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Abstract

The polynomial Freiman-Ruzsa conjecture is one of the important conjectures in
additive combinatorics. It asserts than one can switch between combinatorial and alge-
braic notions of approximate subgroups with only a polynomial loss in the underlying
parameters. This conjecture has also already found several applications in theoretical
computer science. Recently, Tom Sanders proved a weaker version of the conjecture,
with a quasi-polynomial loss in parameters. The aim of this note is to make his proof
accessible to the theoretical computer science community, and in particular to people
who are less familiar with additive combinatorics.

1 Introduction

Let A ⊂ Fn2 . Its sumset A + A is defined as A + A = {a1 + a2|a1, a2 ∈ A}. It is straight-
forward to see that |A+A| = |A| if and only if A is an affine subspace of Fn2 . Thus, one may
think of subsets A for which |A + A| ≈ |A| as an approximate version of affine subspaces.
If |A + A| ≤ K|A| we say that A has doubling K and study the structure of sets of small
doubling. For the sake of simplicity of exposition, we focus in this note on subgroups of Fn2 .
We note that many of the results discussed here can be extended to vector spaces over larger
fields; to general abelian groups; and sometimes even to non-abelian groups.

Ruzsa [Ruz99], following previous work of Freiman [Fre73] who studied similar problems
over the integers, showed that sets of small doubling must be contained in subspaces of
small dimension. This bounds were later improved in a series of works [GR06, San08, GT09,
Kon08, EZ11]. In the following we denote by Span(A) the linear subspace spanned by A.

Theorem 1.1 (Freiman-Ruzsa Theorem in Fn2 ). Let A ⊆ Fn2 be a set such that |A + A| ≤
K|A|. Then |Span(A)| ≤ O(22K/K) · |A|.
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This bound is sharp, as can be seen from the following example. Let A = Fm2 ×
{e1, . . . , en} ⊂ Fm+n

2 . Then |A| = 2mn, K = |A + A|/|A| ≈ n/2 and |Span(A)| = 2n+m ≈
(22K/K)|A|. This shows that the ratio between |Span(A)| and |A| must depend exponen-
tially on the doubling of A. However, the above example suggests that maybe a refined
question, relating the ratio between the span and the size of large subsets of A, might have
better dependence on the doubling of A. This is captured by the Polynomial Freiman-Ruzsa
conjecture (PFR).

Conjecture 1.2 (Polynomial Freiman-Ruzsa conjecture). Let A ⊂ Fn2 be a set such that
|A + A| ≤ K|A|. Then there exists a subset A′ ⊂ A of size |A′| ≥ K−c|A| such that
|Span(A′)| ≤ Kc|A|, where c > 0 is an absolute constant.

The PFR conjecture plays a central role in additive combinatorics. The main reason is
that it allows one to switch between a combinatorial notion of approximate vector space
(that of having small doubling) and an algebraic notion (that of having small linear span)
with only a polynomial loss in the parameters. It has many equivalent formulations, we refer
the interested reader to a survey of Green [Gre05] which lists many of them. Also, Green and
Tao [GT09] and independently Lovett [Lov10] showed the the PFR conjecture is equivalent
to a polynomial bound for the inverse Gowers U3-norm.

The PFR conjecture has found already several diverse applications in computer science
as well:

1. Samorodnitsky [Sam07] gave an analysis of linearity testing for maps f : Fn2 → Fm2 . If
one assumes the PFR conjecture, his result improves to only suffer a polynomial loss
in the parameters.

2. Ben-Sasson and Zewi [BSZ11] used the PFR conjecture to construct two-source ex-
tractors from affine extractors.

3. Ben-Sasson, Lovett and Zewi [BSLZ11] used it to get the first sub-linear bounds on
the deterministic communication complexity of functions in terms of the rank of their
associated matrix.

4. Bhowmick, Dvir and Lovett [BDL12] used it to give super-polynomial lower bounds
on the block size of locally decodable codes arising from matching vector families.

The aim of this note is to give a detailed exposition of the following breakthrough result
of Sanders [San10], who proved a weaker version of the Freiman-Ruzsa conjecture with a
quasi-polynomial loss in parameters. As noted before, his result extends to more general
abelian groups, but we focus on Fn2 for simplicity of exposition.

Theorem 1.3 (Quasi-polynomial Freiman-Ruzsa theorem [San10]). Let A ⊂ Fn2 be a set
such that |A + A| ≤ K|A|. Then there exists a subset A′ ⊆ A of size |A′| ≥ K−O(log3K)|A|
such that |Span(A′)| ≤ KO(1)|A′|.

In fact, Sanders proved an even stronger result. For t ≥ 1 let tA = {a1 + . . . +
at|a1, . . . , at ∈ A} denote the t-sumset of A.
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Theorem 1.4 (Quasi-polynomial Bogolyubov-Ruzsa theorem [San10]). Let A ⊂ Fn2 be a
set such that |A + A| ≤ K|A|. Then there exists a linear subspace V ⊂ 4A such that
|V | ≥ K−O(log3K)|A|.

The deduction of Theorem 1.3 from Theorem 1.4 is standard given some basic tools
and results in additive combinatorics. Given Theorem 1.4, one may conjecture a polynomial
version of it, which would in particular imply in a similar way the polynomial Freiman-Ruzsa
conjecture.

Conjecture 1.5 (Polynomial Bogolyubov-Ruzsa conjecture). Let A ⊂ Fn2 be a set such that
|A+A| ≤ K|A|. Then there exists a linear subspace V ⊂ tA such that |V | ≥ K−c|A|, where
t ≥ 1, c > 0 are absolute constants.

We note that it is not clear whether Conjecture 1.5 is indeed stronger than Conjecture 1.2,
or whether one can deduce it assuming Conjecture 1.2.

1.1 Proof overview

We first show, using standard techniques in additive combinatorics, that

1. Theorem 1.3 follows from Theorem 1.4.

2. It suffices to prove Theorem 1.4 for ’large sets’ A ⊂ Fn2 for which |A| ≥ K−1 · 2n.

Explicitly, these reductions use a theorem of Ruzsa which bounds the size of |tA| for sets of
small doubling, and the notion of a Freiman-homomorphism. We thus assume from now on
that |A| ≥ K−1 · 2n. We then show that there exists a large set X ⊂ Fn2 such that tX ⊂ 4A
for t = O(logK). In fact, we will show a stronger property. For any x1, . . . , xt ∈ X,

Pr
a1,a2∈A

[a1 + a2 + x1 + . . .+ xt ∈ 2A] ≥ 0.9 . (1)

This utilizes an argument of Croot and Sisask [CS10]. The set X allows us to find a large
vector space V such that V ⊂ 4A. This is achieved by choosing V to be the subspace
orthogonal to the large Fourier coefficients of X. The proof of this latter claim is achieved by
applying (1) to randomly chosen x1, . . . , xt ∈ X and appealing to standard Fourier arguments
and Chang’s lemma.

Paper organization We give some preliminaries in Section 2. We establish the reductions
in Section 3. We prove the existence of the set X in Section 4. We conclude with the Fourier
argument in Section 5.

2 Preliminaries

Norms Let f : Fn2 → R be a function. For 1 ≤ p ≤ ∞, its `p norm is defined as

‖f‖p =
(
Ex∈Fn

2
[|f(x)|p]

)1/p
. Let f, g : Fn2 → R be functions. Their inner product is defined

as 〈f, g〉 = Ex∈Fn
2
[f(x)g(x)]. For 1 ≤ p, q ≤ ∞ such that 1/p+ 1/q = 1, the Hölder inequality

states that | 〈f, g〉 | ≤ ‖f‖p‖g‖q.
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Fourier analysis Let f : Fn2 → R be a function. Its Fourier coefficients are f̂(α) =

Ex∈Fn
2
[f(x)(−1)〈x,α〉] where α ∈ Fn2 . Parseval identity asserts that ‖f‖22 =

∑
α∈Fn

2
f̂(α)2.

For functions f, g : Fn2 → R their convolution f ∗ g : Fn2 → R is defined as (f ∗ g)(x) =

Ey∈Fn
2
f(y)g(x+ y). The Fourier coefficients of the convolution obey f̂ ∗ g(α) = f̂(α)ĝ(α).

3 Reductions

We show in this section that

1. Theorem 1.3 follows from Theorem 1.4.

2. It suffices to prove Theorem 1.4 for ’large sets’ A ⊂ Fn2 for which |A| ≥ K−1 · 2n.

3.1 First reduction

We first show how Theorem 1.3 follows from Theorem 1.4. This requires the following
theorem of Plünnecke [Plu69] and Ruzsa [Ruz99], showing that if A has small doubling then
tA cannot be too large.

Theorem 3.1 ([Plu69, Ruz99]). Let A ⊂ Fn2 be a set such that |A + A| ≤ K|A|. Then for
any t ≥ 1 we have that |tA| ≤ Kt|A|.

Let A ⊂ Fn2 be a set such that |A + A| ≤ K|A|. Theorem 1.4 asserts that there exists a
linear subspace V ⊂ 4A of size |V | ≥ δ|A| where δ = K−O(log3K). Let S ⊂ A be maximal
such that elements of S fall in different cosets of V ; that is, s + s′ /∈ V for all s, s′ ∈ S. We
claim that |S| ≤ K5/δ, since

|S||V | = |S + V | = |A+ V | ⊂ |A+ 4A| = |5A| ≤ K5|A|,

where the last inequality follows from Theorem 3.1. Let A′ = A ∩ (V + s) where s ∈ S is
chosen to maximize |A′|. We have that |A′| ≥ |A|/|S| = K−O(log3)K |A|, and that |Span(A′)| ≤
2|V | ≤ 2K5|A′|.

3.2 Second reduction

We next show it suffices to prove Theorem 1.4 for large sets. This requires the notion of a
Freiman homomorphism. Let A ⊂ Fn2 . A linear map φ : Fn2 → Fm2 is said to be a Freiman
homomorphism of A of order t if φ is injective on tA. That is, for any a1, . . . , at, b1, . . . , bt ∈ A,

φ(a1) + . . .+ φ(at) = φ(b1) + . . .+ φ(bt) ⇒ a1 + . . .+ at = b1 + . . .+ bt.

The following claim is very useful.

Claim 3.2. Let A ⊂ Fn2 . Let m be minimal such that a Freiman homomorphism φ : Fn2 → Fm2
of A of order t exists. Then φ(2tA) = Fm2 .
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Proof. We first note that m is well defined since for m = n the identity map is a Freiman
homomorphism of all orders. Assume by contradiction that φ(2tA) ( Fm2 . We will show
that m cannot be minimal. Indeed, there must exist x ∈ Fm2 \ φ(2tA). Let ψ : Fm2 → Fm−1

2

be a surjective linear map which sends x to zero, and define φ′ = ψ ◦ φ. We claim that φ′ is
also a Freiman homomorphism of A of order t, which contradicts the minimality of m. To
show that, we need to show that φ′ is injective on tA. If this is not the case, then there exist
distinct a, b ∈ tA such that φ′(a) = φ′(b), that is ψ(φ(a)) = ψ(φ(b)). Now, by definition of
ψ this can only occur if φ(a) = φ(b) or φ(a) = φ(b) + x. The first case is ruled out since we
assumed φ is injective on tA, hence by the linearity of φ we have that x = φ(a+ b) ∈ φ(2tA),
violating our initial assumption.

We now show it suffices to prove Theorem 1.4 for large sets. We will assume throughout
that 0 ∈ A, which can be assumed without loss of generality by replacing A with A + a
for some a ∈ A. Let A ⊆ Fn2 be such that |A + A| ≤ K|A|. Let φ : Fn2 → Fm2 be a
minimal Freiman homomorphism of A of order 12 and define A′ = φ(A). We note that by
the assumption that 0 ∈ A, we have that φ is injective on tA for all t ≤ 12.

We first note that A′ also has doubling K, since |A′| = |A| and |A′ + A′| = |A + A|
because by assumption φ is injective on both A and 2A. This implies that A′ is large in Fm2
since

|Fm2 | = |24A′| ≤ K24|A′|,

where the equality follows from Claim 3.2 and the inequality from Theorem 3.1. We can
thus apply the assumed Theorem 1.4 for large sets on A′. The theorem asserts the existence
of a linear subspace V ′ ⊂ 4A′ of size V ′ ≥ δ|A′| where δ = exp(−O(log4(K24))). Since
φ is injective on 12A we can define a local inverse φ−1 : 12A′ → 12A. In particular, set
V = φ−1(4A′) ⊂ 4A. We will show that V is also a linear subspace, thus establishing the
theorem for A.

We will use the fact that the property of being a linear subspace can be verified by
local tests. Specifically, we need to show that for any x, y ∈ V we have that x + y ∈ V .
Let x′ = φ(x), y′ = φ(y). Then x′, y′ ∈ V ′ and hence z′ = x′ + y′ ∈ V ′ since V ′ is a
linear subspace. Let z = φ−1(z′) ∈ V . We need to show that x + y = z. Note that since
x, y, z ∈ V ⊂ 4A then x+y+z ∈ 12A. However, φ(x+y+z) = x′+y′+z′ = 0 and since φ is
injective on 12A and since 0 ∈ 12A is mapped by φ to zero, we must have that x+y+z = 0.

4 Existence of a large near-invariant set

We establish the following lemma in this section

Lemma 4.1. Let A ⊂ Fn2 be such that |A| ≥ K−1 · 2n. Set t = O(logK). Then there exist
X ⊂ Fn2 of size |X| ≥ K−O(log3(K)) · 2n such that for any x1, . . . , xt ∈ X,

Pr
a1,a2∈A

[a1 + a2 + x1 + . . .+ xt ∈ 2A] ≥ 0.9 .
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We first fix some notations. For a set A ⊂ Fn2 let 1A : Fn2 → {0, 1} denote the in-
dicator function for A, and ϕA(x) = 2n

|A|1A(x) denote the normalized indicator for which

Ex∈Fn
2
[ϕA(x)] = 1. Given two functions f, g : Fn2 → R define their convolution by

(f ∗ g)(x) = Ey∈Fn
2
[f(y)g(x + y)] and their inner product by 〈f, g〉 = Ex∈Fn

2
[f(x)g(x)]. Note

that (ϕA ∗ f)(x) = Ea∈A[f(x+ a)] is a ’smoothing’ of the function f by a random shift from
a set A. For an element x ∈ X we shorthand ϕx = ϕ{x} and note that (ϕx ∗ f)(y) = f(x+ y)
is a shift of f by x. In these notations, for any x ∈ Fn2 we have that

Pr
a1,a2∈A

[a1 + a2 + x ∈ 2A] = 〈ϕx ∗ ϕA ∗ ϕA,12A〉 = 〈ϕx ∗ ϕA ∗ 12A, ϕA〉 . (2)

Note that for x = 0,

〈ϕA ∗ 12A, ϕA〉 = Pr
a1,a2∈A

[a1 + a2 ∈ 2A] = 1. (3)

We will show that there exists a large set X ⊂ Fn2 so that for all x ∈ tX, ϕx ∗ϕA ∗ 12A ≈
ϕA ∗ 12A. In particular, this will show that (2) ≈ (3) and would imply Lemma 4.1. In order
to do so, we will use the following lemma of Croot and Sisask [CS10]. The lemma shows
that if we take a bounded function f and smooth it by a random shift from a large set A,
then the resulting function will be nearly invariant to many shifts.

Lemma 4.2. Let A ⊂ Fn2 be a set such that |A| ≥ K−1 · 2n. Let f : Fn2 → [0, 1] be a
function. Let p ≥ 1 and ε > 0 be parameters. Then there exists a set X ⊂ Fn2 of size
|X| ≥ K−O(p/ε2) · 2n such that for any x ∈ X,

‖ϕx ∗ ϕA ∗ f − ϕA ∗ f‖p ≤ ε.

We first show how Lemma 4.1 follows from 4.2. Set f = 12A, p = logK, ε = 1/(20t) =
O(1/ logK) in Lemma 4.2 so that |X| ≥ K−O(log3(K)) · 2n as claimed. We first claim that for
any x ∈ tX (where t = O(logK)) we have that

‖ϕx ∗ ϕA ∗ 12A − ϕA ∗ 12A‖p ≤ tε. (4)

In order to establish (4) let x = x1 + . . . + xt where x1, . . . , xt ∈ X and expand it as a
telescopic sum. Then

‖ϕx1+...+xt ∗ ϕA ∗ 12A − ϕA ∗ 12A‖p

≤
t∑
i=1

‖ϕx1+...+xi
∗ ϕA ∗ 12A − ϕx1+...+xi−1

∗ ϕA ∗ 12A‖p

=
t∑
i=1

‖ϕxi
∗ ϕA ∗ 12A − ϕA ∗ 12A‖p ≤ tε,

where we used the fact that the `p norm is invariant under shifts, that is ‖ϕx ∗g‖p = ‖g‖p for
all elements x ∈ Fn2 and functions g : Fn2 → R. By our setting of ε = 1/(20t) = O(1/ logK),
we have that for all x ∈ tX

‖ϕx ∗ ϕA ∗ 12A − ϕA ∗ 12A‖p ≤ tε ≤ 1/20. (5)
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We next apply Hölder inequality. We have that

| 〈ϕx ∗ ϕA ∗ 12A − ϕA ∗ 12A, ϕA〉 | ≤ ‖ϕx ∗ ϕA ∗ 12A − ϕA ∗ 12A‖p‖ϕA‖q (6)

where q = p/(p− 1) is the dual of p. By the choice of p = logK we have that

‖ϕA‖q = (2n/|A|)1−1/q ≤ K1/(logK−1) ≤ 2. (7)

Combining (2), (3), (6) and (7) we conclude that for any x ∈ tX,

Pr
a1,a2∈A

[a1 + a2 + x ∈ 2A] = 〈ϕx ∗ ϕA ∗ 12A, ϕA〉

= 1− 〈ϕA ∗ 12A − ϕx ∗ ϕA ∗ 12A, ϕA〉 ≥ 0.9 (8)

which concludes the proof of Lemma 4.1. We now move to prove Lemma 4.2. The proof
will use the Marcinkiewicz-Zygmund inequality [MZ37], which is a generalization of the
Khintchine inequality.

Theorem 4.3 (Marcinkiewicz-Zygmund inequality). Let X1, . . . , X` be independent, mean
zero random variables with E|Xi|p <∞. Then for any p ≥ 1,

E [|X1 + . . .+X`|p] ≤ (Cp)p/2 · E
[(
|X1|2 + . . .+ |X`|2

)p/2]
,

where C > 0 is an absolute constant.

We will actually only need the following corollary for bounded random variables.

Corollary 4.4. Let X1, . . . , X` be independent, mean zero random variables with |Xi| ≤ 1.
Then for any p ≥ 1,

E
[∣∣∣∣1` (X1 + . . .+X`)

∣∣∣∣p] ≤ (Cp/`)p/2.

We now turn to prove Lemma 4.2.

Proof of Lemma 4.2. Let A ⊂ Fn2 be a set of size |A| ≥ K−1 · 2n and let f : Fn2 → [0, 1] be a
function. For ` to be determined later let a1, . . . , a` be uniformly chosen elements from A.
We first claim if ` is chosen large enough, then ϕA ∗f can be approximated by 1

`

∑`
i=1 ϕai

∗f .
That is, we approximate the ’smoothing’ of f with a random shift from A, by a random shift
from the empirical sample a1, . . . , a`. Explicitly, we will show that for ` = O(p/ε2) we have
that

Pr
a1,...,a`∈A

[
‖ϕA ∗ f −

1

`

∑̀
i=1

ϕai
∗ f‖p ≤ ε/2

]
≥ 1/2. (9)

In order to show (9), we will establish that

Ea1,...,a`∈A

[
‖ϕA ∗ f −

1

`

∑̀
i=1

ϕai
∗ f‖pp

]
≤ (Cp/`)p/2, (10)
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where C > 0 is an absolute constant, and then apply the Markov bound. Now, (10) follows
from Corollary 4.4. Define Xi = ϕA ∗ f −ϕai

∗ f so that Xi(x) = Ea∈A[f(x+ a)]− f(x+ ai).
Then

‖ϕA ∗ f −
1

`

∑̀
i=1

ϕai
∗ f‖pp = Ex∈Fn

2

[∣∣∣∣1` (X1(x) + . . .+X`(x))

∣∣∣∣p] ,
and the claim follows by averaging over a1, . . . , a` and applying Corollary 4.4.

Let S(A) ⊂ (Fn2 )` denote the set of (a1, . . . , a`) for which ‖ϕA∗f− 1
`

∑`
i=1 ϕai

∗f‖p ≤ ε/2.
We have just shown that by our choice of `, at least half the sequences (α1, . . . , α`) ∈ A`

have this property. Hence

|S(A)| ≥ 0.5|A|` ≥ 0.5K−` · 2n` . (11)

Applying the same argument to any shift A+x of A we deduce that S(A+x) ≥ 0.5K−` ·2n`
as well. Hence, by an averaging argument there must exist a subset X ′ ⊂ Fn2 of size |X ′| ≥
0.5K−` · 2n and a sequence (a1, . . . , a`) ∈ (Fn2 )` such that (a1, . . . , a`) ∈ S(A + x) for all
x ∈ X ′. But then we get that for all x′, x′′ ∈ X ′ we have that

‖ϕA+x′ ∗ f − ϕA+x′′ ∗ f‖p ≤ ‖ϕA+x′ ∗ f −
1

`

∑̀
i=1

ϕai
∗ f‖p + ‖ϕA+x′′ ∗ f −

1

`

∑̀
i=1

ϕai
∗ f‖p ≤ ε.

Let x′ ∈ X ′ be arbitrary and set X = X ′ + x′. We conclude that for any x ∈ X,

‖ϕA+x ∗ f − ϕA ∗ f‖p = ‖ϕA+x+x′ ∗ f − ϕA+x′ ∗ f‖p ≤ ε.

5 A Fourier analytic argument

Let A ⊂ Fn2 be a set such that |A| ≥ K−1 · 2n. We showed in Lemma 4.1 that there exists a
set X ⊂ Fn2 of size |X| ≥ K−O(log3K) · 2n such that for any x ∈ tX, where t = O(logK), we
have that

Pr
a1,a2∈A

[a1 + a2 + x ∈ 2A] ≥ 0.9 . (12)

We now show that the linear subspace V ⊂ Fn2 which is orthogonal to the large Fourier
coefficients of X is contained in 4A. In order to show that, we apply (12) for x = x1 + . . .+xt
where x1, . . . , xt ∈ X are chosen uniformly, and deduce that

Pr
a1,a2∈A,x1,...,xt∈X

[a1 + a2 + x1 + . . .+ xt ∈ 2A] ≥ 0.9 . (13)

We shorthand for a set X ⊂ Fn2 by X̂(α) the Fourier coefficients of ϕX ,

X̂(α) = ϕ̂X(α) = Ex∈X [(−1)〈α,x〉].
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Note that X̂(0) = 1. The spectrum of a set X is the set of its large Fourier coefficients.
Explicitly, its γ-spectrum for 0 < γ < 1 is defined as

Specγ(X) = {α ∈ Fn2 : |X̂(α)| ≥ γ}.

Parseval’s identity allows one to bound |Specγ(X)| ≤ (2n/|X|) · (1/γ)2. A better bound on
the dimension of Specγ(X) is given by Chang’s theorem [Cha02].

Theorem 5.1 (Chang). Let X ⊆ Fn2 . Then dim(Specγ(X)) ≤ 8 log(2n/|X|) · (1/γ)2.

Define the vector space V ⊆ Fn2 as the orthogonal space to Spec1/2(X).

V = Spec1/2(X)⊥ = {v ∈ Fn2 : 〈v, α〉 = 0 ∀α ∈ Spec1/2(X)}.

Theorem 5.1 implies that |V | ≥ (|X|/2n)32 ·2n = K−O(log3K) ·2n. We next show that V ⊂ 4A.
We will do so by showing that

Pr[a1 + a2 + x1 + . . .+ xt + v ∈ 2A] ≈ Pr[a1 + a2 + x1 + . . .+ xt ∈ 2A] ≥ 0.9,

where a1, a2 ∈ A, x1, . . . , xt ∈ X and v ∈ V are chosen uniformly. In particular we will show
that

Pr[a1 + a2 + x1 + . . .+ xt + v ∈ 2A] ≥ 0.8 .

Hence, there exists a fixing for b = a1 + a2 + x1 + . . .+ xt such that |V ∩ (2A+ b)| ≥ 0.8|V |.
This implies that V ⊂ 4A: every element v ∈ V can be written in |V |/2 disjoint ways as
v = v1 + v2 where v1, v2 ∈ V , and at least for one of these it must hold that v1, v2 ∈ 2A+ b
and hence v = v1 + v2 ∈ 4A.

To conclude the proof, we will show that

|Pr[a1 + a2 + x1 + . . .+ xt + v ∈ 2A]− Pr[a1 + a2 + x1 + . . .+ xt ∈ 2A]| ≤ 0.1,

where again a1, a2 ∈ A, x1, . . . , xt ∈ X and v ∈ V are chosen uniformly. We now apply
Fourier analysis. We can rewrite

Pr
a1,a2∈A,x1,...,xt∈X

[a1 + a2 + x1 + . . .+ xt ∈ 2A] =
∑
α∈Fn

2

Â(α)2X̂(α)t1̂2A(α). (14)

and

Pr
a1,a2∈A,x1,...,xt∈X,v∈V

[a1 + a2 + x1 + . . .+ xt + v ∈ 2A] =
∑
α∈Fn

2

Â(α)2X̂(α)tV̂ (α)1̂2A(α). (15)

The Fourier coefficients of V are simple to describe since it is a linear subspace. We have
that V̂ (α) = 1 if α ∈ V ⊥ and that V̂ (α) = 0 otherwise. Thus

Pr[a1 + a2 + x1 + . . .+ xt ∈ 2A]− Pr[a1 + a2 + x1 + . . .+ xt + v ∈ 2A]

=
∑
α/∈V ⊥

Â(α)2X̂(α)t1̂2A(α). (16)
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We now bound (16). By the definition of V , we have that if α /∈ V ⊥ then α /∈ Spec1/2(X),
and hence

|X̂(α)|t ≤ 2−t.

Moreover, |1̂2A(α)| ≤ 1 and∑
α/∈V ⊥

Â(α)2 ≤
∑
α∈Fn

2

Â(α)2 = Ex∈Fn
2
[ϕA(x)2] = K,

Thus we conclude since

|Pr[a1 + a2 + x1 + . . .+ xt ∈ 2A]− Pr[a1 + a2 + x1 + . . .+ xt + v ∈ 2A]| ≤ 2−tK ≤ 0.1

by choosing t = log(10K).
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