
OPTIMAL BOUNDS FOR MONOTONICITY AND LIPSCHITZ TESTING

OVER HYPERCUBES AND HYPERGRIDS

D. CHAKRABARTY AND C. SESHADHRI

Abstract. The problem of monotonicity testing over the hypergrid and its special case, the hy-
percube, is a classic, well-studied, yet unsolved question in property testing. We are given query
access to f : [k]n 7→ R (for some ordered range R). The hypergrid/cube has a natural partial order
given by coordinate-wise ordering, denoted by ≺. A function is monotone if for all pairs x ≺ y,
f(x) ≤ f(y). The distance to monotonicity, εf , is the minimum fraction of values of f that need to
be changed to make f monotone.

For k = 2 (the boolean hypercube), the usual tester is the edge tester, which checks monotonic-
ity on adjacent pairs of domain points. It is known that the edge tester using O(ε−1n log |R|)
samples can distinguish a monotone function from one where εf > ε. On the other hand, the
best lower bound for monotonicity testing over the hypercube is min(|R|2, n). This leaves a qua-
dratic gap in our knowledge, since |R| can be 2n. We resolve this long standing open problem
and prove that O(n/ε) samples suffice for the edge tester. For hypergrids, known testers require
O(ε−1n log k log |R|) samples, while the best known (non-adaptive) lower bound is Ω(ε−1n log k).
We give a (non-adaptive) monotonicity tester for hypergrids running in O(ε−1n log k) time.

Our techniques lead to optimal property testers (with the same running time) for the natural
Lipschitz property on hypercubes and hypergrids. (A c-Lipschitz function is one where |f(x) −
f(y)| ≤ c‖x − y‖1.) In fact, we give a general unified proof for O(ε−1n log k)-query testers for a
class of “bounded-derivative” properties, a class containing both monotonicity and Lipschitz.

1. Introduction

Given query access to a function f : D 7→ R, what can we learn about the properties of f
without reading all of f? The field of property testing [RS96, GGR98] formalizes this question
by dealing with relaxed decision problems. A property P is a subset of all functions; we say
that a function f has property P if f ∈ P. The distance between f and P, denoted by εf,P , is
the minimum number of places at which f must be changed to have the property P. Formally,
εf,P = ming∈P (|{x|f(x) 6= g(x)}|/|D|) .

Given a parameter ε ∈ (0, 1), the classic property testing question is to design a randomized
algorithm for the following problem. If εf,P = 0 (meaning f has the property), the algorithm
must accept with probability > 2/3, and if εf,P > ε, it must reject with probability > 2/3. If
εf,P ∈ (0, ε), then any answer is allowed. Such an algorithm is called a property tester for P. The
quality of a tester is determined by the number of queries it makes, and the running time of the
tester. A one-sided tester never errs if the function satisfies the property. A non-adaptive tester
decides all of its queries in advance. In other words, the queries are independent of the answers it
receives.

A classic property studied in this framework is monotonicity. Typically, one assumes a total
order on the range R (so R may be assumed to be a subset of the reals), and a partial order � on
the domain D. A function f is monotone if f(x) ≤ f(y) whenever x � y.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 30 (2012)

A special case of the domain arising in many applications is that of n-dimensional hypergrids;
that is, D = [k]n.1 Of particular interest is the n-dimensional hypercube where k = 2 and is often
denoted as D = {0, 1}n. The hypergrid/hypercube defines the natural coordinate-wise partial
order: x � y, iff ∀i ∈ [n], xi ≤ yi.

Monotonicity has been studied extensively in the past decade [EKK+00, GGL+00, DGL+99,
LR01, FLN+02, AC06, Fis04, HK08, PRR06, ACCL06, BRW05, BGJ+09, BCGSM12, BBM12].
For the hypercube domain, the tester of choice has been the edge tester. Let H be the pairs
corresponding to the edges of the hypercube. That is, pairs that differ in precisely one coordinate.
The edge tester picks a pair in H uniformly at random and checks for monotonicity of this pair.
When the range is boolean, a classic result of Goldreich et al. [GGL+00] is that O(n/ε) samples
suffice to give a bonafide montonicity tester. Dodis et al. [DGL+99] generalize the above result
to show that O(ε−1n log |R|) samples suffice for a general range R. In the worst case, |R| = 2n,
and so this gives a O(n2/ε)-query tester. Briët et al. [BCGSM12] give an Ω(n/ε)-lower bound for
non-adaptive, one-sided testers, and in a recent breakthrough, Blais, Brody, and Matulef [BBM12]
prove that Ω(min(n, |R|2)) samples are required by any tester. It has been an outstanding open
problem in property testing to give an optimal bound for monotonicity testing over the hypercube.
We resolve this by showing that the edge tester is indeed optimal (when |R| ≥

√
n).

Theorem 1. The edge tester is an O(n/ε)-query (non-adaptive, one-sided) monotonicity tester for
functions f : {0, 1}n 7→ R.

When the domain is the hypergrid [k]n, Dodis et al [DGL+99] give a O(n log k log |R|/ε)-query
monotonicity tester. Since |R| can be as large as kn, this gives an O(ε−1n2 log2 k)-query tester. In
a recent, unpublished result, Blais et al. [BJRY12] prove a lower bound of Ω(n log k) queries for
non-adaptive monotonicity testers (for sufficiently large R).

In this paper, we give a clean O(ε−1n log k)-query monotonicity tester on hypergrids that gen-
eralizes the edge tester. This tester is also a uniform pair tester, in the sense it defines a set H of
pairs, picks a pair uniformly at random from it, and checks for monotonicity among this pair. The
pairs in H also differ in exactly one coordinate, as in the edge tester. Furthermore, this difference
is fixed to be a power of 2. Observe that this reduces to the edge tester when k = 2.

Theorem 2. There exists a non-adaptive, one-sided O(ε−1n log k)-query monotonicity tester for
functions f : [k]n 7→ R.

We discuss some other previous work on monotonicity testers for hypergrids. For the total
order (the case n = 1), which has been called the monotonicity testing problem on the line,
Ergün et al [EKK+00] give an O(ε−1 log k)-query tester, and this is optimal [EKK+00, Fis04]. The
elegant concept of 2-TC spanners introduced by Bhattacharyya et al [BGJ+09] construct give a
general class of monotonicity testers (for richer posets than just hypergrids) although it is known
that such constructions give testers with polynomial dependence of n for the hypergrid [BGJ+12].
For constant n, Halevy and Kushilevitz [HK08] give a O(ε−1 log k)-query tester (although the
dependency on n is exponential).

Another property that has been studied recently is that of a function being Lipschitz: a function
f : [k]n 7→ R is called c-Lipschitz if for all x, y, |f(x) − f(y)| ≤ c‖x − y‖1. The Lipschitz testing
question was introduced Jha and Raskhodnikova [JR11], who show that for the range R = δZ,
O(n2/(δε)) queries suffice2 for Lipschitz testing. They also give a O(ε−1 log k)-query tester for the
line. For general hypergrids, Awasthi et al. [AJMR12] recently give an O((δε)−1n2k log k)-query

1More generally, a hypergrid is defined as
∏n
i=1[ki]; all our results extend to the different ki case but for brevity’s

sake we will stick to the symmetric case.
2One can also get a bound of O(nD/(δε)), where D is a bound on range of values that f takes.

2

tester when the range is R = δZ3. As for lower bounds, Jha and Raskhodnikova [JR11] give an
Ω(n)-query lower bound for the Lipschitz testing question on the hypercube, and an Ω(log k)-query
lower bound for that on the line. The recent manuscript by Blais et al. [BJRY12] mentioned above
also gives an Ω(n log k)-query lower bound for non-adaptive Lipschitz testers.

Testing the Lipschitz property is a natural and important question that arises in many applica-
tions. For instance, given a computer program, one may like to test the sensitivity of the program’s
output to the input. This has been studied before, for instance in [CGLN11], however, the solution
provided looks into the code to detect if the program satisfies Lipschitz or not. The property testing
setting is a black-box approach to the problem. Jha and Raskhodnikova [JR11] also provide an
application to privacy; a class of mechanisms known as Laplace mechanisms proposed by Dwork et
al. [DMNS06] achieve privacy in the process of outputting a function by adding a noise proportional
to the Lipschitz constant of the function. To find the Lipschitz constant, one typically needs to
guess c and test whether the function is c-Lipschitz.

We give a unified tester for the Lipschitz property that improves all known results and matches
existing lower bounds. In fact, the testers are the same as that of monotonicity; the pairs are chosen
at random from the same set H, and checked for the Lipschitz condition instead of monotonicity.
To our knowledge, no non-trivial result was known for general ranges with arbitrarily small δ.

Theorem 3. There exists a non-adaptive, one-sided O(ε−1n log k)-query c-Lipschitz tester for func-
tions f : [k]n 7→ R.

Our techniques apply to property testing of a much larger class of functions that contains mono-
tonicity and Lipschitz. We call it the bounded derivative property, or more technically, the (α, β)-
Lipschitz property. Given parameters α, β, with α < β, we say that a function f : [k]n 7→ R has
the (α, β)-Lipschitz property if for any x ∈ [k]n, and y obtained by increasing exactly one coordi-
nate of x by exactly 1, we have α ≤ f(y) − f(x) ≤ β. Note that when (α = 0, β = ∞)4, we get
monotonicity. When (α = −c, β = +c), we get c-Lipschitz. Our above tester can be generalized for
the (α, β)-Lipschitz property.

Theorem 4. There exists a non-adaptive, one-sided O(ε−1n log k)-query (α, β)-Lipschitz tester for
functions f : [k]n 7→ R, for any α < β.

Although Theorem 4 implies all the other theorems stated above, in what follows we will first
prove Theorem 1 and Theorem 2 before giving a whole proof of Theorem 4. The reason is mainly
notational; the final proof is a little heavy on notation, and the authors believe that the proof of
the monotonicity theorems illustrate the techniques invented in this paper.

2. The Proof Roadmap

The challenge of property testing is to relate the tester behavior to the distance to the property.
Consider monotonicity over the hypercube. To argue about the edge tester, we want to show that
a large distance to monotonicity implies many violated edges. Most current analyses of the edge
tester go via what we could call the contrapositive route. If there are few violated edges in f ,
then they show the distance to monotonicity is small. This is done by modifying f to make it
monotone, and bound the number of changes as a function of the number of violated edges. There
is an inherently “constructive” viewpoint to this: it specifies a method to convert non-monotone
functions to monotone ones.

3One can also get a bound of O(nD logD/(δε)), where D is a bound on range of values that f takes. [AJMR12]

also give a 2-sider tester making O
(
nk
√
n log k
δε

)
queries.

4If the reader is uncomfortable with the choice of β as∞, β can be thought of as much larger than any value in f .

3

Implementing this becomes difficult when the range becomes large, and bounds degrade with R.
For the Lipschitz property, this route becomes incredibly complex. A non-constructive approach
may give more power, but how does one get a handle on the distance? The violation graph provides
a method. The violation graph has an edge between any pair of comparable domain vertices (x, y)
(x ≺ y) if f(x) > f(y). The following theorem can be found in [FLN+02] (Corollary 2 of the STOC
proceedings).

Theorem 5 ([FLN+02]). The size of the minimum vertex cover of the violation graph is exactly
εf |D|. As a corollary, the size of any maximal matching in the violation graph is at least 1

2εf |D|.

Can a large matching in the violated graph imply there are many violated edges? Lehman and
Ron [LR01] take this view. Using this, they reduce the monotonicity testing on the hypercube
problem to certain routing problems on the hypercube. In particular, they show that if for any k
source-sink pairs on the directed hypercube, at least kµ(k) edges need to be deleted in order to
pairwise separate them, then O(n/εµ(n)) queries suffice for the edge tester. Therefore, if µ(n) is at
least a constant, one gets a linear query monotonicity tester on the cube. Lehman and Ron [LR01]
explicitly ask for bounds on µ(n). Briët et al. [BCGSM12] showing that µ(n) could be as small as
1√
n

, thereby putting an Ω(n3/2/ε) bottleneck to the above approach.

In the reduction above, however, the function values are altogether ignored. That is, once one
moves to the combinatorial routing question on source-sink pairs, the fact that they are related by
actual function values is lost. In particular, lower bounds on the combinatorial problem do not give
lower bounds for monotonicity; and in fact, as we show, they can’t. Our analysis crucially uses the
value of the functions to argue about the structure of the maximal matching in the violation graph.

2.1. It’s all about matchings. Our proof is intimately connected with the actual function values
and is non-constructive. The key insight is to move to a weighted violation graph. The weight of
violation (x, y) depends on the property at hand; for now it suffices to know that for monotonicity,
the weight of (x, y) (x ≺ y) is f(x)−f(y). This can be thought of as a measure of the magnitude of
the violation. We now look at a maximum weighted matching M in the violation graph. Naturally,
this is maximal as well, so we know |M| ≥ 1

2εf |D|.
Our testers are uniform pair testers, that is, all our algorithms pick a pair uniformly at random

from a predefined set H of pairs, and check the property on that pair. Our whole analysis is based
on the construction of a one-to-one mapping (not quite, but not far from the truth) between pairs
in M to violating pairs in H. This mapping implies |H| ≥ |M|, and thus the uniform pair tester
succeeds with probability Ω(εf |D|/|H|), implying O(|H|/εf |D|) queries suffice.

To obtain this mapping, we first decompose M into sets M1,M2, . . . ,Mt such that each pair in
M is in at least one Mi. Furthermore, we partition H into sets H1, H2, . . . ,Ht, respectively. Mi’s
are clearly matchings since M was one. The crucial thing regarding the partition of H is that each
of the Hi’s are perfect matchings of the domain D. For instance, in the hypercube case, Mi is the
collection of pairs in M whose ith coordinates differ, and Hi is the collection of pairs differing only
in the ith coordinate; for the hypergrid case, the partitions are more involved.

We map each pair in Mi to a unique violating pair in Hi. For simplicity, let’s forget the subscripts
and call the matchings M and H. Let’s denote the endpoints of M by the set X. We now consider
the alternating paths and cycles generated by M and H (note we use M to generate these, not M).
Starting from a point x ∈ X, we walk along the alternating objects, beginning with the Hi-edge.
This gives a sequence of vertices, which we call Sx, for each x ∈ X. We terminate this sequence if
we ever reach a vertex which is M-unmatched (recall H is a perfect matching), or if we encounter
another vertex of X. In this way we get a collection of sequences, and it is not hard to see they are
disjoint. A detailed description is given in §3. Our main technical lemma shows that there must
exist at least one violating H-pair in each Sx. The mapping is now complete.

4

𝑥

𝑠1

𝑠2

𝑠3

𝑦

𝑥

𝑦

𝑠1

𝑠2

𝑠3

Figure 1. The alternating path: the curved lines connect pairs of M, and the dashed
lines are edges of H.

2.2. Getting the violating H-pairs. But why should each alternating path have a violating H-
pair? As mentioned earlier, let us focus on monotonicity on the boolean hypercube, so an H-pair
is just an edge. Consider M , the pairs of M which differ on the first coordinate, and H is the set of
edges in the dimension cut along this coordinate. Let (x, y) ∈M , and say (x)1 = 0 giving us x ≺ y.
(We denote the ath coordinate of x by (x)a.) Recall that the weight of this violation is f(x)−f(y).
The first step from x (in Sx) leads to s1. Note that s1 ≺ y. Suppose we stopped here because
s1 was M-unmatched. Now for the crucial observation. Delete (x, y) from M and add (s1, y). If
(x, s1) was not a violation, so f(x) < f(s1)

5, then f(s1) − f(y) > f(x) − f(y). We obtain a new
matching with larger weight, contradicting the choice of M. Maybe s1 was not M-unmatched, but
was in X. That is, the matched pair (s1, s2) is in M . Observe, however, that if (s1, s2) ∈M , we get
s1 � s2. This is because (s1)1 = 1 (since (s1)1 6= x1) and (s1, s2) must differ on the 1st coordinate
implying (s2)1 = 0. Note that s2 ≺ y, so we could replace pairs (x, y) and (s2, s1) in M with (s2, y).
Again, if (x, s1) is not a violation, then f(s2)− f(y) > [f(s2)− f(s1)] + [f(x)− f(y)], contradicting
the maximality of M.

With care, this argument can be carried over for longer chains and a description of this is given
in §4. Let us demonstrate it a little further. Again, we start with (x, y) ∈M , and x1 = 0. Following
the sequence Sx, the first term s1 is x projected “up” dimension cut H. The second term is obtained
by following the M -pair incident to s1. Suppose it exists, and the other end is s2. In the next
step, s2 is projected “down” along H to get s3. Suppose s2 ≺ s1. Then, one can remove (x, y) and
(s1, s2) and add (x, s1) and (s2, y) to increase the matching weight. (We just made the argument
earlier; the interested reader may wish to verify.) Hence, s2 � s1, and we get the left part of Fig. 1.
Observe that x ≺ y and s1 ≺ s2. By the nature of the dimension cut H, x ≺ s3 and s1 ≺ y. So, if
s3 is unmatched and (s2, s3) is not a violation, we can again rearrange the matching to improve the
weight. We alternately go “up” and “down” H1 in traversing Sx, because of which we can modify
the pairs in M and get other matchings in the violation graph. The maximality of M imposes
additional structure, which leads to violating edges in H.

In general, the spirit of all our arguments is as follows. Take an endpoint of M and start walking
along the sequence given by the alternating paths generated by M and H. Naturally, this sequence
must terminate somewhere. If we never encounter a violating pair of H during the entire sequence,
then we can rewire the matching M and increase the weight. Contradiction!

Observe the crucial nature of alternating up and down movements along H. This happens
because the first coordinate of the points in Sx switches between the two values of 0 and 1 (for
k = 2). Such a reasoning does not hold water in the hypergrid domain. The structure of H needs
to be more complex, and is not as simple as a partition of the edges of the hypergrid. Consider
the extreme case of the line [k]. Let 2r be less than k. We break [k] into contiguous pieces of

5We are assuming here that all function values are distinct; as we show in Claim 5 this is without loss of generality.

5

length 2r. We can now match the first part to the second, the third to the fourth, etc. In other
words, the pairs look like (1, 2r + 1), (2, 2r + 2), . . ., (2r, 2r+1), then (2r+1 + 1, 2r+1 + 2r + 1),
(2r+1 + 2, 2r+1 + 2r + 2), etc. We can construct such matchings for all powers of 2 less than k,
and these will be our Hi’s. Those familiar with existing proofs for monotonicity on [k] will not be
surprised by this set of matchings. All methods need to cover all “scales” from 1 to k (achieved by
making them all powers of 2 up to k). It can also be easily generalized to [k]n.

What about the choice of M? Simply choosing M to be a maximum weight matching and setting
up the sequences Sx does not seem to work. It suffices to look at [k]2 and the matching H along
the first coordinate where r = 0, so the pairs are {(x, x′)|(x)1 = 2i − 1, (x′)1 = 2i, (x)2 = (x′)2}.
A good candidate for the corresponding M is the set of pairs in M that connect lower endpoints
of H to higher endpoints of H. Let us now follow Sx as before. Refer to the right part of Fig. 1.
Take (x, y) ∈M and let x ≺ y. We get s1 by following the H-edge on x, so s1 � x. We follow the
M -pair incident to s1 (suppose it exists) to get s2. We could get s2 � s1. It is in s3 that we see a
change from the hypercube. We could get s3 � s2, because there is no guarantee that s2 is at the
higher end of an H-pair. This could not happen in the hypercube. We could have a situation where
s3 is unmatched, we have not encountered a violation in H, and yet we cannot rearrange M to
increase the weight. For a concrete example, consider x = (1, 1), y = (4, 3), s1 = (2, 1), s2 = (5, 2),
s3 = (6, 2) (as in Fig. 1) and f(x) = f(s1) = f(s3) = 1, f(y) = f(s2) = 0. Some thought leads to
the conclusion that s3 must be less than s2 for any such rearrangement argument to work.

The road out of this impasse is suggested by the two observations. First, the difference in 1-
coordinates between s1 and s2 must be odd. Next, we could rearrange and match (x, s2) and
(s1, y) instead. The weight may not increase, but this matching might be more amenable to the
alternating path approach. We could start from a maximum weight matching that also maximizes
the number of pairs where coordinate differences are even. Indeed, the major insight for hypergrids
is the definition of a potential Φ for M, that is a generalization of this idea. The potential Φ is
obtained by summing for every pair (x, y) ∈ M and every coordinate a, the largest power of 2
dividing the difference |(x)a − (y)a|. We can show that a maximum weight matching that also
maximizes Φ does not end up in the bad situation above. With some addition arguments, we can
generalize the hypercube proof. We describe this in §5. Observe that the potential with alternating
paths give a unified and optimal proof for two very “different” hypergrids: the hypercube and the
line.

2.3. Attacking the generalized Lipschitz property. One of the challenges in dealing with the
Lipschitz property is the lack of direction. The Lipschitz property, defined as ∀x, y, |f(x)− f(y)| ≤
‖x − y‖1, is fundamentally an undirected property, while monotonicity is directed in nature. In
monotonicity, a point x only “interacts” with the subcube above and below x, while in Lipschitz,
constraints are defined between all pairs of points. Previous results for Lipschitz testing require very
technical and clever machinery to deal with this issue, since arguments analogous to monotonicity
just do not work. The alternating paths argument given above for monotonicity also exploits this
directionality, as can be seen by heavy use of inequalities in the informal calculations. Observe that
in the monotonicity example for hypergrids in Fig. 1, the fact that s3 � s2 (as opposed to s3 ≺ s2)
required the potential Φ (and a whole new proof). The (α, β)-Lipschitz property creates even more
problems, since constraints are not symmetric between x and y.

A subtle point is that while the property of Lipschitz is undirected, violations to Lipschitz are
“directed”. If |f(x)−f(y)| ≤ ‖x−y‖1, then either f(x)−f(y) > ‖x−y‖1 or f(y)−f(x) > ‖x−y‖1,
but never both. This can be interpreted as a direction for violations. In the alternating paths for
monotonicity (especially for the hypercube), the partial order relation between successive terms
follow a fixed pattern. This is crucial for performing the matching rewiring.

6

As might be guessed, the weight of a violation (x, y) becomes max(f(x)−f(y)−‖x−y‖1, f(y)−
f(x) − ‖x − y‖1). For the generalized Lipschitz problem, this is defined in terms of a pseudo-
distance over the domain. We look at the maximum weight matching as before (and use the same
potential function Φ). The notion of “direction” takes the place of the partial order relation in
monotonicity. The main technical arguments show that these directions follow a fixed pattern in
the corresponding alternating paths. Once we have this pattern, with some work we can perform
the matching rewiring argument for the generalized Lipschitz problem.

3. Alternating Paths and the Sequence Sx

In this section we formally define the sequences as described in proof roadmap above. We will
need three objects: M, the matching of violating pairs, M , one of the parts of the classification of
M, and H, a matching of D. Usually, for each M , we will find some appropriate H.

We require the following technical definition. This is necessary for only for the hypergrid proof.
This arises because we will use matchings that are not necessarily perfect. Observe that a perfect
matching H is always adequate.

Definition 1. The matching H is adequate for if for every violation (x, y), both x and y participate
in the matching H.

We will henceforth assume that H is adequate. The symmetric difference of M and H is a collection
of alternating paths and cycles. Let X be the endpoints of M that are present in these. (Note that
if a pair in M is actually an edge in H, then the endpoints of M are not present in the alternating
paths/cycles.) We will denote the set of alternating paths/cycles that contain some vertex of X by
A.

We define the sequence Sx for all x ∈ X as follows.

(1) The first term Sx(0) is x.
(2) For even i, Sx(i+ 1) = H(Sx(i)).
(3) For odd i: if Sx(i) ∈ X, or is M-unmatched, then Sx terminates.

Otherwise, Sx(i+ 1) = M(Sx(i)).

Note that because H is adequate for M, this sequence is well defined. Indeed, it never terminates
at an even term, since H(Sx(i)) always exists. As described in the introduction, an intuitive way of
understanding Sx is by looking at what happens in A. All the paths/cycles of A containing points
of X can be partitioned into contiguous sequences. Pick any vertex in x ∈ X and start walking
along the H-link incident to it. We stop when we reach a vertex in X. We keep repeating this
procedure until all paths/cycles in A are subpartitioned into the sequences.

Observe that any cycle containing some point of x ∈ X also contains M(x) = M(x) ∈ X. Hence,
this decomposition breaks the cycle into a collection of paths with the following property. The
first and last vertices these paths are in X, and all internal vertices in the path are not in X. The
starting and ending edges are in H. (The paths are undirected, so the label of start and end is
quite arbitrary.) Every vertex in X is the start or end of some path. The sequence Sx is simply the
ordered list of vertices (starting from x) in the path containing x. The following proposition, whose
proof follows from the discussion above, captures basic properties of Sx. We use T (x) to denote
the last vertex in Sx. We refer the reader to Fig. 2 for an illustration of the procedure described.

Proposition 1. Assume that H is adequate for M.
• Every Sx terminates.
• T (x) is M-unmatched, or T (x) ∈ X in which case, ST (x) is the reverse of Sx and T (T (x)) = x.
• For x, y ∈ X, either y = T (x) or Sx and Sy are disjoint.

7

𝑠0 = 𝑥

𝑠1 𝑠2 𝑠5 𝑠6

𝑠3 𝑠4
𝑠7 = 𝑇(𝑥)

𝑦

𝑆𝑦(1)

𝑆𝑦(2)

𝑆𝑦(3) 𝑆𝑦(4)

𝑆𝑦(5) 𝑆𝑦(6)

𝑆𝑦(7) 𝑆𝑦(8)

𝑆𝑦(9) = 𝑇(𝑦)

𝑀(𝑇 𝑥)

Figure 2. An illustration of the alternating paths. The dashed lines are M-edges; the
solid lines are H edges. Consider the edge (x, y) ∈M . Thus, x, y ∈ X. The top alternating
path starting from x is si used as a shorthand for Sx(i). Sx terminates at s7 = T (x) since
T (x) also lies in X. The alternating path starting from T (x) would be the same as Sx but
reversed, and would end at x. The path starting from y going below is Sy and ends at
Sy(9) = T (y). This could be because T (y) is M-unmatched. Note that T (y) could also be
M(T (x)) (in which case, this would be an alternating cycle).

As stated in the introduction, the main part of the proofs will be to show that there exists a violated
H-pair in Sx, for all x ∈ X. Note that this would imply |M | ≤ |H| since the Sx’s are disjoint. For
the sake of contradiction, we assume there is some Sc without a violated H-pair. With this, the
following two lemmas contradict the termination condition of Prop. 1.

Lemma 1 (Progress Lemma.). For odd i, Sx(i) is not M-unmatched.

Lemma 2 (Disjointedness Lemma.). For odd i, Sx(i) /∈ X.

it is clear from Proposition Prop. 1, that the two lemmas imply non-termination. The proofs of
both lemmas essentially show that if there are no H-violating pairs in Sx thus far, and the condition
of the lemma didn’t hold, then a better M can be found.

4. Monotonicity on Boolean Hypercube

We prove Theorem 1. The weight of a pair (x, y) is defined to be f(x) − f(y) if x ≺ y, and is
−∞ otherwise. Thus violating pairs have positive weight. We choose a maximum weight matching
M of pairs. Note that every pair in M is a violating pair. Furthermore M is also is a maximal
family of disjoint violating pairs, and therefore, |M| ≥ 1

2εf · 2
n. We distribute the pairs in M into

n classes M1, . . . ,Mn. Mi contains the pairs which differ in coordinate i. Note that each pair in
M is in some class.

We denote the set of all edges of the hypercube as H. We partition H into H1, . . . ,Hn where Hi

is the collection of hypercube edges which differ only in the ith coordinate. Note that each Hi is a
perfect matching and is hence always adequate. We let Ci ⊆ Hi denote the violating pairs of Hi.
The following is the main charging lemma.

Lemma 3. For all 1 ≤ r ≤ n, |Mr| ≤ |Cr|.

The above lemma proves Theorem 1; the probability that the edge-tester succeeds is precisely

1

|H|

n∑
r=1

|Cr| ≥ |M|/(n2n) ≥ ε/2n.

Therefore, O(n/ε) queries suffice.

Henceforth, we lose the subscript r. Recall X is the set of endpoints of M . We feed M,H,M into
the machinery of §3 to obtain the sequences Sx for x ∈ X. Fix x ∈ X, and for brevity’s sake we

8

let s` denote Sx(`) for ` ≥ 0. We also let s−1 denote M(x). Without loss of generality, assume
x[r] = 0 (it could be that or 1; the argument in that case is analogous). Recall that for even i,
(si, si+1) ∈ H and for odd i, (si, si+1) ∈ M. The reader may find it useful to refer to Fig. 2. We
start off with the following observation.

Proposition 2. For i ≡ 0, 3 (mod 4), si[r] = 0. For i ≡ 1, 2 (mod 4), si[r] = 1.

Proof. If i is odd, then (si−1, si) ∈ H. Therefore, si[r] 6= si−1[r]. If i ≡ 1 (mod 4), then by induction
si−1[r] = 0 and thus si[r] = 1. i ≡ 3 (mod 4) case is similar. If i is even, then (si−1, si) ∈ M.
Furthermore, si−1 /∈ X. So, si−1[r] = si[r]. A similar argument as above finishes the proof. �

For contradiction’s sake, we assume (si−1, si) /∈ C for any odd i. Using the above proposition, this
implies

f(si−1)− f(si) > 0, ∀i ≡ 3 (mod 4) f(si)− f(si−1) > 0, ∀i ≡ 1 (mod 4)(∗)
Note the strict inequalities used; this is without loss of generality although we prove it formally
later in Claim 5. The above property will now be assumed to hold in the remainder of the proof.
In the end we will get a contradiction.

For odd i, the pair (si, si+1) lies in M, but a priori we do not know which of these two is the
ancestor and which is the descendant. The following lemma characterizes this.

Lemma 4. Let i be odd.Then,

∀i ≡ 1 (mod 4), si+1 � si; ∀i ≡ 3 (mod 4), si � si+1

Proof. The proof is by induction on i. Assume the claim is true for all odd j < i, for some
i ≡ 1 (mod 4). The proof for the other case is similar. By construction, the base case (i = −1) can
be checked to hold true. Suppose for contradiction, si � si+1. We now construct a matching M′ of
larger weight than M as follows. Delete the set of M-edges E− := {(sj , sj+1) : j odd ,−1 ≤ j ≤ i},
and add the set of edges E+ :=

(s−1, s1) ∪ {(sj−1, sj+2) : j odd , 1 ≤ j ≤ i− 4} ∪ (si−3, si+1)

Check that M − E− + E+ is a valid matching which leaves si, si−1 unmatched. Now we consider
the weights. The weight of E−, by induction, is

W− = [f(s0)−f(s−1)]+[f(s1)−f(s2)]+[f(s4)−f(s3)]+ · · ·+[f(si−1)−f(si−2)]+[f(si+1)−f(si)]

Observe the signs changing from term to term due to induction hypothesis, except for the last
term which is assumed for the sake of contradiction. Also by induction, note that (sj−1, sj+2) =
(sj⊕er, sj+1⊕er), where er is a vector with either +1 or −1 on the rth coordinate and 0 everywhere
else, and ⊕ is the coordinate wise sum operator. This is because (sj−1, sj) and (sj+1, sj+2) are both
in H, and it suffices to show that the rth coordinates of sj−1 and sj+1 are different. This follows
from Prop. 2. Therefore, when j ≡ 3 (mod 4), and therefore by induction, sj � sj+1, we have
sj−1 � sj+2 Similarly, when j ≡ 1 (mod 4), sj−1 ≺ sj+2. We get that whenever 1 ≤ j ≡ 1 (mod 4),
sj+2 � sj−1 and whenever (i − 2) ≥ j ≡ 3 (mod 4), sj−1 � sj+2. By the assumption, we get
si−3 � si � si+1. In particular, si−3 � si which in turn, for the sake of contradiction, we have
assumed � si−1. Using this, we get the weight of E+ is precisely

W+ = [f(s1)− f(s−1)] + [f(s0)− f(s3)] + · · ·+ [f(si−5)− f(si−2)] + [f(si)− f(si−3)]

Thus, we get the weight of the new matching is precisely w(M)−W−+W+ = w(M)+f(si)−f(si−1).
By (∗), we get that f(si) > f(si−1) contradicting the maximality of M. �

Armed with this handle on the ancestor-descendant relationships, we prove the progress and dis-
jointedness lemmas alluded to in §3.

Lemma 5. For odd i, si is not M-unmatched.
9

Proof. Suppose it is. Then as in the proof of the previous lemma we can find a better matching.
Once again, assume i ≡ 1 (mod 4). We delete the set of edges E− := {(sj , sj+1) : j odd ,−1 ≤ j ≤
i−2} and add the set of edges E+ = (s−1, s1)∪{(sj−1, sj+2) : j odd , 1 ≤ j ≤ i−3}. Lemma 4 shows
that M−E−+E+ is a valid matching whose weight is, as before, w(M) + f(si)− f(si−1) > w(M)
by (∗). �

Lemma 6. For odd i, si /∈ X.

Proof. This is really just a corollary of Lemma 4. Suppose i ≡ 1 (mod 4). Then, by Prop. 2,
si[r] = 1. By Lemma 4, M(si) = si+1 � si, and so si+1[r] = 1. Hence, (si, si+1) /∈ M , and thus
si /∈ Xr. If i ≡ 3 (mod 4), then si[r] = 0 and M(si) ≺ si. Again, si /∈ Xr. �

We conclude that for any x ∈ X, if Condition (∗) holds, then Sx can never terminate. The non-
termination contradictions Prop. 1, and therefore (∗) must be violated. Therfore, we can find a
violated edge in each Sx. The number of such sequences is at least |M |; each endpoint leads to
a sequence, and at most two sequences collide (Prop. 1). The number of endpoints is 2|M |. This
ends the proof of Lemma 3 , and thus, the proof of Theorem 1.

5. Monotonicity on Hypergrids

In this section, we prove Theorem 2. Let’s recall the tester. We define H to be pairs that differ
in exactly one coordinate, and furthermore, the difference is a power of 2. The tester chooses a pair
in H uniformly at random, and checks for monotonicity among this pair. We describe the partition
of H and make some (unimportant) technical arguments allowing for a more convenient setting.

5.1. The partition of H and the issue of adequacy. Suppose we had a domain [k]n, where
` = dlg ke. For this domain, we partition H into 2n(`+ 1) sets H0

a,b and H1
a,b, 1 ≤ a ≤ n, 0 ≤ b ≤ `.

Ha,b consists of pairs (x, y) which differ only in the ath coordinate, and furthermore |y[a]−x[a]| = 2b.

For a pair (x, y) ∈ Ha,b, exactly one among x[a] (mod 2b+1)6 and y[a] (mod 2b+1) is > 2b and one

is ≤ 2b. This is because |y[a]− x[a]| (mod 2b+1) = 2b (since 2b divides the difference but 2b+1 does
not). We put (x, y) ∈ Ha,b (with x ≺ y) in the set H0

a,b if y[a] (mod 2b+1) > 2b, and in the set H1
a,b

if 1 ≤ y[a] (mod 2b+1) ≤ 2b.
Note that each H0

a,b and H1
a,b are matchings. However, some may not be perfect matchings

(consider the matching H1
1,0). This technicality forced us to introduce the notion of adequacy of

matchings. We will eventually prove the following theorem.

Theorem 6. Let k be a power of 2. Suppose for every violation (x, y) and every coordinate a,
|y[a] − x[a]| ≤ 2c (for some c). Furthermore, suppose that for b ≤ c, all matchings H0

a,b, H
1
a,b are

adequate. Then there exists a maximal matching M of the violation graph such that the number of
violating pairs in H is at least |M|.

First, we reduce the general case to this special case using a simple padding argument. Note
that the following theorem implies Theorem 2. Henceforth, we will assume that k = 2` and that
all matchings H0

a,b, H
1
a,b are adequate (for b ≤ c, where 2c is an upper bound on the coordinate

difference for any violation).

Theorem 7. Consider any function f : [k]n 7→ R. At least an εf/(2n(dlog ke+ 1)-fraction of pairs
in H are violations.

Proof. Let k′ = 2` be the smallest power of 2 larger than 4k. Let us construct a function f ′ :
[k′]n 7→ R ∪ {−∞,+∞}. Let 1 denote the n-dimensional vector all 1s vector. For x such that
all xi ∈ [k′/4 + 1, k′/4 + k], we set f ′(x) = f(x − k′1/4). (We will refer to this region as the

6We abuse notation and define p (mod 2b+1) to be 2b+1 (instead of 0) if 2b+1 | p.
10

“original domain”.) If any coordinate of x is less than k′/4, we set f ′(x) = −∞. Otherwise, we set
f(x) = +∞.

We observe that all violations are contained in the original domain. For any violation (x, y) and
coordinate a, |y[a]− x[a]| ≤ k < 2`−2. Let H′ be the matching corresponding to the domain [k′]n.
For b ≤ `−2 (and every a), every point in the original domain participates in H ′a,b. So, each of these

matchings is adequate. Since every maximal matching of the violation graph has size > εfk
n/2, by

Theorem 6, the number of violating pairs in H′ is at least εfk
n/2.

The matching H is exactly the set of pairs of H′ completely contained in the original domain.
All violating pairs in H′ are contained in H. The total size of H is at most nkn(dlog ke+ 1). The
proof is completed by dividing εfk

n/2 by the size of H. �

5.2. The potential Φ. As in the hypercube case, the weight of a pair (x, y) is defined to be
f(x)− f(y) if x ≺ y, and −∞ otherwise. We will now pick M to be a maximum weight matching,
as in the hypercube case, however, we will need this matching to have certain other properties as
well. To that end, let’s define msd(a) of a non-negative integer a to be the largest power of 2 which
divides a. That is, msd(a) = p implies 2p | a but 2p+1 6 | a. We define msd(0) := `+ 1. Now given a
matching M, define the following potential.

(1) Φ(M) :=
∑

(x,y)∈M

n∑
i=1

msd (|yi − xi|) .

Now choose M to be the maximum weighted matching which maximizes Φ(M). As before, since
M is a maximal set of violated pairs, we get |M| ≥ 1

2εfk
n. To give some intuition for the potential,

note that it is aligned towards picking pairs which differ in as few coordinates as possible (since
msd(0) is large). Furthermore, divisibility by power of 2 is favored because the tester queries pairs
which are ‘powers of 2 apart’.

We distribute M into 2n(`+1) classes as we did for H: M0
a,b and M1

a,b, for 1 ≤ a ≤ n and 0 ≤ b ≤ `.
Ma,b := M0

a,b ∪M1
a,b contains pairs (x, y) ∈M which differ in the ath coordinate, and furthermore

msd(|y[a] − x[a]|) = b. Note that every pair in M lies in at least one of the classes Ma,b. We

put (x, y) ∈ M0
a,b if y[a] (mod 2b+1) > 2b, and in M1

a,b if 1 ≤ y[a] (mod 2b+1) ≤ 2b. Note that if

(x, y) ∈ M0
a,b, then x ≺ y. In summary, we divide M into classes based on which dimensions they

differ in, the msd of the length, and the ‘parity’ of the endpoints.

We let Cra,b be the violated pairs in Hr
a,b for r ∈ {0, 1}, 1 ≤ a ≤ n, 0 ≤ b ≤ `. The following

lemma is key.

Lemma 7. For all r, a, b, we have |M r
a,b| ≤ |Cra,b|.

By our assumptions, if |M r
a,b| > 0, then Hr

a,b for r ∈ {0, 1} is adequate. This lemma directly implies
Theorem 6.

5.3. The proof of Lemma 7. Let’s fix a, b. Suppose r = 0 (the other case is analogous and
omitted). Keeping this in mind, we now lose all superscripts and subscripts. As before, X is the set
of endpoints of M . Since H is adequate, we can feed M,H,M to the machinery of §3 to obtain the
sequences Sx for all x ∈ X. Fix x ∈ X. Wlog, assume x ≺ y in the pair (x, y) ∈M0

a,b. Note that by

the assumption r = 0, y[a] (mod 2b+1) > 2b. Since msd(y[a]−x[a]) = b, (y[a]−x[a]) (mod 2b+1) = 2b.
Therefore, x[a] (mod 2b+1) ≤ 2b.

we will use st to denote Sx(t). we will use s−1 to denote y. we will also abuse notation to let si
to sometimes denote si[a]; we hope the context will disabuse. Recall that for even i, (si, si+1) ∈ H
while for odd i, (si, si+1) ∈M.

11

Henceforth, for contradiction’s sake we will assume that (si, si+1) /∈ C for any even i. We will
show that Sx cannot terminate in that case. The following lemma is captures the structure of the
neighboring pairs in Sx if there are no violating pairs. We would like to point out that the lemma
below is more involved than Lemma 4. The reason is that there is no easy analog to Prop. 2. This
relates to what we mentioned in the introduction, that is, in the hypercube, if (x, x′) is an edge
across the rth dimension, then xr = 0 implies x′r = 1. For hypergrids that is not true. In fact, we
will need the extra “Φ-maximizing” property of the matchings for the lemma to go through.

Lemma 8. If i ≡ 1 (mod 4),
(i) si � si−1.
(ii) si+1 � si.
(iii) si (mod 2b+1) > 2b.
(iv) si+1(mod 2b+1) > 2b.

If i ≡ 3 (mod 4)
(v) si ≺ si−1.
(vi) si+1 ≺ si.
(vii) si (mod 2b+1) ≤ 2b.
(viii) si+1(mod 2b+1) ≤ 2b.

Proof. The proof is by induction, and is similar to Lemma 4 with some crucial differences in part
(i). For parts (iv) and (viii) we will assume si+1 = M(si) exists.

(i) The base case of i = 1 follows since we have assumed r = 0, and therefore as argued above,
s0 = x[a] (mod 2b+1) ≤ 2b. Suppose for some i ≡ 1 (mod 4) we get si ≺ si−1 and for all j < i the
lemma is indeed true. Since (si−1, si) ∈ H, si−1 � si implies si−1 (mod 2b+1) > 2b (recall r = 0).
We now exhibit a different matching M′ with larger Φ() value, contradicting the choice of M.

Define the set of edges: E− := {(sj , sj+1) : j odd ,−1 ≤ j < i}, and E+ := (s−1, s1) ∪
{(sj−1, sj+2) : j odd , 1 ≤ j ≤ i − 4} ∪ (si−1, si−3). By induction, for 1 ≤ j ≤ i − 4, the pair
(sj−1, sj+2) is precisely (sj ⊕ ea, sj+1 ⊕ ea). Here, ⊕ is the coordinate-wise sum, and ea is a vector

with 0’s on all coordinates but a, and either +2b or −2b on the ath coordinate depending on whether
j ≡ 3 (mod 4) or 1 (mod 4), respectively. Note that this argument requires sj and sj+1 to have the

same (mod 2b+1), which is guaranteed by the induction hypothesis. Since (sj , sj+1) was in M, the
pair (sj−1, sj+2) is a valid pair as well. Furthermore, if sj � sj+1, then sj−1 � sj+2, and a similar
statement is true with ≺ replacing �.

The above shows that we can swap E− by E+ from M to get M′ without changing the matched
end points. Now for the weights. The weight of E−, by induction, is W− = [f(s0) − f(s−1)] +
[f(s1)−f(s2)] + [f(s4)−f(s3)] + · · ·+ [f(si−1)−f(si−2)]. Observe the signs changing from term to
term due to induction hypothesis. Similarly, we get w(E+) = [f(s1) − f(s−1)] + [f(s0) − f(s3)] +
· · ·+ [f(si−5)− f(si−2)] + [f(si−1)− f(si−3)]. Therefore, w(E−) = w(E+) and w(M′) = w(M).

Note, for odd 1 ≤ j ≤ i − 4, we have |sj+1 − sj | = |sj+2 − sj−1|. Thus, the only pairs which
affect Φ are the pairs (s−1, s0), (si−1, si−2) in M and (s−1, s1), (si−1, si−3) in M′. The following
claim proves that if si ≺ si−1, then Φ(M′) > Φ(M).

Claim 1. msd(|s−1 − s1|) + msd(|si−1 − si−3|) > msd(|s−1 − s0|) + msd(|si−1 − si−2|).

Proof. Note that msd(s−1 − s0) = b, by definition, since it lies in M0
a,b. Furthermore, s1 = s0 + 2b.

The following easy observation implies that msd(s−1 − s1) ≥ b+ 1.

Observation 1. For integers b, p, if 2b | p and 2b+1 6 | p, then 2b+1 | p± 2b.

Now we show that msd(|si−1−si−3|) ≥ msd(|si−1−si−2|). Let the RHS be b′. Note that si−3−si−1 =
si−2−si−1 +2b, since by induction si−2 (mod 2b+1) ≤ 2b, and (si−3, si−2) ∈ H. Thus, if b′ ≤ b, then

2b
′ | |si−2 − si−1| implies 2b

′ | |si−3 − si−1| as well. Thus, it suffices to show b′ ≤ b. Suppose not,
and b′ ≥ b + 1. This implies 2b+1 | (si−2 − si−1). By induction, we get that si−2 (mod 2b+1) ≤ 2b.
By supposition, we have si−1 (mod 2b+1) > 2b. Contradiction. �

(ii) Suppose for some i ≡ 1 (mod 4) we get si � si+1 and for all j < i the lemma is indeed
true. Delete the set of M-edges E− := {(sj , sj+1) : j odd ,−1 ≤ j ≤ i}, and add the set of edges

12

E+ := (s−1, s1) ∪ {(sj−1, sj+2) : j odd , 1 ≤ j ≤ i − 4} ∪ (si−3, si+1). As in the above case, check
that M−E− +E+ is a valid matching (this uses the induction hypothesis, as above) which leaves
si, si−1 unmatched. Now we consider the weights. The weight of E−, by induction, is

W− = [f(s0)−f(s−1)]+[f(s1)−f(s2)]+[f(s4)−f(s3)]+ · · ·+[f(si−1)−f(si−2)]+[f(si+1)−f(si)]

Observe the signs changing from term to term due to induction hypothesis, except for the last
term which is assumed for the sake of contradiction. Similar to the previous case, we get w(E+) =:
W+ = [f(s1)− f(s−1)] + [f(s0)− f(s3)] + · · ·+ [f(si−5)− f(si−2)] + [f(si)− f(si−3)]. Thus, we get
the weight of the new matching is precisely w(M)−W−+W+ = w(M)+f(si)−f(si−1). We proved
in (i) that si � si−1, and since (si−1, si) is not a violation, we get f(si) > f(si−1) contradicting
the maximality of M.

(iii) For i ≡ 1 (mod 4), we have (si−1, si) ∈ H. We have proved in (i) that si � si−1. Therefore
(since r = 0), si (mod 2b+1) > 2b.

We now note that parts (v), (vi), and (vii) can be proved similarly as the three cases above. We
do not repeat them here. We now show (iv) and (viii) follow as easy corollaries.

(iv),(viii) For i ≡ 1 (mod 4), if si+1 (mod 2b+1) ≤ 2b, then si+2 � si+1, which contradicts (v) for
i + 2 ≡ 3 (mod 4). For i ≡ 3 (mod 4), if si+1 (mod 2b+1) > 2b, then si+1 � si+2 which contradicts
(i) for i+ 2 ≡ 1 (mod 4). �

Armed with this handle on the ancestor-descendant relationships, we can prove the progress and
disjointedness lemmas alluded to in §3.

Lemma 9. For odd i, si is not M-unmatched.

Proof. Suppose it is. Then as in the proof of the previous lemma we can find a better matching.
Once again, assume i ≡ 1 (mod 4) (leaving the other case out since it is analogous). We delete
the set of edges E− := {(sj , sj+1) : j odd ,−1 ≤ j ≤ i − 2} and add the set of edges E+ =
(s−1, s1)∪{(sj−1, sj+2) : j odd , 1 ≤ j ≤ i− 3}. As in the above lemma, we get that M−E−+E+

is a valid matching whose weight is, as before, w(M) + f(si)− f(si−1) > w(M) since si � si−1 and
we have assumed there are violated pairs (si−1, si). �

Lemma 10. For odd i, si /∈ X.

Proof. We need to show that (si, si+1) /∈ M . Suppose i ≡ 1 (mod 4) (the other case has the same
argument). Lemma 8 (iii), (iv) shows that both si (mod 2b+1) and si+1 (mod 2b+1) are > 2b. Now,
if the remainders are same then 2b+1 | |si−si+1| implying msd(|si−si+1|) > b which in turn implies
(si, si+1) /∈M . If the remainders are not same, then |si−si+1| < 2b. This implies that 2b 6 | |si−si+1|
which again implies (si, si+1) /∈M . �

We conclude that for any x ∈ X, if no (si, si+1) ∈ C for even i, then Sx can never terminate. The
non-termination contradictions Prop. 1, and therefore our supposition must be wrong. This ends
the proof of Lemma 7 , and thus, the proof of Theorem 2.

6. A pseudo-distance for Lα,β
A key concept that leads to the unification of Lipschitz and monotonicity is a pseudo-distance

defined on D. This distance provides a lot of power in manipulating the alternating paths for more
general properties. The monotonicity proof requires no distance, so generalizing it for Lipschitz
properties is quite non-trivial. An important feature of the distance is the triangle inequality. The
challenge faced in the final proof is tweezing out all the places in the previous argument where the
distance function is “hidden”. This involves replacing many equalities in the monotonicity argument
with inequalities (going the “right way”) based on the triangle inequality of this distance.

13

We begin by defining a weighted directed graph G = (D, E) where D in this section is the
hypergrid [k]n. E contains directed edges of the form (x, y), where ‖x − y‖1 = 1. The length of
edge (x, y) is gives as follows. If x ≺ y, the length is −α. If x � y, the length is β.

Definition 2. The function d(x, y) between x, y ∈ D is the shortest path length from x to y in G.

This function is asymmetric, meaning that d(x, y) and d(y, x) are possibly different. Furthermore,
d(x, y) can be negative, so this does not truly qualify to be a distance (in the usual parlance of
metrics). Nonetheless, d(x, y) has many useful properties, which can be proven by expressing it in
a more convenient form. Given any x, y ∈ D, we define hcd(x, y) to be the z ∈ D maximizing ||z||1
such that x � z and y � z. That is, z is the highest common descendant of x and y. Note that if
x � y then hcd(x, y) = y.

Claim 2. For any x, y ∈ D, d(x, y) = β||x− hcd(x, y)||1 − α||y − hcd(x, y)||1.

Proof. Let us partition the coordinate set [n] = A t B t C with the following property. For all
i ∈ A, xi > yi. For all i ∈ B, xi < yi, and for all i ∈ C, xi = yi. Any path in G can be thought of as
sequence of coordinate increments and decrements. Any path from x to y must finally increment
all coordinates in A, decrement all coordinates in B, and preserve coordinates in C. Furthermore,
any increments adds −α to the path length, and a decrement adds β.

Fix a path, and let Ii and Di denote the number of increments and decrements in dimension i.
For i ∈ A, Di = Ii + |xi− yi|, for i ∈ B, Ii = Di + |xi− yi|, and for i ∈ C, Ii = Di. The path length
is given by ∑

i∈A
(βDi − αIi) +

∑
i∈B

(βDi − αIi) +
∑
i∈C

(βDi − αIi)

=
∑
i∈A

[β|xi − yi|+ Ii(β − α)] +
∑
i∈B

[−α|xi − yi|+Di(β − α)] +
∑
i∈C

Ii(β − α)

≥ β
∑
i∈A

(xi − yi)− α
∑
i∈B

(yi − xi)

For the inequality, we use the fact that β ≥ α. Let z = hcd(x, y). Note that zi = min(xi, yi).
Consider the path from x that only decrements to reach z, and then only increments to reach y.
The length of this path is exactly β

∑
i∈A(xi−yi)−α

∑
i∈B(yi−xi), which is the RHS in the lemma

statement. �

It is instructive to keep in mind what this distance translates to in the case of monotonicity and
Lipschitz. In the case of monotonicity (when α = 0, β = ∞), we get d(x, y) = ∞ unless x ≺ y
in which case d(x, y) = 0. In the case of Lipschitz, the distance d(x, y) is precisely the Hamming
distance d(x, y) = ||x− y||1. The next two claims establish some properties of the pseudo-distance.

Claim 3. (Linearity) If x � z � y or x ≺ z ≺ y, d(x, y) = d(x, z) + d(z, y).
(Triangle Inequality) For any x, y, z ∈ D, d(x, y) ≤ d(x, z) + d(z, y).
(Projection)Let x, y ∈ D and v be a vector whose only non-zero coordinate is a. Let x′ = x ⊕ v
and y′ = y ⊕ v where ⊕ is the coordinate wise sum, and furthermore suppose x′, y′ ∈ D. Then
d(x, y) = d(x′, y′).
(Positivity) If d(x, y) = 0, then d(y, x) > 0.

Proof. The linearity property follows from Claim 2. Suppose x � z � y. We have hcd(x, y) = y,
hcd(x, z) = z, and hcd(y, z) = y. Hence, d(x, y) = β||x− y||1 = β(||x− z||1 + ||z − y||1) = d(x, z) +
d(z, y). The other case is analogous.

The triangle inequality follows because d(x, y) is a shortest path length. For the projection
property, let z = hcd(x, y) and let z′ = hcd(x′, y′). Note that z and z′ also differ only in the

14

ath coordinate by the same amount va. Thus, ||x− z||1 = ||x′ − z′||1 and ||y − z||1 = ||y′ − z′||1,
implying d(x, y) = d(x′, y′). Suppose the positivity property does not hold. So d(x, y) = 0 and
d(y, x) ≤ 0. Hence, β||x− z||1 = α||y − z||1 and β||y − z||1 ≤ α||x− z||1. Adding, we get β ≤ α, a
contradiction. �

The following lemma connects the distance to the property Lα,β.

Lemma 11. A function is (α, β)-Lipschitz iff for all x, y ∈ D, f(x)− f(y)− d(x, y) ≤ 0.

Proof. Suppose the function satisfied the inequality for all x, y. If x and y differ in one-coordinate
by 1 with x � y, we get f(x) − f(y) ≤ d(x, y) = β and f(y) − f(x) ≤ −α implying f is (α, β)-
Lipschitz. Conversely, suppose f is (α, β)-Lipschitz. Setting z = hcd(x, y) (for x, y ∈ D), we
get f(x) − f(z) ≤ β||x− z||1 and α||y − z||1 ≤ f(y) − f(z). Summing these, f(x) − f(y) ≤
β||x− z||1 − α||y − z||1 = d(x, y). �

The next lemma is a generalization of Theorem 5 which argued that the size of a minimum vertex
cover is exactly εf2n. A similar statement is also known for the Lipschitz property, and we prove
this for generalized Lipschitz functions. We crucially use the triangle inequality for d(x, y).

We define an undirected weighted clique on D. Given a function f , we define the weight w(x, y)
(for any x, y ∈ D) as follows:

(2) w(x, y) := max
(
f(x)− f(y)− d(x, y), f(y)− f(x)− d(y, x)

)
Note that although the distance d is asymmetric, the weights are defined on an undirected graph.
Lemma 11 shows that a function is (α, β)-Lipschitz iff all w(x, y) ≤ 0. Once again, it is instructive to
understand the special cases of monotonicity and Lipschitz. For monotonicity, we get that w(x, y) =
f(x)−f(y) when x ≺ y and −∞ otherwise. For Lipschitz, we get w(x, y) = |f(x)−f(y)|−||x− y||1.
We define the violation graph as V Gf = (D, Vf) where Vf = {(x, y) : w(x, y) > 0}. The violation
graph is unweighted. The following lemma generalizes Theorem 5 from [FLN+02].

Lemma 12. The size of a minimum vertex cover in V Gf is exactly εf |D|.

Proof. Let U be a minimum vertex cover in V Gf . Since each edge in V Gf is a violation, the points
at which the function is modified must intersect all edges, and therefore should form a vertex cover.
Thus, εf |D| ≥ |U |. We now show how to modify the function values at U to get a function f ′ with
no violations. We invoke the following claim with V = D− U , and f ′(x) = f(x),∀x ∈ V .

Claim 4. Consider partial function f ′ defined on a subset V ⊆ D, such that for all ∀x, y ∈
V , f ′(x) − f ′(y) ≤ d(x, y). It is possible to fill in the remaining values such that ∀x, y ∈ D,
f ′(x)− f ′(y) ≤ d(x, y).

Proof. We prove by backwards induction on the size of V . If |V | = 0, this is trivially true. Now
for the induction step. It suffices to just define f ′ for some u /∈ V . We need to set f ′(u) so that
f ′(u)− f ′(y) ≤ d(u, y) and f ′(x)− f ′(u) ≤ d(x, u) for all x, y ∈ V . Let us first argue that

m := max
x∈V

(f(x)− d(x, u)) ≤ min
y∈V

(f(y) + d(u, y)) =: M

Suppose not, so for some x, y ∈ V , f ′(x)−d(x, u) > f ′(y)+d(u, y). That implies that f ′(x)−f ′(y) >
d(x, u) + d(u, y) ≥ d(x, y) (using triangle inequality). That violates the condition, so m ≤ M . We
can therefore set f(u) ∈ [m,M] and ensure that ∀x, y ∈ V ∪ {u}, f ′(x)− f ′(y) ≤ d(x, y). �

This gives a function f ′ such that ∆(f, f ′) = |U |/|D|. By Lemma 11, f ′ is (α, β)-Lipschitz, and
|U | ≥ εf |D|. Hence, |U | = εf |D|. �

The following is a simple corollary of the previous lemma; it follows since the endpoints of any
maximal matching forms a vertex cover.

15

Corollary 1. The size of any maximal matching in V Gf is ≥ 1
2εf |D|.

Below, we make a technical claim that allows for easier arguments about w. Essentially, by a
perturbation argument, we can assume that w(x, y) is never exactly zero. Note that this justifies
the strict inequalities we have encountered so far.

Claim 5. For any function f , there exists a function f ′ with the following properties. Both f and
f ′ have the same number of violated edges, εf = εf ′, and for all x, y ∈ D, wf ′(x, y) 6= 0.

Proof. We will construct a function f ′ such that wf ′(x, y) has the same sign as wf (x, y). When
wf (x, y) = 0, then wf ′(x, y) < 0. Since exactly the same pairs have a strictly positive weight,
their violation graphs are identical. Both functions have the same number of violated edges and
by Lemma 12, εf = εf ′ .

Set f ′(x) = (1− ηf)f(x) + σf‖x‖1, where ηf and σf are very small (say, ηf = 1
22L

, and σf = 1
23L

where L is the precision of f). We have f ′(x)− f ′(y) = (1− ηf)(f(x)− f(y)) + σf (‖x‖1 − ‖y‖1).
If f(x) 6= f(y), then f ′(x) − f ′(y) − d(x, y) has the same sign as f(x) − f(y) − d(x, y). Under

this circumstance, when wf (x, y) 6= 0 wf ′(x, y) has the same sign.
Suppose f(x) = f(y). If wf (x, y) is non-zero, then (since σf is so small) wf ′(x, y) maintains

the sign. So assume that wf (x, y) = 0. Wlog, d(x, y) = 0, so by Claim 2, d(y, x) > 0. Setting
z = hcd(x, y), we get β||x− z||1 = α||y − z||1 and α||x− z||1 < β||y − z||1. Adding and using the
fact that α+β > 0, ||x− z||1 < ||y − z||1. Hence ‖x‖1−‖y‖1 < 0, and f ′(x)−f ′(y) < 0. Therefore,
wf ′(x, y) < 0. �

7. Generalized Lipschitz Testing on Hypergrids

In this section, we prove Theorem 4. Intuitively, with the distance d(x, y) in place, the basic spirit
of the monotonicity proofs can be carried over. The final proof, however, is much more complex
and requires many algebraic manipulations. We do not explicitly have the “directed” behavior of
monotonicity that allows for many of rewiring arguments to be performed. The properties of the
distance provide the tools to rewire the matchings.

We borrow the definition of H from §5; the generalized Lipschitz tester picks a pair (x, y) ∈ H
at random, with say x � y, and checks if α||x− y||1 ≤ f(x)− f(y) ≤ β||x− y||1. The weight of an
edge (x, y) is as defined (2). As in §5, we choose M to be the maximum weight matching which
maximizes Φ(M) as defined by (1). The classification of M, and partition of H into 2n(` + 1)
classes, are also borrowed from §5, and in the remainder of the section we will prove Lemma 7 in
the context of generalized Lipschitz.

As in the proof of Lemma 7, we focus on the case of r = 0 and fix a, b. We lose the sub/superscripts
and feed M,H,M into the machinery of §3 to obtain the sequences Sx for all x ∈ X, the endpoints
of M . We fix x ∈ X and assume x[a] (mod 2b+1) ≤ 2b. We let st denote Sx(t), and also at
times abusing notation, let it denote st[a]. We restate that for even i, (si, si+1) ∈ H; for odd i,
(si, si+1) ∈M. For contradiction’s sake, we assume for all even i, (si, si+1) satisfies the generalized
Lipschitz property. That is, if si � si+1, then α2b < f(si)− f(si+1) < β2b, else the inequalities are
reversed. Note that we have strict inequalities; this follows from Claim 5. Till now, we have just
mimicked what we had done in §5. However, the inherent directionality in the monotonicity case
led to simple weights and therefore (in comparison what is to follow) simpler (to read, at least)
proofs. The proof of Lemma 7 for generalized Lipschitz is quite involved, and needs some notation.

Notation. Let y = M(x). We denote y by s−1 as well. The weight w(y, x) is given by max(f(x)−
f(y)−d(x, y), f(y)−f(x)−d(y, x)). To abstract out these two cases cleanly, we define the following.

• Order dependent functions d−1 and d1: d1(x, y) = d(x, y) and d−1(x, y) = d(y, x).
• The marker bit b: If w(y, x) = f(y)− f(x)− d(y, x), then b = 1. Otherwise, it is −1.

16

• The function σ(y, x, b) := b(f(y)− f(x))− db(y, x).
• Indicator µi which is 1 if i ≡ 1 (mod 4) and 0 if i ≡ 3 (mod 4).

Note that for any two points u, v ∈ [k]n, w(u, v) ≥ σ(u, v, b) for any b ∈ {−1,+1}. Also note that
w(y, x) = b(f(y) − f(x)) + db(y, x) = σ(y, x, b). The marker bit introduces the “direction” in the
pairs on M.

Pair sets E−(i) and E+(i): As in the monotonicity case, one of the main aspects of the argument
is modifying the matching M by deleting and inserting some pairs and finding a ‘better’ matching.
This will lead to various inequalities involving f and d-values. The pairs added will depend on the
statement we wish to prove. Nonetheless, there is a core set of common pairs. The matching M is
modified by removing all pairs incident to Sx, up to (but not including) si. What do these pairs
look like? The reader may find it useful to consult Fig. 2 for reference. The pairs are (y, x), (s1, s2),
(s3, s4), . . ., (si−2, si−1). (For i = 1, this is just (y, x). As long as M(sj) is defined for 1 ≤ j < i,
this sequence of pairs is well-defined.) This leads us to define the subset E−(i) ⊆M. The minus is
to denote pairs to be removed. For later convenience, we split the union in two groups.

E−(i) = {(y, x)} ∪ {(sj , sj+1) : j is odd , 1 ≤ j ≤ i− 2}
= {(y, x)} ∪ {(s4`+1, s4`+2) : 0 ≤ ` ≤ bi/4c − µi} ∪ {(s4`+3, s4`+4) : 0 ≤ ` ≤ bi/4c − 1}

Note that |E−(i)| = i+1
2 . The aim is to select a set whose weight can be compared to w(E−(i)).

We will prove shortly that this weight (sort of) looks like σ(y, x, 1) + σ(s1, s2,−1) + σ(s3, s4, 1) +
σ(s5, s6,−1) In other words, the bit argument keeps switching. Let us focus on the f(·) terms in
w(E−). We have [f(y)−f(x)] +[f(s2)−f(s1)] +[f(s3)−f(s4)] +[f(s6)−f(s5)]+[f(s7)−f(s8)]+· · · .
We wish to pair these up differently but maintain the same “weight structure”. We will always
pair terms with odd and even indices together (except for y). We start with (y, s1). Now, x = s0
needs to paired with an odd indexed sj with f(sj) with a negative coefficient. So we get (s0, s3).
The next to be paired is s2, which we manage by (s2, s5). Then we get (s4, s7). We want to stay
on vertices used in E−(i), so we will not involve si. Formally,

E+(i) = {(y, s1)} ∪ {(sj , sj+3) : j is even, 0 ≤ j ≤ i− 5}
= {(y, s1)} ∪ {(s4`, s4`+3) : 0 ≤ ` ≤ bi/4c − 1} ∪ {(s4`−2, s4`+1) : 1 ≤ ` ≤ bi/4c − µi}

Note that |E+(i)| = i−1
2 .

Proposition 3. The pairs in E−(i) exactly involve all vertices in {sj : −1 ≤ j ≤ i− 2}. The pairs
in E+(i) exactly involve vertices in E−(i) \ {si−3, si−1}.

We now make some useful definitions that come close to capturing the weights of E− and E+.

Definition 3. For odd i suppose si exists. Define sums W+(i) and W−(i) as follows.

W−(i) = σ(y, x, b) +

bi/4c−µi∑
`=0

σ(s4`+1, s4`+2,−b) +

bi/4c−1∑
`=0

σ(s4`+3, s4`+4, b)

W+(i) = σ(y, s1, b) +

bi/4c−1∑
`=0

σ(s4`, s4`+3,−b) +

bi/4c−µi∑
`=1

σ(s4`−2, s4`+1, b)

For example, when i = 9, b = 1, we get W−(9) = σ(y, x, 1) + σ(s1, s2,−1) + σ(s3, s4, 1) +
σ(s5, s6,−1) + σ(s7, s8,−1). Note the alternating bits. W+(9) = σ(y, s1, 1) + σ(s0, s3,−1) +
σ(s2, s6, 1) + σ(s4, s7,−1). Note that s8, s5 are missing (as they are missing in E+(9).

The following claim calculates the difference between W−(i) and W+(i). We prove this claim
after proving our main lemma below, where this claim will be used.

17

Claim 6. For odd i,

W+(i)−W−(i) = (−1)µi+1b(f(si−1)− f(si−3))− db(y, s1) + db(y, x) + d(−1)µi+1b(si−2, si−1)

As in the monotonicity case, we need to understand the weights of the pairs of M in Sx. For
odd i, we know that w(si, si+1) is max(σ(si, si+1,−1), σ(si, si+1, 1)), but which value does it take?
To execute the argument described above, we need to know this. It turns out that this is exactly
decided by µi, and therefore has a very consistent behavior. This is the real workhorse of the proof,
and brings out the directionality required for our rewiring. The following lemma is analogous to
Lemma 4 in §4 and Lemma 8 in §5.

Lemma 13. For odd i, suppose si+1 = M(si) is defined. Then,
i. w(si, si+1) = σ(si, si+1, (−1)µib).
ii. If i ≡ 1 (mod 4), si+1 (mod 2b+1) > 2b.
iii. If i ≡ 3 (mod 4), si+1 (mod 2b+1) ≤ 2b.

Proof. The proof is by induction over i. For i = −1, we are looking at w(s−1, s0) = w(y, x).
µ−1 = 0. The parameter b was chosen so that w(y, x) = σ(y, x, b). Therefore, (i) holds. We also
assumed x (mod 2b+1) ≤ 2b. We now perfom the induction step. For an odd i, suppose the lemma
is true for all odd j < i.

(i.) Suppose for some i, w(si, si+1) = σ(si, si+1, (−1)µi+1b). As explained earlier, we will define a
set of M-pairs Erem and another set of pairs Eadd. We choose Erem := E−(i) ∪ {(si, si+1)}. The
set of new pairs, Eadd is defined as E+(i)∪{(si−3, si+1)}. Observe that E+(i) does not involve si−3
(the largest even index involved is i− 5), so this is a valid set of matched pairs.

We now compute the weights of edges in these sets. By induction, note that we have w(E−(i)) =
W−(i) and therefore, we get the following. Note the last term is the one we intend to contradict.

w(Erem) = W−(i) + σ(si, si+1, (−1)µi+1b)

We can also lower bound w(Eadd) as follows:

w(Eadd) ≥ σ(y, s1, b) +

bi/4c−1∑
`=0

σ(s4`, s4`+3,−b) +

bi/4c+µi∑
`=1

σ(s4`−2, s4`+1, b) + σ(si−3, si+1, (−1)µi+1b)

= W+(i) + σ(si−3, si+1, (−1)µi+1b)

Therefore, we get

w(Eadd)− w(Erem) ≥ W+(i)−W−(i) + σ(si−3, si+1, (−1)µi+1b)− σ(si, si+1, (−1)µi+1b)

= W+(i)−W−(i) + (−1)µi+1b (f(si−3)− f(si))

+ d(−1)µi+1b(si, si+1)− d(−1)µi+1b(si−3, si+1)

≥ W+(i)−W−(i) + (−1)µi+1b (f(si−3)− f(si))− d(−1)µi+1b(si−3, si)(3)

The last inequality follows from triangle inequality (Prop. 1) of d, and therefore db for any bit b.
Now we use Claim 6 connecting W−(i) and W+(i). Combining Claim 6 with (3), we get

w(Eadd)− w(Erem) ≥ (−1)µi+1b(f(si−1)− f(si))− db(y, s1) + db(y, x) + d(−1)µi+1b(si−2, si−1)

− d(−1)µi+1b(si−3, si)(4)

By Prop. 3, we can remove Erem and add Eadd to get a valid matching. Because M is a maximum
weight matching, w(Erem) ≥ w(Eadd). This can be used to get a bound on f -value difference
between two adjacent vertices as follows.

Claim 7. For odd i,
(−1)µib(f(si−1)− f(si)) ≥ db(y, x)− db(y, s1).

18

Proof. We do the case of i ≡ 1 (mod 4); the other case is analogous. Hence, (−1)µib = −b.
Substituting in (4),

w(Eadd)− w(Erem) ≥ b(f(si−1)− f(si))− db(y, s1) + db(y, x)

+ db(si−2, si−1)− db(si−3, si)

We claim that db(si−2, si−1) = db(si−3, si) using the projection property of d (Claim 3), and thus
db. That is, we claim that (si−3, si) = (si−2 ⊕ v, si−1 ⊕ v) for some vector v having non-zero
coordinate only in the ath coordinate. To see this, first note that (si−3, si−2) and (si−1, si) are in
H. Therefore, it suffices to check that si−3 and si−1 are on ‘different sides’ of 2b modulo 2b+1. But
this is precisely what we get by induction from (B,C). Now we use that M is a maximum weight
matching. Since w(Eadd)− w(Erem) ≤ 0, b(f(si)− f(si−1)) ≥ db(y, x)− db(y, s1). �

This contradicts our main assumption and completes the proof of (i).

Claim 8. If (−1)µib(f(si−1)− f(si)) ≥ db(y, x)− db(y, s1), then (si−1, si) is a violating pair.

Proof. There are four cases. We do one of them. Suppose b = 1,i ≡ 1 (mod 4) and thus µi = 1. Then
we have f(si) − f(si−1) ≥ d(y, x) − d(y, s1). Since r = 0, the RHS is precisely β2b. Furthermore,
by induction we have that si−1 (mod 2b+1) ≤ 2b. So, si � si−1. Note that (si−1, si) ∈ H. If this is
not a violating pair, we must have f(si)− f(si−1) < β2b. Contradiction. �

We move to proving parts (ii),(iii).

((ii),(iii)) We perform the proof for 1 (mod 4); the other case is analogous. Suppose for some
i ≡ 1 (mod 4), si+1 (mod 2b+1) ≤ 2b. Once again, we will recognize a set Erem and Eadd such that
M − Erem + Eadd is a valid matching M′. Unlike in case (i), the contradiction obtained will not
by finding a violated pair. Rather, we will show that Φ(M′) > Φ(M) contradicting the choice of
M. This will be the main difference from the previous case’s analysis. However, the calculations
are similar, unfortunately not exactly the same.

As in the previous case, we choose Erem := E−(i) ∪ {(si, si+1)}. The set of new pairs, Eadd is
defined as E+(i)∪{(si−1, si+1)}∪ {(si, si−3)}. By Prop. 3, E+(i) does not involve {si−3, si−1} (the
largest even index involved is i − 5), so this is a valid set of matched pairs. We now compute the
weights of edges in these sets. As in case (i), by induction, note that we have w(E−(i)) = W−(i)
and therefore, we get

w(Erem) = W−(i) + σ(si, si+1, (−1)µib)

Note the difference in the last term of the RHS; in case (i), for contradiction we assumed it to have
the opposite sign. Now, by induction we know the weight. Thus it is crucial we prove (i) before
(ii),(iii).
We lower bound w(Eadd) as follows:

w(Eadd) ≥ σ(y, s1, b) +

bi/4c−1∑
`=0

σ(s4`, s4`+3,−b) +

bi/4c−µi∑
`=1

σ(s4`−2, s4`+1, b)

+ σ(si−1, si+1, (−1)µib) + σ(si−3, si, (−1)µi+1b)

= W+(i) + σ(si−1, si+1, (−1)µib) + σ(si−3, si, (−1)µi+1b)

Subtracting, we get

w(Eadd)− w(Erem) ≥ W+(i)−W−(i) + σ(si−1, si+1, (−1)µib)

+ σ(si−3, si, (−1)µi+1b)− σ(si, si+1, (−1)µib)

= W+(i)−W−(i) + (−1)µib(f(si−1)− f(si−3))

− d(−1)µib(si−1, si+1)− d(−1)µi+1b(si−3, si) + d(−1)µib(si, si+1)
19

Now, combining with Claim 6,

w(Eadd)− w(Erem) ≥ − db(y, s1) + db(y, x) + d(−1)µi+1b(si−2, si−1)

− d(−1)µib(si−1, si+1)− d(−1)µi+1b(si−3, si) + d(−1)µib(si, si+1)

= db(y, x)− db(y, s1)− d(−1)µib(si−1, si+1) + d(−1)µib(si, si+1)

≥ db(y, x)− db(y, s1)− d(−1)µi+1b(si, si−1)(5)

The equality follows since db(si−2, si−1) = db(si−3, si) by the projection property of d(−1)µi+1b

(Claim 3), and the observation, as in the proof of Claim 7, that (si−3, si) = (si−2 ⊕ v, si−1 ⊕ v)
for some vector v having non-zero coordinate in the ath coordinate. The second inequality above
follows from triangle inequality.
The following claim proves that w(Eadd) ≥ w(Erem) and thus w(M′) = w(M).

Claim 9. For odd i, db(y, x)− db(y, s1) = d(−1)µi+1b(si, si−1).

Proof. Fix b = 1 (since it appears in all terms). By our assumption that r = 0, we get that
d(y, x)− d(y, s1) = β2b. Suppose i ≡ 1 (mod 4), that is, µi = 1. Then, by induction we know that
si−1 (mod 2b+1) ≤ 2b. Thus, si = si−1 + 2b, implying d(−1)µi+1(si, si−1) = β2b. If i ≡ 3 (mod 4),

that is µi = 0, we get d(−1)µi+1(si, si−1) = d(si−1, si). By induction, si−1 (mod 2b+1) > 2b. So,

d(si−1, si) = β2b as well. �

To complete the contradiction, we show that Φ(M′) > Φ(M). Note that by induction, the msds
of the pairs in E− is precisely that of the pairs in E+ ∪ (si, si−3). This is because (si−3, si) =
(si−2 ⊕ v, si−1 ⊕ v), for some vector v, as argued above. Therefore, Φ(M′)−Φ(M) is precisely the
difference in the LHS of the claim below, and thus > 0.

Claim 10. msd(|si+1 − si−1|) + msd(|s1 − s−1|)− msd(|si+1 − si|)− msd(|s−1 − s0|) > 0.

Proof. The proof is very similar to that of Claim 1. As in that proof, we get msd(|s1 − s−1|) −
msd(|s−1 − s0|) > 0. All we need to show is msd(|si+1 − si−1|) ≥ msd(|si+1 − si|). By induction, we
get that si−1 (mod 2b+1) ≤ 2b. Since (si−1, si) ∈ H, we get si = si−1 + 2b and si (mod 2b+1) > 2b.
For contradiction’s sake, we have assumed si+1 (mod 2b+1) ≤ 2b. Thus, the largest power of 2 that
divides |si+1 − si| is ≤ b. Since |si+1 − si−1| = |si+1 − si + 2b|, we get that msd(|si+1 − si−1|) ≥
msd(|si+1 − si|). �

This completes the proof of part (ii), (iii), and thus the proof of Lemma 13. �

All that remains is the proof of Claim 6, which we perform next.

Proof of Claim 6: Recall we need to prove that for odd i,

W+(i)−W−(i) = (−1)µi+1b(f(si−1)− f(si−3))− db(y, s1) + db(y, x) + d(−1)µi+1b(si−2, si−1)

20

We expand out the function σ in the definitions of W−(i) and W+(i) to get longer (but similar
looking) expressions.

W−(i) = b(f(y)− f(x))− db(y, x) +

bi/4c−µi∑
`=0

[−b(f(s4`+1)− f(s4`+2))− d−b(s4`+1, s4`+2)]

+

bi/4c−1∑
`=0

[b(f(s4`+3)− f(s4`+4))− db(s4`+3, s4`+4)]

= b
[
f(y)−

bi/4c∑
`=0

f(s4`)−
bi/4c−µi∑
`=0

f(s4`+1) +

bi/4c−µi∑
`=0

f(s4`+2) +

bi/4c−1∑
`=0

f(s4`+3)
]

−db(y, x)−
bi/4c−µi∑
`=0

d−b(s4`+1, s4`+2)−
bi/4c−1∑
`=0

db(s4`+3, s4`+4)

W+(i) = b(f(y)− f(s1))− db(y, s1) +

bi/4c−1∑
`=0

[−b(f(s4`)− f(s4`+3))− d−b(s4`, s4`+3)]

+

bi/4c−µi∑
`=1

[b(f(s4`−2)− f(s4`+1))− db(s4`−2, s4`+1)]

= b
[
f(y)−

bi/4c−1∑
`=0

f(s4`)−
bi/4c−µi∑
`=0

f(s4`+1) +

bi/4c−µi−1∑
`=0

f(s4`+2) +

bi/4c−1∑
`=0

f(s4`+3)
]

−db(y, s1)−
bi/4c−1∑
`=0

d−b(s4`, s4`+3)−
bi/4c−µi∑
`=1

db(s4`−2, s4`+1)

We use the projection property of d (Claim 3), as we have done in the two parts above. Note
that this property also holds for db (for any marker b). Hence, d−b(s4`, s4`+3) = d−b(s4`+1, s4`+2).
Similarly, db(s4`−2, s4`+1) = db(s4`−1, s4`). In the second summation of the very last line for W+(i),

we can use projection, modify indices, and replace by
∑bi/4c−µi−1

`=0 db(s4`+3, s4`+4).

We subtract these bounds and set î = bi/4c.

W+(i)−W−(i) = b(f(s4̂i)− f(s4̂i−4µi+2))− db(y, s1) + db(y, x) + (1− µi)d−b(s4̂i+1, s4̂i+2)

+ µidb(s4̂i−1, s4̂i)

If i ≡ 1 (mod 4), µi = 1 and 4bi/4c = i−1. If i ≡ 3 (mod 4), µi = 0 and 4bi/4c = i−3. Substitution
completes the proof. �

Armed with this handle on the ancestor-descendant relationships, we can prove the progress and
disjointedness lemmas alluded to in §3.

Lemma 14. For odd i, si is not M-unmatched.

Proof. Suppose si is M-unmatched. We can now involve si in a new matching. Set Erem = E−(i).
Set Eadd = E+(i) ∪ {si−3, si}. We can remove Erem and add Eadd to get a valid matching. Note
that this is possible because si does not participate in a pair of M . So w(Eadd)−w(Erem) ≤ 0. By

21

Lemma 13 and Claim 6,

0 ≥ w(Eadd)− w(Erem) = w(E+(i))− w(E−(i)) + w(si−3, si)

≥ W+(i)−W−(i) + σ(si−3, si, (−1)µi+1b)

= (−1)µi+1b(f(si−1)− f(si−3)) + (−1)µi+1b(f(si−3)− f(si))

− db(y, s1) + db(y, x) + d(−1)µi+1b(si−2, si−1)− d(−1)µi+1b(si−3, si)

= (−1)µi+1b(f(si−1)− f(si))− db(y, s1) + db(y, x)

=⇒ (−1)µib(f(si−1)− f(si)) ≥ db(y, x)− db(y, s1)

The last equality follows from projection. The final conclusion implies (si, si−1) is a violating pair
by Claim 8. �

Lemma 15. For odd i, si /∈ X.

Proof. The proof is similar to that of Lemma 10. We need to show that (si, si+1) /∈ M . Suppose
i ≡ 1 (mod 4) (the other case has the same argument). Lemma 13 (ii) shows that si+1 (mod 2b+1)
are > 2b. Furthermore, (iii) shows that si−1 (mod 2b+1) ≤ 2b. Thus, si (mod 2b+1) > 2b since si =
si−1+2b. Now, if both these remainders are same then 2b+1 | |si−si+1| implying msd(|si−si+1|) > b
which in turn implies (si, si+1) /∈ M . If the remainders are not same, then |si − si+1| < 2b. This
implies that 2b 6 | |si − si+1| which again implies (si, si+1) /∈M . �

References

[AC06] N. Ailon and B. Chazelle. Information theory in property testing and monotonicity testing in higher
dimension. Information and Computation, 204(11):1704–1717, 2006. 2

[ACCL06] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Estimating the distance to a monotone function.
Random Structures and Algorithms, 31(3):1704–1711, 2006. 2

[AJMR12] P. Awasthi, M. Jha, M. Molinaro, and S. Raskhodnikova. Testing Lipschitz functions on hypergrid
domains. In Proceedings of 16th. International Workshop on Randomization and Computation (RAN-
DOM), 2012. 2, 3

[BBM12] E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication complexity.
Computational Complexity, 21(2):311–358, 2012. 2

[BCGSM12] J. Briët, S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah. Monotonicity testing and shortest-path
routing on the cube. Combinatorica, 32(1):35–53, 2012. 2, 4

[BGJ+09] A. Bhattacharyya, E. Grigorescu, K. Jung, S. Raskhodnikova, and D. Woodruff. Transitive-closure
spanners. In Proceedings of the 18th Annual Symposium on Discrete Algorithms (SODA), pages 531–
540, 2009. 2

[BGJ+12] A. Bhattacharyya, E. Grigorescu, M. Jha, K. Jung, S. Raskhodnikova, and D. Woodruff. Lower bounds
for local monotonicity reconstruction from transitive-closure spanners. SIAM Journal of Discrete Math,
26(2):618–646, 2012. Conference version in RANDOM 2010. 2

[BJRY12] E. Blais, M. Jha, S. Raskhodnikova, and G. Yaroslavtsev. Testing monotonicity and related properties.
Manuscript, 2012. 2, 3

[BRW05] T. Batu, R. Rubinfeld, and P. White. Fast approximate PCP s for multidimensional bin-packing prob-
lems. Information and Computation, 196(1):42–56, 2005. 2

[CGLN11] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving programs robust. In Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE), 2011. 3

[DGL+99] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky. Improved
testing algorithms for monotonicity. Proceedings of the 3rd International Workshop on Randomization
and Approximation Techniques in Computer Science (RANDOM), pages 97–108, 1999. 2

[DMNS06] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis.
In Proceedings of the Theory of Cryptography Conference (TCC), 2006. 3

[EKK+00] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. Journal of Computer
Systems and Sciences (JCSS), 60(3):717–751, 2000. 2

[Fis04] E. Fischer. On the strength of comparisons in property testing. Information and Computation,
189(1):107–116, 2004. 2

22

[FLN+02] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, and R. Rubinfeld. Monotonicity testing over
general poset domains. Proceedings of the 34th Annual ACM Symposium on the Theory of Computing
(STOC), pages 474–483, 2002. 2, 4, 15

[GGL+00] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing monotonicity. Combi-
natorica, 20:301–337, 2000. 2

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approxi-
mation. Journal of the ACM, 45(4):653–750, 1998. 1

[HK08] S. Halevy and E. Kushilevitz. Testing monotonicity over graph products. Random Structures and Algo-
rithms, 33(1):44–67, 2008. 2

[JR11] M. Jha and S. Raskhodnikova. Testing and reconstruction of Lipschitz functions with applications to data
privacy. In Proceedings of the 52nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 433–442, 2011. 2, 3

[LR01] E. Lehman and D. Ron. On disjoint chains of subsets. Journal of Combinatorial Theory, Series A,
94(2):399–404, 2001. 2, 4

[PRR06] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approximation. Journal
of Computer and System Sciences, 6(72):1012–1042, 2006. 2

[RS96] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to program test-
ing. SIAM Journal of Computing, 25:647–668, 1996. 1

Microsoft Research India, 9 Lavelle Road, Bangalore, 560001
E-mail address: dechakr@microsoft.com

Sandia National Labs, Livermore
E-mail address: scomand@sandia.gov

23

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

