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Abstract

The problem of monotonicity testing of the boolean hypercube is a classic well-studied, yet
unsolved question in property testing. We are given query access to f : {0, 1}n 7→ R (for some
ordered range R). The boolean hypercube Bn has a natural partial order, denoted by ≺ (defined
by the product of coordinate-wise ordering). A function is monotone if all pairs x ≺ y in Bn,
f(x) ≤ f(y). The distance to monotonicity, εf , is the minimum fraction of values of f that
need to be changed to make f monotone. It is known that the edge tester using O(n log |R|/ε)
samples can distinguish a monotone function from one where εf > ε. On the other hand, the
best lower bound for monotonicity testing is min(|R|2, n). This leaves a quadratic gap in our
knowledge, since |R| can be 2n.

We prove that the edge tester only requires O(n/ε) samples (regardless of R), resolving
this question. Our technique is quite general, and we get optimal edge testers for the Lips-
chitz property. We prove a very general theorem showing that edge testers work for a class of
“bounded-derivative” properties, which contains both monotonicity and Lipschitz.

1 Introduction

Given a function f : {0, 1}n 7→ R, what can we learn about the properties of f without reading all
of f? The field of property testing [RS96, GGR98] formalizes this question by dealing with relaxed
decision problems. Conventionally, the distance ∆(f, g) between two functions f and g is defined to
be the fraction of domains points where f and g differ. Formally, ∆(f, g) = |{x|f(x) 6= g(x)}|/2n,
the Hamming distance between these functions. Consider some property P of functions over the
boolean hypercube, which is some subset of the functions over the boolean hypercube with range
R. We define the distance between f and P, denoted by εf,P to be ming∈P ∆(f, g). Essentially, this
is the minimum “amount” by which f must be changed to have the property P. Given a parameter
ε ∈ (0, 1) and query access to the function f , the classic property testing question is to design a
randomized algorithm for the following problem. If εf,P = 0 (meaning f ∈ P) “accept”, and if
εf,P > ε “reject”. If εf,P ∈ (0, ε), then any answer is allowed. The aim is to get a running time of
poly(n/ε) (or at least, poly(n) for constant ε). Such an algorithm is called a property tester for P.

An important property studied in this framework is that of monotonicity. Let xi be the ith
coordinate of a point x ∈ {0, 1}n. We define a partial order: x � y, if ∀i ∈ [n], xi ≤ yi. Assume
that the range R is totally ordered, so we can think of R ⊆ R. A function is monotone if it satisfies
∀x ≺ y, f(x) ≤ f(y). An intriguing feature of this property is that it cannot be tested with a
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constant number of samples. Monotonicity is often studied in the context of different ranges. The
tester of choice is usually the edge tester. This simply samples a uniform random point x, flips
a uniform random coordinate to get y, and checks if f(x), f(y) violate monotonicity. How many
pairs do we need to sample to get a bonafide monotonicity tester? When the range is boolean,
Goldreich et al [GGL+00] prove that O(n/ε) samples suffice. For an arbitrary range R, Dodis et al
[DGL+99] shows that O(n log |R|/ε) samples are enough for a tester. In the worst case, R = 2n, so
the running time is O(n2/ε). In a recent breakthrough, Blais, Brody, and Matulef [BBM11] prove
that Ω(min(n, |R|2)) samples are required to test monotonicity. (This holds even for adaptive, two-
sided testers.) The main question is to give an optimal bound for monotonicity testing over the
hypercube. This is widely regarded as one of the outstanding open problems in property testing,
which has stood unsolved for almost a decade.

We resolve this question here, and show the edge tester is truly optimal (when |R| ≥
√
n).

Theorem 1. Let f : {0, 1}n 7→ R. The edge tester with query complexity O(n/ε) is a valid property
tester for monotonicity.

Our techniques are quite general and also apply to problem of testing Lipschitz functions,
introduced by Jha and Raskhodnikova [JR11]. A function f : {0, 1}n 7→ R is called c-Lipschitz if
for all x, y, |f(x)− f(y)| ≤ c‖x− y‖1. The edge tester for this property queries an adjacent x and
y and checks if |f(x)− f(y)| ≤ c. It was shown that for the range R = δZ, the edge tester runs in
O(n2/(δε))1. Our methods provide an optimal bound for Lipschitz-testing for all ranges. A lower
bound in [JR11] shows that this cannot be improved.

Theorem 2. Let f : {0, 1}n 7→ R. The edge tester with query complexity O(n/ε) is a valid property
tester for c-Lipschitz.

When functions of the form f : {0, 1}n 7→ R are considered, distance is considered only with
respect to functions having this range. We are considering a larger range R, so how does that
affect our theorems? Note that the distance to a property only becomes smaller on considering a
larger range. The edge tester is insensitive to the range of the function, so our theorems are most
certainly valid when we measure distance with respect to the smaller range R.

1.1 Edge testers for the generalized Lipschitz property

We state our main technical result in this section. Let Bn := {0, 1}n and Hypn = (Bn, H) be the
undirected graph where H = {(x, y) : ||x− y||1 = 1}. Given x, y ∈ B, we say x � y if xi ≤ yi for all
1 ≤ i ≤ n. We will be working with functions f : B 7→ R defined on the n-dimensional hypercube.

Definition 1. Let β > α be in R. A function f : Bn 7→ R is (α, β)-Lipschitz if: ∀(x, y) ∈ H, where
x ≺ y, α ≤ f(y)− f(x) ≤ β. The set (or alternately, the property) of (α, β)-Lipschitz functions is
denoted by Lα,β.

This is a general class of properties: monotonicity is precisely the (0,∞)-Lipschitz property,
and the usual definition of c-Lipschitz is that of (−c,+c)-Lipschitz. (If the reader is uncomfortable
with the choice of β as ∞, β can be thought of as much larger than any value in f .) We now give
a laundry list of fairly standard property testing definitions that make it convenient to express our
main result.

Definition 2. • The distance to being (α, β)-Lipschitz is ming∈Lα,β ∆(f, g). We use εα,β,f to
denote this quantity.

1One can get a better bound of O(nD/(δε)), where D is a bound on range of values that f takes.
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• A violated edge for Lα,β is an edge (x, y) ∈ H (x ≺ y) such that f(y)− f(x) /∈ [α, β].
• The Lα,β edge tester queries (the endpoints of) a uniform random edge of Hypn and rejects

f if the edge is violated.

Our main result can now be succinctly stated as follows.

Theorem 3. Let f : {0, 1}n 7→ R. There are at least εα,β,f2n−1 violated edges for Lα,β.

A standard corollary of this theorem gives an optimal property tester for Lα,β. We provide
a proof for completeness. Theorem 1 and Theorem 2 follow directly by setting the property Lα,β
appropriately.

Corollary 4. The Lα,β edge tester independently invoked O(n/ε) times will always accept a function
f ∈ Lα,β and, with probability > 2/3, will reject f such that εα,β,f > ε.

Proof. The Lα,β edge tester never rejects a function in Lα,β. Suppose εα,β,f > ε. By Theorem 3,
there are at least ε2n violated edges for Lα,β in f . The total number of edges in Hypn is n2n−1,
so the fraction of violated edges is at least ε/2n. The probability that one invocation of the edge
tester rejects is at least ε/2n. The probability that 4n/ε independent invocations of the edge tester
does not reject is at most (1− ε/2n)4n/ε < 1/3.

1.2 Related work

The field of property testing has a long history, starting from the seminal papers of Rubinfeld and
Sudan [RS96] and Goldreich, Goldwasser, and Ron [GGR98]. The property of linearity is arguably
the first property over the hypercube studied in this context [BLR93]. We refer the reader to
surveys [Fis01, Ron09]. We go into detail here on monotonicity results only over the boolean
hypercube. The study of monotonicity was initiated by Goldreich et al [GGL+00], who proved that
edge tester only needs O(n/ε) samples to test monotonicity on the boolean range. Using a clever
range reduction technique, Dodis et al [DGL+99] showed that this tester worked for general range
R, albeit with a running time of O(n(logR)/ε).

Since then, it has been open whether any tester can beat this bound, and specifically whether
the edge tester can be shown to be better. This problem has been fairly well studied [GGL+00,
DGL+99, LR01, FLN+02, Bha, BCGSM10, BBM11]. The best lower bound for the boolean range is
Ω(
√
n/ε) proven by Fischer et al[FLN+02]. This was improved to Ω(n/ε) by Briët et al [BCGSM10]

for large ranges, when the tester is non-adaptive with one-side error. Blais, Brody, and Matulef
[BBM11] prove an Ω(min(n, |R|2)) using communication complexity arguments for general testers.
Other posets (like the total order) have been studied in these as well as many other papers [EKK+00,
AC06, Fis04, HK08, PRR06, ACCL06, BRW05, BGJ+09].

Jha and Raskhodnikova [JR11] initiate the study of Lipschitz properties from a tester perspec-
tive. They showed that the edge tester works when the domain is discrete, giving a bound of
O(n2/(δε)) (in the worst case). A lower bound of Ω(n), using communication complexity ideas,
was also shown.

1.3 Main ideas

The general challenge of property testing is to relate the tester behavior to the distance to the
property. Consider monotonicity. We want to show that a large distance to monotonicity implies
many violated edges. Most current analyses of the edge tester go via what we could call the
contrapositive route. If there are few violated edges in f , then we wish to show the distance to
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monotonicity is small. Since there are few violated edges, let us actually modify f and make it
monotone. If we can charge our changes to the violated edges, then we have a proof. There is an
inherently “constructive” viewpoint to this: the proof specifies a method to convert non-monotone
functions to monotone ones.

Implementing this becomes difficult as the range becomes large, and bounds degrade with R.
A non-constructive approach may give more power, but how do we get a handle on the distance?
The violation graph provides a method. The violation graph has an edge between any pair of
comparable hypercube vertices (x, y) (x ≺ y) if f(x) > f(y). The size of the minimum vertex cover
is exactly εf2n, and maximal matchings in the graph have size at least εf2n−1 [DGL+99]. Can
this imply that there are many violated edges? Lehman and Ron [LR01] look at this view. The
monotonicity testing problem is reduced to very interesting routing problems on the hypercube.
Briët et al [BCGSM10] prove lower bounds for these routing problems showing that this approach
has fundamental limitations. In these reductions, the function values are altogether ignored, so
some of the structure of monotonicity is given up for the sake of clean combinatorial problems.

Our proof is intimately connected with the actual function values and is non-constructive.
The key insight is to consider a weighted violation graph. The weight of edge (x, y) (x ≺ y) is
f(x)− f(y). This can be thought of as a measure of the magnitude of this violation. We now look
at the maximum weighted matching M in the violation graph. Naturally, this is maximal, so we
know it has at least εf2n−1 edges.

Assume that all function values are unique. Each of the pairs in M will be uniquely identified
with a violated edge (not quite, but it is not far from the truth). Consider a pair in M (x, y) that
“crosses” the r-th dimension. This means that x and y differ in their rth bit. Let us try to find a
violated edge in the rth dimension associated with it. This will be done by trying to increase the
matching weight by replacing pairs. Since this is not possible, we will gain structural information
about these pairs.

Now for the magic. Let y′ be obtained by flipping the rth bit of yr (set x ≺ y, so y′r = 0). We have
x ≺ y′. If f(y′) > f(y), we are done. Suppose not, so f(y′) < f(y) and f(x)− f(y′) > f(x)− f(y).
If we could match (x, y′) instead of (x, y), the matching weight would go up! Because M has
maximum weight, y′ itself must be present in a matched pair (y′, y′′). Furthermore, we can show
that y′ � y′′. If not, then f(y′) − f(y′′) > 0 (since (y′, y′′) is a violation). So f(x) − f(y′′) >
[f(x)− f(y)] + [f(y′)− f(y′′)]. We can replace (x, y) and (y′, y′′) in the matching by the single pair
(x, y′′) and increase the weight, contradicting the maximality of M . Observe how the maximality
of M allows us to make many arguments about these pairs and incident edges.

So we have pairs (x, y), (y′, y′′), where y′r = y′′r = 0 (and y′′ ≺ y′). We now flip the rth bit of
y′′ to get z, where zr = 1. We can show that z ≺ y. (The interested reader is recommended to
prove this, to get a feel for the argument.) So we could try to match (x, y′) and (y′′, z), and gain
some more properties of these pairs. And so the argument proceeds. We keep alternately following
pairs in M and edges crossing the rth dimension, and we show that eventually a violated edge is
encountered. Furthermore, starting from a different pair of M , we prove that a different violated
edge is reached.

But what about the generalized Lipschitz property? It turns out the basic ideas still work,
despite the fact that monotonicity has an inherent directionality, making for easier proofs. The
weights of the violation graph measure how much pairs violates the (α, β)-Lipschitz condition. The
charging of pairs of M crossing the rth-dimension to violated edges goes along the similar lines,
with a lot more notation. Many arguments that were somewhat trivial or easy for monotonicity
require more work now. These also involve some monotonous case analyses, thereby showing us
that monotonicity is a fundamental aspect of these proofs.
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1.4 Some preliminaries

We will focus on a fixed dimension size n and a fixed property Lα,β. For ease of notation, we will
drop all these sub/superscripts. We use B for Bn, Hyp for Hypn, and H for the edges of Hyp. It
will be convenient to assume that α + β ≥ 0. This is no loss of generality. The (α, β)-Lipschitz
property asserts that for every (x, y) ∈ H, x ≺ y, f(y) − f(x) ∈ [α, β]. This is equivalent to
f(x)− f(y) ∈ [−β,−α]. This means that Lα,β is the same as L−β,−α on the “reversed” version of
Hyp (where edges are directed in the opposite direction).

2 A pseudo-distance for Lα,β
We begin by defining a weighted graph G = (B, E). This is just a bi-directional version of Hyp, so
E contains directed edges of the form (x, y), where ‖x− y‖1 = 1. The length of edge (x, y) is gives
as follows. If x ≺ y, the length is −α. If x � y, the length is β.

Definition 3. The pseudo-distance d(x, y) between x, y ∈ B is the shortest path length from x to y
in G.

Even though edges have negative lengths, we will shortly show that this is well-defined. This
function is asymmetric, meaning that d(x, y) and d(y, x) are possibly different. Furthermore, d(x, y)
can be negative, so this does not truly qualify to be a distance (in the usual parlance of metrics).
Nonetheless, d(x, y) has many useful properties, which can be proven by expressing it in a more
convenient form. Given any x, y ∈ B, we define hcd(x, y) to be the z ∈ B maximizing ||z||1 such
that x � z and y � z. That is, z is the highest common descendant of x and y. Note that if x � y
then hcd(x, y) = y.

Claim 5. For any x, y ∈ B, d(x, y) = β||x− hcd(x, y)||1 − α||y − hcd(x, y)||1.

Proof. Let us partition the coordinate set [n] = A t B t C with the following property. For all
i ∈ A, xi = 1, yi = 0. For all i ∈ B, xi = 0, yi = 1, and for all i ∈ C, xi = yi. Any path in G can
be thought of as sequence of coordinate increments and decrements. Any path from x to y must
finally increment all coordinates in A, decrement all coordinates in B, and preserve coordinates in
C. Furthermore, any increments adds −α to the path length, and a decrement adds β.

Fix a path, and let Ii and Di denote the number of increments and decrements in dimension.
For i ∈ A, Di = Ii + 1, for i ∈ B, Ii = Di + 1, and for i ∈ C, Ii = Di. The path length is given by∑

i∈A
(βDi − αIi) +

∑
i∈B

(βDi − αIi) +
∑
i∈C

(βDi − αIi)

=
∑
i∈A

[β + Ii(β − α)] +
∑
i∈B

[−α+Di(β − α)] +
∑
i∈C

Ii(β − α)

≥ β|A| − α|B|

For the inequality, we use the fact that β ≥ α. Hence, d(x, y) ≥ β|A| − α|B|. Let z = hcd(x, y).
Note that for i ∈ A ∪ B, zi = 0, and for i ∈ C, zi = xi = yi. Consider the path from x that only
decrements to reach z, and then only increments to reach y. The length of this path is exactly
β|A| − α|B|. Furthermore, |A| = ‖x− z‖1 and |B| = ‖y − z‖1. This completes the proof.

It is instructive to keep in mind what this distance translates to in the case of monotonicity and
Lipschitz. In the case of monotonicity (when α = 0, β = ∞), we get d(x, y) = ∞ unless x ≺ y
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in which case d(x, y) = 0. In the case of Lipschitz, the distance d(x, y) is precisely the Hamming
distance d(x, y) = hcd(x, y).

The next two claims establish some properties of the pseudo-distance.

Claim 6. (Linearity) If x � z � y or x ≺ z ≺ y, d(x, y) = d(x, z) + d(z, y).
(Triangle Inequality) For any x, y, z ∈ B, d(x, y) ≤ d(x, z) + d(z, y).
(Projection)Let x, y ∈ B such that xr = yr. For x′ = x ⊕ er and y′ = y ⊕ er, d(x, y) = d(x′, y′).
(Positivity) If d(x, y) = 0, then d(y, x) > 0.

Proof. The linearity property follows from Claim 5. Suppose x � z � y. We have hcd(x, y) = y,
hcd(x, z) = z, and hcd(y, z) = y. Hence, d(x, y) = β||x− y||1 = β(||x− z||1 + ||z − y||1) = d(x, z) +
d(z, y). The other case is analogous.

The triangle inequality follows because d(x, y) is a shortest path length. For the projection
property, let z = hcd(x, y) and let z′ = hcd(x′, y′). Note that z and z′ also differ only in the
rth coordinate. Thus, ||x− z||1 = ||x′ − z′||1 and ||y − z||1 = ||y′ − z′||1. We have d(x, y) =
β||x− z||1 − α||y − z||1 = β||x′ − z′||1 − α||y′ − z′||1 = d(x′, y′). Suppose the positivity property
does not hold. So d(x, y) = 0 and d(y, x) ≤ 0. Hence, β||x− z||1 = α||y − z||1 and β||y − z||1 ≤
α||x− z||1. Adding, we get β ≤ α, a contradiction.

We also have a generalization of the linearity property that will be useful to state explicitly. We
will make use of this in one of our main proofs.

Claim 7. Suppose x and y differ in the rth coordinate. Let x̂ = x⊕ er.
1. If xr = 0: d(x, y)− d(x̂, y) = −α and d(y, x)− d(y, x̂) = β.
2. If xr = 1: d(x, y)− d(x̂, y) = β and d(y, x)− d(y, x̂) = −α.

Proof. First, let us assume that xr = 0 (so yr = 1). Let z = hcd(x, y) and ẑ = hcd(x̂, y). The
coordinates of z and ẑ are the same except for the rth one. Note that the rth coordinate of z must
be zero, but that of ẑ is 1. We have ||x− z||1 = ||x̂− ẑ||1 but ||y − z||1 = ||y − ẑ||1 + 1. Hence,
d(x, y)− d(x̂, y) = −α and d(y, x)− d(y, x̂) = β.

When xr = 1, ||x− z||1 = ||x̂− ẑ||1 + 1 but ||y − z||1 = ||y − ẑ||1. So, d(x, y)− d(x̂, y) = β and
d(y, x)− d(y, x̂) = −α.

The following lemma connects the distance to the property Lα,β.

Lemma 8. A function is (α, β)-Lipschitz iff for all x, y ∈ B, f(x)− f(y)− d(x, y) ≤ 0.

Proof. Suppose the function satisfied the inequality for all x, y. If x and y differ in one-coordinate
with x � y, we get f(x) − f(y) ≤ d(x, y) = β and f(y) − f(x) ≤ −α implying f is (α, β)-
Lipschitz. Conversely, suppose f is (α, β)-Lipschitz. Setting z = hcd(x, y) (for x, y ∈ B), we
get f(x) − f(z) ≤ β||x− z||1 and α||y − z||1 ≤ f(y) − f(z). Summing these, f(x) − f(y) ≤
β||x− z||1 − α||y − z||1 = d(x, y).

The next lemma is a generalization of a standard argument for monotonicity testing. We construct
a “violation graph” and argue that the size of a minimum vertex cover is exactly εf2n. A similar
statement is also known for the Lipschitz property, and we prove this for generalized Lipschitz
functions. We crucially use the triangle inequality for d(x, y).

We define an undirected weighted clique K on B. Given a function f , we define the weight
w(x, y) (for any x, y ∈ B) as follows:

w(x, y) := max
(
f(x)− f(y)− d(x, y), f(y)− f(x)− d(y, x)

)
(1)
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Note that although the distance d is asymmetric, the weights are defined on an undirected graph.
Lemma 8 shows that a function is (α, β)-Lipschitz iff all w(x, y) ≤ 0. Once again, it is instructive to
understand the special cases of monotonicity and Lipschitz. For monotonicity, we get that w(x, y) =
f(x)−f(y) when x ≺ y and −∞ otherwise. For Lipschitz, we get w(x, y) = |f(x)−f(y)|−||x− y||1.
We define the violation graph as V Gf = (B, Vf ) where Vf = {(x, y) : w(x, y) > 0}. The violation
graph is unweighted.

Lemma 9. The size of a minimum vertex cover in V Gf is exactly εf2n.

Proof. Let U be a minimum vertex cover in V Gf . Since each edge in V Gf is a violation, the points
at which the function is modified must intersect all edges, and therefore should form a vertex cover.
Thus, εf2n ≥ |U |. We now show how to modify the function values at U to get a function f ′ with
no violations. We invoke the following claim with V = B− U , and f ′(x) = f(x),∀x ∈ V .

Claim 10. Consider partial function f ′ defined on a subset V ⊆ B, such that for all ∀x, y ∈
V , f ′(x) − f ′(y) ≤ d(x, y). It is possible to fill in the remaining values such that ∀x, y ∈ B,
f ′(x)− f ′(y) ≤ d(x, y).

Proof. We prove by backwards induction on the size of V . If |V | = 0, this is trivially true. Now
for the induction step. It suffices to just define f ′ for some u /∈ V . We need to set f ′(u) so that
f ′(u)− f ′(y) ≤ d(u, y) and f ′(x)− f ′(u) ≤ d(x, u) for all x, y ∈ V . Let us first argue that

m := max
x∈V

(f(x)− d(x, u)) ≤ min
y∈V

(f(y) + d(u, y)) =: M

Suppose not, so for some x, y ∈ V , f ′(x)−d(x, u) > f ′(y)+d(u, y). That implies that f ′(x)−f ′(y) >
d(x, u) + d(u, y) ≥ d(x, y) (using triangle inequality). That violates the condition, so m ≤ M . We
can therefore set f(u) ∈ [m,M ] and ensure that ∀x, y ∈ V ∪ {u}, f ′(x)− f ′(y) ≤ d(x, y).

This gives a function f ′ such that ∆(f, f ′) = |U |/2n. By Lemma 8, f ′ is (α, β)-Lipschitz, and
|U | ≥ εf2n. Hence, |U | = εf2n.

The following is a simple corollary of the previous lemma; it follows since the endpoints of any
maximal matching forms a vertex cover.

Corollary 11. The size of any maximal matching in V Gf is ≥ εf2n−1.

In the next section, we exhibit a maximal matching of V Gf whose size is at most the number
of violated edges. Before moving on, we make a technical claim that allows for easier arguments
about w. Essentially, by a perturbation argument, we can assume that w(x, y) is never exactly
zero.

Claim 12. For any function f , there exists a function f ′ with the following properties. Both f and
f ′ have the same number of violated edges, εf = εf ′, and for all x, y ∈ B, wf ′(x, y) 6= 0.

Proof. We will construct a function f ′ such that wf ′(x, y) has the same sign as wf (x, y). When
wf (x, y) = 0, then wf ′(x, y) < 0. Since exactly the same pairs have a strictly positive weight,
their violation graphs are identical. Both functions have the same number of violated edges and
by Lemma 9, εf = εf ′ .

Set f ′(x) = (1−ηf )f(x)+σf‖x‖1, where ηf and σf are very small (say, ηf = 1
22L

, and σf = 1
23L

where L is the precision of f). We have f ′(x)− f ′(y) = (1− ηf )(f(x)− f(y)) + σf (‖x‖1 − ‖y‖1).
If f(x) 6= f(y), then f ′(x) − f ′(y) − d(x, y) has the same sign as f(x) − f(y) − d(x, y). Under

this circumstance, when wf (x, y) 6= 0 wf ′(x, y) has the same sign.
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Suppose f(x) = f(y). If wf (x, y) is non-zero, then (since σf is so small) wf ′(x, y) maintains
the sign. So assume that wf (x, y) = 0. Wlog, d(x, y) = 0, so by Claim 5, d(y, x) > 0. Setting
z = hcd(x, y), we get β||x− z||1 = α||y − z||1 and α||x− z||1 < β||y − z||1. Adding and using the
fact that α+β > 0, ||x− z||1 < ||y − z||1. Hence ‖x‖1−‖y‖1 < 0, and f ′(x)−f ′(y) < 0. Therefore,
wf ′(x, y) < 0.

Henceforth, we will just assume that wf (x, y) 6= 0 for any x, y.

3 Violated edges through weighted matchings

We begin with some notation regarding matchings. For every 1 ≤ r ≤ n, let B0
r := {x ∈ B : xr = 0}

and B1
r := {x ∈ B : xr = 1} be the two (n− 1)-dimensional hypercubes generated by dimension r.

The edge set H of Hyp can be partitioned as H1 tH2 · · · tHn, where Hr = {(x, y) ∈ H : xr 6= yr}
are the edges crossing the rth dimension. Note that Hr is a perfect matching between B0

r and B1
r .

Let Cr := Vf ∩Hr denote the set of edges in the violation graph V Gf with one endpoint each in
B0
r and B1

r . These edges are called the r-crossing violated edges.
Let M be a maximum weight matching in K where the weights are given by w(x, y), as in (1).

Note that M must be a maximal matching in V Gf which contains all the positive weight edges.
From Corollary 11, we get the following.

Claim 13. |M | ≥ εf2n−1.

Proof. Naturally, M will not contain any edge with negative weight, and there are no edges with
weight 0. Hence, M is completely contained in V Gf . The matching M must also be a maximal
matching in V Gf . By Lemma 9 and the fact that the endpoints of a maximal matching form a
vertex cover, 2|M | ≥ εf2n.

For 1 ≤ r ≤ n, let Mr be the pairs of M with one endpoint each in B0
r and B1

r . These are r-cross
pairs of M . We use the notation M(u) to denote the vertex v if (u, v) ∈M ; else M(u) is undefined.
The main lemma of our paper is the following. It shows that the number of r-crossing violated
edges is at least the number of r-cross pairs of M .

Lemma 14 (Main Lemma). For all 1 ≤ r ≤ n, |Mr| ≤ |Cr|.

We first show that this lemma implies Theorem 3.

Proof of Theorem 3: From Lemma 14, |M | ≤
∑n

r=1 |Mr| ≤
∑n

r=1 |Cr|, where the first inequality
followed from the fact that any pair (x, y) ∈ M must be r-crossing for some 1 ≤ r ≤ n. The final
sum is just the total number of violating edges, since the Cr’s form a partition of this set. By
Claim 13, |M | ≥ εf2n−1, completing the proof. �

We use the remainder of the paper to prove Lemma 14. This will require some technical set up,
performed in the next subsection. We will fix some r. This will allow us to reframe Lemma 14 in
terms of matchings and a special sequence Sx.

3.1 Alternating Paths and the Sequence Sx

Both M and Hr are matchings in B; in fact the latter is a perfect matching. Hence, the symmetric
difference is a collection of alternating paths and cycles. Let Xr be the endpoints of Mr that are
present in these paths and cycles. (Note that if a pair in Mr is actually an edge in Hr, then
the endpoints of Mr are not present in the alternating paths/cycles.) We will denote the set of
alternating paths/cycles that contain some vertex of Xr by A.
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We define the sequence Sx for all x ∈ Xr as follows.

1. The first term Sx(0) is x.
2. For even i, Sx(i+ 1) = Hr(Sx(i)).
3. For odd i: if Sx(i) is inXr or isM -unmatched (soM(Sx(i)) is undefined), then Sx terminates.

Otherwise, Sx(i+ 1) = M(Sx(i)).

An intuitive way of understanding Sx is by looking at what happens in A. All the paths/cycles of
A containing points of Xr can be partitioned into contiguous sequences. Pick any vertex in x ∈ Xr

and start walking along the Hr-edge incident to it. (Since Hr is a perfect matching, this edge
always exists.) We stop when we reach a vertex in Xr. We keep repeating this procedure until all
paths/cycles in A are subpartitioned into the sequences.

Observe that any cycle containing some point of x ∈ Xr also contains M(x) ∈ Xr. Hence, this
decomposition breaks the cycle into a collection of paths with the following property. The first
and last vertices these paths are in Xr, and all internal vertices in the path are not in Xr. The
starting and ending edges are in Hr. (The paths are undirected, so the label of start and end is
quite arbitrary.) Every vertex in Xr is the start or end of some path. The sequence Sx is simply
the ordered list of vertices (starting from x) in the path containing x.

We list out these basic properties of Sx. We use T (x) to denote the last vertex in Sx.

Proposition 15.
• Every Sx terminates.
• T (x) is either M -unmatched or T (x) ∈ Xr. In the latter case, ST (x) is just the reverse of Sx

and T (T (x)) = x.
• For x, y ∈ Xr, either y = T (x) or Sx and Sy are disjoint.

We will need another simple claim about the sub-hypercubes that the vertices of Sx lie in. For
Sx(i), the class i (mod 4) is very important for our proof. Many properties will follow a regular
pattern depending on i (mod 4), and the following is merely the first.

Proposition 16. Sx(i) ∈ Bxrr for i ≡ 0, 3 (mod 4) and Sx(i) ∈ B1−xr
r for i ≡ 1, 2 (mod 4).

Proof. We start with Sx(0) = x ∈ Bxrr . Suppose i is even. Since Sx(i + 1) = Hr(Sx(i)), Sx(i)
and Sx(i + 1) lie on opposite sides of the rth-dimension. For odd i, Sx(i + 1) = M(Sx(i)), where
Sx(i) /∈ Xr. The pair (Sx(i),Sx(i + 1)) ∈ M does not cross the rth-dimension, and so both these
vertices are on the same side of the rth-dimension.

Our main charging lemma tells us that every sequence Sx contains a violated r-cross edge.

Lemma 17 (Charging Lemma). ∀x ∈ Xr, there exists an even i such that (Sx(i),Sx(i+ 1)) ∈ Cr.

Proof of Lemma 14: Let W1 = Mr ∩ Hr and W2 = Mr \W1. The set W1 is simply the set of
matched pairs that are also (violated) edges in Hyp. Hence, W1 ⊆ Cr. Note that these edges cannot
appear in A, since this is contained in the symmetric difference of M and Hr. All endpoints of W2

pairs are present in A, and this is exactly the set Xr.
Let Yr be the set of endpoints of W1. Define a mapping between Xr ∪ Yr (vertices) to Cr

(edges). For any endpoint of W1, map it to the edge of Cr containing it. By Lemma 17, for every
x ∈ Xr, there exists an edge (Sx(i),Sx(i + 1)) ∈ Cr. We map x to this edge. Prop. 15 tells us
that for x, y ∈ Xr, the only way they can both be mapped to the same edge e ∈ Cr is if y = T (x).
Furthermore, the endpoints of e cannot be in Yr, since e belongs to the symmetric difference of M
and Hr. Since W1 is a matching, exactly two vertices in Yr map to a single edge.
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All in all, we map at most 2 vertices in Xr ∪ Yr to Cr. So, |Xr ∪ Yr| ≤ 2|Cr|. The proof ends
by observing that |Xr ∪ Yr| = 2|Mr|. �

One can take everything up to this point as merely a preamble for the main proof. In the authors’
opinion, the arguments made in next subsection are really the main contribution. We show here
why many r-cross pairs in Mr imply many violated edges along the rth-dimension.

3.2 Proof of the Charging Lemma (Lemma17)

The proof is technical and heavy (maybe excessively so) on notation. As a warmup, we illustrate
the main ideas by sketching a proof for monotonicity (that is, α = 0, β = ∞). A complete proof
requires a case analysis that introduces some (non-intuitive and not very helpful) notation. Here, we
will give a proof for one of these cases; all the other cases do follow analogously and are practically
equivalent.

3.2.1 Warmup: Monotonicity

Recall for monotone functions, w(x, y) = f(x)− f(y) if x ≺ y, and negative for all other pairs. Fix
x ∈ Xr. Assume (for the other case is similar) that x ∈ B0

r . Let y = M(x); y ∈ B1
r . For brevity’s

sake we let s denote the sequence Sx and use si, for i ≥ 0, to denote Sx(i). We also define s−1 := y.
By Prop. 16, si ∈ B0

r whenever i ≡ 0, 3 (mod 4), and si ∈ B1
r otherwise. For contradiction’s sake,

we assume (si−1, si) /∈ Cr for any odd i. Thus,

f(si−1)− f(si) > 0, ∀i ≡ 3 (mod 4); f(si)− f(si−1) > 0, ∀i ≡ 1 (mod 4) (∗)

will be assumed to hold throughout. For odd i, the pair (si, si+1) lies in M , but a priori we do
not know which of these two is the ancestor and which is the descendant. The following lemma
characterizes this.

Lemma 18. For odd i, suppose si+1 = M(si) is defined. Then,

∀i ≡ 1 (mod 4), si+1 � si; ∀i ≡ 3 (mod 4), si � si+1

Proof. The proof is by induction on i. Assume the claim is true for all odd j < i, for some
i ≡ 1 (mod 4). The proof for the other case is similar. Suppose for contradiction, si � si+1.
We now construct a matching M ′ of larger weight than M as follows. Delete the set of M -edges
E− := {(sj , sj+1) : j odd ,−1 ≤ j ≤ i}, and add the set of edges

E+ := (s−1, s1) ∪ {(sj−1, sj+2) : j odd , 1 ≤ j ≤ i− 4} ∪ (si−3, si+1)

Check that M − E− + E+ is a valid matching which leaves si, si−1 unmatched. Now we consider
the weights. The weight of E−, by induction, is W− =

[f(s0)− f(s−1)] + [f(s1)− f(s2)] + [f(s4)− f(s3)] + · · ·+ [f(si−1)− f(si−2)] + [f(si+1)− f(si)]

Observe the signs changing from term to term due to induction hypothesis, except for the last
term which is assumed for the sake of contradiction. Also by induction, and since (sj−1, sj+2) =
(sj ⊕ er, sj+1 ⊕ er), we get that whenever 1 ≤ j ≡ 1 (mod 4), sj+2 � sj−1 and whenever (i− 2) ≥
j ≡ 3 (mod 4), sj−1 � sj+2. By the assumption, we get si−3 � si � si+1. Using this, we get the
weight of E+ is precisely W+ =

[f(s1)− f(s−1)] + [f(s0)− f(s3)] + · · ·+ [f(si−5)− f(si−2)] + [f(si)− f(si−3)]

Thus, we get the weight of the new matching is precisely w(M)−W−+W+ = w(M)+f(si)−f(si−1).
By (∗), we get that f(si) > f(si−1) contradicting the maximality of M .
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Armed with this handle on the ancestor-descendant relationships, we can show that every odd si
belongs to a matching pair.

Lemma 19. For odd i, if si exists then si+1 = M(si) exists.

Proof. Suppose not. Then as in the proof of the previous lemma we can find a better matching.
Once again, assume i ≡ 1 (mod 4). We delete the set of edges E− := {(sj , sj+1) : j odd ,−1 ≤ j ≤
i−2} and add the set of edges E+ = (s−1, s1)∪{(sj−1, sj+2) : j odd , 1 ≤ j ≤ i−3}. Lemma 18 shows
that M −E−+E+ is a valid matching whose weight is, as before, w(M) + f(si)− f(si−1) > w(M)
by (∗).

Lemma 20. For odd i, if si exists then si /∈ Xr.

Proof. This is really just a corollary of Lemma 18. Suppose i ≡ 1 (mod 4). Then, by Prop. 16,
si ∈ B1

r . By Lemma 18, M(si) = si+1 � si, and so si+1 ∈ B1
r . Hence, (si, si+1) is not an r-cross

pair, and si /∈ Xr. If i ≡ 3 (mod 4), then si ∈ B0
r and M(si) ≺ si. Again, si /∈ Xr.

We conclude that for any x ∈ Xr, if Condition (∗) holds, then Sx can never terminate. This
is because for odd i, M(si) exists and si /∈ Xr implying si+1 = M(si). The non-termination
contradictions Prop. 15, and therefore (∗) must be violated.

3.2.2 The General Proof

As in the warm-up, we fix x ∈ Xr. Suppose for contradiction that Sx does not contain an edge
of Cr. We will show that Sx cannot terminate which contradics Prop. 15. The proof crucially
uses that fact that M is a maximum weight matching. We start of with some new notation and
technical definitions.

Preliminaries. Let y = M(x), and thus (y, x) ∈ Mr is a cross pair. The weight w(y, x) is given
by max(f(x)− f(y)− d(x, y), f(y)− f(x)− d(y, x)). (Since w(x, y) = w(y, x), it will be convenient
for later calculations to choose the later.) To abstract out these two cases cleanly, we define the
following.
• The functions d−1 and d1: The functions d1 and d−1 based on the order of arguments. We

set d1(x, y) = d(x, y) and d−1(x, y) = d(y, x).
• The marker bit b: If w(y, x) = f(y)− f(x)− d(y, x), then b = 1. Otherwise, it is −1.
• The function σ(y′, x′, b): σ(y′, x′, b) = b(f(y′)− f(x′))− db(y, x).

Note that w(y, x) = b(f(y)− f(x)) + db(y, x) and w(y, x) = σ(y, x, b). For the sake of brevity, we
let s denote the sequence Sx, and let si denote Sx(i). Also let s−1 := y and st = T (x). We will
always assume index i to be odd. Hence, si−1 = Hr(si).

Condition (∗∗): We assume, for the sake of contradiction, that (si, si−1) /∈ Cr for any odd i.
Therefore, f(si) − f(si−1) must satisfy the (α, β)-Lipschitz condition. By the perturbation of
Claim 12, there is always some slack. To express this cleanly, we use the indicator µi defined as

for odd i, µi =

{
1 if i ≡ 1 (mod 4)
0 if i ≡ 3 (mod 4)

By Prop. 16, if i ≡ 3 (mod 4), si ∈ Bxrr . Otherwise, si ∈ B1−xr
r . Hence, when µi = 0, xr = 1 or

µi = 1, xr = 0, si � si−1. When µi = 0, xr = 0 or µi = 1, xr = 1, si−1 ≺ si. We have the following,
referred to as Condition (∗∗), where the strict inequality is because of the slack. For all odd i:

α < (−1)µi+xr(f(si−1)− f(si)) < β (∗∗)
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Pair sets E− and E+: One of the main aspects of the argument is modifying the matching M
by deleting and inserting some pairs. Since M is a maximum weight matching, the total weight
cannot decrease. This will lead to various inequalities involving f and d-values. The matching M
is modified by removing all pairs incident to Sx, up to (but not including) si. What does these
pairs look like? The pairs are (y, x), (s1, s2), (s3, s4), . . ., (si−2, si−1). (For i = 1, this is just (y, x).
As long as M(sj) is defined for 1 ≤ j < i, this sequence of edges is well-defined.) This leads us to
define the subset E−(i) ⊆ M . The minus is to denote pairs to be removed. For later convenience,
we split the union in two groups.

E−(i) = {(y, x)} ∪ {(sj , sj+1) : j is odd , 1 ≤ j ≤ i− 2}
= {(y, x)} ∪ {(s4`+1, s4`+2) : 0 ≤ ` ≤ bi/4c − µi} ∪ {(s4`+3, s4`+4) : 0 ≤ ` ≤ bi/4c − 1}

The pairs added will depend on the statement we wish to prove. Nonetheless, there is a core set of
common pairs. The aim is to select a set whose weight can be compared to w(E−(i)). We will prove
shortly that this weight (sort of) looks like σ(y, x, 1) +σ(s1, s2,−1) +σ(s3, s4, 1) +σ(s5, s6,−1) . . ..
In other words, the bit argument keeps switching. Let us focus on the f(·) terms in w(E−). We
have [f(y)− f(x)] +[f(s2)− f(s1)] +[f(s3)− f(s4)] +[f(s6)− f(s5)] + [f(s7)− f(s8)] . . .. We wish
to pair these up differently but maintain the same “weight structure”. We will always pair terms
with odd and even indices together (except for y). We start with (y, s1). Now, x = s0 needs to
paired with an odd indexed sj with f(sj) with a negative coefficient. So we get (s0, s3). The next
to be paired is s2, which we manage by (s2, s5). Then we get (s4, s7). We want to stay on vertices
used in E−(i), so we will not involve si. Formally,

E+(i) = {(y, s1)} ∪ {(sj , sj+3) : j is even, 0 ≤ j ≤ i− 5}
= {(y, s1)} ∪ {(s4`, s4`+3) : 0 ≤ ` ≤ bi/4c − 1} ∪ {(s4`−2, s4`+1) : 1 ≤ ` ≤ bi/4c − µi}

Proposition 21. The pairs in E−(i) exactly involve all vertices in {sj : −1 ≤ j ≤ i − 2}. The
pairs in E+(i) exactly involve vertices in E−(i) \ si−3.

As in the monotonicity case, we need to understand the weights of the pairs of M in Sx. For
odd i, we know that w(si, si+1) is max(σ(si, si+1,−1), σ(si, si+1, 1)), but which value does it take?
To execute the argument described above, we need to know this. It turns out that this is exactly
decided by µi, and therefore has a very consistent behavior. This is analogous to Lemma 18 from
the warmup.

Lemma 22. For odd i, suppose si+1 = M(si) is defined. Then, w(si, si+1) = σ(si, si+1, (−1)µib).

Proof. The proof is by induction over i. For i = −1, we are looking at w(s−1, s0) = w(y, x). The
parameter b was chosen so that w(y, x) = σ(y, x, b). We now perfom the induction step. For an odd
i, suppose the claim is true for all odd j < i. To simply the case analysis, let us set bit (−1)µib to
be b if i ≡ 3 (mod 4) and −b otherwise. Our aim is to show that w(si, si+1) = σ(si, si+1, (−1)µib).

We will prove by contradiction, so let w(si, si+1) = σ(si, si+1, (−1)µi+1b). As explained earlier,
we will define a set of M -pairs Erem and another set of pairs Eadd defined on the same set as
Erem. We choose Erem := E−(i) ∪ {(si, si+1)}. The set of new pairs, Eadd is defined as E+(i) ∪
{(si−3, si+1)}. Observe that E+(i) does not involve si−3 (the largest even index involved is i− 5),
so this is a valid set of matched pairs.

We now compute the weights of edges in these sets. The following definition and claim are
motivated by this.
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Definition 4. For odd i suppose si exists. Define sums W+(i) and W−(i) as follows.

W−(i) = σ(y, x, b) +

bi/4c−µi∑
`=0

σ(s4`+1, s4`+2,−b) +

bi/4c−1∑
`=0

σ(s4`+3, s4`+4, b)

W+(i) = σ(y, s1, b) +

bi/4c−1∑
`=0

σ(s4`, s4`+3,−b) +

bi/4c−µi∑
`=1

σ(s4`−2, s4`+1, b)

By induction, note that we have w(E−(i)) = W−(i) and therefore, we get

w(Erem) = W−(i) + σ(si, si+1, (−1)µi+1b)

We can also lower bound w(Eadd) as follows:

w(Eadd) ≥ σ(y, s1, b) +

bi/4c−1∑
`=0

σ(s4`, s4`+3,−b) +

bi/4c+µi∑
`=1

σ(s4`−2, s4`+1, b) + σ(si−3, si+1, (−1)µi+1b)

= W+(i) + σ(si−3, si+1, (−1)µi+1b)

The following technical claim, which we prove afterwards, gives the difference between W+ and
W−.

Claim 23. For odd i,

W+(i)−W−(i) = (−1)µi+1b(f(si−1)− f(si−3))− db(y, s1) + db(y, x) + d(−1)µi+1b(si−2, si−1)

Combining with Claim 23,

w(Eadd)− w(Erem) ≥ (−1)µi+1b(f(si−1)− f(si−3)) + (−1)µibf(si) + (−1)µi+1bf(si−3)

−db(y, s1) + db(y, x) + d(−1)µi+1b(si−2, si−1)− d(−1)µi+1b(si−3, si) (2)

By Prop. 21, we can remove Erem and add Eadd to get a valid matching. Because M is a maximum
weight matching, w(Erem) ≥ w(Eadd). This can be used to get a bound on f -value difference
between two adjacent vertices as follows. First,

Claim 24. For odd i,

(−1)µib(f(si−1)− f(si)) ≥ db(y, x)− db(y, s1).

Proof. We do a case analysis based on i. Suppose i ≡ 1 (mod 4). Hence, (−1)µib = −b.Substituting
in (2),

w(Eadd)− w(Erem) ≥ bf(si−1)− bf(si−3)− bf(si) + bf(si−3)

−db(y, s1) + db(y, x) + db(si−2, si−1)− db(si−3, si)

By the projection property, db(si−2, si−1) = db(si−3, si). Now we use that M is a maximum weight
matching. Since w(Eadd)− w(Erem) ≤ 0, b(f(si)− f(si−1)) ≥ db(y, x)− db(y, s1).

Suppose i ≡ 3 (mod 4). The proof is analogous. We have (−1)µib = b. Substituting in (2),

w(Eadd)− w(Erem) ≥ bf(si−3)− bf(si−1) + bf(si)− bf(si−3)

−db(y, s1) + db(y, x) + d−b(si−2, si−1)− d−b(si−3, si)

We use projection and the fact that M is a maximum weight matching to conclude that b(f(si−1)−
f(si)) ≥ db(y, x)− db(y, s1).
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Claim 25. If (−1)µib(f(si−1)− f(si)) ≥ db(y, x)− db(y, s1), condition (∗∗) is violated.

Proof. The fact that (x, y) is an r-cross pair is now put to use. Since s1 = Hr(x), we will use
Claim 7 to deal with db(y, x)− db(y, s1).

By Claim 7, if b = 1 and xr = 0, db(y, x) − db(y, s1) = d(y, x) − d(y, s1) = β. If b = −1 and
xr = 1, then also db(y, x)− db(y, s1) = β. So, (−1)µib(f(si−1)− f(si)) ≥ β. Note that b = (−1)xr ,
so (−1)µi+xrb(f(si−1)− f(si)) ≥ β. This contradicts (∗∗).

On the other hand, if b = 1, xr = 1, or b = −1, xr = 0, then db(y, x) − db(y, s1) = −α. Since
b = −(−1)xr , we get (−1)µi+xrb(f(si−1)− f(si)) ≤ α. Again, contrary to (∗∗).

Therefore, assuming (∗∗), we have proved the lemma. All that remains is the proof of Claim 23
which we provide next.

Proof of Claim 23: We expand out the function σ to get longer (but similar) expressions for
W−(i) and W+(i).

W−(i) = b(f(y)− f(x))− db(y, x) +

bi/4c+µi∑
`=0

[−b(f(s4`+1)− f(s4`+2))− d−b(s4`+1, s4`+2)]

+

bi/4c−1∑
`=0

[b(f(s4`+3)− f(s4`+4))− db(s4`+3, s4`+4)]

= b

f(y)−
bi/4c∑
`=0

f(s4`)−
bi/4c+µi∑
`=0

f(s4`+1) +

bi/4c+µi∑
`=0

f(s4`+2) +

bi/4c−1∑
`=0

f(s4`+3)


−db(y, x)−

bi/4c+µi∑
`=0

d−b(s4`+1, s4`+2)−
bi/4c−1∑
`=0

db(s4`+3, s4`+4)

W+(i) = b(f(y)− f(s1))− db(y, s1) +

bi/4c−1∑
`=0

[−b(f(s4`)− f(s4`+3))− d−b(s4`, s4`+3)]

+

bi/4c+µi∑
`=1

[b(f(s4`−2)− f(s4`+1))− db(s4`−2, s4`+1)]

= b

f(y)−
bi/4c−1∑
`=0

f(s4`)−
bi/4c+µi∑
`=0

f(s4`+1) +

bi/4c−1+µi∑
`=0

f(s4`+2) +

bi/4c−1∑
`=0

f(s4`+3)


−db(y, s1)−

bi/4c−1∑
`=0

d−b(s4`, s4`+3)−
bi/4c+µi∑
`=1

db(s4`−2, s4`+1)

We use the projection property of d (Claim 6). Note that this property also holds for db (for
any marker b). Hence, d−b(s4`, s4`+3) = d−b(Hr(s4`), Hr(s4`+3)) = d−b(s4`+1, s4`+2). Similarly,
db(s4`−2, s4`+1) = db(s4`−1, s4`). In the second summation of the very last line for W+(i), we can

use projection, modify indices, and replace by
∑bi/4c+µi−1

`=0 db(s4`+3, s4`+4)
We subtract these bounds.

W+(i)−W−(i) = b(f(s4̂i)− f(s4̂i+4µi+2))

−db(y, s1) + db(y, x) + (1 + µi)d−b(s4̂i+1, s4̂i+2)− µidb(s4̂i−1, s4̂i)

14



If i ≡ 1 (mod 4), µi = −1 and 4bi/4c = i − 1. If i ≡ 3 (mod 4), µi = 0 and 4bi/4c = i − 3.
Substitution completes the proof. �

Using the previous lemma, we can show that Sx will never terminate. We start by showing that if
si exists (for odd i), then si belongs to a pair of M .

Lemma 26. For odd i, if si exists, then M(si) exists.

Proof. Suppose M(si) does not exist. We can now involve si in a new matching. Set Erem = E−(i).
Set Eadd = E+(i) ∪ {si−3, si}. We can remove Erem and add Eadd to get a valid matching. Note
that this is possible because si does not participate in a pair of M . So w(Eadd)−w(Erem) ≤ 0. By
Lemma 22 and Claim 23,

0 ≥ w(Eadd)− w(Erem) = w(E+(i))− w(E−(i)) + w(si−3, si)

≥ W+(i)−W−(i) + σ(si−3, si, c(−1)µi+1b)

= (−1)µi+1b(f(si−1)− f(si−3)) + (−1)µi+1b(f(si−3)− f(si))

−db(y, s1) + db(y, x) + d(−1)µi+1b(si−2, si−1)− d(−1)µi+1b(si−3, si)

= (−1)µi+1b(f(si−1)− f(si))− db(y, s1) + db(y, x)

=⇒ (−1)µib(f(si−1)− f(si)) ≥ db(y, x)− db(y, s1)

The last equality follows from projection. The final conclusion contradicts Condition (*), by
Claim 25.

Now for the last leg of our proof. For odd i, if si exists, then si+1 will also exists. The only possible
way that Sx can terminate is if (for some i) si ∈ Xr. We show that cannot happen. Since s1
certainly exists (being just M(x)), we are forced to conclude that Sx will never terminate. Our
contradiction is finally complete.

Lemma 27. For odd i, if si exists, then si /∈ Xr.

Proof. By Lemma 26, M(si+1) exists. For contradiction’s sake, suppose (si, si+1) ∈ Mr. We set
Erem = E−(i + 2) = E−(i) ∪ {(si, si+1)}. We set Eadd = E+(i + 2) ∪ {si−1, si+1}. By Prop. 21,
the largest index among vertices in Erem is i. Furthermore, si−1 /∈ E+(i + 2), so Eadd is a valid
matching. Removing Erem and adding Eadd results in a valid matching. We use Claim 23 and
substitute (−1)µi+2+1 = (−1)µi .

0 ≥ w(Eadd)− w(Erem) = w(E+(i+ 2))− w(E−(i+ 2)) + w(si−1, si+1)

≥ W+(i+ 2)−W−(i+ 2) + σ(si−1, si+1, (−1)µib)

≥ (−1)µib(f(si+1)− f(si−1)) + (−1)µib(f(si−1)− f(si+1))

−db(y, s1) + db(y, x) + d(−1)µib(si, si+1)− d(−1)µib(si−1, si+1)

= db(y, x)− db(y, s1) + d(−1)µib(si, si+1)− d(−1)µib(si−1, si+1)

We will show that this expression is exactly β − α, showing that α ≥ β, a contradiction. The key
is that since si and si+1 differ in the rth coordinate and si−1 = Hr(si), we can invoke Claim 7 to
bound this expression.

We perform a case analysis. Suppose µi = 0. The above expression is db(y, x) − db(y, s1) +
db(si, si+1) − db(si−1, si+1). By Prop. 16, si ∈ Bxrr . We use Claim 7 now. If b = 1 and xr = 0,
db(y, x) − db(y, s1) = β and db(si, si+1) − db(si−1, si+1) = −α. If b = 1 and xr = 1, db(y, x) −
db(y, s1) = −α and db(si, si+1)− db(si−1, si+1) = β. An identical argument holds when b = 0.
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Suppose µi = −1, so the expression is db(y, x) − db(y, s1) + db(si+1, si) − db(si+1, si−1). (We
switched the order of arguments in the latter two terms.) By Prop. 16, si ∈ B1−xr

r . If b = 1 and
xr = 0, we again get that this expression is β − α. (The remaining cases are also just applications
of Claim 7.)
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