above, we get

2c

∑
i=1

µ(Ti ∩B) ≥ 2−h−3

2e
−2ct ·2−n/2t4 ≥ 2−h−6 .

However, by (2) and (3), we have∑2c

i=1 µ(Ti ∩B)≤ 2−2h, a contradiction. Hencehv= Ω(c) = Ω(n/t4).
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4.3 Frequency-Based Functions

It is natural to ask whether theFk algorithm of Theorem4.1generalizes to more complicated functions. We
demonstrate that this is indeed the case by presenting non-trivial algorithms for the class of allfrequency
based functions. A frequency based function is any functionG on frequency vectorsf = ( f1, . . . , fn) of the
form G(f) = ∑ j∈[n]g( f j) for someg : Z+ → Z+. We assumeg(x) ≤ nc for some constantc, so that each
value in the range ofg andG can be represented usingO(logn) bits. If there are constantsC1 andC2 such
thatg(x) =C1 for all x≥C2, then we say thatG is based on low frequencies.1

Frequency-based functions have a number of important special cases, including frequency moments,F0

(the number of distinct items in the stream), and point and range queries on thefrequency distribution, and
can also be used to computeF∞, the highest frequency in the frequency vector. These functions occupy
an important place in the streaming world: Alon, Matias, and Szgedy asked for a precise characterization
of which frequency-based functions can be approximated efficiently in the standard streaming model in
their seminal paper [4]. Braverman and Ostrovsky [9] recently gave a zero-one law for approximating
monotonically increasing functions of frequencies that are zero at the origin. This can be contrasted with
our result that, in the annotation model,all frequency-based functions have non-trivial exact schemes. We
first present a natural generalization of the online scheme forFk, which we call the polynomial-agreement
protocol. This protocol was first presented by Cormode, Mitzenmacher,and Thaler in [18]; we present the
details for completeness.

Polynomial-Agreement Protocol. Let A be the input stream. We wish to computeG(f(A)), whereG(f) =
∑ j∈[n]g( f j). As in theFk algorithm, we shall work in the fieldFq for a sufficiently large primeq, and we
map then-vectorf(A) into anh× v matrix ( f (x,y))x∈[h],y∈[v], whereh andv are adjustable parameters. As
before, we letf̃ (X,Y) ∈ Fq[X,Y] be the unique polynomial satisfying degX( f̃ ) = h− 1, degY( f̃ ) = v− 1
and f̃ (x,y) = f (x,y) for all (x,y) ∈ [h]× [v]. The verifier picks a randomr ∈ Fq, and maintains a sketch
consisting of thev quantitiesf̃ (r,1), . . . , f̃ (r,v) as the stream is read.

Now the goal is to compute∑x,y∈[h]×[v]g( f̃ (x,y)). Thepolynomial-agreement protocolgeneralizes the
Fk protocol, and has the helper send a polynomial to the verifier claimed to be

s1(X) := ∑
y∈[v]

g̃◦ f̃ (X,y) , (5)

whereg̃ is defined through interpolation as the unique degree-m polynomial that agrees withg on inputs
in the set{0,1, . . . ,m}, this being the set of possible values for each entry off(A). Then the verifier can
computeG(f(A)) = ∑x∈[h] s1(x). To keep the helper honest, the verifier checks thats1(r) = ∑y∈[v] g̃( f̃ (r,y))
by computing the sum from his sketch.

One may compare Eq. (5) with the earlier Eq. (1), and observe that settingg(x) = xk indeed yields the
Fk scheme from Section4.1.

Theorem 4.5. Suppose m= Θ(n). Let G be any frequency-based function. Then G has a prescient
(n2/3 logn,n2/3 logn)-scheme and an online(n3/4 logn,n3/4 logn)-scheme. Additionally, if G is based on
low-frequencies, then G has an online(n2/3 logn,n2/3 logn)-scheme.

Proof. We first describe the prescient scheme. It is natural to attempt to directly apply the polynomial-
agreement protocol to the given functiong. However, this does not yield a useful result. The problem with

1In full generality, we can obtain improved schemes for functions whereC2 = o(n1/12).
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this approach is that ˜g◦ f̃ has degreem(h−1), and therefores1(X), as defined in (5), requires up tom(h−1)
words to represent—it would be more efficient for the helper to just repeat the stream in sorted order!

The solution is to reduce the degree of ˜g by removing theheavy hittersfrom A with the aid of the
helper. That is, we run a prescient heavy hitters scheme to determineH := ∑ j∈Sg( f j)− |S|g(0), where
S := { j : f j ≥ nβ} andβ < 1 is a parameter we will fix later. Though one could use Theorem3.3 for a
heavy hitters scheme, to obtain tighter bounds we use a more efficient schemepresented later in Theorem
6.1. Note that this requires communicationO((m/nβ ) logn) =O(n1−β logn) sincem=Θ(n) by assumption.
Intuitively, H represents the contribution of the heavy hitters to the frequency-based function, and the verifier
then “removes” these items from the stream by settingf j = 0 for all j ∈ S. This ensures that the removed
items do not contribute to the sum∑ j∈[n]g( f j). The verifier and helper then run the polynomial-agreement
protocol on themodifiedfrequency vector, and the final result is given byH +∑ j∈[n]g( f j). From now on,
let f denote this modified vector.

When running the polynomial-agreement protocol, we exploit the fact that each entry off lies in
{0,1, . . . ,nβ}. This lets us use a degree-nβ polynomialg̃ in (5). As a result, we have deg(s1) ≤ nβ (h−1),
and so the helper requires onlyO(hnβ logn) bits to describes1(X). For the1

3-error guarantee, the primeq
need only be as large as 3nβ (h−1) = poly(n). All other details remain unchanged, and are in line with the
proof of Theorem4.1.

It remains to show that we can set the parametersh, v, andβ of the above protocol to achieve hcost=
vcost= O(n2/3 logn). The help cost isO(n1−β logn) bits for the heavy hitters scheme plusO(hnβ logn) bits
for the (modified) polynomial-agreement protocol. The respective verification costs areO(n1−β logn) and
O(vlogn). Settingβ = 1

3, h= n1/3, andv= n2/3 achieves the desired costs.
A subtlety is that the verifier needs to compute the valuesg( f j) for all j ∈ S in order to compute the

contribution,H, of the heavy hitters. The verifier also needs to compute the valuesg(i) for i ∈ [nβ ] in order
to evaluates1(r) = ∑y∈[v] g̃( f̃ (r,y)), because the polynomial ˜g is defined in terms of these values. Indeed,

g̃(x) = ∑i∈[nβ ]g(i)χi(x), whereχi is the unique polynomial of degree at mostnβ such thatχi(i) = 1 and

χi(x) = 0 for all x∈ {0, . . . ,nβ}\{i}. Thus, to give a space-bounded verifier, we must carefully accountfor
the cost of storingg. However, for most natural functions of interest,g has a succinct implicit description;
this is indeed the case for important examples such asF0, F∞, and point and range queries on the frequency
distribution that are described subsequently.

In order to achieve an online(n3/4 logn,n3/4 logn)-scheme forG, observe that the only place where the
above scheme used prescience was to identify heavy hitters. So we simply substitute the online heavy hitters
scheme of Theorem6.1, with parameterα ∈ [0,1], in place of the prescient version. In this case, the help
cost isO(n1−β nα logn) bits for the heavy hitters scheme andO(hnβ logn) bits for the polynomial-agreement
protocol. The respective verification costs areO(n1−α logn) andO(vlogn). Balancing these costs by setting
β = 1

2, α = 1
4, h= n1/4, andv= n3/4 gives the desired overall costs.

Finally, we describe how to achieve an online(n2/3 logn,n2/3 logn)-scheme ifG is based on low-
frequencies. Then, as described above, there are constantsC1 andC2 such thatg(x) = C1 for all x≥C2.
This obviates the need for a heavy hitters scheme entirely: while observing the stream, the verifier keeps
a buffer of then2/3 most recent items observed, and “collapses down” any items appearing more thanC2

times in the buffer to an instance of the item that occurs exactlyC2 times. It is easy to see thatG is the same
for the collapsed stream as for the original stream, sinceG is based on low frequencies. As a result of the
collapsing, no item in the filtered stream has frequency higher thanO(n1/3). Therefore we can obtain the
desired bounds using a method similar to the polynomial-agreement protocol.
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Applications of Polynomial-Agreement. Theorem4.5 provides annotation schemes for the problems
described below.

• We can computeF0, the number of items with non-zero count. This follows by observing thatF0 is
equivalent to computing∑i∈[u]g( fi) for the functiong given byg(0) = 0 andg(x) = 1 for x> 0. Since

F0 is based on low frequencies, we achieve an online(n2/3 logn,n2/3 logn)-scheme.

• More generally, we can compute functions on the inverse distribution, i.e., queries of the form “How
many items occur exactlyk times in the stream?” We do this by settingg(k) = 1 andg(x) = 0 for
x 6= k; here we think ofk as being fixed. One can build on this to compute, e.g., the number of items
which occurred betweenk andk′ times, the median of this distribution, etc. Ifk is a constant, as in the
case ofrarity (wherek = 1) [22] we achieve an online(n2/3 logn,n2/3 logn)-scheme. Otherwise, we
achieve a prescient(n2/3 logn,n2/3 logn)-scheme and an online(n3/4 logn,n3/4 logn)-scheme.

• We obtain a protocol forF∞ = maxj∈[n] f j , with a little more work. The helper first claims a lower
boundℓ on F∞ by providing the index of an item with frequencyF∞, which the verifier checks by
running the generalizedINDEX protocol from Section3.1 (see Remark 2 after Theorem3.1). Then
the verifer runs the above protocol withg(x) = 0 for x≤ ℓ andg(x) = 1 for i > ℓ; if ∑ j∈[n]g( f j) = 0,
then the verifier is convinced that no item has frequency higher thanℓ, and concludes thatF∞ = ℓ.
We therefore achieve a prescient(n2/3 logn,n2/3 logn)-scheme and an online(n3/4 logn,n3/4 logn)-
scheme forF∞ (or an online(n2/3 logn,n2/3 logn)-scheme in the case thatF∞ is at most a constant).

4.4 Frequency-Based Functions for Skewed Streams

In practice, the frequency distributions of data streams are often skewed, in the sense that a small number of
frequent items make up a large portion of the stream. We observe that, if the stream is sufficiently skewed,
so that there are few heavy hitters, we can achieve more efficient schemes for frequency-based functions.
To see this, notice that in the scheme of Theorem4.5, the verifier, after learning the heavy hitters from the
helper, only needs to know anapproximateupper bound onF∞(A′), whereA′ is the stream obtained from
the input streamA by deleting all the heavy hitters. That is, the helper only needs to convince the verifier
that he has presented “enough” of the true heavy hitters (and their exact frequencies) so thatF∞(A′)≤ b for
some upper boundb= Θ(nβ )—then we may define ˜g to agree withg on [b], so that the degree of ˜g remains
O(nβ ).

Observe that if there are not many heavy items, the helper can send a listL of heavy hitters and their
frequencies (proving the frequencies are truthful viaL parallelINDEX protocols) and then appending a proof
of an approximate upper bound (within factor 1+ ε) as per Section4.1on the quantityF∞(A′).

It suffices to letε be any positive constant in order to achieveb= O(nβ ). When there are fewer thanℓ
items with frequency greater thannβ , the INDEX queries, if they are online, require annotationO(ℓhlogn)
and spaceO(vlogn) for the verifer, while the approximateF∞ scheme requires annotationO(hlog3n)
and spaceO(vlog2n). In what follows, we will chooseℓ to be polynomial inn, so we will obtain an
(ℓhlogn,vlog2n) scheme for identifying the set of heavy hitters and an upper boundu onF∞(A′).

For concreteness, we will analyze the costs of our improved scheme under the assumption that the
frequencies of items in the stream follow a Zipfian distribution, so that theith largest frequency is (at most)
mi−z for parameterz. Setting this equal tonβ and rearranging, we obtain that there are at most(m/nβ )1/z

heavy hitters to identify.
Therefore, ifm= Θ(n), we can reduce the cost of the heavy hitters sub-protocol within the scheme of

Theorem4.5 to (n(1−β )/zhpoly logn,vpoly logn). Adding in the annotation cost of sending the polynomial
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g̃◦ f̃ , and the space cost of storing the verifier’s sketch, the entire scheme therefore requiresÕ(n(1−β )/zh+
hnβ ) annotation and̃O(v) space, where thẽO notation hides factors polylogarithmic inn. Balancing expo-

nents by settingβ = 1/(z+1), h= n
1
2+

1
2(z+1) , andv= n/h, we obtain an(n

1
2+

1
2(z+1) poly logn,n

1
2+

1
2(z+1) poly logn)

scheme.
For example, ifz= 2, we obtain an online(n2/3poly logn,n2/3poly logn)-scheme, which essentially

matches the cost of our online scheme for functions based on low-frequencies, but applies to any frequency-
based function. Ifz= 3, we obtain an online(n5/8poly logn,n5/8poly logn)-scheme.

Finally, we present a more efficient prescient scheme. If we use prescient INDEX protocols rather than
online ones, our heavy hitters scheme only requires annotationÕ(l + h1) and spaceÕ(l + v1), provided
h1v1≥ n. Hence, the entire scheme has annotation costÕ(n(1−β )/s+h1+h2nβ ) and space cost̃O(n(1−β )/s+
v1+ v2), whereh1v1 = h2v2 = n. Assume 1< s≤ 2. Then settingβ = 2−s

2+s, h1 = v1 = n1/2, h2 = nz/(2+z),

andv2 = n2/(2+z), we obtain an(n2/(2+z)poly logn,n2/(2+z)poly logn) scheme. For example, ifz= 2, we
obtain a prescient(n1/2poly logn,n1/2poly logn)-scheme. Forz> 2, schemes with the same costs follow by
settingβ = 0, h1 = h2 = v1 = v2 = n1/2.

5 Set and Multiset Inclusion

Building on some of the results and techniques in Section4, we now address a family of abstract problems
that involve a helper proving a subset (inclusion) relation to a streaming verifier. Both sets and multisets
are of interest. For example, we may need to prove thatA⊆ B for two setsA andB, or we may need to
prove that a setA is exactly the support set of a multisetB. These abstract problems turn out to be common
subproblems arising in a number of applications that we shall consider later (see, e.g., Theorems7.5, 7.6,
and7.7).

Throughout this section, thesizeof a multiset is the number of elements in it, counting multiplicities. A
fingerprint of a multiset is a basic fingerprint, as in Definition1, of its characteristic (frequency) vector.

Lemma 5.1. Let A⊆ [n] be a set and B⊆ [n] a multiset of size t. Let B′ be the set formed by removing
all duplicate elements from B. Then, given a stream which begins with the elements of A followed by the
elements of B, there is a prescient(t logn, logn)-scheme that establishes whether B′ = A.

Proof. As the elements ofA are observed in the stream, the helper annotates eacha∈A with the multiplicity,
fa, of a in B. OnceA has been observed, the helper then lists each elementb in the set differenceB′ \A,
along with the corresponding multiplicityfb in B. Obviously there are no such elements iffB′ =A. From the
provided information, the verifier constructs a fingerprint of the multiset in which eacha∈ A∪B′ appears
with multiplicity fa.

Then, while observing the elements of the multisetB, the verifier incrementally constructs a fingerprint
of B, as in Lemma2.1. The verifier accepts iff the two fingerprints match.

In the remainder of this section, we give three schemes achieving tradeoffs between hcost and vcost for
(multi)-set inclusion, in order of generality. First, we give an essentially optimal online (hlogn,vlogn)-
scheme, for anyh andv with hv≥ n, for the special case whenB is a set rather than a multiset.

Theorem 5.2. Let X,Y⊆ [n] be sets. Then given a stream with elements of X and Y arbitrarily interleaved,
there is an online(hlogn,vlogn)-scheme for determining whether X⊆Y for any h and v such that hv≥ n.
Moreover, any online(h,v)-scheme requires hv= Ω(n).

15



Proof. Let x,y ∈ {0,1}n be the characteristic vectors ofX andY respectively. ThenX ⊆ Y if and only if
F2(y−x) = |Y|− |X|. Consequently, the helper can run theF2 scheme of Theorem4.1on the vectory−x to
determine if the above equality holds.

The lower bound follows from a straightforward reduction fromINDEX. TakeN = n. Given the string
x ∈ {0,1}n, Alice transforms it into the stream over[n] representing the setY = { j : x j = 1}. Given the
index i ∈ [n], Bob transforms it into a stream representing the singleton setX = {i}. Thenxi = 1 if and only
if X ⊆Y.

We now show how to use the result for frequency-based functions to handle duplicated items; in this
caseX andY are multisets rather than sets. The next theorem lets us efficiently handle a small number of
duplicates.

Theorem 5.3. Let X,Y ⊆ [n] be multisets. Assume k is a known upper bound on the maximum frequency of
any element in X or in Y . Then given a stream with elements of X and Y arbitrarily interleaved, there is a
online(khlogn,vlogn)-scheme for determining whether X⊆Y, for any h and v with hv≥ n.

Proof. Let x,y be the characteristic vectors ofX andY respectively. ThenX ⊆Y if and only if yi − xi ≥ 0
for all i. The bound on the maximum frequency implies that−k≤ yi − xi ≤ k for all 1≤ i ≤ n. Let g̃ be
defined through interpolation as the polynomial of degree 2k over the finite fieldFp such that ˜g(x) = 0 for
x ∈ {0,1, . . . ,k}, andg̃(x) = 1 for x ∈ {−k,−k+1, . . . ,−1}. Then∑i g̃(yi − xi) = 0 if and only if X ⊆ Y;
intuitively, g̃ acts as an indicator function for the set of possible negative entries in the vectory−x. Applying
the polynomial-agreement protocol defined in the proof of Theorem4.5under this definition of ˜g, we obtain
a (khlogn,vlogn)-scheme for checkingX ⊆Y wheneverhv≥ n.

Finally, we give an online(n3/4 logn,n3/4 logn)-scheme for the general multiset inclusion problem, as
long ast = O(n).

Theorem 5.4. Let X,Y ⊆ [n] be multisets of size at most t. Then given a stream with elements of X and
Y arbitrarily interleaved, there is there is an online(n3/4 logn,n3/4 logn)-scheme for determining whether
X ⊆Y assuming t= O(n).

Proof. Let x,y be the characteristic vectors ofX andY respectively. It holds thatX ⊆ Y if and only if
yi − xi ≥ 0 for all i. Defineg : {−t,−t + 1, . . . ,0,1, . . . , t} → {0,1} by g(x) = 0 for x ∈ {0, . . . , t} and
g(x) = 1 for x∈ {−t,−t +1, . . . ,−1}. The theorem holds by applying the protocol of Theorem4.5to G(f),
wheref is the vectory− x andG is the frequency-based function defined byg. (As stated, the protocol of
Theorem4.5applies only tog : Z+→ Z+, but it applies without modification to any functiong defined on
a suitably small domain, such as ours).

5.1 Application: Convex Hull on a 2D Grid

As a first illustration of the value of Theorems5.2–5.4, consider an instance of the convex hull problem
where all input pointsP fall on the intersection points of a two-dimensional grid definingg possible point
locations. LetC be the convex hull of a stream of points. Then, for any 0≤ α ≤ 1, there exists an online
((|C|+gα) logg,(|C|+g1−α) logg)-scheme to report the convex hull. The helper provides the claimed hull
C′, which the verifier can store exactly, and verify that it is indeed convex.Definec(C) as the set of (grid)
points contained within a convex shapeC, and observe that it is easy to enumerate (but not store)c(C) in
spaceO(|C|). The verifier then must establish thatC′ ⊆ P, and thatP⊆ c(C′). Both these subset tests
can be verified efficiently using Theorem5.2. As described, this protocol requires thatP should contain
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no duplicate points, however in the case where each point inP is duplicated at most a small number of
timesk, we can instead use the protocol of Theorem5.3 rather than Theorem5.2. This yields an online
((|C|+ kgα) logg,(|C|+g1−α) logg)-scheme to report the convex hull. If points are duplicated up toO(n)
times, we may instead apply Theorem5.4to obtain an online((|C|+g3/4) logg,(|C|+g3/4) logg)-scheme.

6 Frequent Items

In this section, we provide further results on finding exact and approximate frequent items. Our new results
improve over Theorem3.3by logarithmic factors by showing a more compact witness set for the exact case,
which leads to improved online schemes for the exact and approximate versions of the problem.

Theorem 6.1. Let T= φm. There exists a prescient(φ−1 logm,φ−1 logm)-scheme and, for everyα ∈ [0,1],
an online(φ−1nα logm, n1−α logm)-scheme for finding{ j : f j > T}. Any online or prescient(h,v)-scheme
for this problem must have hv= Ω(n).

Proof. For the upper bound, consider a binary treeT whose leaves are the elements of the universe[n], as
in Theorem3.3. We will specify a witness setW of sizeO(φ−1) to identify to identify all leavesj with
f j > T; we baseW on the concept ofHierarchical Heavy Hitters(HHHs) [16]. Below, we refer to the set
of Hierarchical Heavy Hitters asH.

We defineH inductively, beginning with the leaves and working our way to the root. We include a
leaf in H if its frequency exceedsT. Let u be a node at distancel from the root (i.e., at levell of T ), and
assume inductively that we have determined allHHHs at levels greater thanl . Let H(u) denote the set of
descendants ofu that have been included inH, and letL(u) denote the set of leaves of the subtree rooted
at u. Finally, defineS(u) := L(u) \

(

∪v∈H(u) L(v)
)

. Intuitively, S(u) is the set of leaves inL(u) that have
not already contributed their frequency to anHHH descendant ofu. Define theconditioned countof u as
g(u) := ∑ j∈S(u) f j ; we includeu in H if g(u)> T. Observe there are at mostφ−1 items inH sinceT = φm:
each leaf contributes its frequency tog(u) for exactly oneu∈ H, and therefore|H|T ≤ ∑u∈H g(u)≤m.

We now define our witness setW as all leavesj in H in addition to all nodesu such thatu’s parent is in
H but u is not inH. Observe that each nodeu∈W is witness to the fact that no leavesj ∈ S(u) can have
f j > T. We also include the rootr in W to account for any leaves that are not descendants of any node inH.
The setsS(u) for u∈W form a partition of[n]. Notice that|W|= O(φ−1) since|H| ≤ φ−1.

This leads to two schemes for the problem. In the first, prescient scheme, thehelper lists all nodes
u∈W sorted by the natural order on nodes, and the verifier remembers this information. The verifier may
then compute the conditioned count of eachu∈W using spaceO(|W| logn) = O(φ−1 logn): each time an
item j appears in the stream, the verifier determines the uniqueu∈W such thatj ∈ S(u) (u is simply the
ancestor ofj in W farthest from the root), and incrementsg(u). The verifier checks thatg( j)> T for all leaf
nodes j ∈W, and thatg(u) ≤ T for all internal nodes inW and outputs⊥ otherwise. Since the setsS(u)
partition[n], this latter check ensures that the helper does not omit any leavesj with f j > T.

The second, online scheme is more involved. In the online setting, it is no longer possible for the verifier
to track the conditioned count of each node inW while observing the stream. However, it is possible for the
verifier to track (fingerprints of) a related quantity for each nodev, called theunconditioned countof v.

For each nodeu in T , recall thatL(u) denotes the leaves of the subtree rooted atu, andH(u) denotes
the descendants ofu that are inH. Define the unconditioned count ofu as f (u) = ∑ j∈L(u) f j . Observe that
there is a simple relationship between the conditioned and unconditioned countsof u, namelyg(u) = f (u)−
∑v∈H(u)g(v). The verifier may exploit this relationship to force the helper to provide the true conditioned
counts for each nodeu∈W.
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In more detail, the 2n−1 nodes in the tree are divided intov groups ofh such thathv≥ 2n, as in the
generalizedINDEX protocol (see Remark 2 after Theorem3.1). While observing the stream, the verifier
keeps a basic fingerprint of the vector of unconditioned counts of eachgroup. This is easily accomplished
by treating each entryj in the stream as an update to the unconditioned counts of the logn ancestors ofj in
T .

After the stream is seen, the helper provides the witness setW, beginning with the leaves inW and
working level-by-level towards the root. For each internal nodeu in W, the helper also presents the (claimed)
conditioned countg1(u) for u, as well as the conditioned count ofu’s parent, who is claimed to be inH by
definition ofW.

When processing(h,g1(h)) for any node claimed to be inH, the verifier modifies the basic fingerprints
by treating this as a deletion ofg1(h) occurrences of each ancestor ofh. More formally, for any nodev, let
v(v) denote the vector corresponding tov’s group. For each ancestorv of h, the verifier updates

BFq(r,v(v))← BFq(r,v(v))(r−v)−g1(h) ,

where(r−v)−g1(h) denotes the multiplicative inverse of(r−v)g1(h) in the fieldFq. As a result, if each
claimed conditioned countg1(h) is truthful, then when each nodeu∈W is presented by the helper, the entry
corresponding tou in v(u) is equal tof (u)−∑v∈H(u) f (v) = g(u). All that remains is to ensure that theg1(h)
values are as claimed.

To this end, the helper is further required to follow each pair(u,g1(u)) with all the entries of the vector
v(u), accounting for all deletions that the verifier has simulated so far. If the helper does not faithfully
provide the vectorv(u), a fingerprint of the claimed vector will fail to match the verifier’s fingerprint with
high probability. Consequently, the helper is forced to provide the true conditioned counts of each nodeu in
W.

Then as in the prescient protocol, the verifier can ensure that for eachu∈W, the conditioned count of
g(u) is belowT, indicating that the helper did not omit any leavesj ∈ S(u) with f j > T.

In total, the verifier requires spacevlogn to maintainv fingerprints, and the helper needs to provide
min{O(|W|h),n} items and (conditioned) counts, yielding an online(min{nlogm,hφ−1 logm},vlogm)-
scheme. A subtlety here is that the output size can exceed the verifier’s memory, so the verifier may output
a partial result before returning⊥.

We prove the lower bound by an easy reduction from two-party set-disjointness,DISJn,2. Consider Alice
and Bob with respective inputsx,y ∈ {0,1}n. Alice’s input x induces a streamA by placing one copy of
token j in the stream ifx j = 1. Then Bob places one copy of itemj in the stream ify j = 1. We may assume
Bob knows|{ j : x j = 1}|, and hence knows the stream lengthm; if not Alice can tell Bob|{ j : x j = 1}| at an
additive cost of logarithmically many bits. Nowx andy are disjoint if and only if the set{ j : f j > 1= φm}
for φ = 1/m is non-empty. Thus, determining the frequent items forT = 1 solves two-party set disjointness,
proving the bound by Theorem4.3.

6.1 Approximate Frequent Items

In many cases, it suffices to find a set ofapproximatefrequent items: these include all items withf j > φm
and no items withf j < (φ − ε)m for parametersε ,φ . Solutions to this problem in the traditional streaming
model are often based on “sketch” algorithms, as described in Section2.3. Since a sketchv is a linear
transform of the input,v= Sv(A), a sketch can be fingerprinted: each update multiplies the fingerprint by
BFq(r,Sei). This observation means that the helper can annotate (parts of)v at the end of the stream, for
verification. However, to define an efficient scheme, we also need to show: (1) the verifier can compute
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Sei in small space, soSmust have a compact representation; and (2) the verifier must be able to extract the
result fromv in a streaming fashion, in space sublinear in the size of thesketch.

We use ideas from verifying exact frequent items to build a scheme for verifying approximate frequent
items via sketching.

Theorem 6.2. For s> φ−1, there exists an online(slognlogm, logm)-scheme to verify the approximate
frequent items found by Count-Sketch or Count-Min sketches of size s.

Proof. Our proof proceeds by extending Theorem3.3 to the case of sketching. The main difference is
that exact counts are replaced by estimated counts drawn from the sketch, which requires a little more
effort to handle. We consider an expanded set of items that includes the set of tree nodesu in T and
their corresponding unconditioned countsf (u) (recall f (u) is the sum of the frequencies of all leaves in
L(u), the subtree rooted atu). The helper and verifier now keep a sketchvk for each levelk of the tree,
to obtainestimatedunconditioned countŝf (u) for each nodeu in the tree. We henceforth assume that
f̂ (u) = f (u)± εm; when using sketches withd = O(logn), this holds for eachi with probability at least
1−1/16n, and so it holds overall 2n frequencies with probability at least 7/8.

As in Theorem3.3, the witness setW, given thresholdT, consists of all leavesj with f̂ j > T in addition
to pairs of nodes(u,v) such thatu is the child ofv, and f̂ (u) ≤ T but f̂ (v) > T. Now, there can be at most
φ−1 such nodesv at any level of the binary tree, as the sum off̂ (v) is at most(1+ε)m. This bounds the size
of this witness set to|W′|= O(φ−1 logn) if ε < φ

2 .
The verifier can validate this witness setW over the full set of nodes and their estimated unconditioned

counts as follows. By presenting the set of nodesv in W in order of minL(v), the verifier can ensure that the
nodes identified do cover all of[n] as required (and hence that no high frequency items are omitted). If the
helper provides for each nodev∈W the information aboutv contained in the sketch, as(v, f̂v, f̂v,1, . . . f̂v,d) the
verifier can check that̂fv is above or belowT as appropriate. The verifier ensures thatf̂v is derived correctly
from thed values of f̂v,ℓ (usingO(d) working space). The verifier also incrementally builds a fingerprint of
the setB= {(v, ℓ, f̂v,ℓ)}. At the end of the annotation, the helper lists the entries of each sketchvk

ℓ, j in order
and tags each entry with the set ofv’s for which it has been used to make an estimate. The verifier builds a
fingerprint of the tuples(v, ℓ,cℓ(v)vk

ℓ,bℓ(v)
), and checks that it matches the fingerprint ofB (this is essentially

an instance of the multiset equality protocol in Lemma5.1). The verifier fingerprints also the (untagged)
sketch to check it matches the verifier’s fingerprinted sketch built from theinput stream.

The total amount of annotation isO(slogn) sketch entries, from the logn sketches of sizes. The verifier
needs to rememberd estimated frequencies (to verify their median) andO(logn) fingerprinted sketches (one
for each level).

We mention that ifφ ≫ ε, then the verifier only needs to inspect a small fraction of the sketch entriesto
verify the frequent items. In this case, one can obtain a tradeoff via the generalized protocol (Section3.1):
write the sketch as an array ofh×v entries, so thathv≥ s. The verifier can createv fingerprints each sum-
marizingh entries of the sketch. To verify, the helper modifies the above algorithm to only present those
blocks ofh entries which include a value that needs to be seen by the verifier. In total, toverify O(|W′|) ap-
proximate frequencies requires verifyingO(φ−1d logn) entries, giving an(φ−1hlogmlog2n,vlogm) online
scheme.

Other algorithms find all itemsj such thatf̂ j ≥ φF1/2
2 . These can also be adapted to our setting using

similar ideas, and verified in logarithmic space with annotation proportional to thesketch size.
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7 Graph Problems

In this section we consider computing properties of graphs onn nodes, determined by a stream ofm
edges [25, 32]. We present tight results for testing connectivity of sparse graphs, determining bipartite-
ness, determining if a bipartite graph has a perfect matching, and counting triangles. Our bipartite perfect
matching result achieves optimal tradeoffs up to logarithmic factors.

7.1 Counting Triangles via Matrix Multiplication

Estimating the number of triangles in a graph has received significant attentionbecause of its relevance to
database query optimization—knowing the degree of transitivity of a relation isuseful when estimating the
cost of evaluation plans for certain relational queries—and investigating structural properties of the web-
graph and social graphs [6,10,34]. In the absence of annotation, any single-pass algorithm to determine if
there is a non-zero number of triangles requiresΩ(n2) bits of space [6]. In contrast, we show that the exact
number of triangles can be verified in logarithmic space, with the help ofO(n2 logn) bits of annotation. The
following theorem, proved using ideas from Bar-Yossef et al. [6] coupled with Theorem4.3, shows that this
amount of annotation is nearly optimal, for a log-space verifier.

Theorem 7.1. Any(h,v)-scheme for counting triangles must have hv= Ω(n2).

Proof. We show a reduction fromDISJ(n2/9),2. We represent an instance ofDISJ as a pair of(n/3)× (n/3)
Boolean matricesX,Y in the natural way. We proceed to construct a graph that has a triangle iffXi j =Yi j = 1
for somei, j ∈ [n/3]. The nodes are partitioned into setsU,V,W so that|U |= |V|= |W|= n/3. Insert edges
{(ui ,wi) : i ∈ [n/3]}∪{(ui,v j) : Xi j = 1}∪{(wi ,v j) : Yi j = 1}. There is a triangle(ui ,v j ,wi) iff Xi j =Yi j = 1,
and there is no other way to form a triangle. The result follows from Theorem4.3.

We now outline an online scheme with vcost= O(logn) and hcost= O(n2 logn). A major subroutine of
our algorithm is the verification of (integer) matrix multiplication in our model. That is, givenn×n matrices
A,B andC with integer entries, verify thatAB=C. Our technique extends the classic result of Frievalds [28]
by showing that if the helper presents the results in an appropriate order,the verifier needs onlyO(logn) bits
to check the claim. Note that this much annotation is necessary if the helper is to provideC in his stream.

Theorem 7.2. There exists an online(n2 logn, logn)-scheme for verifying integer matrix multiplication.

Proof. Let q be a prime larger than 2nm2+1, wherem is ana priori upper bound on the absolute values of
all entries ofA andB. By the result of Kimbrel and Sinha [35], the verifier can checkAB=C by picking r
uniformly fromFq and checking thatA(BrT) = CrT, in the fieldFq, for vectorr = (r0, r1, . . . , rn−1). This
fails to identify an incorrect product with probability at mostn/q. Rather than computingA(BrT) andCrT

explicitly, the verifier will compare fingerprints ofCrT andABrT. These are computed assCrT andsABrT,
for a vectors= (s0,s1, . . . ,sn−1) wheres is picked uniformly fromFq. This fingerprinting fails to distinguish
distinct vectors with probability at mostn/q.

We observe that (1)sCrT = ∑i, j s
ir jCi j can be computed easily whatever order the entries ofC are

presented in. (2)sABrT = (sA)(BrT) is the inner product of twon-dimensional vectors, and that(sA)i =

∑ j s
jAi j and(BrT)i = ∑ j r

jB ji . Therefore, if the helper presents theith column ofA followed by theith row
of B for eachi in turn, the verifier can easily computesABrT in O(logq) space. Pickingq≥ 6n ensures that
the verifier is fooled with probability at most 1/3, and the total space used by the verifier to storer, s and
intermediate values isO(logn).
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With this primitive, arbitrary matrix productsAℓAℓ−1 · · ·A2A1 are verified withO(ℓn2 logn) annotation
by verifying A(2) := A2A1, thenA(3) := A3A(2), etc. Matrix powersAℓ are verified withO(n2 logℓ logn)
annotation, using repeated squaring. Here, we assume that the entries computed do not grow too large, and
so can be represented withinO(logn) bits.

Theorem 7.3. There is an online(n2 logn, logn)-scheme for counting triangles.

Proof. Denote the graph adjacency matrix byA, with Aii := 0. The helper listsAvw andA2
vw for all pairs

(v,w) in some canonical order. The verifier computes∑v,wAvwA2
vw as the number of triangles. The verifier

uses fingerprints to check thatA matches the original set of edges, and the scheme in Theorem7.2to ensure
thatA2 is as claimed.

We also show that it is possible to trade off the computation with the helper in a “smooth” manner. The
approach is based on the following observation of Bar-Yossef et al. [6].

From the given stream of edges of a graph, we can create aderivedstream, of lengthm(n− 2), by
replacing each edge(u,v) with the set of triples{(u,v,w) : w 6= u,v}. The frequency moments of this
derived stream can be expressed in terms of the numbers of triples of nodes with exactly zero, one, two and
three edges between them. It follows that the number of triangles can be expressed in terms of the frequency
moments of this derived stream, as(F3−3F2+2F1)/6. By using the scheme of Theorem4.1, we obtain the
following theorem.

Theorem 7.4. There is an online(n3α logn,n3−3α logn)-scheme for counting triangles for eachα ∈ [0,1].

7.2 Bipartite Perfect Matching

We present two online schemes for determining whether a bipartite graph hasa perfect matching. Our
first scheme is efficient for sparse graphs, while our second achieves optimal tradeoffs between hcost and
vcost for dense graphs, up to logarithmic factors. Graph matchings havebeen considered in the stream
model [25, 47] and it can be shown that any single-pass algorithm for determining the exact size of the
maximum matching requiresΩ(n2) space. We show that we can off-load this computation to the helper
such that, with onlyO(n1+α logn) annotation, the answer can be verified inO(n1−α logn) space, for each
α ∈ [0,1]. This is shown to be best possible by combining a reduction from [25] coupled with Theorem3.1.

Theorem 7.5. There exists an online(mlogn, logn)-scheme for bipartite perfect matching, as well as an
online (n1+α logn,n1−α logn)-scheme for eachα ∈ [0,1]. Any online(h,v)-scheme for bipartite perfect
matching requires hv= Ω(n2).

Proof. We begin by presenting the(mlogn, logn)-scheme. We consider the general case, where there may
be nodes in[n] with no incident edges, which are to be ignored for the matching. If there is aperfect
matchingM, the annotation lists all edges inM, and the degree of all nodes in[n]. Let x be the characteristic
vector that has 1 in thevth coordinate if and only if the degree ofv is non-zero, and lety be the vector
of node frequencies inM. The verifier can use fingerprints to ensure that the claimed degree sequence is
correct, and thatx matchesy.

If the graph does not have a perfect matching, Hall’s Theorem provides a witness. Let(L,R) be a
bipartition of the graph. Then there existsL′ ⊆ L such that|L′|> |Γ(L′)|, whereΓ(L′) is the set of neighbors
of L′. The helper lists, for each node, the following information: its degree; whether it is in L or in R;
and whether it is inL′, Γ(L′), or neither. Then the helper presents each edge(u,v), along with the same
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information on each node. By Lemma5.1, the verifier can ensure that the sets are consistent, using a
constant number of fingerprints. It remains to check that each edge is allowable and that|L′|> |Γ(L′)|.

Our (n1+α logn,n1−α logn)-scheme follows the same conceptual outline as the above: ifG has a perfect
matching, the helper provides the matching, while ifG has no perfect matching, the helper demonstrates
this via Hall’s Theorem. The details follow.

If there is a perfect matchingM, the annotation lists all edges inM, followed by a proof thatM ⊆ E.
More specifically, for anyhv≥ n2, Theorem5.2describes how to obtain an online(hlogn,vlogn)-scheme
for showingM ⊆ E, assuming no duplicate edges. This can be extended to a(khlogn,vlogn)-scheme if
edges may be duplicated up tok times by Theorem5.3. The helper uses this scheme to demonstrateM ⊆ E,
and the verifier checks thatM is a matching by comparing a fingerprint ofM to one of the set{1,2, . . . ,n}.

If the graph does not have a perfect matching, let(L,R) be a bipartition, as before, and letL′ ⊆ L be such
that |L′| > |Γ(L′)|. We will use the online(n1+α logn,n1−α logn)-scheme for integern× n matrix-vector
multiplication described in [17, Theorem 4]. The verifier must check that (1)L is a bipartition ofn; (2)
L′ ⊆ L; and (3)|L′|> |Γ(L′)|. Let x ∈ {0,1}n be the indicator vector ofL, and letA be the adjacency matrix
of G, i.e.,Ai j = 1 if there is an edge betweeni and j in G andAi j = 0 otherwise. Condition (1) is equivalent
to xTAx = 0, which can be checked using integer matrix-vector multiplication to verifyAx, followed by an
inner-product scheme to verifyxTAx. Condition (2) can be checked trivially while the helper specifiesL by
requiring the nodes ofL′ to be marked. To check (3), notice that|Γ(L′)| is equal to the number of non-zero
entries in the vectorAx. This can be computed while the verifier checks (1), and that|Γ(L′)|< |L′|.

The result is an online(kn1+α logn,nα logn)-scheme for 0≤ α ≤ 1, wherek is ana priori upper bound
on the number of times each edge may be duplicated.

7.3 Bipartiteness

The problem of determining if a graph is bipartite was considered in the standard stream model [25,26], and
it can be shown that any one-pass algorithm without annotations needsΩ(n) bits of space. In our model,
the helper can convince a verifier withO(logn) space whether a graph is bipartite, using onlyO(mlogn)
annotation, and we show that this is essentially the best possible for sparsegraphs wherem= O(n) using a
reduction fromDISJn,2 to bipartiteness. We also achieve tradeoffs between hcost and vcost for dense graphs,
obtaining an online(n1+α logn,n1−α logn)-scheme for eachα ∈ [0,1].

Theorem 7.6.There exists an online(mlogn, logn)-scheme for determining whether a graph is bipartite, as
well as an online(n1+α logn,n1−α logn)-scheme for eachα ∈ [0,1]. Any(h,v)-scheme (online or prescient)
for bipartiteness requires hv= Ω(n) even when m= O(n).

Proof. In both the(mlogn, logn)-scheme and the(n1+α logn,n1−α logn)-scheme, the helper proves that
a graph isnon-bipartite by providing an odd cycleC. The verifier must check that the number of edges
in C is odd, thatC is a cycle, and thatC ⊆ E. The verifier can easily perform the first two checks in
logarithmic space. In the(mlogn, logn)-scheme, the verifier checks thatC⊆ E using Lemma5.1, and in
the(n1+α logn,n1−α logn)-scheme, the verifier checks thatC⊆ E using Theorem5.2.

In both schemes, the helper proves that a graphis bipartite by specifying all nodesL in the left set of a
bipartition. Checking thatL is indeed a bipartition ofG can be done exactly as in Theorem7.5.

For the lower bound, we reduce an instance(x,y) ∈ {0,1}n×{0,1}n of DISJn,2 to an instance of bipar-
titeness on a graph withO(n) edges over nodes(vi j )i∈[3], j∈[n]. For eachj ∈ [n], create edges(v1 j ,v2 j); if
x j = 1, add the edge(v1 j ,v3 j), and if y j = 1, add the edge(v2 j ,v3 j). The resulting graph contains an odd
cycle if and only ifx andy are not disjoint.
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7.4 Connectivity

The problem of determining if a graph is connected was considered in the standard stream model [25,32]
and the multi-pass W-stream model [24]. In both models, it can be shown that any constant-pass algorithm
without annotations needsΩ(n) bits of space. Similar to bipartiteness, in our model the helper can convince
a verifier with O(logn) space whether a graph is connected, using onlyO(mlogn) annotation. This is
essentially the best possible for sparse graphs wherem= O(n) by combining a reduction from [25] with
Theorem3.1. We also achieve tradeoffs between hcost and vcost for dense graphs, obtaining an online
(n1+α logn,n1−α logn)-scheme.

Theorem 7.7. There exists an online(mlogn, logn)-scheme for graph connectivity, as well as an online
(n1+α logn,n1−α logn)-scheme for eachα ∈ [0,1]. Any(h,v)-scheme (online or prescient) for connectivity
requires hv= Ω(n) even when m= O(n).

Proof. We begin with the(mlogn, logn)-scheme. If the graph is connected then there exists a spanning tree
T directed towards the root and an injective labeling of the nodesf : V → [n] such that each non-root node
with label j is linked to exactly one node with label greater thanj. The helper outputs such a functionf , and
the verifier ensures that it is an injection. Then each (directed) edge(u,v) in T and its labelsf (u)< f (v) is
presented in decreasing order off (u). The verifier checks this order, and ensures that it is consistent withf
via fingerprinting (as per Lemma5.1). The helper must also list all edges, so that the verifier can ensure that
all T edges are from the input.

If the graph is not connected then the helper presents a connected componentL of the graph. Each node
is presented in lexicographic order, along with its label indicating whether ornot it is in L, and each edge
is presented along with the corresponding node labels. The verifier checks thatL 6= V, uses fingerprinting
to ensure no edge is omitted, and uses the multiset scheme of Lemma5.1 to ensure that the node labels are
consistent.

The(n1+α logn,n1−α logn)-scheme follows the same conceptual outline as above: ifG is connected, the
helper demonstrates this by providing a spanning tree; ifG is disconnected, the helper identifies a connected
component of the graph. In the first case, the helper provides a set ofedgesT claimed to be a spanning tree,
and the verifier must check that (1)T is spanning and that (2)T ⊆ E. Checking (1) is accomplished as in
the (mlogn,1) case, by appropriate labelling of theO(n) edges, withO(n) annotation. By Theorem5.2,
condition (2) can be checked with spaceO(n1−α logn) and annotationO(n1+α logn).

If G is disconnected, the helper presents a setL⊂V, L 6=V, and claims thatL is disconnected fromV \L.
Let A be the adjacency matrix ofG, and letx ∈ {0,1}n be the indicator vector ofL. To check thatL is as
claimed, it suffices for the verifier to computeAx, and check that the each non-zero entry ofAx corresponds
to vertices inL (intuitively, this means the setL′ of vertices at distance one fromL is contained inL). The
first step uses the integer matrix-vector multiplication scheme of [17, Theorem 4]. This allows the verifier
to ensure that the set{i : (Ax)i 6= 0} matchesL, via fingerprints.

For the lower bound, we reduce an instance ofDISJn,2 to connectivity of a graph withO(n) edges over
nodesv0,0 . . .v3,n: create edges(v j,0,v j,i) for j ∈ {0,2,3} and i ∈ [n]. Then if xi = 1, add edge(v0,i ,v1,i),
else add edge(v1,i ,v2,i); and if yi = 1, add edge(v1,i ,v3,i) else add edge(v2,i ,v3,i). The resulting graph is
connected only ifx andy are not disjoint. The result follows from Theorem4.3.
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