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Abstract

There has been considerable interest lately in the complexity of distributions. Re-
cently, Lovett and Viola (CCC 2011) showed that the statistical distance between a
uniform distribution over a good code, and any distribution which can be efficiently
sampled by a small bounded-depth AC0 circuit, is inverse-polynomially close to one.
That is, such distributions are very far from each other. We strengthen their result,
and show that the distance is in fact exponentially close to one. This allows us to
strengthen the parameters in their application for data structure lower bounds for
succinct data structures for codes.

From a technical point of view, we develop new large deviation bounds for functions
computed by small depth decision trees, which we then apply to obtain bounds for
AC0 circuits via the switching lemma. We show that if such functions are Lipschitz on
average in a certain sense, then they are in fact Lipschitz almost everywhere. This type
of result falls into the extensive line of research which studies large deviation bounds
for the sum of random variables, where while not independent, exhibit large deviation
bounds similar to these obtained by independent random variables.

1 Introduction

Perhaps the earliest use of randomized (Monte Carlo) methods in algorithms was not to
solve decision problems, but to sample from distributions as a simulation. The complexity
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theory of randomized sampling algorithms was introduced by Jerrum, Valiant and Vazirani
[JVV86], and there have been a huge number of algorithmic results on sampling, especially
via the Monte Carlo Markov Chain method [JS89]. However, the first lower bounds on the
complexity of sampling have been relatively recent. Explicitly, the challenge of exhibiting a
distribution which cannot be efficiently sampled was raised by Goldreich, Goldwasser and
Nussboim [GGN10] and by Viola [Vio10]. Such a distribution was given recently by Lovett
and Viola [LV11], who showed that the uniform distribution over good codes cannot be
sampled, or even approximately sampled, by bounded depth circuits (i.e. AC0 circuits).
Our work was motivated by improving the parameters obtained by [LV11], but has led us
to discover certain large deviation bounds which hold for bounded depth circuits and for
decision trees, which we believe should have other applications.

Let us start by describing the result of [LV11]. In the following, an (n, k, d)-code is a
subset C ⊂ {0, 1}n of size |C| = 2k, such that the hamming distance between any two
distinct codewords is at least d. A code is called good if k, d = Ω(n). A distribution D
over {0, 1}n is said to be sampled by an AC0 circuit of depth d and size s, if there exists
a function F : {0, 1}m → {0, 1}n for some m, computed by an AC0 circuit of depth d and
size s, such that D is the output distribution of F given uniform input. One may think of
such distributions as distributions which can be sampled efficiently in parallel given access
to truly uniform bits.

Theorem 1.1 ([LV11]). The statistical distance between the uniform distribution over a
good code C ⊂ {0, 1}n and any distribution sampled by an AC0 circuit of depth d and size
exp(nO(1/d)) is at least 1− n−Ω(1).

This result achieves the “correct” tradeoff between the size and depth of the circuit.
However, a shortcoming of the parameters achieved is that the statistical distance between
the distributions is only guaranteed to be inverse-polynomial close to 1, while in theory one
could hope for it to be exponentially close to 1. This can be seen as the analog of correlation
bounds in the world of distributions: statistical distance 1− ε between distributions can be
seen as the analog of two functions having correlation of at most ε. In this work, we improve
the statistical distance guarantee to indeed be exponentially close to 1.

Theorem 1.2 (This work). The statistical distance between the uniform distribution over
a good code C ⊂ {0, 1}n and any distribution sampled by an AC0 circuit of depth d and
size exp(nO(1/d)) is at least 1− exp(−nΩ(1/d)).

Applications to data structures One application of [LV11] to the sampling lower bounds
they obtained, is a corollary which shows that data structures for codes, which allow to
compute the codewords given their internal storage efficiently, must have some redundancy
in their internal storage.

Corollary 1.3 ([LV11]). Let C be an (n, k, d) code with kd ≥ n1+ε. Suppose we can store
codewords of C using only k + r bits so that each bit of the codeword can be computed by
an AC0 circuit of depth O(1) and size poly(n). Then r ≥ Ω(log n).
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Plugging in our improved bound on the statistical distance, we obtain the following
improvement.

Corollary 1.4 (This work). Let C be a good code of size |C| = 2k. Suppose we can store
codewords of C using only k + r bits so that each bit of the codeword can be computed by
an AC0 circuit of depth d and size exp(nO(1/d)). Then r ≥ nΩ(1/d).

We note that the bound of [LV11] holds for codes for which dk ≥ n1+ε, while our bounds
as stated hold only for good codes, i.e. codes for which k, d ≥ Ω(n). A careful examination
of our proof shows that the proof can be extended to the case of d4k5 ≥ n8+ε. We leave it as
an open problem whether our result can be extended to the case of dk ≥ n1+ε.

New tools We next describe the new tools we develop in this work, which allows us to
achieve the improved bounds on the statistical distance. The proof of [LV11] was based
on analyzing the effect of noise on the circuit which samples the distribution. Let F :
{0, 1}m → {0, 1}n be any function whose output distribution is somewhat close to the uniform
distribution over a code. Let x ∈ {0, 1}m be a uniform input, and y ∈ {0, 1}m be a correlated
input chosen so Pr[xi = yi] = 1 − p where p is a small parameters to be chosen later.
One result shown by [LV11] is that with noticeable probability, F (x), F (y) are two distinct
codewords. However, if we assume the code has good distance, it must be the case that many
output bits of F has changed. Now, if F is an AC0 circuit, then by known noise sensitivity
results, this is unlikely when x, y are highly correlated. However, the main technical challenge
is quantifying exactly how unlikely this event is.

Let us now describe this problem more explicitly. Let F : {0, 1}m → {0, 1}n be computed
for example by a polynomial size AC0 circuit. Let Fi denote the i’th output bit of F . Then,
by standard noise sensitivity results for AC0 circuits,

Pr[Fi(x) 6= Fi(y)] ≤ p · logO(1) n.

However, we are interested in the event the for many output bits, Fi(x) 6= Fi(y). A simple
application of Markov inequality (as was done in [LV11]) shows that

Pr[dist(F (x), F (y)) ≥ Ω(n)] ≤ p · logO(1) n,

where dist(·, ·) denotes the hamming distance. One extreme case where this is tight is when
the functions F1, . . . , Fn which compute the output bits of F are all identical. However,
this cannot be the case when F needs to output with noticeable probability many distinct
codewords. One may hope that in such a case,

Pr[dist(F (x), F (y)) ≥ Ω(n)] ≤ exp(−nΩ(1)).

This however is not true, since there could be input bits which influence many of the output
coordinates of F . However, there could only be a small number of such influential variables,
and once these are fixed we might expect strong deviation bounds to hold. Formally, we
show that we can fix all but m · n−O(1) of the input variables, such that the output of the
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restricted circuit still has statistical distance from the code bounded away from 1, and such
that on the restricted circuit,

Pr[dist(F (x), F (y)) ≥ Ω(n)] ≤ exp(−nΩ(1)).

We achieve this restriction by a two step process. First, we use random restrictions to
convert the AC0 circuit to a collection of small depth decision trees computing the outputs
of F (say, of depth n1/100). We then fix the influential variables in these decision trees to get
a balanced collection of decision trees, where each variable is queried on average a bounded
number of times.

Our main technical result is a large deviation bound for balanced collection of decision
trees. We show that in any such balanced collection of decision trees, if we choose an input x
randomly and then flip each input with small probability to obtain a correlation input y, then
with high probability the output distributions are close in hamming distance. Equivalently,
for a input input x, with high probability each variable of x participates in a small number of
trees. This last step is an instance of a large deviation bound: the probability that a random
variable (in this case, the hamming distance between F (x) and F (y)) exceeds its expectation
by much is very small. Such large deviation bounds are extremely useful in many situations.
We discuss these in detail next.

1.1 A Large Deviation Bound

One of the most common mistakes in reasoning about probabilities is to identify a random
variable with its expectation. Fortunately, in many circumstances, there are large deviation
bounds that tell us that the variable is approximately its expectation with high probabil-
ity. Examples of such large deviation bounds are the Chernoff-Hoeffding bounds for sums
of independent Boolean variables, Azuma’s inequality for Martingales of bounded differ-
ence, Talagrand’s inequality, and the Kim-Vu inequality for low degree polynomials. For a
discussion, see [ASE92].

We show a similar concentration bound for the sum of Boolean variables that are com-
puted as relatively small height decision trees over a common set of variables. As far as we
are aware, there is no previous work giving such a bound. The Kim-Vu bound [KV00] is
closest to our situation, since decision trees of height h can also be written as polynomials
of degree h. However, their bound, while useful for a host of combinatorial applications,
deteriorates sharply in the degree, and so does not seem useful when the height is greater
than logarithmic in the number of bits output.

One reason why there may be no previous concentration bounds is that, in general, such
bounds are false. The decision trees could all be identical, or more generally, all depend on
a small set of variables and so be highly correlated. What we show is that, essentially, when
these pathological cases are ruled out, concentration around the expectation holds.

We state our result more precisely below:
A decision tree is a binary tree whose leaves are labeled with values {0, 1} and whose

internal nodes are labeled with Boolean variables x1, . . . , xm. Given an input assignment of
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{0, 1} to the variables x1, . . . , xm, a path is determined from the root to one of the leaves by
identifying 0 with left and 1 with right and moving from each node labeled xi to the child
as indicated by the value of the assignment on xi. The decision tree is then said to compute
the value corresponding to this leaf on that input. If the path passes through a node labeled
xi, then xi is said to be queried on this input. A decision tree queries a variable at most
once on a path. The height of the decision tree is the height of the underlying binary tree.

A decision forest is a collection of decision trees. Given a forest F of n trees reading
variables x1, . . . , xm, it computes the function F : {0, 1}m → {0, 1}n whose i’th bit is the
function computed by the i’th tree.

Definition 1.5. For a decision forest F and an input ~x, a Boolean variable xi has significance
α if an α fraction of trees query xi on input ~x. We notate this

sigF(~x, xi) = α .

The average significance of a variable xi with respect to F is the expected significance of xi
for a uniformly random assignment ~x, notated sigF(xi).

Significance seems very related to the influence of variables. The influence of a variable
on a boolean function is the probability that changing that variable changes the function
value, starting from a random input. For functions computing multiple bits, a natural
generalization is the expected fraction of outputs bits which flip. However, whereas influence
is a blackbox definition depending only on the function computed by F , significance is a
“whitebox” definition and may be different for two forests even if they compute the same
function. The significance of a variable upper bounds its influence – if a decision tree does
not query variable xi on some input ~x, then flipping xi cannot change the output value.
Intuitively, the stronger assumption of bounded average significances rather than bounded
influences permits us to show that on a random input, the paths followed in each of the trees
of F are “decoupled” and behave mostly independently of one another.

Definition 1.6. For ~x a string in {0, 1}n, W (~x) is the number of ones, i.e., the hamming
weight of ~x and w(~x) is the fractional hamming weight, W (~x)/n.

Theorem 1.7. Let F be a decision forest of height at most h and with all average signifi-
cances at most β. Then, for any ε > 0,

Pr
~x

[
w(F(~x)) ≥ O

(
E
~x
[w(F(~x))] + h

√
β log(h4/ε)

)]
≤ ε .

While this result already has several interesting applications and is reminiscent of the
polynomial setting, it is quite different from the Kim and Vu result in several important
ways. In applications, the value β might be on the order of n−δ where n is the number of
trees, so in such cases h can also be polynomially large in n while still giving a strong bound
on deviations. It is also interesting that the bound we obtain does not depend explicitly on
the number of input variables, a fact which is convenient for us later. On the other hand,
we will mainly apply our bound to situations where the expectation is comparable to β,
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where it is not a true concentration bound, since the error term will be much larger than
the expectation.

The theorem has the following important corollary which we will use for our primary
applications:

Corollary 1.8. Let F be a decision forest of height at most h, with all average significances
at most β. For any ε > 0,

Pr
~x

[
max
i

sigF(~x, xi) ≥ O
(
h
√
β log(2h5/βε)

)]
≤ ε .

Thus, if F is small height and with all significances small on average, then in a strong
quantitative sense F has all significances small almost always. Loosely, if such an F is
“Lipschitz on average”, usually a relatively benign condition, F is automatically “Lipschitz
almost everywhere” for an appropriate small Lipschitz constant. This relatively strong con-
dition permits further analysis to take place via the well-known tools described earlier. This
automatic boosting of a Lipschitz on average condition to a Lipschitz almost everywhere
condition is a rare and interesting feature of our work.

Since our main application is to AC0 circuits, besides these results we need to introduce
techniques to study arbitrary small height decision forests by means of balanced decision
forests. These techniques will be discussed in detail in Section 3.5, and the application for
AC0-circuits in Section 3. In Section 2 we prove Theorem 1.7 and Corollary 1.8.

2 Large Deviation Bound for Decision Forests

In this section we will prove Theorem 1.7. To build intuition, we first prove a special case of
the theorem where the set of variables queried at different heights of the trees are disjoint.
Then we show the general case by in essence reducing to the special case.

2.1 Special Case

First we need some preliminaries. Say that a node is at height i in a tree if it is i steps from
the root. The i’th layer is the set of nodes at height i. The way in which we will use bounds
on average significance is to bound the number of times a variable is queried in any given
layer. Generally we will speak of the leaves of a decision tree as the “bottom” of the tree.

Observation 2.1. For any forest F ,

sigF(xi) =
1

|F|
·

h∑
j=0

2−j · {# nodes at height j querying xi} .

Proposition 2.2. Let F be a decision forest of height at most h, with average significances
at most β, and with expected hamming weight of an output at most α. Suppose further
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that no input variable occurs at multiple layers in the forest. Then,

Pr
~x

[
w(F(~x)) ≥ E

~x
[w(F(~x))] + h

√
β

2
log

h

ε

]
≤ ε .

The idea of the proof is to reveal the input variables one layer at a time, starting at the
bottom. Suppose we choose values just for the inputs corresponding to the bottom layer.
Since these inputs aren’t queried anywhere else, the upper portion of the tree remains the
same. The bottom layer nodes simplify, since the variable they query has now been assigned,
and become the new leaves. Thus the decision forest becomes one smaller in height each
time we reveal a layer in this manner. We track how the expected hamming weight of an
input changes as we reveal all the layers one by one, and show that at each step it is unlikely
to increase by much. In analyzing this, we are really only thinking about trees of height 1;
the following lemma encapsulates our reasoning here, which is just a simple application of
Hoeffding’s inequality:

Fact 2.3 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables, such
that for each i, Xi ∈ [ai, bi]. Then

Pr

[∑
i

Xi − E

[∑
i

Xi

]
> δ

]
≤ exp

(
− 2δ2∑

i(bi − ai)2

)
.

Lemma 2.4. Let F be a decision forest of height 1, with expected weight α and average
significances at most β. For any δ > 0,

Pr
~x

[
w(F(~x)) ≥ E

~x
[w(F(~x))] + δ

]
≤ exp

(
−2δ2

β

)
.

Proof. Let X denote the fractional weight of F(~x). Write

X = X0 +
∑

i:xi is a variable

Xi ,

for the contributions to X of trees querying a particular variable xi and constant trees. Thus
X0 is a constant and the Xi’s are independent. Each Xi is at most sigF(xi) and all are at
least 0, so Hoeffding’s inequality gives the bound

Pr
~x

[
w(F(~x))− E

~x
[w(F(~x))] ≥ δ

]
< exp

(
− 2δ2∑

i sigF(xi)2

)
.

We bound the sum of the squares of the significances by the sum of the significances times
the maximum significance, the former being at most 1 and the latter being at most β by
assumption. This finishes the proof.

We can apply this argument recursively to prove Proposition 2.2.
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Proof of Proposition 2.2. For simplicity throughout this argument we will assume that all
trees are complete trees of height h, that is, no query path terminates early. This can be
achieved by padding the trees with dummy queries without changing anything important;
we think of these dummy queries as all being answered randomly and independent of one
another and the input. It is convenient to do this because when the trees are complete trees,
the expected fractional hamming weight of an output is exactly equal to the fraction of leaves
which are labeled 1.

We apply Lemma 2.4 h times in succession, each time to the bottom layer of the current
forest; by revealing this bottom layer, the forest becomes a forest of complete trees one height
smaller, and the average significances of the variables don’t increase. Since the expected
fractional hamming weight of a forest is the fractional weight of the leaves, Lemma 2.4
bounds exactly the fractional weight of the leaves of the reduced tree. Additionally, it is
easy to see using Observation 2.1 that these bottom level decision trees also have average
significances at most β. If we apply the bound with the same value of δ each time, we obtain

Pr
~x

[
w(F(~x)) > E

~x
[w(F(~x))] + hδ

]
≤ h exp

(
−2δ2

β

)
.

or, rewriting in terms of error probability,

Pr
~x

[
w(F(~x)) > E

~x
[w(F(~x))] + h

√
β

2
log

h

ε

]
≤ ε .

2.2 General Case

In the general case, the plan is again to prove the result by induction on the height. We fix
the following notation for two operations on decision forests. Here F is a decision forest of
n trees of height h.

Definition 2.5 (truncating). F ′ is the forest of 2n subtrees rooted at the immediate children
of the roots of the trees of F , thus F ′ has height h− 1. If one of the trees of F is a constant,
then corresponding to it F ′ will have 2 copies of this constant tree.

Definition 2.6 (pruning). For P a partition of the variables, FP is the pruned forest which
never reads a variable in any tree which is in the same class as the root variable in that
tree. That is, for each tree in F if the variable read at the root is in part Pi, then the
corresponding tree in FP has all non-root nodes labeled with variables from Pi deleted and
instead replaced with leaves assigning the value 0.

The idea is to repeatedly prune and truncate the forest, using standard techniques to
ensure that with high probability, a large deviation can only occur in the original forest
when it occurs in the pruned and truncated forest. When the height is small we don’t lose
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much by iterating this. Very important to this strategy is the observation that pruning and
truncating never increase the significance of a variable.

The proof of the inductive hypothesis will have two steps. First we prune F using a
random partition P of the variables into h3 parts. Via an averaging argument, we can select
a partition such that if F has significant probability for a large deviation, then FP also
has similar probability for a similarly large deviation. We observe that since we were only
pruning nodes, FP has small average significances if F does.

Second, we consider each part of the pruned forest FP and analyze as we did in the
special case. We show that no part is likely to deviate much from the corresponding part
of the truncated forest (FP)′. Aggregating across the different parts, we conclude FP rarely
deviates much from (FP)′, which is controlled by the inductive assumption.

2.2.1 Choosing a Partition

Lemma 2.7. For any height h forest F , if Pr~x[w(F(~x)) > α] > ε, then for some partition
P of the variables into h3 parts, Pr~x[w(FP(~x)) > α(1− h−1)] > ε(1− h−1).

Proof. The proof is an averaging argument. Let P be a random coloring of the input variables
with h3 colors. Fix ~x and consider what fraction of ones of F(~x) are pruned by P , that is, are
zeros of FP(~x). A particular one is pruned if in the corresponding tree, one of the nonroot
variables queried on ~x’s path is colored the same as the root variable. There are at most h
variables on a path, so by a union bound the probability that it is pruned is at most h−2.

Let S := {~x : w(F(~x)) > α} be the set of inputs resulting in high hamming weight. By
assumption S has measure exceeding ε.

Now, choose ~x randomly from S and a random P . In expectation, at most a fraction
h−2 of the ones are pruned by P , so by averaging there is a fixed choice of P for which this
holds. By Markov’s inequality, the probability that more than h−1 are pruned by P from a
random element of S is at most h−1. Thus, FP has fractional weight exceeding (1 − h−1)α
with probability exceeding ε(1− h−1), as desired.

Since we are only going to perform pruning h times, we are over all only going to lose
multiplicative factors of (1−h−1)h = O(1) in the probability and magnitude of the deviation
overall to these steps.

2.2.2 Bounding deviations in FP
Lemma 2.8. Fix a forest FP of n trees of height h, with P a partition having h3 parts.
Then, for any δ > 0,

Pr
~x

[w(FP(~x))− w(F ′P(~x)) > δ] ≤ h3 exp

(
2δ2

β

)
.

Proof. The idea of the proof is to break the forest into parts according to P , and bound the
growth of each separately using Hoeffding’s inequality as before. Note that we can safely
ignore any constant trees in FP , as before.
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Let p be any part of P , and let Fp denote the set of trees of F whose root is in p. For any
fixed assignment to the variables outside p, Fp becomes a forest of height 1, with variables
of p at the root. No variable occurs more than βn times, or else it has significance exceeding
β in the overall forest. Applying Hoeffding’s bound essentially as we did in Lemma 2.4, we
have that for any δ > 0,

Pr
~x

[
W (Fp(~x))− E

~x
[W (Fp(~x))] > δ|Fp|

]
≤ exp

− 2(δ|Fp|)2∑
i

(
|Fp|sigFp(xi)

)2


≤ exp

− 2δ2|Fp|2(∑
i |Fp|sigFp(xi)

)
·
(

maxi |Fp|sigFp(xi)
)


≤ exp

(
−2δ2

β

)
.

We saw before that the expected fractional hamming weight of a height one forest (in which
every root makes a query) is the fractional hamming weight of the leaves, and the string
appearing at the leaves is computed by the truncated forest F ′p, so this gives

Pr
~x

[w(Fp(~x))− w(F ′p(~x)) > δ] ≤ exp

(
−2δ2

β

)
.

This bound holds for any fixed value of the variables outside p, so it holds when these are
chosen randomly as well. The sum of the hamming weight for each part Fp is the hamming
weight for FP , and the sum of the hamming weight for each part F ′p is the hamming weight
for F ′P , so by a union bound over each p ∈ P ,

Pr
~x

[w(FP(~x))− w(F ′P(~x)) > δ] ≤ h3 exp

(
−2δ2

β

)
,

as desired.

2.2.3 Putting the pieces together

Now we prove Theorem 1.7.

Proof of Theorem 1.7. Following the sketch earlier, the proof is by induction on the height.
Fix some α, β later.

Suppose that F is of height h with E~x[w(F(~x))] ≤ α, maxi sigF(xi) ≤ β, and Pr~x[w(F(~x)) >
αh] > εh. By Lemma 2.7, there is a partition P with h3 parts so that Pr~x[w(FP(~x)) >
(1 − h−1)αh] > (1 − h−1)εh, where FP the same or smaller expected fractional weight
and average significances. Fix some δ > 0 later; by Lemma 2.8, and a union bound,
the probability that F ′P(~x) has fractional weight exceeding (1 − h−1)αh − δ is at least
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(1−h−1)εh−h3 exp
(
−2δ2

β

)
. Let αh−1 = (1−h−1)αh−δ, εh−1 = (1−h−1)εh−h3 exp

(
−2δ2

β

)
,

and apply this recursively to F ′P .
When the height is reduced to one, Lemma 2.4 bounds α1 as at most α + δ and ε1 as

at most exp
(
−2δ2

β

)
, so we deduce a constraint on αh, εh. For convenience, we use the same

value of δ at every step and also the same value of h when dividing into partitions. When
we unfold the depth h recursion above, an additive term may be multiplied by as many as
h factors of (1− h−1)−1, however as noted earlier (1− h−1)−h = Θ(1), so up to O(1) factors

αh ≤ O(α + hδ) ,

εh ≤ O

(
h4 exp

(
−2δ2

β

))
.

Let F be any forest of height h and take β = maxi sigF(xi), α = E~x[w(F(~x))] and apply the
result. Writing δ in terms of our final ε, we have

Pr
~x

[
w(F(~x)) ≥ O

(
E
~x
[w(F(~x))] + h

√
β log(h4/ε)

)]
≤ ε ,

as desired.

2.3 Average Lipschitz to Lipschitz Almost Everywhere

Here we give the proof of Corollary 1.8.

Proof of Corollary 1.8. For any decision tree T of height h and any variable xi, the function
~x 7→ sigT (~x, xi) can be computed by a tree of height h by relabeling the leaves of T . If F
is a forest with average significances at most β, then relabeling the leaves of each tree of F
this way produces a forest such that w(F(~x)) = sigF(~x, xi). By assumption, the expected
fractional weight of this forest is at most β, so Theorem 1.7 bounds the probability that
sigF(~x, xi) is large. Suppose there are n trees in F . A union bound overall n2h possible
variables queried by F yields

Pr
~x

[
max
i

sigF(~x, xi) ≥ O
(
h
√
β log(h4n2h/ε)

)]
≤ ε ,

which while good enough for some applications, is somewhat wasteful.
To do better, first cluster the variables greedily into clusters such that the sum of the

average significances of the variables is between β/2 and β. Since on any input at most h
variables are queried, the sum of the average significances of all variables is at most h, so
we obtain at most 2hβ−1 clusters. For each cluster C, relabel the leaves of each tree T ∈ F
so that it computes the indicator

∨
xi∈C sigT (~x, xi). The expected fractional weight is again

at most β, so we can apply Theorem 1.7 to bound the probability that on any input, many
trees query a variable from C, which also bounds the probability that many trees query any
particular variable of C. A union bound over all clusters implies

Pr
~x

[
max
i

sigF(~x, xi) ≥ O
(
h
√
β log(2h5/βε)

)]
≤ ε .
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3 A Lower Bound for Sampling by AC0-circuits

Lovett and Viola [LV11] showed that small AC0-circuits cannot approximate uniform distri-
butions over good error correcting codes, where approximation is measured by the statistical
distance between the distributions. For two distributions D,D′,

sd(D,D′) := max
S

∣∣∣Pr
D

[S]− Pr
D′

[S]
∣∣∣ .

Let Un denote the uniform distribution on {0, 1}n, and for C a subset of {0, 1}n let UC
denote the uniform distribution on C.

Just for convenience, we will say that the statistical distance from F : {0, 1}m → {0, 1}n
to a set C is the statistical distance from F (Um) to UC.

Here we formally restate Theorems 1.1, 1.2.

Theorem 3.1 ([LV11], main result). Let F : {0, 1}m → {0, 1}n be a function computable
by an AC0 circuit of size S and depth d. For any good code C,

sd(F, C) ≥ 1−O
(
n−1 logd−1 S

)1/3
.

Theorem 3.2 (This work). Let ε = min( 1
5d+17

, 4
6d+5

). Let F : {0, 1}m → {0, 1}n be a

function computable by an AC0-circuit of depth d and size 2O(nε). For any good code C,

sd(F, C) ≥ 1− 4 · 2−Ω(nε) ,

the constants depending only on the quality of the code and d.

We begin with some preliminaries.

3.1 Results from previous work

The following lemma is an application of hypercontractivity, which we will use in several
places. We won’t use hypercontractivity except via this lemma. In this section, for S a
subset of the hypercube {0, 1}m, µ(S) will denote the measure of S, µ(S) = |S|/2m.

Lemma 3.3 ([LV11], Lemma 6). Let S be a subset of the hypercube {0, 1}m. Let x be a
uniformly chosen point of the hypercube, and let y be chosen from the noise distribution µp
in which each component is iid, and 1 is chosen with probability p. Then for any p,

(µ(S))1+p ≥ Pr
x∈Um,y∈µp

[x ∈ S, x+ y ∈ S] ≥ (µ(S))2 ,

where + is bitwise xor.

We also need to use the H̊astad Switching Lemma. Let x1, . . . , xm be a set of boolean
variables. A (boolean) restriction is a map ρ be a map {x1, . . . , xm} → {0, 1, ?}. If ρ(xi) = ?,
xi is said to be unset by the restriction ρ, and otherwise xi is set to the value ρ(xi). A random
restriction with unset probability p is the distribution on restrictions where each variable is
independently unset with probability p and otherwise independently set to a uniform random
value.

12



Proposition 3.4. [H̊astad switching lemma [H̊as86], (see also [Ajt83, FSS84, Yao85, Bea94])]
Let C be a circuit on n variables of size S and depth d, and let 1 ≤ h ≤ n. Let ρ be a random
restriction with unset probability p ≤ 1

14
· (14h)−d. Then each output of C|ρ is computed by

a decision tree of height at most h, except with probability S
(

1
2

)h
.

3.2 High Level Overview

We follow the same general strategy as [LV11]. They showed, using hypercontractivity
arguments, that if any function has significant overlap with the uniform distribution on a
code C, that there if we look at two correlated inputs x and x′ = x+y for noise vector y, there
is a good probability that both map to codewords, and that these codewords are distinct.
Since codewords are far in hamming distance, this means that the small perturbation on
the inputs is responsible for a large perturbation on the outputs. Thus, with reasonable
probability, the outputs have to be very sensitive to the inputs. Finally, they use the bound
on the average sensitivity of AC0 functions by [LMN93] to get a contradiction.

It is this last step we improve. [LMN93] prove their bound on sensitivity by using
the H̊astad Switching Lemma, so we use the full Switching Lemma rather than just its
consequence. Intuitively, this allows us to deal with decision trees rather than with formulas.
If these decision trees are balanced, in that no variable has a high average significance, we can
use our concentration bound to show that there is only an exponentially small probability
of large sensitivity to an input. Then it follows that the probability that x and x′ map to
distinct codewords is exponentially small.

Unfortunately, we have no guarantee that the decision trees are balanced, even after the
random restriction, and if they are not, there could well be two codewords so that half the
time we map to one and the other half to the other. However, what we show is that this
is essentially the only situation that can occur: once we fix a small number of inputs, we
get a balanced family of decision trees. So while decision trees can compute maps that go
to distinct codewords, the number of such codewords cannot be very large. Finally, we use
hypercontractivity to show that a random restriction of a map that has a large overlap with a
code also has a large intersection with a large subcode. This allows us to move from circuits
to decision trees.

3.3 Measuring overlap with good sets

In going from circuits to decision trees, and decision trees to balanced decision trees, intu-
itively, we are also possibly moving from the uniform distribution on codewords to a distri-
bution on codewords with smaller entropy. It simplifies the argument to use the following
parameters instead of keeping track explicitly of this distribution.

Definition 3.5 (“good set”). Let F : {0, 1}m → {0, 1}n and let C be a subset of {0, 1}n.
We’ll say that a subset S ⊆ {0, 1}m is a (∆, τ)-set for F with respect to C if

• F (S) ⊆ C

13



• µ(S) ≥ ∆

• For any c ∈ C, µ(S ∩ F−1(c)) ≤ τ .

As the below observation formalizes, when τ = 1/|C|, the maximum achievable ∆ is
exactly one minus the statistical distance. However, in our series of reductions, we will
need to increase τ , intuitively moving to a distribution concentrated on a smaller subset of
codewords. So our lemmas will consider not just the value τ = 1/|C| that we need at the
end, but the range of possible tradeoffs between τ and ∆.

Observation 3.6. A function F : {0, 1}m → {0, 1}n has statistical distance ≤ 1 −∆ from
UC for some set C ⊆ {0, 1}n if and only if F has a (∆, 1/|C|)-set with respect to C.

Proof. Let D1(z) be the probability that F outputs z and D2(z) be the uniform distribution
on codewords. Let max(z) = max(D1(z), D2(z)) and min(z) be the minimum. Let SD
be the statistical distance between the two. Then SD = 1/2

∑
z(max(z) − min(z)) and

1 = 1/2
∑

z(max(z) + min(z)) since both are probability distributions. Thus 1 − SD =∑
z min(z). min(z) is 0 unless it is a codeword, in which case it is the minimum of the

fraction of preimages of z and 1/|C|. So for each codeword z ∈ C we can pick a min(z)
fraction of preimages, and achieve ∆ = 1 − SD. No good set can have more than this
number of preimages for any z, so this is the best achievable.

In the sequel, the reader should generally think of τ as on the order of 2−Ω(n1−ε), ∆ on
the order of 2n

ε
, and h about nε, where ε will be about 1/O(d).

3.4 Bounds for balanced decision trees

Lemma 3.7 (Step 1). For any forest of height h with all average significances at most β
which has a (∆, τ) set with respect to a good code,

log
1

∆
= Ω

(
h−4/3β−1/3

(
log 1

τ

n

)2/3
)

,

where the hidden constants depend only on the code.

As in [LV11], we use hypercontractivity to show that correlated inputs are likely to map
to distinct codewords. This will contradict our concentration bound for balanced decision
trees.

Proof of Lemma 3.7. Let G be a (∆, τ)-set of inputs for F as assumed.
Let x be a random vector, and y be chosen from the noise distribution µp. Applying

Lemma 3.3 to G, we have
Pr
x,y

[x, x+ y ∈ G] ≥ µ(G)2 ,

and applying it to G ∩ F−1(c) for any c ∈ C, we have

Pr
x,y

[x, x+ y ∈ G ∩ F−1(c)] ≤ µ(G ∩ F−1(c))1+p .
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By a union bound,

Pr
x,y

[x, x+ y ∈ G,F(x) 6= F(x+ y)] ≥ µ(G)2 −
∑
c∈C

µ(G ∩ F−1(c))1+p ,

≥ µ(G)
(
µ(G)−

(
max
c
µ(G ∩ F−1(c))

)p)
,

≥ ∆ (∆− τ p) ,

for any p. In particular,

Pr
x,y

[dist(F(x),F(x+ y)) = Ω(n)] ≥ (∆− τ p)2 .

Each tree in F where the output differs between x and x + y must have a bit i so that
xi is queried by the tree for assignment x and yi = 1, because if not, the path that the
tree follows with input x is still followed on input x + y. Suppose we fix some x such that
sigF(x, xi) ≤ γ for all i. Then, each xi is queried in at most γn trees on input x and so if y
flips it, it can be responsible for at most γn changes in outcome. In particular we see that
for any D,

Pr
x,y

[dist(F(x),F(x+ y)) ≥ D] ≤ Pr
x

[
max
i

sigF(x, xi) > γ
]

+ Pr
x,y

[
y flips at least

D

γn
variables queried on input x

]
.

So to get distinct codewords when x is such, at least Ω(1/γ) variables that are queried with
input x need to be flipped by y. y is chosen independently of x, so if we prove a bound
on this second probability for fixed x it holds for random x as well. There are at most nh
variables total queried with input x, and since y flips each independently with probability
p, the number of such variables is dominated by the binomial distribution Bin(nh, p). For
a value of γ < 1 to be chosen later, set p = c/(nhγ), where c is at most 1/2 the relative
distance of the code, so that the expected number of such flips is at most c/γ. Applying
standard Chernoff bounds we obtain:

Pr
x,y

[dist(F(x),F(x+ y)) = Ω(n)] ≤ Pr
x

[
max
i

sigF(x, xi) > γ
]

+ exp (−Ω(1/γ)) .

To bound the first probability, we do a change of variables in Corollary 1.8:

Pr
x

[
max
i

sigF(x, xi) = Ω

(
h

√
β log

2h5

βε

)]
≤ ε ,

becomes

Pr
x

[
max
i

sigF(x, xi) > γ
]
≤ 2h5β−1 exp

(
−Ω

(
γ2

h2β

))
.
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Thus we have overall

(∆− τ p)2 ≤ 2h5β−1 exp

(
−Ω

(
γ2

h2β

))
+ exp (−Ω (1/γ)) .

Taking log’s and absorbing low order terms into the constants, we have

log
1

∆
= Ω

(
min

(
1

nhγ
· log

1

τ
,
γ2

h2β
,

1

γ

))
.

As long as τ ≥ 2−n and h ≥ 1, the last term is never the minimum, so we pick γ to balance
the first two.

γ3 = hβ
log 1

τ

n
.

This gives a bound on ∆ of

log
1

∆
= Ω

(
h−4/3β−1/3

(
log 1

τ

n

)2/3
)

,

as claimed.

(Note that, in particular, if τ = 1/|C|, then we get an exponentially small bound on ∆ if
β < h−4n−ε. )

3.5 Making decision forests balanced

The following reduction lemma shows how we can construct balanced forests with a good
set from arbitrary forests with a good set, at a small cost in parameters.

Lemma 3.8 (Step 2). If there is an forest of height h with a (∆, τ)-set for a good code C,
then for any `, β with ` > 2hβ−1, there is a forest of height h and all average significances
at most β with a (∆′, τ ′)-set, where

∆′ = ∆− exp

(
−`β

2

8h2

)
,

τ ′ = 2`τ .

Together with Lemma 3.7, this gives us:

Corollary 3.9. [Step 2 Corollary] If there is a forest of height h with a (∆, τ)-set for a good
code C, and log 1

τ
= Ω(n1/3h5/6), then

log
1

∆
= Ω

(
log5/7

(
1

τ

)
· n−4/7h−10/7

)
,

where the constants depend only on the quality of the code.
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Proof of Corollary 3.9. Apply Lemma 3.8 to the forest in question, setting ` = log 1
τ
, so that

log 1
τ

= Θ
(
log 1

τ ′

)
and log 1

∆
= Ω

(
min(log 1

∆′
, β2h−2 log 1

τ
)
)
. By Lemma 3.7 applied to the

resulting forest,

log
1

∆′
= Ω

(
h−4/3β−1/3

(
log 1

τ

n

)2/3
)

.

Setting β = n−2/7h2/7 log−1/7 1
τ

balances the two terms. Overall this yields

log
1

∆
= Ω

(
log5/7

(
1

τ

)
· n−4/7h−10/7

)
,

as claimed. The constraint on τ is equivalent to ` > 2hβ−1, as required by Lemma 3.8.

Note: This immediately gives an exponentially strong sampling lower bound for small
height forests. Setting τ = 1/|C| = 2−Ω(n), for h ≤ n1/20, we get ∆ ≤ 2−Ω(n1/14).

Proof of Lemma 3.8. We’ll look at a process that fixes the high significance variables, until
none are left, and show that few variables are fixed with high probability.

Claim 3.10. Let F be an arbitrary forest of height h. Suppose we play ` rounds of the
following game with an adversary. Each round, the adversary identifies a variable xi with
sigF(xi) ≥ β, then xi is restricted randomly and F is simplified. If there are no variables for
the adversary to identify, he loses.

Then for any adversary strategy, the probability that the adversary does not lose after `

rounds is at most exp
(
− `β2

8h2

)
, provided ` > 2hβ−1.

Proof of Claim 3.10. Consider Aj, the average number of variables queried in a tree, averag-
ing over both random inputs and trees in the forest, after j rounds. Each round of the game,
the expectation of Aj+1 over the settings of the variable found is at most Aj−β. A0 ≤ h, and
|Aj−Aj+1| ≤ h, since the decision trees never query more than h variables in the worst-case.
Thus, the random variables Aj + βj form a supermartingale of bounded differences. The
probability that A` > 0 is the probability that A` + β` > β` ≥ A0 + (β`− h) ≥ A0 + β`/2.

Applying Azuma’s inequality, this is at most exp(−(β`/2h)2/(2`)) = exp
(
− `β2

8h2

)
.

Now, the lemma follows from the claim. We claim that for one of the restrictions in the
above game, the restricted good set is a (∆′, τ ′)-set for the corresponding restricted forest.
The original volume of the good set is the average over all restrictions in the above game of
the restricted volume. Even if this is 1 in all paths where the game exceeds ` steps, this would
total the failure probability above. So there must be a restriction of at most ` variables in
the above game where the restricted volume is at least the difference of the original volume
and the failure probability. For this restriction, the forest has all significances at most β by
construction. The size of any intersection of the good set with the preimage of any code
word has not increased after the restriction, but since we restricted at most ` variables, its
relative measure in the subcube corresponding to the restriction is larger by at most a factor
of 2`. Thus the restricted good set is a (∆′, τ ′)-set for this forest as claimed.
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3.6 Lower bound for constant depth circuits

We reduce sampling bounds for constant depth circuits to that for decision trees by taking a
random restriction. With very high probability, the circuits all become small depth decision
trees. The main thing we need to show is that, with high probability, no one code word
becomes too likely after the restriction. Here, we use hypercontractivity again. (This step,
while developed independently, is similar to the idea of Lemma 1.7 in [Vio11].)

Lemma 3.11. Let C be a good code, and let F be a function with a (∆, 1/|C|) good set.
Let ρ be a random restriction with probability p of leaving a variable unset.

Then with probability at least ∆/4 , F |ρ has a (∆/2, 2|C|−p/4)-set.

Proof. For any codeword c ∈ C, let Sc be the subset of the good set mapping to the codeword.
Consider picking ρ and then two inputs x and x′ consistent with ρ and otherwise random
and independent. x+x′ is distributed as a random noise vector with probability p/2 of noise,
since each bit position is unset with probability p, and they are equally likely to agree and
disagree if it is unset. Then Eρ[µ(Sc|ρ)2] = Prρ,x,x′ [x, x

′ ∈ Sc] ≤ (µ(Sc))
1+p/2, by Lemma 3.3.

By Markov’s inequality, the probability that µ(Sc|ρ) ≥ 2|C|−p/4 is at most µ(Sc)
1+p/2 ·|C|p/2/4.

So the probability that there exists such a codeword c is at most(∑
c

µ(Sc)
1+p/2

)
|C|p/2/4 ≤ ∆/4 .

On the other hand, a simple averaging argument shows that with probability at least ∆/2,
the volume of the restricted good set is at least ∆/2. So the probability over ρ that both
the restricted good set has size ∆/2 and no codeword has probability greater than 2|C|−p/4
is at least ∆/4.

Combining this with the switching lemma gives:

Lemma 3.12. Assume there is a size S depth d circuit family C computing a function with
statistical distance 1−∆ from a good code C. Let h be such that |S|2−h < ∆/4. Then there

is a family of height h decision trees with a (∆/2, 2|C|− 1
4

(14h)−d)-set for C.

Proof. For p = (14h)−d, consider C|ρ. By the previous lemma, the probability that C|ρ has
a good set of the given size is at least ∆/4. On the other hand, by the Switching Lemma,
and the assumption on ∆, the fraction of ρ so that Cρ is not computable by depth h decision
trees is less than ∆/4. So there exists a ρ so that C|ρ is equivalent to a family of height h
decision trees, and has a good set of the claimed parameters.

We can now prove our main theorem:

Proof of Theorem 3.2. Let c be a small constant determined later.
Let h = c ·min(n1/(5d+17), n4/(6d+5)), and assume C is a circuit family of size at most S = 2h/2

with distance 1 − ∆ from a good code C. If ∆ < 4|S|2−h, we are done. Otherwise, by
Lemma 3.12 there is a family of height h decision trees with a (∆/4, τ ′) good set, where
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τ ′ = |C|− 1
4

(14h)−d . Now apply Lemma 3.8. We meet the condition as long as we have
log 1/τ ′ = Ω(n1/3h5/6), which holds as long as n2/3 = Ω(h5/6+d),or h = O(n4/(6d+5)), which

is true for small enough c. Thus the lemma implies log 1/∆ > Ω ((log 1/τ ′)5/7 n−4/7h−10/7 ≥
Ω
(
(n/(14h)d

)5/7
n−4/7h−10/7 = Ω(n1/7h(−5d−10)/7). Since we weren’t done before, log 1/∆ =

O(h), so h(5d+17)/7 = Ω(n1/7), a contradiction if c is chosen small enough.

4 Discussion and Open Questions

Up to constants, it seems unlikely that Theorem 3.2 can be improved without a major
breakthrough in our understanding of AC0-circuits, since getting a size lower bound better
than 2n

Ω(1/d)
, or getting improved correlation bounds, are longstanding open questions.

Open Question 1. Other applications for Theorem 1.7 and Corollary 1.8?

Open Question 2. Is something like Theorem 1.7 true under the weaker assumption of
small average influences rather than small average significances?

Open Question 3. As mentioned earlier [LV11] gives a result for (n, k, d) codes with dk =
Ω(n1+ε). Although stated only for good codes, our proof generalizes to give an exponential
improvement in the range d4k5 = Ω(n8+ε). Can this improvement be obtained dk = Ω(n1+ε)?

A circuit source is a random string computed by a circuit whose input bits are uniformly
random. Trevisan and Vadhan [TV00] pointed out that obtaining weak seedless extractors
for circuit sources is equivalent to proving weak sampling lower bounds for those circuits.

Open Question 4. Viola [Vio11] gave a seedless extractor which yields, for any γ > 0,
k(k/n1+γ)O(1) truly random bits from any n-bit polynomial size AC0-circuit source of min-
entropy k, with superpolynomially small error. First, this was reduced to the task of ex-
tracting from small height decision tree sources. Since a decision tree of height h depends on
at most 2h bits, it is in particular a 2h-local source. Viola then showed that Rao’s extractor
[Rao09] for low-weight affine sources also extracts with some loss from local sources. Is there
a better seedless extractor for decision tree sources or for AC0 sources?
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